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We study the dependence of the electric conductivity on chemical potential in finite-density SUð2Þ
gauge theory with Nf ¼ 2 flavors of rooted staggered sea quarks, in combination with Wilson-Dirac and
domain-wall valence quarks. The pion mass is reasonably small with mπ=mρ ≈ 0.4. We concentrate in
particular on the vicinity of the chiral crossover, where we find the low-frequency electric conductivity to
be most sensitive to small changes in fermion density. Working in the low-density QCD-like regime with
spontaneously broken chiral symmetry, we obtain an estimate of the first nontrivial coefficient cðTÞ of the
expansion of conductivity σðT; μÞ ¼ σðT; 0Þð1þ cðTÞðμ=TÞ2 þOðμ4ÞÞ in powers of μ, which has rather
weak temperature dependence and takes its maximal value cðTÞ ≈ 0.10� 0.07 around the critical
temperature. At larger densities and lower temperatures, the conductivity quickly grows toward the
diquark condensation phase and also becomes closer to the free-quark result. As a by-product of our study
we confirm the conclusions of previous studies with heavier pion that for SUð2Þ gauge theory the ratio of
crossover temperature to pion mass Tc=mπ ≈ 0.4 at μ ¼ 0 is significantly smaller than in real QCD.
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I. INTRODUCTION

Since quarks inQCDhave finite electric charge, a hotQCD
medium is characterized by some finite electric conductivity.
It can be directly accessed in heavy-ion collision experiments
via the dilepton emission rate [1,2] and is also of direct
importance for the lifetime of strong magnetic fields gen-
erated in off-central heavy-ion collisions [3,4].
The temperature dependence of the electric conductivity

in QCD and QCD-like theories has been extensively
studied by now. A lot of first-principle results are available
from lattice gauge theory simulations [5–12] (see also [13]
for a recent summary of the lattice studies of electric
conductivity). The electric conductivity was also calculated
using a variety of approximation methods which comple-
ment lattice simulations, for instance, based on Boltzmann
or Schwinger-Dyson equations [14–16], or hadron gas
models [17,18].

However, there are practically no first-principle results
regarding the dependence of the electric conductivity on
baryon chemical potential, apart from AdS=CFT calcula-
tions [19,20] which are not directly applicable to non-
supersymmetric QCD. Symmetries of the QCD action
suggest that the electric conductivity should be an even
function of the chemical potential μ and thus can be
expanded in powers of μ as

σðT; μÞ
T

¼ σðT; 0Þ
T

�
1þ cðTÞ

�
μ

T

�
2

þOðμ4Þ
�
: ð1Þ

In a calculation based on the off-shell parton-hadron-
string dynamics transport approach [21] the coefficient
cðTÞ in (1) was estimated as cðTÞ ≈ 0.46 for T near the
deconfinement transition [21]. A study based on the
Boltzmann equation within the quasiparticle approach also
gives a result consistent with this estimate [22], although
only for a single nonzero value of μ. Within the dynamical
quasiparticle model the dependence of the electric con-
ductivity on the baryon chemical potential was found to be
rather weak [23], which is consistent with results obtained
using the functional renormalization group [24]. On the
other hand, a kinetic theory calculation based on the hadron
resonance gas model [25] suggests a strong dependence of
σ on μ in the low-temperature hadronic phase, with σ=T
changing almost by an order of magnitude as the chemical
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potential varies from μ ¼ 0.1 GeV to μ ¼ 0.3 GeV. A
detailed analysis of pion and nucleon loop contributions
to σ reveals even a nonmonotonic dependence of electric
conductivity on μ [26].
These estimates imply that a finite chemical potential can

significantly change the electric conductivity in the physi-
cally interesting part of the QCD phase diagram with
μ≳ T, where the QCD critical point is believed to be
located. This region of the phase diagram is in the focus of
ongoing heavy-ion collision experiments at RHIC and
LHC. Planned experiments at Nuclotron-based Ion
Collider fAcility (NICA) and Facility for Antiproton and
Ion Research (FAIR) facilities will achieve even larger
baryon densities at lower temperatures, hence even larger
values of the ratio μ=T. Thus it is important to study the
density dependence of σ in non-Abelian gauge theory from
first principles in order to correctly interpret the exper-
imental data on dilepton emission rates.
As is well known, due to the notorious fermionic sign

problem, first-principle lattice QCD simulations can only
be performed at zero chemical potential. Methods such as
Taylor series expansion, reweighting or analytic continu-
ation from imaginary chemical potential can be used to
obtain more or less reliable results for small values of μ=T.
However, these methods often make the extraction of
physical observables from lattice simulations much more
technically challenging than for the case of μ ¼ 0.
If one is interested in obtaining qualitative estimates

rather than high-precision results, it is often helpful to
consider QCD-like theories which behave similarly to QCD
in some regions of their phase diagram but have no
fermionic sign problem. Examples include gauge theories
with SUð2Þ [27,28] and G2 [29] gauge groups, as well as
QCD at finite isospin chemical potential [30–32].
In this work we perform a numerical study of the

dependence of the electric conductivity on the fermion
chemical potential in SUð2Þ gauge theory with dynamical
fermions. “Baryons” in SUð2Þ gauge theory are diquarks,
bound states of two quarks, which have the same mass mπ

as the pion and are thus much lighter than baryons in real
QCD. Diquarks hence condense for μ≳mπ=2 [27,28] (see
also Fig. 5 below), significantly earlier than for real QCD
where condensation of nucleons with mass mn ≫ mπ

happens at μ ≈mn=3 ≫ mπ=2. At not very large values
of the chemical potential outside of the diquark condensa-
tion phase, however, the properties of finite-density SUð2Þ
gauge theory are expected to be similar to those of real
QCD. In particular, this similarity makes our estimate of the
coefficient cðTÞ in the expansion (1) relevant for real QCD,
in a way analogous to orbifold equivalence; see e.g., [33].
Our main finding from the analysis of the data in low-

density QCD-like regime is that the density dependence of
electric conductivity is rather weak in the temperature range
T=Tc ¼ 0.7…4.0 which we have considered in our study.
The conductivity is most sensitive to the quark density in

the vicinity of the chiral crossover, where our estimate for
the coefficient cðTÞ in (1) is cðTcÞ ≈ 0.10� 0.07, notice-
ably larger than the corresponding free-quark result.1 This
estimate implies that the chemical potential should be at
least several times larger than the temperature in order to
significantly affect the electric conductivity. The temper-
ature dependence of the coefficient cðTÞ also appears to be
rather weak.
Another part of the phase diagram where finite-density

SUð2Þ gauge theory is expected to behave similarly to QCD
is the conjectured quarkyonic phase at very low temper-
atures and high densities μ ≫ mn [34,35]. Calculation of the
electric conductivity in this part of the phase diagram could
shed more light on the properties of the quarkyonic or color-
superconducting phase. As we will see, however, measure-
ments of the electric conductivity in this low-T, large-μ
regime are numerically very challenging, andwewill leave a
detailed study of this for further work.
We also present data on the phase diagram of finite-

density SUð2Þ gauge theory with Nf ¼ 2 fermion flavors
which complements previous results [35–44] obtained
either on smaller and coarser lattices, or for smaller
temperatures and larger densities, or with different lattice
actions. We confirm the findings of [38] that the chiral
crossover temperature in SUð2Þ gauge theory is 3–5 times
smaller than the pion mass, depending on the chemical
potential, in contrast to real QCD where Tc ≳mπ at μ ¼ 0.
The outline of the paper is the following: in Sec. II we

present the details of our lattice setup and discuss the mixed
fermionic action used to calculate the electric conductivity.
In Sec. III we study the phase diagram of SUð2Þ gauge
theory with Nf ¼ 2 rooted staggered fermion flavors in the
μ − T plane. In Sec. IV we discuss our numerical approach
to extract the electric conductivity from current-current
correlators. In Sec. V we present numerical results for the
electric conductivity, estimated using both the simple
“correlator midpoint” estimate as well as using the more
advanced Backus-Gilbert method. We briefly summarize
our findings in the concluding Sec. VI. Some technical
details of our calculations and analytic expressions for
electric conductivities of a free-quark gas and a free pion
gas at finite density are relegated to Appendixes.

II. LATTICE SETUP

Gauge field configurations were generated using the
standard hybrid Monte Carlo (HMC) algorithm with
Nf ¼ 2 mass-degenerate rooted staggered fermions and
a tree-level improved Symanzik gauge action. We accel-
erate both the HMC algorithm and the measurements of

1Of course, for a free-quark gas the exact zero-frequency limit
of the electric conductivity is ill defined. However, it gets some
finite value within numerical analytic continuation methods used
to extract conductivity from Euclidean correlators, such as the
Backus-Gilbert method used in this work.
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current-current correlators on GPUs. HMC is implemented
with single-precision arithmetics within the CUDA frame-
work, and measurements use double precision and are
implemented using OpenCL. The same algorithmic and
lattice setup has been also used recently in [45].
We use lattices with spatial sizes Ls ¼ 24 and Ls ¼ 30

and temporal sizes Lt ¼ 4…30, changing in steps of two.
In this paper we use a fixed-scale approach, choosing a
single value β ¼ 1.7 of the inverse gauge coupling which
compromises between being sufficiently far from the
artificial strong-coupling bulk phase [46] and still having
a reasonably large lattice spacing and lattice volume. The
chemical potential takes values aμ ¼ 0.0; 0.05; 0.1; 0.2; 0.5
in units of inverse lattice spacing a for Ls ¼ 24 and aμ ¼
0.0; 0.05; 0.20 for Ls ¼ 30. Our largest value of the
chemical potential, aμ ¼ 0.5, thereby represents a kind
of compromise between approaching the diquark conden-
sation phase (see Fig. 5) while still staying reasonably well
below half filling and eventual saturation of the quark
density as obvious lattice artifacts. As discussed below, to
facilitate diquark condensation in a finite volume, for Lt ≥
10 we also generate gauge field configurations with a small
diquark source term aλ ¼ 5 × 10−4.
The numbers of gauge field configurations used in this

work are summarized in Tables I and II. To obtain these
ensembles, we have saved gauge field configurations after
every third full hybrid Monte Carlo update, which appears
to be enough to have reasonably small autocorrelations in
the data for current-current correlators.
The measurements of current-current correlators are

performed mainly using Wilson-Dirac (WD) fermions.
One of the technical advantage of using WD fermions
for measuring the electric conductivity is that all data points
in the current-current correlator in Green-Kubo relations (3)
can be treated uniformly, whereas for staggered fermions
even and odd time slices are typically treated separately
[47] in order to filter out the contributions from non-taste-

singlet states, which effectively decreases the signal-to-
noise ratio.
In addition, some of the measurements are also made

with domain-wall (DW) fermions [48], providing a cross-
check for the Wilson-Dirac data. We use the distance
between domain walls (lattice size along the fifth dimen-
sion) L5 ¼ 16, which is typically sufficient to suppress
additive mass renormalization [49,50] for DW fermions.
Such a mixed lattice action with staggered sea fermions and
DW valence fermions has already been used in a number of
studies of the nucleon axial charge [49–51]. However, our
primary motivation for using DW valence quarks is that we
reuse fermion propagators entering the current-current
correlators (8) to calculate also correlators of axial and
vector currents. Those correlators are related to so-called
anomalous transport coefficients [52,53], which will be the
subject of another forthcoming work. Since the axial
anomaly is very subtle for staggered fermions, the use
of DW valence fermions with good chiral properties is a big
advantage for this kind of calculations.
To improve the chiral properties of DW and WD

fermions without using much finer and larger lattices,
we follow [49] and use hypercubic (HYP) smearing [54]
for gauge links in the DW and WD Dirac operators.
As in [49–51], bare quark masses in the WD and DW

Dirac operators are tuned to match the pion mass mstag
π ¼

0.158� 0.002 obtained with staggered valence quarks with
mstag

q ¼ 0.005. The dependence of the squared pion mass
m2

π on the bare quark masses of the WD and DW fermions
on 243 × 48 lattice with β ¼ 1.7 is illustrated in Fig. 1. One
can see that with a good precision m2

π depends on mq as
m2

π ∼mq þ Δm in accordance with the Gell-Mann-Oakes-
Renner relation, where Δm accounts for additive mass
renormalization. From these data we have estimated that
the bare quark mass should be mWD

q ¼ −0.21 for WD
fermions and mDW

q ¼ 0.01 for DW fermions in order to
match mstag

π ¼ 0.158� 0.002. To illustrate the effect of
HYP smearing on additive mass renormalization (and

TABLE I. Numbers of gauge field configurations with spatial
size Ls ¼ 24 used in this work.

λ ¼ 0 aλ ¼ 5 × 10−4

Ltn aμ 0.0 0.1 0.2 0.5 0.0 0.05 0.1 0.2 0.5

4 402 202 202 202 0 0 0 0 0
6 202 202 202 202 0 0 0 0 0
8 402 202 802 202 0 0 0 0 0
10 402 202 1661 202 503 994 202 1188 233
12 791 202 1368 202 339 639 202 802 249
14 1661 202 946 102 267 420 395 724 184
16 1661 202 635 50 397 692 292 731 267
18 1545 469 549 62 321 230 314 331 179
20 1074 0 454 0 268 418 230 451 132
22 0 0 0 0 227 324 191 274 0
24 0 0 0 0 95 132 195 161 0
26 0 0 0 0 85 104 203 0 0

TABLE II. Numbers of gauge field configurations with spatial
size Ls ¼ 30 used in this work.

λ ¼ 0 aλ ¼ 5 × 10−4

Ltnaμ 0.0 0.05 0.2 0.0 0.05 0.2

4 1602 1452 202 0 0 0
6 1602 678 202 0 0 0
8 1495 348 202 0 0 0
10 880 211 202 0 0 0
12 580 262 123 0 0 420
14 0 0 224 382 309 259
16 0 0 145 527 370 162
18 0 0 94 396 267 114
20 0 0 63 338 337 69
22 0 0 47 283 279 99
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hence on the chiral properties of the lattice fermions), let us
note that for WD fermions without HYP smearing the bare
quark mass should be as large as mq ¼ −0.685 to obtain
mπ ¼ 0.158.
The mass of the ρ meson obtained from the same

ensemble on 243 × 48 lattice with β ¼ 1.7 is mρ ¼ 0.36�
0.07 for WD fermions and mρ ¼ 0.44� 0.05 for DW
fermions; thus, the ratio of pion and ρ-meson masses
mπ=mρ ≈ 0.4 is reasonably small. While not yet physical,
it is smaller than in the previous studies of SUð2Þ gauge
theory. The pion Compton wavelength is almost 4 times
smaller than the lattice size, mπLs ≈ 3.7 for Ls ¼ 24 and
mπLs ¼ 4.74 for Ls ¼ 30; hence, we expect finite-size
artifacts to be reasonably small.

III. PHASE DIAGRAM OF FINITE-DENSITY
SUð2Þ GAUGE THEORY

In addition to the chiral condensate hψ̄ψi and its suscep-
tibility which are conventionally used to map out the chiral
crossover on the QCD phase diagram, the order parameters
of SUð2Þ gauge theory also include the diquark condensate
hψψi. In this section we study these order parameters within
our lattice setup and map out the boundaries of regimes
which favor chiral or diquark condensates.
We first discuss the chiral and diquark condensates and

the corresponding susceptibilities. There are two subtleties
which have to be taken into account when interpreting the
raw lattice data for these observables. First, the chiral
condensate contains a UV-divergent additive part which
might also depend on temperature and chemical potential.
As discussed in [45,55], this UV-divergent part can be
removed by subtracting the first-order term of the Taylor
expansion of the chiral condensate in powers of the bare
quark mass mq:

hψ̄ψisub ¼ hψ̄ψi − ∂hψ̄ψi
∂mq

mq: ð2Þ

The effect of this subtraction on the Lt dependence of the
chiral condensate at μ ¼ 0 is illustrated in Fig. 2 for
different lattice volumes and values of the diquark source.
One can see that only after subtraction one can observe an
expected temperature dependence of the chiral condensate
and identify an inflection point which indicates a crossover
between the high- and low-temperature regimes with
(approximately) restored and spontaneously broken chiral
symmetry.
The second subtlety is that in the chiral limit and at μ ¼ 0

the ground states with nonzero chiral and diquark con-
densates have equal energies. An introduction of a Dirac
mass term, which is inevitable in HMC simulations, breaks
this degeneracy and biases the system toward the phase
with nonzero chiral condensate, which makes it difficult to
observe the signatures of the diquark condensation phase.
In order to counteract this bias, for simulations at suffi-
ciently low temperatures (Lt > 10) we introduce a small
diquark source term in the action of the form λψψ with
aλ ¼ 5 × 10−4 (in lattice units) which makes the diquark
condensation more energetically favorable. As illustrated in
Fig. 3, the presence of this small source term has little effect
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outside of the diquark condensation phase. As illustrated in
Fig. 10 below, it also has practically no effect on the electric
conductivity. On the other hand, in the diquark condensa-
tion phase it acts to rotate the chiral condensate into a
diquark condensate and also produces a clear wide peak in
the diquark susceptibility typical for a crossover.
In Fig. 4 we illustrate how the quark density, the

subtracted chiral condensate, the diquark condensate and
their corresponding disconnected susceptibilities depend
on the temporal lattice size Lt at three different values of the
chemical potential aμ ¼ 0, aμ ¼ 0.05, and aμ ¼ 0.2 and at
different spatial lattice sizes Ls ¼ 24 and Ls ¼ 30.
For aμ ¼ 0 and aμ ¼ 0.05 < amπ=2 we expect the

conventional chiral symmetry-breaking pattern, and for
aμ ¼ 0.2 and sufficiently low temperatures we approach
the diquark condensation phase. Using these data we can
locate chiral crossover and diquark condensation using the
inflection points of either the chiral or the diquark con-
densates, considered as functions of Lt. For aμ ¼ 0.0 and
aμ ¼ 0.05 (i.e., at μ < mπ=2) we use the chiral condensate;
for aμ ≥ 0.1 the diquark condensate is used. To identify the
inflection point, we fit the chiral or diquark condensate data
points with a third-order polynomial. The inflection point
of the fitting polynomial is used as an estimate of the
crossover position. These fits and the positions of the
corresponding inflection points are shown on Fig. 4 with
dashed lines. The estimates of critical Lt obtained in this
way are also in good agreement with the observed peaks in
the corresponding susceptibilities.
Note that the thermodynamic singularity in the chiral

susceptibility is known to be associated with disconnected
fermionic diagrams and the contribution of connected
fermionic diagrams has only a mild temperature depend-
ence (see e.g., [56]). We have measured both the connected
and the disconnected contributions to susceptibility, and
our numerical results confirm this well-known feature of
the chiral crossover. For this reason on Fig. 4 we only plot
the disconnected contribution. Since susceptibilities are
much noisier observables than the condensates, we have

decided to use the condensates instead of susceptibility
peaks to identify the crossover position.
The resulting estimates for the boundaries of the chirally

broken phase and the diquark condensation phase are
shown in Fig. 5. Blue and red points correspond to
inflection points of Lt dependence of the chiral and diquark
condensates, respectively. In this plot, the two points with
the lowest temperature (corresponding to Lt ¼ 30) were
obtained in a different way: here, we have fixed Lt ¼ 30
and looked for an inflection point in the μ dependence of
both the chiral (blue point) and the diquark (red point)
condensates. The results coincide within statistical and
fitting uncertainties, which suggests that the two phases
coexist in this region of the phase diagram.
Our findings for the phase diagram agree well with

previous results obtained in lattice simulations on suffi-
ciently fine lattices [38,39,44], as well as within the
functional renormalization group approach in effective
low-energy theories [57,58]. The chiral crossover moves
toward lower temperatures as μ is increased toward the
diquark condensation threshold. In particular, above this
threshold, the critical temperature of the superfluid diquark
condensation phase only rather weakly depends on μ as
observed previously in two-color QCD [35,38,59] and
analogously for the pion condensation phase in QCD at
finite isospin density as well [32].
We note that in the absence of any order parameter, we

expect the finite-temperature confinement-deconfinement
phase transition at small densities μ≲mπ=2 to be either a
crossover or a weak first-order phase transition. The fact
that temperature dependence of both the chiral condensate
and chiral susceptibility becomes somewhat more pro-
nounced at a larger lattice size Ls ¼ 30 still leaves a
possibility of a finite-order phase transition but can be
also consistent with a crossover scenario in which the chiral
susceptibility is bounded by a large but finite value related
to finite quark mass. In view of the fact that in the heavy
quark mass limit the deconfinement transition in SUð2Þ
gauge theory is a second-order phase transition [60], the
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scenario of first-order phase transition seems unlikely.
However, the precise nature of the deconfinement transition
can only be determined in a detailed study of volume
dependence, which is out of the scope of this paper.
An interesting feature of the phase diagrams obtained

from lattice simulations both in this work and in [38,44] is
that the chiral crossover happens at temperatures which are
several times lower than the pion mass. From our data we
estimate Tc=mπ ≈ 0.37 at μ ¼ 0 and Tc=mπ ≈ 0.2 at aμ ¼
0.1 near the diquark condensation threshold. Although the
results of [38,44] were obtained for considerably larger
pion masses (larger values of mπ=mρ), the ratios Tc=mπ at
both μ ¼ 0 and μ ¼ mπ=2 obtained in these works are

consistent with our estimates. Such small values of Tc=mπ

are in sharp contrast with real QCD, where Tc ≈ 155 MeV
[61], mπ ≈ 135 MeV and hence Tc=mπ ¼ 1.15 > 1. This
difference might be explained by the fact that there are five
Goldstone bosons in SUð2Þ gauge theory with Nf ¼ 2

flavors [28], in contrast to the three pions in Nf ¼ 2 QCD.

IV. NUMERICAL MEASUREMENTS OF
ELECTRIC CONDUCTIVITY

By virtue of Green-Kubo relations [62], within the linear
response approximation the electric conductivity σðωÞ is
related to correlators of same-direction vector currents:
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1

V

X
x⃗

hjiðτ; x⃗Þjið0; 0⃗Þi≡ GðτÞ

¼
Z

∞

0

dωKðτ;ωÞσðωÞ;

Kðτ;ωÞ ¼ ω

π

coshðωðτ − 1
2TÞÞ

sinhð ω
2TÞ

; ð3Þ

where jiðτ; x⃗Þ is the vector current density in some fixed
spatial direction i ¼ 1, 2, 3,

P
x⃗ denotes summation over

spatial lattice coordinates, V ¼ a3L3
s is the spatial lattice

volume and τ ∈ ½0…aLt�.
While the inversion of the relation (3) is a numerically

ill-posed problem, a number of practical inversion methods
have been developed which either take into account some
prior knowledge of σðωÞ or return σðωÞ smeared over a
certain frequency range of order of temperature [62]. In this
work we use the Backus-Gilbert method [62] with
Tikhonov regularization [63,64] as implemented in [65].
Within the Backus-Gilbert methodwe construct the linear

estimator of the conductivity basedon theEuclidean current-
current correlator (3):

σBGðωÞ ¼
X
τ

qτðωÞGðτÞ

¼
Z þ∞

0

δBGðω;ω0Þσðω0Þ;

δBGðω;ω0Þ ¼
X
τ

qτðωÞKðτ;ω0Þ; ð4Þ

where the resolution functions qτðωÞ are chosen in such a
way that, combined with the Green-Kubo kernel Kðτ;ωÞ in
(3), they yield a smearing function δBGðω;ω0Þ which
approximates the δ function as closely as possible. In the
Backus-Gilbert method, we minimize the “dispersion”R∞
0 dω0δ2BGðω;ω0Þðω − ω0Þ2. This minimization requires
an inversion of a certain ill-conditioned matrix constructed
from the kernel Kðτ;ωÞ. With Tikhonov regularization this
inversion is regularized by replacing the inverse singular
values 1=xi of this matrix by xi=ðx2i þ Δ2Þ with some small
Δ. This effectively cuts off the singular values xi which are
smaller than Δ and thus makes the matrix inversion well
defined.
In contrast to other regularization schemes which use the

covariance matrix for the Euclidean correlator in (3), with
Tikhonov regularization the resolution functions do not
depend on the data and thus neither on the chemical
potential μ, which allows for a more meaningful compari-
son of data obtained at different values of μ and with the
error-free data for free quarks as well. We calculate
statistical errors for the smeared conductivity using data
binning [63].
Since the smeared conductivity σBGðωÞ in practice quite

strongly depends on the regularization of the matrix
inversion and the value of regularization parameters, the
Backus-Gilbert method to some extent still suffers from the
inherent ambiguity which is typical for numerically ill-
defined analytic continuation problems [62]. To assess any
residual ambiguity, in addition, we also consider an
alternative simple estimator of the low-frequency conduc-
tivity [12]. Namely, according to the Green-Kubo relation
in (3), the current-current correlator on the lhs of Eq. (3), at
the maximal Euclidean time separation τ ¼ aLt=2, is
related to the electric conductivity as

GðaLt=2Þ ¼
Z

∞

0

dωKðaLt=2;ωÞσðωÞ: ð5Þ

The function KðaLt=2;ωÞ ¼ ω=πðsinhð ω
2TÞÞ−1 is localized

within the region of small frequencies ω ∼ T and can be
also considered as a “smeared” δ function similar to the one
used in the Backus-Gilbert method. The norm and width of
this function are, respectively,

N ≡
Z

∞

0

dωKðaLt=2;ωÞ ¼ πT2;

Δω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N −1

Z
∞

0

dωω2KðaLt=2;ωÞ
s

¼
ffiffiffi
2

p
πT: ð6Þ

We can thus use the value of the Euclidean correlator at
midpoint as an estimator σMP of electric conductivity σðωÞ
smeared over frequencies in the range ω≲ ffiffiffi

2
p

πT ≈ 4.4T:
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FIG. 5. Numerical estimate of the phase diagram of finite-
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of Lt dependence of the chiral and diquark condensates,
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σMP ¼
1

πT2
GðaLt=2Þ: ð7Þ

InFig.6wecompare theresolutionfunctionN −1KðaLt=2;ωÞ
for the midpoint estimator (7) with resolution functions in the
Backus-Gilbert method.
The contribution of connected fermionic diagrams to the

current-current correlator in (3) for a single gauge field
configuration can be written as a single trace over fermionic
indices (spin, color and lattice coordinates):

hjx;μjy;νiconn ¼ CemTr

� ∂D
∂θx;μ D

−1 ∂D
∂θy;νD

−1
�����

θ¼0

; ð8Þ

where x, y and μ, ν label the sites and the directions,
respectively, on the four-dimensional (for WD fermions) or
five-dimensional (for DW fermions) lattice and D is either
the WD or DW Dirac operator in the background of the
non-Abelian gauge fields and an Abelian lattice gauge field
θx;μ, with link factors eiθx;μ . The electric charge factor

Cem ¼
X
f¼u;d

q2f ¼ 5=9 ð9Þ

is the sum of squared quark charges for the u and d quarks.
In this work we follow most of the previous lattice QCD
studies of the electric conductivity [5–12] and present all
the results with Cem factored out.
At x ¼ y there is also an additional contact term

contribution Trð∂2D
∂θ2x;μ D

−1Þj
θ¼0

to the correlator (8). This

contact term affects only the high-frequency behavior of the
electric conductivity, and we disregard it in the following.
The time slice τ ¼ 0 in the current-current correlator (3),
for which this contact term is relevant, is discarded within
the Backus-Gilbert method.

In the presence of a nonzero diquark source λ the
expression for the connected contribution (8) is somewhat
more complicated and is given in Appendix C.
The contributions from disconnected fermionic diagrams

hjx;μjy;νidisc¼Cdisc×Tr

� ∂D
∂θx;μD

−1
�����

θ¼0

Tr

� ∂D
∂θy;νD

−1
�����

θ¼0

ð10Þ

to the current-current correlator (3) are typically small and
noisy and in addition weighted by the charge factor
Cdisc ¼ ðPf¼u;d qfÞ2 ¼ 1=9, which is 5 times smaller than
the charge factor Cem ¼ 5=9 for connected diagrams.
Nevertheless, in Sec. V below we explicitly check the
smallness of disconnected contribution at finite densities.
In order to obtain the four-dimensional conserved vector

current for DW fermions, one should sum the correlator (8)
over the fifth dimension, i.e., over x5 ¼ 0…L5 − 1 and
y5 ¼ 0…L5 − 1 [48]. This increases the number of Dirac
operator inversions required to calculate (8) by a factor of
L5, thus making calculations with DW fermions signifi-
cantly more expensive than with WD fermions. In
Appendix B we discuss a small trick which allows us to
halve this numerical cost. Further, to obtain physical results
with DW fermions it is crucial to subtract the contribution
of five-dimensional bulk Dirac modes, which becomes
quite significant at high temperatures and/or at small values
of τ in (3). As discussed in [48], this contribution can be
compensated by the contribution of bosonic Pauli-Villars
fields which live on the five-dimensional lattice with
2 times smaller size L5 in the fifth dimension. This
contribution is equal to minus twice the correlator (8)
calculated with LPV

5 ¼ L5=2 and the bare mass mPV ¼ 1 in
the DW Dirac operator.

V. NUMERICAL RESULTS

A. Euclidean correlators and midpoint
conductivity estimates

We start the discussion of our numerical results by
considering Euclidean current-current correlators which
enter the Green-Kubo relations (3). In Fig. 7 we plot
connected current-current correlators obtained with
Wilson-Dirac fermions at three different temperatures
corresponding to Lt ¼ 12; 16; 20 and compare them with
the corresponding disconnected contributions, as well as
with the corresponding correlators for free quarks on the
same lattice (plots on the right). Both connected and
disconnected contributions were calculated for all configu-
rations in the ensembles listed in Table I and in addition
averaged over 10…30 random source positions in order to
reduce statistical errors.
One can see that as the chemical potential gradually

increases, the connected current-current correlators (8)
around midpoint become larger and more flat, which agrees
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ðπT2Þ−1KðaLt=2;ωÞ for Backus-Gilbert and midpoint estimates
of the low-frequency limit of the electric conductivity.
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qualitatively with the expected growth of the electric
conductivity in a finite-density system. On the other hand,
the behavior at small Euclidean time separations, which is
most sensitive to the high-frequency part of the spectrum, is
practically unaffected by finite density.
We have also invested a significant amount of CPU/GPU

time into measuring disconnected contributions (10) and
were not able to detect any statistically significant deviation
from zero. For small values of the chemical potential we
were able to reduce statistical errors of disconnected
contributions such that they are at least 3–4 orders of

magnitude smaller than the connected contributions.
However, for larger μ and smaller T we were not able to
reduce statistical errors of disconnected contributions
below 10%…20% of the connected ones. Thus we cannot
rule out that disconnected contributions might become
important at very large densities and low temperatures,
for instance, in the quarkyonic phase.
We also note that for lower temperatures and larger

values of the chemical potential the current-current corre-
lators become significantly noisier. In addition, their
statistical distribution seems to develop heavy tails, so that
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FIG. 7. On the left: Current-current correlatorsGWDðτÞ obtained with Wilson-Dirac fermions on the lattice with Ls ¼ 24. On the right:
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contributions from outlier configurations become more and
more important. These outlier configurations present a
major challenge for calculating connected current-current
correlators at low temperatures and high densities.
A comparison with the free-quark results is shown on

plots on the right in Fig. 7. For this as well as for all other
calculations with free quarks we use the bare quark mass
am ¼ 0.01, which corresponds to the optimal value of quark
mass in theDWDirac operator which, for interacting theory,
reproduces the pion mass obtained with staggered fermions
(see Fig. 1). This choice is dictated by the expected small-
ness of mass renormalization effects for DW fermions,
whichmakes the bare and renormalizedmasses close to each
other. Clearly, for freeWD fermionsmass renormalization is
absent, andwe can use the samevalue of baremass as for free
DW fermions. In any case, current-current correlators
depend only weakly on the bare quark mass, and changing
its value by�50% does not lead to any noticeable change in
results for our lattice parameters.
The comparison with free-quark results shows that for all

values of the chemical potential the relative difference
between current-current correlators in interacting and non-
interacting theories does not exceed 50%, which agrees
with previous studies at zero chemical potential [12]. At not
very large densities, chemical potential moves current-
current correlators closer to the free-quark result. An
interesting feature is that for aμ ¼ 0.5 this trend is reversed,
and for these values of μ the current-current correlator
around midpoint becomes smaller than the corresponding
free-quark result.
In order to check how the chiral properties of lattice

fermions might affect the electric conductivity, in Fig. 8 we
plot the ratios of connected contributions (8) to current-
current correlators in (3) calculated with WD and with DW
quarks. Around midpoint, the results obtained with both
WD and DW Dirac operators agree within statistical errors.
For DW Dirac operators, the latter are noticeably larger due
to smaller statistics (as calculations with DW quarks are

more than an order of magnitude more expensive than with
WD quarks). A salient feature of the current-current
correlators for DW fermions is that they strongly deviate
from the Wilson-Dirac result at short Euclidean time
separations, where the contribution of five-dimensional
bulk modes becomes important and is not completely
canceled by Pauli-Villars regulator fields.
In order to estimate possible finite-volume artifacts in

our study, in Fig. 9 we compare finite-density connected
current-current correlators calculated on lattices with Ls ¼
24 and Ls ¼ 30 using Wilson-Dirac fermions with aμ ¼
0.0 and aμ ¼ 0.05 both in the full SUð2Þ lattice gauge
theory and for free quarks. The deviations clearly grow
toward lower temperatures and become quite significant for
free quarks but do not exceed 10% for the full gauge theory.
An important observation is that in the full gauge theory
deviations due to finite-volume effects appear to have
opposite sign to those in the free-quark case.
We now turn to the estimates of the low-frequency

electric conductivity σMP based on the midpoint values of
current-current correlators, as defined in (7). As discussed
in Sec. IV above, these estimates are completely model
independent and do not depend in any way on the method
of performing numerical analytic continuation of Euclidean
data. An analysis of current-current correlators for free
quarks (see Appendix D) suggests that the midpoint
estimator is also somewhat less affected by finite-volume
effects.
In Fig. 10 we show the dependence of the ratio

σMP=ðCemTÞ on the inverse temperature 1=ðaTÞ≡ Lt in
lattice units, calculated using Wilson-Dirac fermions.
Points with error bars correspond to lattice data in the full
gauge theory, and solid lines are free-quark results on the
same lattices as well as in the infinite-volume and con-
tinuum limit. On the left plot, we present the data for Ls ¼
24 and the full range of chemical potential values used in
this work. On the right plot, we compare the data obtained
on Ls ¼ 24 and Ls ¼ 30 lattices. For both plots we
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combine the data points obtained with zero diquark source
λ ¼ 0 at Lt < 12 and with aλ ¼ 5 × 10−4 at Lt ≥ 12. As
we demonstrate in Fig. 11 below, introducing a small
diquark mass term has no noticeable effect on current-
current correlators for all temperatures and chemical
potentials which we consider.
For small values of chemical potential the ratio

σMP=ðCemTÞ in full gauge theory appears to be slowly
decreasing toward lower temperatures. A comparison of
the data for lattices with Ls ¼ 24 and Ls ¼ 30 suggests
that finite-volume artifacts are comparable with statistical
errors.
On the other hand, the corresponding free-quark results

grow toward lower temperatures, the faster the smaller is
the volume. As a result, at low temperatures σMP=ðCemTÞ in
the full gauge theory on Ls ¼ 30 lattice is around 1.5 times
smaller than for free lattice quarks, in agreement with the

expected drop of conductivity at low temperatures. From
the right plot on Fig. 10 one can see that for Ls ¼ 24 lattice
the difference appears to be even larger. On the other hand,
the gauge theory results appear to be quite close to the
values obtained for free continuum quarks.
As discussed in detail in Appendix D, the growth of

σMP=T toward low temperatures for free quarks is a finite-
volume artifact, and in the infinite-volume, continuum
and massless limits σMP=T at μ ¼ 0 is constant for free
fermions: σMP=T ¼ Nc

3π ¼ 0.212.
It is also interesting to note that for the two largest values

of the chemical potential which we use, aμ ¼ 0.2 and
especially aμ ¼ 0.5, the midpoint estimate σMP=T appears
to be closer to the free-quark result than for the lower
densities. This is probably due to the fact that large
densities move the system closer to the high-energy regime
of asymptotic freedom.
According to Fig. 5, for aμ ¼ 0.5 and Lt ¼ 20; 22 we

should already be in the superconducting diquark con-
densation phase. Interestingly, superconductivity does not
show up as a sharp increase in conductivity, here. Instead,
the conductivity even falls slightly below the free-quark
result as we reach the diquark condensation phase with
lowering the temperature at aμ ¼ 0.5. Most likely, the
dramatic changes expected in the transport-peak part of the
electric conductivity are simply not captured by our
frequency-smeared conductivity estimates and are also to
some extent compensated by the suppression of the higher-
frequency conductivity at large μ. A more detailed study of
the electric conductivity in the superconducting phase
would certainly be interesting but is beyond the scope of
this work.
In order to further check the independence of our estimates

on the choice of the fermionic action and diquark source
term, in Fig. 11 we compare the temperature dependence
of the midpoint estimator σMP=T for domain-wall fermions
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and for Wilson-Dirac fermions with and without the diquark
source term. One can see that all estimates agree within
statistical errors.
Finally, we use our results for σMP=T to estimate the

expansion coefficient cðTÞ in (1), which characterizes the
sensitivity of low-frequency electric conductivity to chemi-
cal potential. To this end we use the difference between σMP
at μ ¼ 0 and aμ ¼ 0.05. This value of aμ is a compromise
between having a finite difference which is considerably
larger than statistical errors and being still in the small-μ
QCD-like regime far from the diquark condensation phase.
We thus approximate cðTÞ as

cðTÞ ≈ σMPðT; aμ ¼ 0.05Þ − σMPðT; μ ¼ 0Þ
ðaμLtÞ2σMPðT; μ ¼ 0Þ : ð11Þ

The resulting temperature dependence of cðTÞ for Wilson-
Dirac fermions on lattices with Ls ¼ 30 and Ls ¼ 24 is
illustrated on the left plot in Fig. 12, along with reference
results for free fermions on the lattice and in the continuum.
While in the infinite-volume, continuum and massless
limits the coefficient cðTÞ based on the midpoint estimate
for free quarks is cðTÞ ¼ 15−π2

9π2
¼ 0.0578 and thus temper-

ature independent, the lattice data show some temperature
dependence, which is especially strong for free quarks and

the full gauge theory on Ls ¼ 24 lattices. In particular, for
sufficiently low temperatures the coefficient cðTÞ becomes
negative. As discussed in Appendix D, for free quarks this
behavior is a finite-volume artifact, and in the large-volume
limit the lattice free-quark estimate of cðTÞ becomes
closer to the continuum value and depends weaker on
the temperature.
A noticeable feature is that the temperature dependence

of cðTÞ in the full gauge theory is quite different from the
free-quark result, especially in the vicinity of the chiral
crossover, where cðTÞ takes its maximal value for both
lattice sizes Ls ¼ 24 and Ls ¼ 30. The value of cðTÞ
appears to be larger than the free-quark result, with rather
significant deviations between the data for Ls ¼ 24 and
Ls ¼ 30 lattices. The temperature dependence of the
data for Ls ¼ 30 appears to be weaker than for Ls ¼ 24.
Both datasets, however, show a peak around crossover
temperature—a pronounced one for Ls ¼ 24 and a small
one for Ls ¼ 30. This suggests that the electric conductivity
should be most sensitive to finite density in the crossover
regime. Since this statement is based on the data obtained in
the low-density QCD-like regime of SUð2Þ gauge theory,
it should be also qualitatively correct for the full QCD.
While our data still have quite large statistical and also
systematic errors due to aforementioned finite-volume
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effects, a conservative estimate of the value of the
coefficient cðTÞ around crossover temperature is cðTÞ ¼
0.10� 0.07, which is noticeably larger than the free-quark
result.

B. Estimates of electric conductivity from the
Backus-Gilbert method

In this section we turn to the estimates of the electric
conductivity based on the Backus-Gilbert method outlined
in Sec. IV. We implement the resolution functions in the
Backus-Gilbert transformation (4) on the discrete grid of
frequency values ω ¼ jT with j ¼ 0; 1;…2Lt. For each Lt
we tune the value of the Tikhonov regularization parameter
Δ in the Backus-Gilbert method as follows: we perform
the analysis with Δ ¼ 1 × 10−10, 2 × 10−10, 5 × 10−10,
1 × 10−9;…; 5 × 10−7, starting from Δ ¼ 1 × 10−10, and
choose the least value of Δ for which the Backus-Gilbert
estimate σBGðωÞ of the electric conductivity on the lattice
with Ls ¼ 24 is positive and its maximal relative error is
less than 10% for all values of chemical potential. Such
tuning yielded the following values: Δ ¼ 1 × 10−10 for
Lt ¼ 12, Δ ¼ 1 × 10−9 for Lt ¼ 14, Δ ¼ 2 × 10−9 for
Lt ¼ 16 and Δ ¼ 2 × 10−7 for Lt ¼ 18; 20; 22. As illus-
trated in Fig. 6, with these values of Δ the resolution
functions δBGð0;ωÞ are still very close to resolution func-
tions calculated with a very small reference valueΔ¼10−12.
They are noticeably narrower than the resolution function
N −1KðaLt=2;ωÞ for the midpoint estimate (7).
In Fig. 13 we show the Backus-Gilbert estimates of the

electric conductivity σBGðωÞ for Wilson-Dirac fermions on
lattices with Ls ¼ 24 at different values of chemical
potential and different temperatures and compare them
with corresponding estimates for free quarks. To under-
stand how the inherent smearing within the Backus-Gilbert
method as well as lattice artifacts and finite-volume effects
affect the frequency-dependent conductivity, in the plots on
the right in Fig. 13 we also compare the Backus-Gilbert
estimates σBGðωÞ for free quarks with analytically calcu-
lated conductivities in the continuum theory. Analytic
expressions for electric conductivity are summarized in
Appendix A. For illustrative purposes, in Fig. 13 we have
replaced the infinitely narrow transport peaks of free
continuum quarks [the term proportional to the δ function
in (A2)] by Breit-Wigner distributions ðα=TÞ=ð1þðω=TÞ2Þ
of unit width, where α is the δ-function prefactor in (A2).
Finite chemical potential affects the electric conductivity

of free continuum quarks in two competing ways, which
become especially evident in the zero-temperature limit
[see Eq. (A8)]. On the one hand, the height of the transport
peak at ω ¼ 0 grows approximately as μ2 (neglecting the
small quark mass), i.e., in proportion to the area of the
Fermi surface. On the other hand, chemical potential makes
the finite-frequency part of the electric conductivity vanish
for w < 2maxfmq; μg. In the condensed-matter physics

language, the transport peak and the finite-frequency part of
the electric conductivity originate from intraband and
interband transitions, respectively.
For low frequencies the Backus-Gilbert estimator

σBGðωÞ receives contributions from both the transport peak
and the finite-frequency electric conductivity. As a result,
the strength of the transport peak is rather strongly
overestimated for low densities, as one can also see from
the plots on the right in Fig. 13. For larger densities
(aμ ¼ 0.2 and aμ ¼ 0.5) the finite-frequency part of
electric conductivity is separated from the transport peak
by a rather wide gap, wider than the width of the resolution
functions in the Backus-Gilbert method. As a result, for
large densities the Backus-Gilbert method captures the
strength of the transport peak more precisely. As could be
expected, the Backus-Gilbert estimates of electric conduc-
tivity most strongly deviate from the continuum results in
the vicinity of the gap between the transport peak and the
finite-frequency part of electric conductivity. This is a
direct consequence of the smearing which removes sharp
threshold effects and also smears out the transport peak.
The deviation of lattice and continuum results in the
high-frequency tails of conductivity is most likely a lattice
artifact.
Comparing now the Backus-Gilbert estimates for the full

gauge theory and for free quarks, we see that, as the
temperature is decreased, the low-frequency electric con-
ductivity becomes significantly smaller for the full gauge
theory at all values of the chemical potential. On the other
hand, for ω=T ∼ 5 (corresponding to aω ≈ 0.2…0.4), the
data for the full gauge theory show a kind of bump, where it
becomes significantly larger than the free-quark result. We
associate this bump with a ρ-meson resonance, which
becomes very wide due to smearing. At the largest value
of the chemical potential aμ ¼ 0.5 this bump seems to
vanish, but the gap between the transport peak and the
finite-frequency part of electric conductivity is still much
shallower than for free quarks. This suggests a strong
broadening of the transport peak in full gauge theory.
On Fig. 14 we also illustrate the lattice volume depend-

ence of electric conductivity by comparing the frequency-
smeared estimates of electric conductivity on lattices with
spatial sizes Ls ¼ 24 and Ls ¼ 30 and temporal size
Lt ¼ 20. For smaller Lt (higher temperatures) finite-
volume effects are smaller. As already discussed in
Sec. VA above, volume dependence is much stronger
for free quarks than for the actual gauge theory data.
We now use the zero-frequency limit of the smeared

electric conductivity obtained with the Backus-Gilbert
method to estimate the low-frequency conductivity as a
function of temperature and chemical potential. As dis-
cussed in Sec. IV above and illustrated in Fig. 6, the
resolution of the Backus-Gilbert estimate is better than that
of the midpoint estimate, which comes at the cost of the
dependence on the regularization parameter Δ. The results
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of these estimates are illustrated in Fig. 15, both as
functions of temperature at fixed μ and as functions of μ
at fixed temperature. Data points with error bars correspond
to the full gauge theory, and solid lines correspond to
Backus-Gilbert estimates for free quarks on the same
lattices. The overall picture is consistent with the results
from the midpoint estimators—for the full gauge theory the
temperature dependence of the conductivity is much
weaker than it is for free quarks. Our estimate σðTcÞ ≈

0.25� 0.02 of electric conductivity in the vicinity of the
crossover near Lt ¼ 16 is in a good agreement with other
lattice QCD results [13].
While at high temperatures the conductivity is close to

the free-quark result, it differs by a factor of 2–3 at low
temperatures. For large densities the difference between the
gauge theory results and the free-quark results is somewhat
more pronounced than for the midpoint estimators. In
agreement with the midpoint estimates, in the presumably
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superconducting phase at aμ ¼ 0.5 and Lt ¼ 20; 22 our
estimate of low-frequency conductivity slightly drops.
On Fig. 16 we also illustrate the effect of finite volume on

the Backus-Gilbert estimate of low-frequency electric con-
ductivity. Especially for aμ ¼ 0.05 finite-volume effects
appear to be somewhat larger than for the midpoint estimate
but are still significantly smaller than for free quarks.
Finally, we also use results from the Backus-Gilbert

method to estimate the first nontrivial coefficient cðTÞ in
the expansion (1) of electric conductivity in powers of μ=T.
We again use the finite-difference approximation (11),
replacing σMP with σBGðω ¼ 0Þ. The result is shown in
Fig. 12 together with the result based on the midpoint
estimate. Both results appear to be consistent with each
other, within statistical errors, and they exhibit the largest
deviations from the free-quark result in the vicinity of the
chiral crossover.

 0.2

 0.5

 2

 0.1

 1

 0  5  10  15  20  25  30  35  40

σ B
G

(w
)/

(C
em

 T
)

w/T

Lt = 20

a μ=0.00,Ls=30
a μ=0.05,Ls=30
a μ=0.20,Ls=30
a μ=0.00,Ls=24
a μ=0.05,Ls=24
a μ=0.20,Ls=24

 0.2

 0.5

 2

 0.1

 1

 0  5  10  15  20  25  30  35  40

σ B
G

(w
)/

(C
em

 T
)

w/T

Lt = 20

a μ=0.00,Ls=30
a μ=0.05,Ls=30
a μ=0.20,Ls=30
a μ=0.00,Ls=24
a μ=0.05,Ls=24
a μ=0.20,Ls=24

FIG. 14. On the left: A comparison of frequency-smeared electric conductivities σBGðωÞ extracted from Euclidean correlation
functions on lattices with Ls ¼ 24 and Ls ¼ 30 using the Backus-Gilbert method (points with error bars). Solid lines are the frequency-
smeared electric conductivities obtained for free quarks on the same lattices using the same procedure. On the right we compare these
free-fermion conductivities (points) with analytic expression (A2) for the electric conductivity of continuum Dirac fermions (solid lines).
The magnitude of the “transport peak” for continuum free fermions is illustrated in the same way as on Fig. 13.

 0.2

 0.5

 1

 2

 12  14  16  18  20  22

σ B
G

(w
=

0)
/(

C
em

 T
)

Lt

a μ=0.00
a μ=0.05
a μ=0.10

a μ=0.20
a μ=0.50

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.1  0.2  0.3  0.4  0.5

σ B
G

(w
=

0)
/(

C
em

 T
)

aμ

Lt=12
Lt=14
Lt=16

Lt=18
Lt=20
Lt=22

FIG. 15. On the left: Backus-Gilbert estimate of the ω → 0 limit σBGðω ¼ 0Þ=T of the electric conductivity as a function of the inverse
temperature Lt ¼ 1=ðaTÞ. On the right: σBGðω ¼ 0Þ=T as a function of chemical potential at different Lt. For both plots Ls ¼ 24.
Data points are slightly shifted away from integer values of Lt in order to improve the readability of the plot.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 12  14  16  18  20  22

σ B
G

(w
=

0)
/(

C
em

 T
)

Lt

a μ=0.00,Ls=30
a μ=0.05,Ls=30
a μ=0.20,Ls=30
a μ=0.00,Ls=24
a μ=0.05,Ls=24
a μ=0.20,Ls=24

FIG. 16. A comparison of Backus-Gilbert estimates of the
ω → 0 limit σBGðω ¼ 0Þ=T of the electric conductivity for lattice
sizes Ls ¼ 24 and Ls ¼ 30.

ELECTRIC CONDUCTIVITY IN FINITE-DENSITY SUð2Þ … PHYS. REV. D 102, 094510 (2020)

094510-15



VI. CONCLUSIONS AND DISCUSSION

We have studied the low-frequency electric conductivity
in finite-density SUð2Þ gauge theory with dynamical
fermions at various temperatures across the chiral cross-
over, both within the phase with spontaneously broken
chiral symmetry and around the transition to the diquark
condensation phase. As a by-product of our study, we have
also obtained new estimates of the phase boundaries of
SUð2Þ gauge theory, as summarized in Fig. 5. An interest-
ing observation, which confirms the findings of [38,44], is
that in SUð2Þ gauge theory the chiral crossover happens at
rather low temperatures, Tc=mπ ≈ 0.37. In contrast, in real
QCD Tc=mπ ≳ 1.
We found that introducing finite density expectedly

increases the electric conductivity. However, at low temper-
atures and small densities lattice data can show a very weak
trend in the opposite direction due to finite-volume artifacts
(see Fig. 12 and Appendix A). For our largest chemical
potential aμ ¼ 0.5 and low temperatures near the boundary
of the diquark condensation phase, which is absent in real
QCD, the conductivity can increase by a factor of about 5
as compared to its zero-density value.
Our zero-density result σð0Þ=T ≈ 0.25� 0.02 at temper-

atures around Tc (see e.g., Fig. 15) is in agreement with the
results obtained in full lattice QCD [8–10]. The decrease
of the absolute value of σð0Þ=T across the crossover in
SUð2Þ gauge theory turns out to be not as significant as in
full QCD. This is expectable, since for smaller Nc the
difference in the number of degrees of freedom between
confinement [Oð1Þ] and deconfinement OðN2

cÞ regimes is
also smaller. However, in comparison with the free-quark
result the conductivity in the full gauge theory drops by
around 50% at T=Tc ∼ 0.8, which is again in agreement
with [8–10]. It is interesting that for all temperatures and
densities which we have considered the conductivity is
still much larger than the conductivity of a free pion gas,
calculated in Appendix A.
The result which should be most relevant for real QCD is

our estimate of the first nontrivial coefficient cðTÞ in the
expansion (1) of low-frequency electric conductivity in
powers of chemical potential over temperature μ=T.
This result is obtained within the low-density QCD-like
phase with spontaneously broken chiral symmetry and no
diquark condensation. The maximal value of cðTÞ is
cðTÞ ≈ 0.10� 0.07 in the vicinity of the chiral crossover,
that is, noticeably larger than the free-quark result in the
continuum. The temperature dependence of cðTÞ appears to
be rather weak for the Ls ¼ 30 data.
This estimate suggests that even for T ≈ Tc and μ=T ∼ 1

finite density cannot change the conductivity by more than
15%–20%, which validates zero-density calculations of the
conductivity as being reasonably good approximations also
at finite densities corresponding to values of the chemical
potential as in the vicinity of the QCD critical end point.
Away from the crossover, cðTÞ becomes closer to the free-
quark result.

The maximum of cðTÞ in the vicinity of the chiral
crossover can be also explained by the following qualitative
argument. As shown in Appendix A, cðTÞ decreases toward
higher temperatures for free quarks but grows for free pion
gas. Thus a maximum can be expected for intermediate
temperatures between the regimes where each of these two
approximations are valid.
We have also observed that, as the quark density

increases and the temperature decreases, the contribution
of disconnected fermionic diagrams to the current-current
correlators becomes more significant. We cannot rule out
that it can be as large as ∼10%…20% of the connected
contributions for the largest value of the chemical potential
aμ ¼ 0.5 which we have used. Therefore, disconnected
contributions might potentially become as important as the
connected ones in the quarkyonic phase.
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APPENDIX A: CURRENT-CURRENT
CORRELATORS AND ELECTRIC

CONDUCTIVITY FOR FREE
QUARKS AND FREE PIONS

Using the standard tools of finite-temperature field theory,
we obtain the following expression for the Euclidean
current-current correlator of free quarks with Nc colors:
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Gq
EðτÞ ¼

Nc

12π2

Z
∞
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dϵ

ðϵ2 −m2Þ3=2
ϵ

×

�
1

cosh2ðϵ−μ
2T Þ
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cosh2ðϵþμ
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6π2
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dϵϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 −m2
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ϵ2

�

×
coshð2ϵðτ − 1

2TÞÞ
coshðϵ−μ

2T Þ coshðϵþμ
2T Þ

: ðA1Þ

The corresponding electric conductivity in the Green-Kubo
relation (3) is

σqðωÞ ¼
αqNc

24πT
δðωÞ þ Nc

24π
Reðω2 − 4m2Þ1=2

�
1þ 2m2

ω2

�

×
sinhð ω

2TÞ
coshðω−2μ

4T Þ coshðωþ2μ
4T Þ ; ðA2Þ

where

αq¼
Z

∞

m
dϵ

ðϵ2−m2Þ3=2
ϵ

�
1

cosh2ðϵ−μ
2T Þ

þ 1

cosh2ðϵþμ
2T Þ

�
: ðA3Þ

In the phase with spontaneously broken chiral symmetry,
the conductivity is expected to be dominated by charged
pion contributions. The leading-order contribution is just
the conductivity of free massive charged scalar fields
at finite chemical potential [18], with electric current
defined as

jμ ¼
i
2
ðϕ̄∂μϕ − ð∂μϕ̄ÞϕÞ: ðA4Þ

A straightforward calculation yields the following expres-
sion for the Euclidean correlator of spatial currents of a
charged scalar field:

Gπ
EðτÞ ¼

1

6π2

Z
∞

m
dϵ

ðϵ2 −m2Þ3=2
ϵ

×

�
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4sinh2ðϵþμ
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þ 2eϵ=T coshð2ϵðτ − 1
2TÞÞ

ðeðϵþμÞ=T − 1Þðeðϵ−μÞ=T − 1Þ

�
: ðA5Þ

The corresponding ac conductivity is

σπðωÞ ¼
απ

48πT
δðωÞ þ 1

48π

Reðω2 − 4m2Þ3=2
ω2

×
ðeω=T − 1Þ

ðeðωþ2μÞ=2T − 1Þðeðω−2μÞ=2T − 1Þ ; ðA6Þ

where

απ ¼
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ϵ

×
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sinh2ðϵ−μ
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sinh2ðϵþμ
2T Þ

�
: ðA7Þ

It is instructive also to consider the low-temperature limit of
these expressions. In the limit T → 0, free-quark conduc-
tivity takes the form

lim
T→0

σqðωÞ¼
Nc

12
ffiffiffi
π

p Reðμ2−m2Þ3=2
μ

δðωÞ

þ Nc

24π
Reðω2−4m2Þ3=2

�
1þ2m2

ω2

�
θðω−2μÞ;

ðA8Þ

where θðxÞ is the Heaviside unit step function. In the same
limit, the free pion conductivity takes the form

lim
T→0

σπðωÞ ¼
1

48π

Reðω2 − 4m2Þ3=2
ω2

θðω − 2μÞ: ðA9Þ

In contrast to the free fermion case, the term with the δ
function vanishes in the limit of zero temperatures asffiffiffiffiffiffiffi
2πm

p
T3=2

8π δðωÞeðμ−mÞ=T . Of course, for free bosons the
conductivity is only defined for μ ≤ m.
It is instructive to compare the midpoint estimates of the

low-frequency electric conductivity, which we use in
Sec. VA, for free quarks and free pions. To this end we
use the bare quark mass m ¼ 0.01, and the pion mass
mπ ¼ 0.158, as determined in Sec. II. With chemical
potential aμ ¼ 0.05, which is below the pion or diquark
condensation threshold, and temperatures in the range
1=ðaTÞ ¼ 16…22, we find that the midpoint conductivity
estimate is 5…10 times smaller for the pion gas than for
free quarks. On the other hand, the midpoint estimate for
the pion gas conductivity shows much stronger dependence
on the chemical potential, as also noticed in [12,66]. Also,
for pion gas the coefficient cðTÞ in (1) grows with
temperature, whereas for the free-quark gas cðTÞ decreases
with temperature.

APPENDIX B: EFFICIENT CALCULATION OF
CORRELATORS OF CONSERVED CURRENTS
FOR WILSON-DIRAC AND DOMAIN-WALL

FERMIONS

Since for either the Wilson-Dirac or domain-wall fer-
mions the conserved current operator jz;μ ¼ ψ̄x

∂Dxy

∂θz;μ ψy with
the single-particle current operator
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∂Dxy

∂θz;μ ¼ iPþ
μ Uz;μδx;zδy;zþμ̂ − iP−

μU
†
z;μδx;zþμ̂δy;z ðB1Þ

is localized on two lattice adjacent lattice sites z and zþ μ̂,
a straightforward calculation of the connected part (8) of
current-current correlators requires

2 × 2 × Nd × Nc ðB2Þ

inversions of the Dirac operator. In this expressionNc is the
number of independent source vector orientations in color
space which is obviously equal to the number of colors,
Nd ¼ 4 is the number of independent source orientations in
spinor space, the first factor of 2 comes from the necessity
to have source vectors localized at two lattice sites z and
zþ μ̂, and the second factor of 2 accounts for the inversions
of both D and D†.
Especially for domain-wall fermions these inversions

become extremely costly due to the summation of five-
dimensional vector current over the fifth dimension, which
is necessary to obtain the conserved vector current and the
correct form of the axial current.
Here we describe a small trick which was used in this

work to halve the number of Dirac operator inversions.
A straightforward idea is to try to diagonalize the single-
particle current operator in the 2NcNd-dimensional linear
space spanned on source vectors localized either at z or
zþ μ̂ and having all possible color and spin orientations.

However, a simple check reveals that the matrix ∂Dx;y

∂θz;μ (with
x, y and the corresponding implicit spinor and color indices
considered as matrix indices and z and μ as parameters) is
nilpotent and cannot be diagonalized. A physical reason for
this nilpotency is that the current operator jx;μ moves
electric charge from lattice site x to site xþ μ̂. After the
first application of jx;μ to some state there is no electric
charge at site x; thus, applying jx;μ a second time just
produces zero. Instead of diagonalization, in this situation
one should rather use Jordan decomposition. We have

found that ∂Dx;y

∂θz;μ admits Jordan decomposition of the

following form:

∂Dðx;α;aÞ;ðy;β;bÞ
∂θz;μ ¼

X
A;γ¼1;2

XNc

c¼1

ψ ðA;γ;cÞ
x;α;a χ̄ðA;γ;cÞy;β;b ;

ψ ð1;γ;cÞ
x;α;a ¼ iδx;zϕ

ðþγÞ
α κðcÞa eiθc ;

χð1;γ;cÞy;β;b ¼ δy;zþμ̂ϕ
ðþγÞ
β κðcÞb ;

ψ ð2;γ;cÞ
x;α;a ¼ −iδx;zþμ̂ϕ

ð−γÞ
α κðcÞa e−iθc ;

χð2;γ;cÞy;β;b ¼ δy;zϕ
ðþγÞ
β κðcÞb : ðB3Þ

Here ϕð�γÞ
α are orthonormal eigenspinors of the projection

operators P�
μ , with

ðP�
μ Þαβ ¼

X
γ¼1;2

ϕð�γÞ
α ϕ̄ð�γÞ

β : ðB4Þ

Similarly, orthonormal color vectors κðcÞa and phases eiθc
form an eigensystem of the link matrix Uz;μ:

ðUz;μÞab ¼
XNc

c¼1

κðcÞa eiθc κ̄ðcÞb : ðB5Þ

Omitting all matrix indices, the Jordan decomposition (B3)
can be compactly written as

∂D
∂θz;μ ¼

X
A;γ;c

ψ ðA;γ;cÞχ̄ðA;γ;cÞ: ðB6Þ

Inserting this decomposition for one of the current oper-
ators in the current-current correlator (8), we obtain

X
y⃗

Tr

� ∂D
∂θz;μ D

−1 ∂D
∂θy;ν D

−1
�

¼
X
A;γ;c

χ̄ðA;γ;cÞD−1
�X

y⃗

∂D
∂θy;ν

�
D−1ϕðA;γ;cÞ; ðB7Þ

where Dirac vectors χ and ϕ are constructed for the link
ðz; μÞ according to (B3) and

P
y⃗ denotes summation over

spatial lattice volume with timelike component y0 fixed.
The operator

P
y⃗

∂D
∂θy;ν is obviously a local lattice operator

which can be applied to Dirac vectors in CPU time
comparable with the application of the Dirac operator
itself. Expression (B7) suggests that the connected con-
tribution to current-current correlators (8) can be calculated
as follows. For each A ¼ 1; 2, γ ¼ 1; 2 and c ¼ 1…Nc we
have to do two Dirac operator inversions, one to calculate
D−1ϕðA;γ;cÞ and the other to calculate χ̄ðA;γ;cÞD−1 ¼
ðD†Þ−1χðA;γ;cÞ. This amounts to 8Nc Dirac operator inver-
sions in total, to be compared with 16Nc inversions which
would be required for a more straightforward calculation.
The same trick can be applied to the calculation of

disconnected current-current correlators of the form

X
y⃗

�
Tr

� ∂D
∂θz;μ D

−1
�
Tr

� ∂D
∂θy;νD

−1
��

: ðB8Þ

In this case one can use the Jordan decomposition trick to
calculate the trace Trð ∂D

∂θz;μ D
−1Þ and stochastic estimator

techniques for the second trace.
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APPENDIX C: CURRENT-CURRENT
CORRELATORS IN THE PRESENCE

OF DIQUARK SOURCES

In the presence of diquark sources, the current-current
connected correlator is different from (8) and takes a
somewhat more complicated form:

hjx;μjy;νiconn
¼ ∂2

∂θx;μ∂θy;νTrlnðDD†þλ2Þ

¼ReTr

�
D†ðDD†þλ2Þ−1 ∂D

∂θx;μD
†ðDD†þλ2Þ−1 ∂D

∂θy;ν
�����

θ¼0

þλ2ReTr

�
ðD†Dþλ2Þ−1 ∂D

∂θx;μ
∂D†

∂θy;ν
�����

θ¼0

þReTr
�
D†ðDD†þλ2Þ−1 ∂2D

∂θx;μ∂θy;ν
�����

θ¼0

: ðC1Þ

In the usual conductivity measurement setup, the last two
terms in (C1) are contact terms which only affect the time
slice with τ ¼ 0. This time slice is anyway discarded in our
analysis.

APPENDIX D: FINITE-VOLUME AND LATTICE
ARTIFACTS FOR CURRENT-CURRENT

CORRELATORS AND ELECTRIC
CONDUCTIVITY FOR FREE QUARKS

AND FREE PIONS

In Sec. V we have seen that the T and μ dependence
of the electric conductivity on the lattice is quite different
from the one in infinite-volume continuum theory. In this
Appendix we quantify the finite-volume and lattice
artifacts in electric conductivity for free Wilson-Dirac
and domain-wall quarks on the lattice and demonstrate
that lattice results agree well with continuum theory in

the large-volume limit. We consider both midpoint and
Backus-Gilbert estimators. For estimates made with the
Backus-Gilbert method, we use the same values of Δ as for
the analysis of the real lattice data.
In Fig. 17 we show the temperature dependence of zero-

density electric conductivity, obtained with both the mid-
point and the Backus-Gilbert estimators on lattices with
different spatial volumes. As already discussed in Sec. V,
for lattice size Ls ¼ 24 the deviations from the infinite-
volume limit are very large, and for Lt ¼ 22 the lattice and
the continuum results differ by a factor of 2.5 for midpoint
estimates. For Backus-Gilbert estimator the deviations are
even larger. Only for twice larger lattice size do these
deviations reduce to few percent. However, we expect that
for real gauge theory the correlation length is considerably
smaller than for free-quark gas, and hence finite-volume
artifacts should be smaller. For higher temperatures,
Lt ≲ 14, where free-quark approximation is not unreason-
able, finite-volume effects are considerably smaller and do
not exceed 20%. A comparison of Wilson-Dirac and
domain-wall fermions suggests that all deviations are
finite-volume rather than discretization artifacts, and dis-
cretization artifacts only become important for Lt ≲ 6.
They are much larger for domain-wall fermions due to
large contributions from bulk modes and Pauli-Villars
regulator fields which compensate them.
In Fig. 18 we also illustrate the finite-volume effects in

the estimates of the coefficient cðTÞ in the expansion (1),
calculated from the finite difference between aμ ¼ 0.05
and μ ¼ 0. We use both the midpoint and Backus-Gilbert
estimates. Again we see that cðTÞ quickly becomes
negative toward lower temperatures and becomes suffi-
ciently close to the continuum value only for Ls ≳ 48. For
estimates based on the Backus-Gilbert method the finite-
volume artifacts are clearly larger than for the midpoint
estimates. A comparison of domain-wall and Wilson-Dirac
fermions shows that these artifacts are indeed finite-volume
artifacts rather than discretization artifacts.
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FIG. 17. Temperature dependence of the low-frequency electric conductivity of free quarks at zero chemical potential and different
lattice volumes. On the left: Estimated from the correlator midpoint according to (7) compared with the free continuum result at the same
bare quark mass. On the right: Estimated using the Backus-Gilbert method.
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