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Lattice QCD calculations of form factors for rare Standard Model processes such as B → Klþl− use
tensor currents that require renormalization. These renormalization factors, ZT , have typically been
calculated within perturbation theory and the estimated uncertainties from missing higher order terms are
significant. Here we study tensor current renormalization using lattice implementations of momentum-
subtraction schemes. Such schemes are potentially more accurate but have systematic errors from
nonperturbative artifacts. To determine and remove these condensate contributions we calculate the
ground-state charmonium tensor decay constant, fTJ=ψ , which is also of interest in beyond the Standard

Model studies. We obtain fTJ=ψ ðMS; 2 GeVÞ ¼ 0.3927ð27Þ GeV, with ratio to the vector decay constant of
0.9569(52), significantly below 1. We also give ZT factors, converted to the MS scheme, corrected for
condensate contamination. This contamination reaches 1.5% at a renormalization scale of 2 GeV (in the
preferred Regularisation Invariant Symmetric Momentum subtraction scheme) and so must be removed for
accurate results.
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I. INTRODUCTION

Rare Standard Model processes, for example those that
first appear at one-loop order through so-called “penguin”
diagrams, are of great interest in searches for new physics.
The very low rate for the process in the Standard Model
means that beyond the Standard Model searches have small
backgrounds. The signal rate will also be small, however,
so it is important to have firm theoretical understanding of
the Standard Model contribution. This starts with the
effective weak Hamiltonian, Heff , after integrating out
the weak bosons. Heff contains flavor-changing neutral-
current operators that can induce, for example, rare b → s
processes [1]. Sandwiched between hadronic states these
operators yield matrix elements that can be converted into
form factors for differential decay rates for comparison to

experiment. The best way to calculate the matrix elements
is by using lattice QCD. The matrix elements required are
those of operators in a continuum scheme for QCD,
however, ideally in the same scheme in which the Wilson
coefficients for the operators in Heff were determined (the
MS scheme). This means that the lattice operators must
be matched accurately to the continuum scheme. For such
b → s processes tensor operators in Heff , e.g., s̄LσμνbR,
cause a particular problem for lattice to continuum renorm-
alization, because they cannot be connected to conserved
currents. We show how to solve that problem here.
An example of a rare b → s process being studied

experimentally is B → Klþl− decay. A first unquenched
lattice QCD calculation of this decay was performed in [2]
by members of the HPQCD Collaboration and another in
[3] by the Fermilab lattice and MILC collaborations. The
former used highly improved staggered quark (HISQ) [4]
light and strange quarks and NRQCD b quarks and the
latter used asqtad light and strange quarks and Fermilab b
quarks. In the HPQCD calculation the tensor current was
renormalized using one-loop lattice QCD perturbation
theory for the NRQCD-HISQ current. A 4% systematic
uncertainty on the tensor form factor was then taken to
account for missing higher order terms in αs. The Fermilab/
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MILC calculation also used one-loop lattice QCD pertur-
bation theory for the Fermilab clover-asqtad current
renormalization. The Oðα2sÞ uncertainty on the tensor form
factor was taken as 2%.
The HPQCD Collaboration has recently performed a

series of b physics calculations using the HISQ formalism
for all quarks, working upwards in mass from that of the c
quark and mapping out the dependence on the heavy-quark
mass [5–8]. The success of this methodology indicates the
possibility of improvement on previous B → K calcula-
tions for which it would be important also to reduce the
uncertainty arising from the tensor current renormalization.
Here we use a partially nonperturbative procedure for the

renormalization using momentum-subtraction schemes
implemented on the lattice as an intermediate scheme [9].
This produces tensor current renormalization factors with
better accuracy than those used in the calculations mentioned
above because the perturbative part of the calculation, the
matching from momentum subtraction to the MS scheme,
can be done through α3s in the continuum. Renormalization
factors calculated on the lattice in momentum-subtraction
schemes suffer from nonperturbative artifacts in general.
Because these survive the continuum limit they need to be
removed or otherwise accounted for. The artifacts are
suppressed by powers of the renormalization scale μ and
can therefore be studied by performing calculations at
multiple μ values, as we did for the quark mass renormal-
ization in [10].We show here how to remove such systematic
effects in the tensor renormalization factor by calculating a
simple matrix element of the tensor operator that we can
determine accurately in the continuum limit. For this purpose
we use the J=ψ tensor decay constant fTJ=ψ .
The vector J=ψ decay constant fVJ=ψ , calculated from the

vector charmonium correlator, is related to the leptonic
decay rate of the J=ψ meson. For a recent very accurate
determination of this decay constant see [11]. In contrast
there is no simple decay rate that can be related to the J=ψ
tensor decay constant. Two-flavor lattice QCD and QCD
sum rules calculations of fTJ=ψ and the ratio fTJ=ψ=f

V
J=ψ were

presented in [12], and wewill compare to those results here.
fTJ=ψ is required for the calculation of bounds on beyond the
Standard Model charged lepton flavor violating J=ψ decay
rates [13] and a similar calculation for other vector mesons
would extend this. The B�

s tensor decay constant appears
in parametrizations of its Standard Model decay rates
B�
s → lþl− [14]. Calculation of this decay constant is

underway using the tensor current renormalization factors
we have determined here.
In the next section we discuss the definition of the tensor

current renormalization factor in the Regularisation
Invariant Symmetric Momentum subtraction (RI-SMOM)
and RI0-MOM momentum-subtraction schemes. In Sec. III
we give details of our lattice calculation of the tensor
renormalization factor. This is followed by our lattice
calculation of the J=ψ tensor decay constant in Sec. IV.

Our results for fTJ=ψ are discussed in Sec. V followed by
discussion of our ZT results in Sec. VI. Finally, we give our
conclusions in Sec. VII.

II. ZT IN THE RI-SMOM AND RI0-MOM SCHEMES

Momentum-subtraction schemes provide useful inter-
mediate schemes in matching lattice QCD to the continuum
MS scheme because they provide a way to implement the
same scheme both on the lattice and in the continuum [9].
Then the continuum limit of the lattice results will be in the
continuum momentum-subtraction scheme (and indepen-
dent of the lattice action used) and can be matched to the
MS in continuum QCD.
In both of the momentum-subtraction schemes that we

consider here the wave function renormalization Zq is
defined in terms of the inverse of the momentum space
quark propagator SðpÞ according to [9,15–17]

Zq ¼ −
1

12p2
Tr½S−1ðpÞ=p�: ð1Þ

As the propagator is gauge dependent it is necessary to
work in a fixed gauge. Landau gauge is used throughout.
Working in a fixed gauge raises the possibility of effects
from Gribov copies. Here we do not address this issue and
assume that such effects are negligible following general
expectations and the findings of [18], which saw no
observable effects at a precision below 1%.
The tensor current renormalization is defined in terms of

Zq and the tensor vertex function GT :

GTðp1; p2Þ ¼
Z

d4xd4y1d4y2eiqxe−ip1y1eip2y2hTμνðxÞ

× ψ̄ðy1Þψðy2Þi: ð2Þ
Here TμνðxÞ is the tensor current ψ̄ðxÞσμνψðxÞ. We take the
bilinears in the renormalization procedure to be nondiag-
onal in flavor. The renormalization of flavor singlet and
nonsinglet tensor bilinears are the same on the lattice
through at least two-loop level and we may therefore safely
use the ZT calculated here for any flavor structure of the
tensor current [19].
The wave function renormalization may be calculated

using either the incoming (p1) or outgoing (p2) quark
propagators. In the RI-SMOM scheme [17] the momenta
appearing in Eq. (2) satisfy the symmetric conditions
p1 − p2 ¼ q and p2

1 ¼ p2
2 ¼ q2 ≡ μ2.

The amputated tensor vertex function ΛT is calculated
by dividing GT on either side by the quark propagators:
ΛT ¼ S−1ðp2ÞGTS−1ðp1Þ. The tensor current renormaliza-
tion factor, ZT , that converts the lattice current into one in
the momentum-subtraction scheme may then be defined as

Zq

ZT
¼ 1

144
TrðΛμν

T σμνÞ: ð3Þ
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Renormalization factors taking the lattice to the RI-
SMOM scheme, ZSMOM

T , can be converted to the more
conventional choice of the MS scheme through a calcu-
lation in continuum perturbative QCD of the SMOM-to-
MS matching. For the tensor renormalization this has now
been performed to three-loop order [20,21]. The RI-SMOM
to MS matching factor is

ZMS=SMOM
T ðμ;nfÞ¼ 1−0.21517295

αMSðμÞ
4π

− ð43.38395−4.103279nfÞ
�
αMSðμÞ
4π

�
2

− ð1950.76ð11Þ−309.8285ð28Þnf
þ7.063585ð58Þn2fÞ

�
αMSðμÞ
4π

�
3

: ð4Þ

Evaluating this expression for nf ¼ 4 gives:

ZMS=SMOM
T ðμÞ ¼ 1 − 0.0171229αMSðμÞ − 0.170795α2

MS
ðμÞ

− 0.415470ð55Þα3
MS

ðμÞ: ð5Þ

We also compare to results in the RI0-MOM scheme
which has a simpler kinematic setup than the RI-SMOM
scheme. No momentum is inserted at the vertex and
therefore there is only one quark momentum, i.e.,
p1 ¼ p2, q ¼ 0. RI0-MOM uses the same definitions of
Zq and ZT in Eqs. (1) and (3). The RI0-MOM to MS
conversion is also known through Oðα3sÞ for the tensor
current renormalization factor [22]. For nf ¼ 4 the
expression is

ZMS=MOM
T ðμÞ ¼ 1− 0.1976305α2

MS
ðμÞ− 0.4768793α3

MS
ðμÞ:
ð6Þ

This is very similar to the RI-SMOM to MS matching in
Eq. (5) although with no OðαsÞ term in Landau gauge.
The situation is then very different from the case for the
mass renormalization factor where the RI-SMOM match-
ing is considerably more convergent than the corresponding
RI0-MOM matching [17,20,22–25].
We tabulate the values of ZMS=SMOM

T and ZMS=MOM
T in

columns 2 and 3 of Table I for different μ values. We also
give the values required to run the tensor renormalization
factors in the MS scheme to a reference scale of 2 GeV,
denoted RTð2 GeV; μÞ. These numbers are calculated using
the three-loop tensor anomalous dimension [26].
The work of [28] compares RI0-MOM and RI-SMOM

renormalization for various currents. In the discussion of
the tensor current presented there, uncertainties associated
with missing terms in the matching to the MS scheme were
added to the renormalization factors. As [28] predates the

results of [21] a larger uncertainty was included on the
RI-SMOM tensor renormalization result of [28] than on
the RI0-MOM result. As both MS conversion factors are
now known to the same order in perturbation theory this
issue has been removed for the comparison between the
scheme. In Sec. IV we address the issue of remaining
uncertainty from unknown higher order terms in the
conversion factors through our fits.

III. LATTICE CALCULATION
OF ZSMOM

T AND ZMOM
T

We use the highly improved staggered quark action for
both valence and sea quarks. The use of staggered quarks
with momentum-subtraction schemes requires some con-
sideration as explained in [29]. As discussed there, we take
physical momenta to lie in the reduced Brillouin zone
−π=2 ≤ p0

μ ≤ π=2 and use momentum-space staggered
quark fields at momenta p0 þ πA where A is a hypercubic
vector of 1s and 0s. This multiplicity in momentum-space
fields for a given physical momentum contains the stag-
gered quark taste information. For each of these momenta
we numerically solve the Dirac equation with a “momen-
tum” source:MS ¼ eip·x whereM is the Dirac matrix. This
yields a quark propagator that we denote Sðp; xÞ. The
gauge fields used in the construction of the Dirac matrix are
numerically fixed to Landau gauge by maximizing the
color trace of the average link.
With the staggered quark fields χ the local tensor

[ðγμγν ⊗ ξμξνÞ in spin-taste notation] vertex function is

�
χðp0

1 þ πAÞ
�X

x

χ̄ðxÞð−1ÞðxμþxνÞχðxÞeiðp0
1
−p0

2
Þx
�

× χ̄ðp0
2 þ πBÞ

�

¼ 1

ncfg

X
x;cfg

Sðp0
1 þ πA; xÞeiðp0

1
−p0

2
Þx

× ð−1Þx0þx1þx2þx3−xμ−xνS†ðp0
2 þ πB̃; xÞ; ð7Þ

TABLE I. Matching factors and tensor current running factors
required to match our lattice results to the MS scheme at a scale of
2 GeV. The second column gives the conversion factor between
the RI-SMOM and MS schemes for the various μ values in the
first column. The RI0-MOM to MS matching factors are given in
the third column. The factor that accounts for MS running to a
scale of 2 GeV for different values of μ is given in the fourth
column. This used the three-loop tensor anomalous dimension
from [26]. All of these values are correlated through their use of a
common determination of αs, taken from [27].

μ [GeV] ZMS=SMOM
T ðμÞ ZMS=MOM

T ðμÞ RTð2 GeV; μÞ
2 0.9676(13) 0.9686(13) � � �
3 0.97773(68) 0.97934(71) 1.03974(94)
4 0.98212(47) 0.98390(48) 1.0636(14)
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making use of the γ5 Hermiticity of S in the last line. The
elements of B̃ are permuted compared to those of B via
B̃ ¼ Bþ2 ð1; 1; 1; 1Þ whereþ2 denotes addition modulo 2.
We use the following kinematic setup, which obeys the

symmetric conditions of the RI-SMOM scheme:

ap0
1 ¼

2π

Ls

�
xþ θ

2
; 0; xþ θ

2
; 0

�
;

ap0
2 ¼

2π

Ls

�
xþ θ

2
;−x −

θ

2
; 0; 0

�
;

aq0 ¼ 2π

Ls

�
0; xþ θ

2
; xþ θ

2
; 0

�
: ð8Þ

x is an integer and θ is the momentum twist applied with
phased boundary conditions that we use to access arbitrary
momenta [30]. For the single momentum in the RI0-MOM
scheme we use ap0

1.
Our calculations are done on HISQ nf ¼ 2þ 1þ 1 gluon

field ensembles generated by the MILC Collaboration
[31,32], the details of which are given in Table II. On each
ensemble we use 20 configurations except for ultrafine
where only six configurations with stringent gauge fixing
were available. We have checked, using other sets, that this
small number of configurations is sufficient to achieve high
precision given our use of momentum sources. In order to
compensate for a potential underestimation of the uncer-
tainty from the low statistics, however, we double the
uncertainty on the ZT values on set 8.
Table II gives two values for the lattice spacing, reflect-

ing the different approach to the physical quark mass limit
that we take in the two parts of our calculation. Both
approaches arrive at the same physical point, so this is
simply a convenient choice away from the physical point.
We label the two lattice spacing values a and ã. a is
determined from a calculation of w0=a [33] on each

ensemble and varies as the sea quark masses are changed
at fixed bare gauge coupling, β. ã is the value of the lattice
spacing for physical sea quark masses at a given value of β
[11,27]. The latter definition is used for the calculation of
ZT while the former is used to compute the J=ψ tensor
decay constant.
We use different definitions of the lattice spacing to

reduce the effects of sea quark mass mistuning in the
calculation. If we instead used a single definition of the
lattice spacing we would have a steeper approach to
the tuned sea quark mass point either in the renormalization
factors or in the hadronic matrix elements. Hadronic matrix
elements are sensitive to low energy scales and it is
convenient to keep the value of w0 fixed as the sea quark
masses are varied, leading to values of w0=a that are
dependent on the sea quark masses. As discussed in
Appendix A of [27] the variation of hadronic quantities
with the sea quark masses is similar to that of w0 and so
they do not vary much if w0 is held fixed. Sea quark mass
dependence in the hadronic quantity in lattice units is
canceled by the variation of w0=a. However, ultraviolet
quantities such as renormalization factors have very weak
sea quark mass dependence. Using w0=a values that vary
with the sea masses therefore introduces unwanted depend-
ence and so we choose to use w0=ã defined in the physical
sea quark mass limit. The sea quark mass dependence of
RI-SMOM renormalization factors was studied in [10]
using w0=ã and indeed found to be tiny. We will see from
the plots of our results in the next section that our strategy
of using a and ã does indeed lead to very little difference
between results for physical and unphysical sea quark
masses for the decay constant.
We define the RI-SMOM and RI0-MOM schemes at zero

valence quark mass to remove mass-dependent nonpertur-
bative contributions. In order to obtain values at zero
valence mass we calculate ZT at three different quark
masses and extrapolate to 0 using a polynomial fit in amval:

TABLE II. Parameters of the MILC nf ¼ 2þ 1þ 1 HISQ gluon field ensembles we use. Tensor current renormalization factors in the
RI0-MOM and RI-SMOM schemes are calculated on a subset of these ensembles: sets 1, 3, 5, 7 and 8 indicated by a �. Labels for these
configurations are given in the second column. The third column gives β: the bare QCD coupling for a wider range of ensembles. The
J=ψ tensor decay constant is calculated on all of these ensembles. Two values of the lattice spacing are given, both in units of the Wilson
flow parameter, w0 [33]. The physical value of w0 is 0.1715(9) fm, fixed from fπ [34]. Those denoted a are calculated on each ensemble,
and are the values used for the tensor decay constant. Those denoted ã are determined in the limit of physical sea masses at each value of
β [11,27]. This is the definition used in our calculation of the renormalization factor, ZT . Both determinations of the lattice spacing agree
at the physical point.

Set Label β w0=a w0=ã Ls Lt amsea
l amsea

s amsea
c amval

c

1� Very coarse (vc) 5.80 1.1272(7) 1.1265(31) 24 48 0.0064 0.064 0.828 0.873
2 � � � 6.00 1.3826(11) 1.4055(33) 24 64 0.0102 0.0509 0.635 0.664
3� Coarse (c) 6.00 1.4029(9) 1.4055(33) 32 64 0.00507 0.0507 0.628 0.650
4 � � � 6.00 1.4116(9) 1.4055(33) 48 64 0.001907 0.05252 0.6382 0.643
5� Fine (f) 6.30 1.9330(20) 1.9484(33) 48 96 0.00363 0.0363 0.430 0.439
6 � � � 6.30 1.9518(7) 1.9484(33) 64 96 0.00120 0.0363 0.432 0.433
7� Superfine (sf) 6.72 2.8960(60) 3.0130(56) 48 144 0.0048 0.024 0.286 0.274
8� Ultrafine (uf) 7.00 3.892(12) 3.972(19) 64 192 0.00316 0.0158 0.188 0.194
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ZTðamval;μÞ¼ZTðμÞþd1ðμÞ
amval

ams
d1ðμÞ

�
amval

ams

�
2

: ð9Þ

The three valence masses that we use are famsea
l ;

2amsea
l ; 3amsea

l g. This is the same procedure as was used
in [10,35]. Figure 1 shows an example of the mass
dependence of ZT for both the lattice-to-SMOM matching
factor, ZSMOM

T , and the lattice-to-0MOM factor, ZMOM
T .

The mass dependence reflects nonperturbative artifacts
(condensates) appearing in ZT with mass-dependent coef-
ficients. We see that the dependence is very small for the
SMOM case and less so, but still relatively benign, in the
MOM case.
We collect our ZSMOM

T results, extrapolated to zero
valence mass, for various values of μ in Table III. The
correlation matrix for these different μ values on each
ensemble is also given. Our ZMOM

T results are similarly
collected in Table IV.

IV. J=ψ TENSOR DECAY CONSTANT

The J=ψ tensor decay constant, fTJ=ψ , is defined in an

analogous way to the J=ψ vector decay constant fVJ=ψ . f
T
J=ψ

parametrizes the vacuum to meson matrix element of a
tensor current in the following way:

h0jψ̄σαβψ jJ=ψi ¼ ifTJ=ψðμÞðϵαpβ − ϵβpαÞ: ð10Þ

ϵ is the polarization vector of the J=ψ , p is the J=ψ
4-momentum and μ is the renormalization scale for the
tensor decay constant. Note that the tensor decay constant
is μ-dependent, reflecting the anomalous dimension of
the continuum tensor current and unlike the vector decay
constant. It is also scheme dependent and we will give
results in the MS scheme.
If one of the indices of the tensor current is in the time

direction, we can extract fTJ=ψ from the 2-point tensor-
tensor correlation function projected onto zero spatial
momentum. We construct this as

CTðtÞ ¼
1

4

X
x

hð−1ÞηT ðxÞTrðSðx; 0ÞS†ðx; 0ÞÞi: ð11Þ

Here ηTðxÞ is a position-dependent phase remnant of σαβ
resulting from the use of staggered quarks. This is the same

FIG. 1. Valence mass dependence of tensor current renormal-
ization factors in the RI-SMOM (upper) and RI0-MOM (lower)
schemes. The values shown are for μ ¼ 2 GeV on set 7. Both
show reasonably mild dependence on the valence mass but the
dependence is smaller for RI-SMOM.

TABLE III. ZSMOM
T values on the ensembles in Table II at different μ values along with the correlation matrices for

these different μ values on a given set. ZSMOM
T converts the lattice tensor current into the SMOM scheme.

Set μ ¼ 2 GeV μ ¼ 3 GeV μ ¼ 4 GeV correlation

Very coarse 1.07293(18) � � � � � � � � �
Coarse 1.10035(28) 1.036117(92) � � �

�
1 0.824

0.824 1

�

Fine 1.13250(14) 1.064991(56) 1.030967(30)
 
1 0.560 0.375
0.560 1 0.861
0.375 0.861 1

!

Superfine 1.16641(40) 1.09808(12) 1.061844(57)
 
1 0.828 0.866
0.828 1 0.896
0.866 0.896 1

!

Ultrafine 1.1791(17) 1.11629(64) � � �
�
1 0.925
0.925 1

�
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phase as that appearing in Eq. (7), since we use the same
local tensor current. We take β to be in the temporal
direction and average α over spatial directions.
We compute the correlation function of Eq. (11) on the

full set of ensembles with parameters summarized in
Table II. The valence c quark masses are chosen to be
close to those giving the experimental value of the J=ψ
mass [11]. We will allow for mistuning of the valence c
quark mass in our fits to extrapolate to the continuum limit.
The decay constant is determined from the ground-state
parameters extracted from a multi-exponential fit to the
averaged 2-point correlator:

hCTðtÞi ¼
X
i

ðAT
i fðET

i ; tÞ − ð−1ÞtAT;o
i fðET;o

i ; tÞÞ;

fðE; tÞ ¼ e−Et þ e−EðLt−tÞ: ð12Þ

The temporal oscillation term appears because of our use
of staggered quarks. We perform the fit using standard
Bayesian fitting techniques [36] with broad priors on the
parameters, as in [11].
The J=ψ tensor decay constant is then calculated from

the ground-state amplitude and energy according to

fTJ=ψ ¼ ZT

ffiffiffiffiffiffiffiffi
2AT

0

ET
0

s
: ð13Þ

Here the ground state energy, ET
0 , is the mass of the J=ψ as

we implement Eq. (10) for a J=ψ at rest.
As we have used the local tensor current with taste ξαξt,

ET
0 is the mass of the J=ψ of that taste. Because of taste

splitting effects this is expected to differ from the local J=ψ
with taste ξα. The values of the local J=ψ mass on the
ensembles used here were given in [11] and we collect the
values for the taste ξαξt in Table V. As taste-breaking effects
are a discretization effect we should see the difference
between the two masses [ΔðMJ=ψÞ] decrease as the lattice

spacing is decreased. This is shown in Fig. 2. Note that even
on the coarsest ensemble the difference is only 6 MeV,
about 0.2% of the J=ψ mass. A fit to the mass difference of
the form

ΔðMJ=ψÞðaÞ ¼ c1αsð1=aÞðamcÞ2 þ c2ðamcÞ4 ð14Þ

is included in the figure. This is the expected form for taste
effects as the HISQ action is improved to remove tree-level
ðamcÞ2 errors [4]. The fit works well, with a χ2=dof of 0.4.
The values of afTJ=ψ=ZT extracted from our 2-point

correlator fits on the ensembles in Table II are given in
Table V.
An important goal of this analysis is to investigate the

size of systematic effects arising from nonperturbative
contamination of ZT and show how to remove them.
Doing this requires analysis of a physical quantity sensitive
to the tensor current renormalization, for which we use the
J=ψ tensor decay constant in the MS scheme at a reference
scale of 2 GeV. This is obtained by taking the product of

TABLE IV. RI0-MOM equivalents (ZMOM
T ) of the RI-SMOM values in Table III.

Set μ ¼ 2 GeV μ ¼ 3 GeV μ ¼ 4 GeV correlation

Very coarse 1.08435(42) � � � � � � � � �
Coarse 1.10970(58) 1.04631(16) � � �

�
1 0.637
0.637 1

�

Fine 1.13949(47) 1.06979(13) 1.037388(39)
 
1 0.384 0.393
0.384 1 0.609
0.393 0.609 1

!

Superfine 1.17449(71) 1.10045(25) 1.063735(93)
 
1 0.103 0.155
0.103 1 0.337
0.155 0.337 1

!

Ultrafine 1.1845(29) 1.1181(14) � � �
�
1 0.234
0.234 1

�

TABLE V. Results for the J=ψ tensor decay constant on each of
the ensembles in Table II in lattice units before multiplication by
the tensor renormalization factor. We also give the ratio of the
tensor and vector J=ψ decay constants (again, before renormal-
ization) in column 3. We give the J=ψ mass extracted from our
2-point correlator fits in column 4. This is the mass for a J=ψ of
taste ξαξt.

Set afTJ=ψ=ZT ðZVfTJ=ψ Þ=ðZTfVJ=ψ Þ aMJ=ψ

1 0.3741(12) 0.8837(30) 2.39769(18)
2 0.25754(15) 0.87548(81) 1.944312(92)
3 0.25212(35) 0.8743(13) 1.91530(23)
4 0.24977(36) 0.8747(13) 1.901880(40)
5 0.165404(96) 0.86433(62) 1.391514(65)
6 0.16396(13) 0.86386(78) 1.378232(73)
7 0.105293(93) 0.8535(10) 0.929972(57)
8 0.07685(19) 0.8410(22) 0.691999(97)
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several quantities: the unrenormalized J=ψ tensor decay
constant afTJ=ψ=ZT from Table V; the renormalization
factor that converts this to a momentum-subtraction scheme
at scale μ from Table III or Table IV (although for
convenience here we use SMOM notation); the perturbative
matching from the momentum-subtraction scheme to MS

(discussed in Sec. II) and the running from μ to 2 GeV in
the MS scheme. These last two factors are given in Table I.
This gives us the results that we will fit:

fTJ=ψðMS; 2 GeV; μ; aÞ ¼ RTð2 GeV; μÞZMS=SMOM
T ðμÞ

× ZSMOM
T ðμ; aÞðafTJ=ψ=ZTÞ=a:

ð15Þ

Note that the first three factors above, combined, constitute

ZMS
T ð2 GeV; aÞ i.e., the renormalization factor that takes

the decay constant from the lattice scheme to the MS
scheme at a renormalization scale of 2 GeV, up to
discretization effects and nonperturbative artifacts present
in ZSMOM

T .
We fit the results from Eq. (15) as a function of lattice

spacing and μ values in order to obtain a physical value
for fTJ=ψ ðMS; 2 GeVÞ in the continuum limit. The fit form
used is

fTJ=ψðMS; μref ; μ; aÞ ¼ fTJ=ψðMS; μrefÞ ×
�
1þ

X
n

cðnÞamcðamcÞ2n þ hseal

δseaml

mphys
s

þ hseac
δseamc

mphys
c

þ hvalc

MJ=ψ −Mexpt
J=ψ

Mexpt
J=ψ

�

×

�
1þ

X
i

cðiÞaμðãμ=πÞ2i þ α4
MS

ðμÞðcα1 þ cα2 logðμ=μrefÞÞ þ
X
j

cðjÞcondαMSðμÞ
ð1 GeVÞ2j

μ2j

�
: ð16Þ

This is designed to capture the lattice spacing and μ
dependence of ZT as well as the discretization and quark
mass effects in afTJ=ψ=ZT . We take μref to be 2 GeV and
include results from μ values of 2, 3 and 4 GeVand multiple
values of a.
The first square brackets of Eq. (16) allow for discre-

tization effects in the raw lattice values for afTJ=ψ through
an even polynomial in powers of the c quark mass in lattice
units, amc, as appropriate for a charmonium quantity. The
next terms in that bracket then account for mistuning of
the sea quark masses away from their physical values and
mistuning of the valence c quark mass, respectively. This
part of the fit is the same form as that used for the J=ψ
vector decay constant in [11].
The second set of square brackets in Eq. (16) allows for

effects from the lattice calculation of ZT in the momentum-
subtraction scheme at scale μ. We expect discretization
effects in this case to appear as even powers of ãμ=π.
The missing α4s term in the matching from momentum-
subtraction to MS schemes is allowed for with coefficient
cα1 and a similar effect for the running, with coefficient cα2.
The terms on the final line allow for the condensate
contamination of ZT coming from its nonperturbative
calculation on the lattice. The condensate contamination

is visible in an operator product expansion of, for example,
the quark propagator [24] where it appears in terms
suppressed by powers of the renormalization scale μ.
For the gauge-fixed quantities that we calculate here to
determine ZT these terms appear first atOð1=μ2Þmultiplied
by the Landau gauge gluon condensate hA2i [10]. We also
allow for higher order condensates with larger inverse
powers of μ, up to and including 1=μ6.
We take priors on all the coefficients of the fit in Eq. (16)

of 0� 1, except for three terms. We take a prior of 0� 0.1
for hseac based on [11], and 0� 0.5 for cα1 and 0� 0.4 for
cα2 based on the lower order terms in Eqs. (5) and (6) and
in [26]. We also take 0.4� 0.1 GeV for the prior for the
physical value of fTJ=ψðMS; 2 GeVÞ based on the expect-

ation that it should be close in value to fVJ=ψ . We include
five terms in each of the sums over discretization effects
and three terms in the sum over condensate contributions.
Our results using the RI-SMOM ZT from Sec. III with

the fit of Eq. (16) are shown in Fig. 3. The χ2=dof is 0.19
giving a continuum value with condensate contributions
from ZT removed of

fTJ=ψðMS; 2 GeVÞ ¼ 0.3889ð33Þ GeV ðint:SMOMÞ: ð17Þ

FIG. 2. The taste splitting of the J=ψ masses of tastes ξμξt and
ξμ as a function of ðamcÞ2. Clearly this difference decreases with
the lattice spacing. The fit line shown has the form of Eq. (14).
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The phrase “int. SMOM” here indicates that the result uses
the intermediate RI-SMOM scheme. Note that the χ2=dof
increases significantly, to 2.5, if the μ-dependent terms that
survive the continuum limit, that is condensate terms and α4s
terms, are removed from the fit.
The black hexagon in Fig. 3 shows this result [the

fTJ=ψðMS; 2 GeVÞ fit parameter in Eq. (16)]. This is the
physical value of the tensor decay constant, with discre-
tization and quark mass-mistuning effects extrapolated
away and condensate contributions and α4s errors removed.
Note that this value is lower than the value obtained from
simply taking the continuum limit of the 2 GeV results
(blue line), mainly because of condensate contamination at
μ ¼ 2 GeV. This underlines the necessity of performing
the calculation at multiple values of μ in the RI-SMOM
scheme before running all of the results to a reference scale,
in this case 2 GeV, in order to determine and remove
systematic μ-dependent errors.
The difference between the black hexagon and the

continuum limit of the lines for the different μ values
can be thought of as a correction that needs to be applied to
the ZT values that connect the lattice results and the MS

value at 2 GeV [i.e., ZMS
T ð2 GeV; aÞ that combines the first

three factors on the right-hand side of Eq. (15)] so that they

are independent of μ. This will give a corrected ZMS
T that

can then be used in future calculations. The correction
depends on the intermediate momentum-subtraction
scheme used and the condensate contamination that it
has as well as α4s errors in the matching to MS.
We define a μ-dependent subtraction, CSMOMðμÞ to

apply to the values of ZMS
T from the combination of the

cðjÞcond terms in Eq. (16) along with the cα1 and cα2 terms. It is

difficult for the fit to completely separate these different
μ-dependent contributions and as a result the individual
coefficients are not as well determined as the total correc-
tion (because the fit parameters are correlated). The full
correction is shown in Fig. 4 plotted against μ2, and
significantly nonzero values are seen across the μ2 range,
with the correction at the ∼1.5% level for μ ¼ 2 GeV.
These values, and their correlation matrix, are given in
Table VI. If we extract the condensate contributions to the
correction separately, values with the same central values
are obtained but with uncertainties that are about 40%
larger at μ ¼ 2 GeV. If the corrected ZT value is denoted

ZMS;c
T and the uncorrected value ZMS;u

T ,

ZMS;c
T ð2 GeV; aÞ ¼ ZMS;u

T ð2 GeV; aÞ − CSMOMðμÞ: ð18Þ

A corrected value for ZMS
T is then readily derived using the

results in Tables III, I and VI.
We also examine fTJ=ψ using a tensor current renormal-

ization obtained in the RI0-MOM scheme on the lattice.
In this case we use the conversion to MS in Eq. (6) and
calculate the RI0-MOM equivalent of Eq. (15). The results
and the fit to Eq. (16) are shown in Fig. 5. We see that the
final continuum result with condensate contributions and
α4s errors removed agrees with that given by intermediate

FIG. 3. Continuum extrapolation of the J=ψ tensor decay
constant in the MS scheme at a scale of 2 GeV using lattice
tensor current renormalization in the RI-SMOM scheme at
multiple μ values. Three different values of the renormalization
scale μ are used in the lattice calculation of ZSMOM

T to allow
nonperturbative μ dependence to be fitted. These three different μ
values are shown as different colored lines. The blue line is
2 GeV, the orange, 3 GeV and the purple, 4 GeV. The black
hexagon is the physical result for fTJ=ψ ð2 GeVÞ obtained from the
fit of Eq. (16) (with the condensate pieces removed).

FIG. 4. The correction, CSMOMðμÞ, to the tensor current

renormalization factor, ZMS
T ð2 GeVÞ, required to account for

nonperturbative effects arising from condensate contributions to
the lattice calculation of ZSMOM

T ðμÞ and missing α4s terms in the
matching to MS. The correction is defined in terms of a subset of
the fit posteriors of the fit shown in Fig. 3 (see text).

TABLE VI. Values, with uncertainties, and correlation matrix
for the correction CSMOMðμÞ to be applied to renormalization
factors for the tensor current when using the RI-SMOM inter-
mediate scheme.

μ (GeV) CSMOMðμÞ Correlation matrix

2 0.0153(36) 1.0 0.9889 0.9249
3 0.0074(24) 0.9889 1.0 0.9708
4 0.0041(16) 0.9249 0.9708 1.0

HATTON, DAVIES, LEPAGE, and LYTLE PHYS. REV. D 102, 094509 (2020)

094509-8



RI-SMOM renormalization factors. The χ2=dof of this fit is
0.4 giving a final result of

fTJ=ψðMS; 2 GeVÞ ¼ 0.3847ð37Þ GeV ðint:MOMÞ: ð19Þ

Dropping both condensate and α4s terms from the fit
increases the χ2=dof here to 8.2.
There is more difference between the 2 GeV and the 3

and 4 GeV values in the RI0-MOM case than in the RI-
SMOM case. This is reflected in the larger coefficient for
the 1=μ4 condensate term in the fit of −1.19ð49Þ. The size
of the correction, CMOMðμÞ, needed for ZT when the
RI0-MOM scheme is used is shown in Fig. 6. It can be
seen that the correction is larger than for the RI-SMOM
case, because of larger condensate effects. It is not
surprising that condensate effects are larger in the
RI0-MOM scheme than in RI-SMOM since this has been

shown to be true in several other renormalization factors
in the past [16,35] and is also consistent with the mass
dependence seen in Fig. 1.
Since the discretization effects in fTJ=ψ are similar to

those in fVJ=ψ on the same set of gluon field ensembles we
expect to be able to extract the ratio of the two decay
constants to a higher precision than can be obtained from
the individual quantities. We may also be able to see a
clearer indication of the size of nonperturbative effects in
the ratio.
We show the ratio of fT=fV in Fig. 7 using ZT and ZV

determined in the RI-SMOM scheme. We neglect any
correlations between the raw values of the decay constants
on each lattice ensemble because the statistical uncertain-
ties are so small. We fit the values of the ratio to Eq. (16)
and obtain a result for the ratio in the continuum limit with
nonperturbative contamination effects removed of

fTJ=ψðMS; 2 GeVÞ
fVJ=ψ

¼ 0.9569ð52Þ ðint:SMOMÞ: ð20Þ

The fit has a χ2=dof of 0.2.
As discussed in [35] the RI-SMOM ZV contains no

nonperturbative contamination because of the protection
of theWard-Takahashi identity and likewise no perturbative
matching of SMOM to MS is needed. Therefore the
condensate and α4s terms returned by the fit to the ratio
of the tensor and vector J=ψ decay constants should agree
with those from the fit to just the tensor decay constant. We
find that this is the case for each coefficient individually
and for the ZT correction factor obtained from their
combination which we show for the ratio fit in Fig. 8.
Because the RI0-MOM determination of ZV has

condensate contamination (since it is not protected by a

FIG. 5. Continuum extrapolation of the J=ψ tensor decay
constant in the MS scheme at a scale of 2 GeV using an
intermediate nonperturbative renormalization of the tensor cur-
rent in the RI0-MOM scheme on the lattice. Multiple values of the
renormalization scale μ have been used so that μ-dependent
nonperturbative effects can be removed in the fit. The blue points
and line are for μ ¼ 2 GeV, orange for 3 GeV and purple for
4 GeV. The value obtained in the continuum limit with the
condensate terms removed is shown as a black hexagon. The
result is in agreement with that using RI-SMOM renormalization
(Fig. 3) which is shown as the green square.

FIG. 6. The same as Fig. 4 but for a correction term, CMOMðμÞ,
needed for the tensor current renormalization factor when using
the intermediate RI0-MOM scheme.

FIG. 7. Continuum extrapolation of the ratio of the tensor and
vector J=ψ decay constants using intermediate lattice renormal-
ization factors in the RI-SMOM scheme. Blue points and lines
show μ ¼ 2 GeV results and fit lines, orange are 3 GeV and
purple 4 GeV. The bold dashed lines are continuum extrapola-
tions at each μ value with the condensate and α4s terms left in. The
black hexagon is the continuum extrapolation with condensates
and α4s errors removed.
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Ward-Takahashi identity [35]) and perturbative matching is
needed to reach MS we cannot perform the same analysis
for that case.
We give an error budget for our result for the decay

constant ratio fTJ=ψ=f
V
J=ψ in Table VII. We can leverage

this ratio and the vector decay constant determined in [11]
to get a slightly more precise value of the tensor decay
constant:

fTJ=ψðMS; 2 GeVÞ ¼ 0.3927ð27Þ GeV ðint: SMOMÞ: ð21Þ

The vector decay constant result of [35] includes QED
effects from the nonzero electric charge of the valence
charm quarks. We have not included any electromagnetic

effects here. However, the QED effect on the vector decay
constant was at the 0.2% level and we expect some
cancellation of these effects in the decay constant ratio,
so we neglect these effects here.

V. DISCUSSION: f TJ=ψ
As discussed in Sec. I there is no experimental observ-

able available to which we can compare our tensor current
decay constant value. Theoretical results using light-cone
wave functions were presented in [37] and using QCD sum
rules in [12]. A lattice QCD result using twisted-mass
quarks on gluon field ensembles with only u=d quarks in
the sea (nf ¼ 2) was also given in [12]. The RI0-MOM
scheme was used to renormalize the lattice tensor and
vector currents in that case, without studying or removing
nonperturbative condensate contamination. We compare
our results to these in Fig. 9 where the reduction in
uncertainty that we have achieved here can clearly be seen.
A comparison plot of values of the decay constant ratio

fTJ=ψð2 GeVÞ=fVJ=ψ is shown in Fig. 10. This ratio is
expected to be below 1 [12] but we see that earlier results
were not able to demonstrate this conclusively. Our value
for the ratio is 8σ below 1. The value that we obtain for the
ratio is just over 1σ lower than the sum rules determination
of [12] and is over 2σ lower than the lattice QCD result of
that work (using their σ values). In the lattice QCD
calculation both the tensor and vector current were renor-
malized in the RI0-MOM scheme without accounting for
nonperturbative contamination. Our results indicate that
this could lead to a discrepancy with our results of the
size seen.

VI. DISCUSSION: ZT

In the discussion presented above in Sec. IV we ran all of
our results, after converting to MS, to a common scale of

FIG. 8. Correction CSMOMðμÞ for the tensor current renormal-
ization factor, ZT , determined from a fit to the ratio of the J=ψ
tensor and vector decay constants using intermediate renormal-
ization factors in the RI-SMOM scheme. This agrees with the
results shown in Fig. 4, as expected because the lattice RI-SMOM
vector current renormalization factor has no condensate contami-
nation [35].

TABLE VII. Error budget for the ratio of the J=ψ vector and
tensor decay constants. “Statistics,” the dominant uncertainty,
refers to statistical errors in the amplitudes needed for the decay
constants. The uncertainties coming from the renormalization
factors, ZT and ZV , are much smaller and are dominated by the
contribution from the (doubled) statistical uncertainties on the
low statistics ultrafine lattices, set 8. The “Missing α4s” and
“Condensates” error contributions come from the terms in the
fit from which the ZT correction (discussed in the text) is
constructed.

fTJ=ψ=f
V
J=ψ

ðamcÞ2 → 0 0.11
ðãμÞ2 → 0 0.27
ZT 0.12
ZV 0.14
Missing α4s term 0.06
Statistics 0.41
Sea mistuning 0.04
Condensates 0.07

Total 0.54

FIG. 9. A comparison plot of results for the tensor J=ψ decay
constant in the MS scheme at a scale of 2 GeV. The top two
results are from this work [using both RI-SMOM (Eq. (21)) and
RI0-MOM (Eq. (19)) intermediate schemes] and then we include
results from [12,37].
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2 GeVand then determined and subtracted a correction that
depends on μ. This correction needs to be applied to our ZT
values for future use. The scale of 2 GeV allows us to
compare directly to the results of [12] in Sec. V. However,

another scale is useful when computing form factors for
semileptonic B decay processes. Then differential rates are
calculated as functions of products of the form factors and
appropriate Wilson coefficients of the weak Hamiltonian.
These Wilson coefficients are scale dependent and are
typically calculated at a scale equal to the b pole mass,
4.8 GeV, see for example [38]. We therefore present our ZT
values run to this scale. If the b quark running mass of
4.2 GeV were used instead of the pole mass then the values
would be approximately 1% larger.
In Table VIII we give the corrected results for ZT in the

MS scheme at a scale equal to the b quark pole mass
calculated from intermediate values of ZT in the RI-SMOM
scheme at 2 and 3 GeV. We use a notation ZTðμSMOMjμMSÞ
where μSMOM is the scale at which the RI-SMOM calcu-
lation was performed and μMS is the final scale at which the
MS result is presented. It can be seen that the addition of
the correction results in ZT values that agree for different
intermediate scales once run to the same final scale (this
would not be true for uncorrected values). We also give the
correlations between these numbers in Table IX.

VII. CONCLUSIONS

We have shown here that it is possible to renormalize
lattice tensor currents to give accurate results for continuum
matrix elements in the MS scheme using nonperturbative
determination of intermediate renormalization factors in
momentum-subtraction schemes. A key requirement is that
the nonperturbative renormalization factors should be
obtained at multiple values of the renormalization scale,
μ, so that μ-dependent nonperturbative (condensate) con-
tamination of ZT can be fitted and removed. This con-
tamination would otherwise give a systematic error of 1.5%
using the RI-SMOM scheme and 3% using the RI0-MOM
scheme in our calculation.
In order to do this we have determined the J=ψ tensor

decay constant, fTJ=ψ so that we can study the continuum
limit of a tensor current matrix element. Using nf ¼ 2þ
1þ 1 HISQ lattices and the local tensor current, we obtain
a 0.7%-accurate value for fTJ=ψ of [repeating Eq. (21)]

FIG. 10. A comparison plot of results for the ratio of tensor and
vector J=ψ decay constants. The upper result is from this work
[Eq. (20)] using the RI-SMOM intermediate scheme and gives a
value significantly below 1 (marked with the black dashed line)
for this ratio. The lower two results are from [12].

TABLE VIII. ZT values converting lattice results involving the
tensor current to the MS scheme, run to a renormalization scale of
the b quark pole mass. The notation ZTðμ1jμ2Þ indicates that the
intermediate ZSMOM

T has been calculated in the RI-SMOM
scheme at a scale of μ1 and then converted to the MS scheme
and run to a scale of μ2. The superscript denotes that these
renormalization constants have been corrected for nonperturba-
tive artifacts and α4s errors in ZSMOM

T as described in the text. The
results with intermediate scales of 2 and 3 GeV then agree well
with each other and either can be used.

Set Zc
Tð2 GeVjmbÞ Zc

Tð3 GeVjmbÞ
vc 0.9493(42) � � �
c 0.9740(43) 0.9707(25)
f 1.0029(43) 0.9980(25)
sf 1.0342(43) 1.0298(25)
uf 1.0476(42) 1.0456(25)

TABLE IX. Correlation matrix of the corrected ZT values from Table VIII. These correlations are large because the matching, running
and correction terms are all correlated.

(vc, 2) (c, 2) (f, 2) (sf, 2) (uf, 2) (c, 3) (f, 3) (sf, 3) (uf, 3)

(vc, 2) 1.0 0.99750 0.99854 0.99475 0.93231 0.98398 0.98611 0.98713 0.96383
(c, 2) 0.99750 1.0 0.99777 0.99430 0.93294 0.98314 0.98371 0.98487 0.96243
(f, 2) 0.99854 0.99777 1.0 0.99605 0.93562 0.98045 0.98323 0.98423 0.96263
(sf, 2) 0.99475 0.99430 0.99605 1.0 0.93197 0.97361 0.97632 0.98097 0.95627
(uf, 2) 0.93231 0.93294 0.93562 0.93197 1.0 0.90439 0.90777 0.90941 0.96855
(c, 3) 0.98398 0.98314 0.98045 0.97361 0.90439 1.0 0.99909 0.99807 0.96824
(f, 3) 0.98611 0.98371 0.98323 0.97632 0.90777 0.99909 1.0 0.99868 0.96951
(sf, 3) 0.98713 0.98487 0.98423 0.98097 0.90941 0.99807 0.99868 1.0 0.96909
(uf, 3) 0.96383 0.96243 0.96263 0.95627 0.96855 0.96824 0.96951 0.96909 1.0
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fTJ=ψðMS; 2 GeVÞ ¼ 0.3927ð27Þ GeV ðint: SMOMÞ: ð22Þ

This uses our preferred intermediate RI-SMOM scheme
and makes use of the determination of the ratio of tensor to
vector decay constants and the fact that the vector current
renormalization is protected by the Ward-Takahashi iden-
tity in this scheme [35]. We also obtain a 0.5%-accurate
value for the ratio itself [repeating Eq. (20)],

fTJ=ψðMS; 2 GeVÞ
fVJ=ψ

¼ 0.9569ð52Þ ðint:SMOMÞ: ð23Þ

This shows unequivocally that the ratio is less than 1.
Finally, in Tables VIII and IX, we give ZT renormaliza-

tion factors that can be used, for example, in a future
determination (underway) of the tensor form factor for the
rare flavor-changing neutral current process B → Klþl−

using HISQ quarks. These ZT values take results deter-
mined with the local HISQ lattice tensor current and
convert them into values in the MS scheme at the scale
of mb, to be multiplied by Wilson coefficients from the

effective weak Hamiltonian determined at this scale. We
have corrected these ZT values so that they are free of the
systematic error from condensate contamination of the
intermediate momentum-subtraction scheme.
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