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This paper presents a method for alleviating sign problems in lattice path integrals, including those
associated with finite fermion density in relativistic systems. The method makes use of information gained
from some systematic expansion—such as perturbation theory—in order to accelerate the Monte Carlo
computation. The method is exact, in the sense that no approximation to the lattice path integral is
introduced. Thanks to the underlying systematic expansion, the method is systematically improvable, so
that an arbitrary reduction in the sign problem can in principle be obtained. The Thirring model (in 0þ 1

and 1þ 1 dimensions) is used to demonstrate the ability of this method to reduce the finite-density sign
problem.
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I. INTRODUCTION

Lattice Monte Carlo methods are able to provide non-
perturbative access to observables in quantum field theo-
ries. They are unique in this respect for many strongly
coupled theories. Under certain circumstances, such as at
finite density of relativistic fermions and the Hubbard
model away from half-filling, lattice methods are made
dramatically less efficient by the so-called sign problem.
This sign problem is a central obstacle to first-principles
calculations in many regimes of strongly coupled theories,
including ab initio studies of the nuclear equation of state.
In lattice field theory, spacetime is treated as discrete and

observables are obtained from the high-dimensional lattice
path integral. Lattice field theory is ordinarily used to study
a system in thermal equilibrium, and the partition function
is written as Z ¼ R

DAe−SðϕÞ, where S is the (Euclidean)
action and the integral is taken over all configurations of a
field A. Observables are given by various derivatives of the
logarithm of the partition function. These derivatives are
ordinarily sampled by importance sampling, which hinges
on the treatment of the normalized Boltzmann factor e−S=Z
as a probability distribution. For some systems, including
those with a finite density of relativistic fermions, the action
S is complex, and this is not possible—this is the sign
problem.
Importance sampling commonly takes a polynomial

amount of time in the spacetime volume being simulated

(although this is proven only in a few cases [1–3]).
Importance sampling can be modified to work even where
S is complex, but at the cost of efficiency. In this modifi-
cation, the “quenched” Boltzmann factor je−Sj=Z is treated
as a probability with respect towhich sampling is performed.
Ordinary expectation values are obtained in terms of
quenched expectation values: hOi ¼ hOe−iSIiQ=he−iSIiQ.
The loss of efficiency comes primarily from the denominator.
The average of the exponential of the imaginary part of the
action, often termed the “average phase,” is equal to the ratio
of the physical to quenched partition functions Z=ZQ, and
characteristically scales like e−βV . Resolving this exponen-
tially small quantity, by averaging many quantities of unit
magnitude, requires ∼e2βV samples; thus the reweighting
procedure incurs an exponential cost in the volume. This
failure affects a wide variety of models, and a correspond-
inglywidevariety ofmethods have beenproposed tomitigate
it: complex Langevin [4], the density of states method [5],
canonical methods [6,7], reweighting methods [8], series
expansions in the chemical potential [9], fermion bags [10],
field complexification [11], and analytic continuation from
imaginary chemical potentials [12].
In this paper we will examine a new method, inspired by

two observations: first, that the partition function is
unchanged if a function that integrates to zero is added
to the Boltzmann factor, and second, that lattice methods
can encounter a fatal sign problem even in regimes under
good control by perturbation theory (or any other system-
atic expansion). To any fixed order in perturbation theory,
the sign problem can be (nonuniquely) identified with some
oscillating part of the Bolzmann factor which integrates to
zero, and this part can then be subtracted off, without
changing the partition function or any observables. In fact,
we will see that this subtraction can be performed in such a
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way that even the nonperturbative partition function and
observables remain unchanged. Where the model is under
good control by perturbation theory, meaning that the
partition function is well approximated by the integral of
a perturbative expansion of the integrand, this subtraction is
nearly the entire sign problem. In regimes where perturba-
tion theory is a poor approximation, we may hope to isolate
and remove a single component of the sign problem,
thereby improving the efficiency of the necessary non-
perturbative calculation.
The method described in this paper exhibits two favor-

able characteristics worth noting before we begin. Firstly, it
is an exact method, in the sense that the modified form of
the partition function is precisely equal to the original,
physical form. As a consequence, all observables retain
their physical values, and the only errors are statistical ones
associated to the sampling process. This is true regardless
of the quality of the systematic expansion used: the removal
of the sign problem is approximate, but the observables
computed are exact. Secondly, although the removal of the
sign problem is approximate, it is systematically improv-
able. If a certain order in perturbation theory does not yield
a sufficiently moderate sign problem, a higher order can in
principle be used. As long as the expansion converges (on
the lattice), a sufficiently high order is guaranteed to
remove the sign problem to any desired degree. Of course,
an exponential cost is associated with going to higher
orders in most expansions, and it is to be expected that this
property of systematic improvability is not a practical way
to solve many problems, as it merely trades one exponential
cost for another. Nevertheless, this is an unusual and
promising combination.
This paper uses the Thirring model [13] in 0þ 1 and

1þ 1 dimensions as a test bed for the method of sub-
tractions. This model has frequently been used, in varying
dimensions, to test methods for treating the fermion sign
problem in the past, including complexification [14,15] and
complex Langevin [16].
In the next section, the general method of subtractions is

described in detail, with an emphasis on subtractions that
are constructed via some systematic expansion. In Sec. III,
the heavy-dense limit is used to construct a subtraction for
the Thirring model in 0þ 1 dimensions. This is extended in
Sec. IV, where the 1þ 1-dimensional Thirring model is
treated with a variety of expansions. A nonperturbative
method of optimizing subtractions is described in Sec. V.
Finally we conclude in Sec. VI, discussing in particular a
relation between this method and the method of field
complexification.

II. GENERAL METHOD

For brevity, let us write the Boltzmann factor as
fðAÞ≡ e−SðAÞ, so that the unmodified form of the partition
function is Z ¼ R

DAfðAÞ. If we let gðAÞ be some function
which integrates to 0 (e.g., a total derivative of a function

with appropriate behavior on the boundary of configuration
space), then the numerical value of the partition function is
unmodified by the subtraction of gðAÞ from the Boltzmann
factor:

Z ¼
Z

DAfðAÞ ¼
Z

DAfðAÞ − gðAÞ: ð1Þ

The quenched partition function, and therefore the average
phase hσi≡ Z=ZQ, is generically changed by this oper-
ation. Therefore, a suitable gðAÞ may improve the sign
problem. In fact, a subtraction always exists which removes
the sign problem entirely:

gidealðAÞ ¼ fðAÞ −
R
DA0fðA0ÞR

DA0 : ð2Þ

This particular subtraction is unusable in practice, as
computing it requires exact knowledge of the partition
function. Indeed, using this subtraction is equivalent to
performing the entire computation analytically.
Particularly in the case where g is constructed from a

perturbative expansion (described below) this method can
be thought of as splitting the path integrand into a few
terms, and integrating some analytically. In the case of the
ideal subtraction of Eq. (2), the entire path integral is
performed analytically.
Once a subtraction is selected, it remains to compute an

observable. We must express hOi (an expectation value
over f) as an expectation value taken over the distribution
f − g. It is tempting to write

hOi ¼
R
DAðfðAÞ − gðAÞÞ OðAÞfðAÞ

fðAÞ−gðAÞR
DAfðAÞ − gðAÞ : ð3Þ

This equation is correct, but not useful for computing the
expectation value, as the measurement of the modified
observable encounters a signal-to-noise problem compa-
rable to the original sign problem. This is particularly clear
in the case of O ¼ 1, where the numerator is equal toR
DAfðAÞ, the highly oscillatory integral we wanted to

avoid in the first place.
Consider a conjugate variable ξ to O, such that

hOi ¼ ∂
∂ξ logZ. The previous approach corresponds to

treating g as constant in ξ. Instead, take g to vary with
ξ, in such a way that

R
g ¼ 0 for any value of ξ. The desired

expectation value is now

hOi ¼
R
DAOðAÞfðAÞ − ∂

∂ξ gðAÞR
DAfðAÞ − gðAÞ ; ð4Þ

which does not necessarily (and does not in practice, as we
will see) suffer from the same magnitude of the signal-to-
noise problem.
We now discuss how to construct a suitable subtraction

gðAÞ in a systematic manner. One strategy is to attempt to
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approximate Eq. (2) as closely as possible, with an analytic
expansion. For the purposes of removing the sign problem,
however, it is sufficient to replace fð·Þ in Eq. (2) by just the
part of the Boltzmann factor that oscillates. Removing the
oscillations will cure the sign problem, even if the rest of
the partition function is not approximated well at all.
To make this concrete, suppose a perturbative expansion

of fðAÞ

fðAÞ ¼ f0ðAÞ þ λf1ðAÞ þ
λ2

2
f2ðAÞ þ � � � ð5Þ

is available, such that the partition functions at low order
are readily (perhaps analytically) obtained. Defining
Zn ¼

R
DAfnðAÞ, we can construct a wide variety of

functions which integrate to 0 and approximate various
parts of the original Boltzmann factor. It is often convenient
to pick (some linear combination of)

gnðAÞ ¼ fnðAÞ −
f0ðAÞ
Z0

Zn: ð6Þ

The factor of the free theory Boltzmann factor is somewhat
arbitrary—any function of A with unit integral will do.
This procedure does not depend on the precise nature of

the systematic expansion. Our first application of this
method (in Sec. III) will use the heavy-dense limit to
construct a subtraction, instead of an expansion around free
field theory.
Because the subtraction was constructed from a system-

atic expansion, gn naturally depends on ξ. Applying Eq. (4)

to this construction, the physical expectation value of O is
given by

hOi ¼
�Of − ∂

∂ξ fn þ f0
Z0

∂
∂ξZn

f − gn

�
f−gn

: ð7Þ

Note that it is not in general true that ∂
∂ξ fn ¼ Ofn, nor is it

generally true that the same derivative of logZn yields a
perturbative expectation value.
In deriving this expression, we have chosen for conven-

ience not to let f0, and therefore Z0, vary with ξ. This, like
the precise manner of constructing the subtraction, is an
arbitrary choice. We will not, in this paper, explore the
question of what the optimal construction of a modified
observable is.
Of course, even after the subtraction, a residual sign

problem typically remains, which is addressed by
reweighting.

III. QUANTUM MECHANICS

In this section we demonstrate the method on a 0þ 1-
dimensional variant of the Thirring model. Described in
[15,17], this model is defined by the lattice action

S ¼ 1

2g2
X
t

ð1 − cos AðtÞÞ − log det K½A�: ð8Þ

The Dirac matrix K½A� is given by

K½A�tt0 ¼
1

2
½eμþiAðtÞδðtþ1Þt0 − e−μ−iAðt0Þδðt0þ1Þt − eμþiAðtÞδtNδt01 þ e−μ−iAðt0Þδt1δt0N � þmδtt0 : ð9Þ

Above, m is the bare mass and g a coupling constant;
we are implicitly working in units where the lattice spacing
is 1, so that the number of sites is equal to the inverse
temperature β. The sign problem, created by the chemical

potential μ, is portrayed in Fig. 1; the average phase
decays exponentially with the inverse temperature, and
so the cost of calculations increases exponentially with the
same.

FIG. 1. The subtraction method as applied to the 0þ 1-dimensional Thirring model. The leftmost plot shows the density as a function
of chemical potential with β ¼ 8,m ¼ 1, and g2 ¼ 0.2. The exact result is from [18]. The center plot shows the average phase, again as a
function of μ, for the same parameters. On the right is the average phase for μ ¼ 1.8 as a function of inverse temperature β.
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A suitable subtraction is provided by the heavy-dense
limit of μ → ∞. The Dirac matrix can be expanded via the
polymer representation [19], and the dominant term of
detK in the limit of large μ is

det K ¼ eβμð2−βei
P

t
AðtÞ þOðe−βμÞÞ: ð10Þ

We will use the leading-order term as our subtraction:

f1ðAÞ ¼ e
1

2g2

P
t
cosAðtÞ

× 2−βeβμþi
P

t
AðtÞ: ð11Þ

Integrating over all fields yields the leading-order partition
function

Z1 ¼ eβμ½πI1ð1=2g2Þ�β: ð12Þ

[Here and throughout, Iνð·Þ denotes the modified Bessel
function of the first kind, of order ν.]

For the scaling factor f0ðAÞ=Z0 in Eq. (6) we could
simply choose ð2πÞ−β, but it is convenient in this case to use
the bosonic part of the Boltzmann factor:

f0ðAÞ
Z0

¼
exp ð 1

2g2
P

tð1 − cosAðtÞÞÞ
½2πI0ð1=2g2Þ�β

: ð13Þ

The observable we will focus on is the number density,
defined as hni ¼ β−1 ∂

∂μ logZ. In order to measure this
observable with the subtraction method, we need the μ-
derivatives of f1 and Z1 as per Eq. (7). Happily, in this case
they are particularly simple: ∂

∂μ f1 ¼ f1 and ∂
∂μZ1 ¼ Z1.

This reflects the fact that, in the heavy-dense limit, the
density is 1 regardless of temperature.
To summarize, before performing the subtraction, the

partition function was written Z ¼ R
e−S with the action S

defined by Eq. (8). The modified form of the partition
function is

Z ¼
Z

DAexp

�
1

2g2
X
t

ð1 − cosAðtÞÞ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f0

�
det K|fflffl{zfflffl}
f=f0

− 2−βeβμþi
P

t
AðtÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

f1=f0

þ eβμ½πI1ð1=2g2Þ�β
½2πI0ð1=2g2Þ�β|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Z1=Z0

�
; ð14Þ

where the scaling factor f0 and its integral Z0 are defined
by Eq. (13), and the subtraction is constructed from the
heavy-dense term f1 and its integral Z1, given in Eqs. (11)
and (12).
While numerically identical, this form is hoped to have a

reduced sign problem. The density is given by the expect-
ation value, taken in the subtracted ensemble,

βhni ¼
�TrK−1 ∂K

∂μ − f1 þ f0
Z1

Z0

f − f1 þ f0
Z1

Z0

�
f−g

: ð15Þ

The results of this procedure are shown in Fig. 1.
Specially in 0þ 1 dimensions, the sign problem is no
longer exponential in the volume, but rather improves
slightly as β is increased. This is not to be expected to hold
true for higher dimensional theories. In general, the
exponential difficulty of the sign problem will not be
removed by the subtraction method, but merely amelio-
rated. (In the case of the particular model at hand, it is
possible to construct a subtraction that entirely removes the
sign problem, but only because the entire partition function
is analytically known.)
Lastly, note that all data points in Fig. 1 are constructed

from 103 samples. The data points calculated with the
subtraction have much smaller error bars (for μ ¼ 2.0, the
error bar width is ∼10−14) even than the sign-free μ ¼ 0
data point without the subtraction; this procedure has
improved the signal-to-noise ratio in addition to reducing

the sign problem. In the limit of the ideal subtraction of
Eq. (2), there is no variance remaining in the observable,
and a single measurement yields the exact answer.

IV. FIELD THEORY

We now move to the 1þ 1-dimensional Thirring model
with staggered fermions. The lattice action of this model
is [14]

S ¼
X

x;ν¼0;1

2

g2
ð1 − cos AνðxÞÞ − log detK½A� ð16Þ

with the Dirac matrix now defined by

K½A�xy ¼ mδxy þ
1

2

X
ν¼0;1

ηνeiAνðxÞþμδν;0δxþν;y

− ηνe−iAνðyÞ−μδν;0δyþν;x; ð17Þ

where as before m is the bare mass, g the coupling,
and μ the chemical potential. The staggered fermions are
defined by η0 ¼ ð−1Þδ0x0 and η1 ¼ ð−1Þx0 . As in the 0þ 1-
dimensional model, a sign problem is created at μ ≠ 0.
The first subtraction proceeds from the same heavy-

dense limit we used for the quantum mechanical model

above. As before, we define f0 ¼ e
2

g2

P
x;ν

cosAνðxÞ. The
leading-order term in the heavy-dense expansion is
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f1 ¼ e
2

g2

P
x;ν

cosAνðxÞ2−βLeβLμþi
P

x
A0ðxÞ ð18Þ

which, when integrated over all fields, yields the partial
partition function

Z1 ¼ eβLμ2−βLð2πI0ð2=g2ÞI1ð2=g2ÞÞβL: ð19Þ

At this order in the heavy-dense expansion, everything
takes the form of L copies of the quantum mechanical
model above. In particular, the μ-derivatives of f1 and Z1

are Lf1 and LZ1, respectively.
The results of simulating with the leading-order heavy-

dense subtraction, on a 12 × 6 lattice, are shown in Fig. 2.
Without the subtraction, the sign problem fails to be
indistinguishable from 0 (≲10−2) by μ ≈ 0.8; after the
subtraction, the sign problem is manageable from μ ¼ 0
through lattice saturation.
At the next order in the heavy-dense limit, the number of

diagrams in the polymer representation is exponential in β.
Therefore, it is not practical (barring another way of
computing the NLO heavy-dense partition function) to

use this expansion at higher orders. Another expansion to
consider is the hopping expansion. However this expansion
is also not practical for the purpose of removing a sign
problem, as the lowest-order term in the hopping expansion
that has a sign problem is at order κβ.
At small g, the auxiliary field is pegged to A ∼ 0 by the

cosA term in the action. As a result, it is possible to
construct a “weak-coupling” expansion for the lattice
Thirring model described here by Taylor expanding
det K½A� in the fields A. The term first-order in A makes
a particularly convenient subtraction: as it is odd in A, it
integrates to 0, and the corresponding partial partition
function Z1 vanishes. The subtracted integrand of the
partition function is

f − g ¼ f0

�
det K − det K0TrK−1

0

�∂K
∂A

�
A¼0

A
�

ð20Þ

where K0 is K evaluated at A ¼ 0, and f0 ¼ e
2

g2

P
x;ν

cosAνðxÞ

as usual. Figure 3 shows the magnitude of the sign problem
on a 6 × 6 lattice, as a function of the squared coupling
constant, with and without this subtraction. A systematic
improvement is visible at small values of the coupling; at
sufficiently large value of g2, the subtraction is no longer
guaranteed to help.

V. NONPERTURBATIVE OPTIMIZATION

So far, we have described how a suitable subtraction can
be engineered with the aid of a systematic expansion, such
as the weak coupling or heavy-dense limit. Subtractions
constructed in this manner need not be optimal, and it may
be profitable to consider other possibilities. In this section
we will see that it is possible to efficiently perform a
nonperturbative optimization on a family of ansatz sub-
tractions to find the one with the largest average phase. The
method discussed here was used in a very similar form for
optimizing manifolds of integration [20], and has been

FIG. 2. Simulation of the 1þ 1-dimensional Thirring model on a 12 × 6 lattice with m ¼ 0.15, g2 ¼ 0.3. The left plot shows the
density as a function of chemical potential, and on the right are the corresponding average phases. Each data point is backed by 104

samples.

FIG. 3. The sign problem on a 6 × 6 lattice with bare mass
m ¼ 0.15 and chemical potential μ ¼ 1, with and without the
subtraction of Eq. (20).
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applied (in one form or another) to several different field
theories [21–23].
Suppose we have a continuous family of actions Sα (the

parameter α may have many components), such that the
partition function Z ¼ R

e−Sα does not depend on α. This is
exactly the case if α defines a subtraction, or as in [20], a
manifold of integration. Although the partition function has
no dependence on α, the quenched partition function and
therefore the sign problem may. In general, computing the
sign problem for any fixed α is computationally expensive.
Wewould like to invest computational resources efficiently,
performing a simulation with the value of α that has the
mildest sign problem. However, finding such a value
appears to be difficult: it certainly is not feasible to do a
grid search, resolving the sign problem for each value of α,
in order to find the best one.
Consider performing gradient ascent on the logarithm of

the average phase. Arbitrarily picking some initial α, we
would like to calculate ∂

∂α log
Z

ZQðαÞ, which specifies the

direction in which we should move. If we were to calculate
this by finite differencing, we would need to resolve the
sign problem at both α and αþ ϵ, an expensive proposition.
However, observe that

∂
∂α log

Z
ZQðαÞ

¼ −
∂
∂α logZQðαÞ ð21Þ

has the form of a derivative of the logarithm of the
quenched partition function, and the contribution of the
physical Z cancels entirely. The direction which most
quickly alleviates the sign problem is a quenched expect-
ation value, which can be computed without encountering a
sign problem.
With this observation in hand, we see that it is possible to

begin with a family of subtractions gα, and perform an
efficient, sign-free gradient descent to find the optimal
subtraction in that family. At this point, a (comparatively
expensive) Monte Carlo calculation can be performed, with
high statistics to counter the remaining sign problem.
One motivation for this method stems from the “weak-

coupling” subtraction of the previous method. The sub-
traction g ¼ f1 − Z1 defined by Eq. (20) can be multiplied
by an arbitrary coefficient α, so that the integrand of the
partition function is modified by

−gα ¼ −αf0 det K0TrK−1
0

�∂K
∂A

�
A¼0

A: ð22Þ

In the previous section, the coefficient used was implicitly
1; as shown in Fig. 4, it turns out that this is not the optimal
coefficient. The optimization procedure described above
can be used to optimize this coefficient at scale. Note that
for the example shown here, the full-magnitude first-order
subtraction makes the sign problem worse at g2 ¼ 0.3.
However, nonperturbative optimization can reverse this,

making the first-order subtraction useful even at this
relatively large coupling.

VI. DISCUSSION

The method of subtractions described in this paper
allows practical mitigation of sign problems associated
to finite fermion density and real-time observables. The
method is exact in the sense that it makes no additional
approximations in the partition function. Furthermore, the
removal of the sign problem, although only approximate, is
systematically improvable.
This method is not unrelated to prior work. In particular,

the method of field complexification [11] may be seen as a
specific strategy for constructing a subtraction.1 In that
method, the original domain of the path integral—RN ,
say—is expanded to a complex space of twice the (real)
dimension. In this case, the expanded space would be CN .
By Cauchy’s integral theorem, the path integral can now be
performed over any N-real-dimensional manifoldM ⊂ CN

obtained by a smooth deformation from RN (and with mild
constraints at infinity, when the complex space is
unbounded). Typically the new manifold is parametrized
by the real plane via a function ϕ̃ mapping field configu-
rations ϕ ∈ RN to field configurations on M, so that the
deformed path integral is written

Z ¼
Z
RN

Dϕ e−S½ϕ� ¼
Z
RN

Dϕ e−S½ϕ̃ðϕÞ� det
∂ϕ̃
∂ϕ : ð23Þ

The difference between the two integrands is zero, and so
can be viewed as a subtraction. Of course, in this view,
every modification to the path integral that leaves the

FIG. 4. The magnitude of the sign problem for a 4 × 4 lattice
with m ¼ 0.15, g2 ¼ 0.3, and μ ¼ 1, as a function of the
subtraction coefficient α, using the subtraction of Eq. (22).

1In fact, the subtraction method was initially inspired by an
attempt to extend the method of field complexification to the case
of path integrals with discrete domains of integration.
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integration domain unchanged is a special case of the
subtraction method.
We can also go a step further and note that the

difference between the two integrands is a total derivative.
Concretely, in one dimension, the difference between the
two Boltzmann factors is

e−S½ϕ̃ðϕÞ� det
∂ϕ̃
∂ϕ − e−S½ϕ� ¼ ∂

∂ϕ
Z

ϕ̃ðϕÞ

ϕ
e−S½ϕ0�dϕ0: ð24Þ

It is notable that a well-chosen subtraction can resolve a
sign problem even in cases where no manifold can. A
simple example of a sign problem unremovable by any
choice of manifold is the one-dimensional integral (which
is to be considered a mock partition function)

Z ¼
Z

π

−π
dθ½cosðθÞ þ ϵ�: ð25Þ

The sign problem associated to this partition function
becomes arbitrarily bad as ϵ is taken towards 0. This sign
problem was shown in [24] to be unremovable by any
choice of integration contour. In fact, the original integra-
tion domain S1 has a more mild sign problem than any
other choice of domain. In this case, it is particularly easy to
see that a subtraction of cos θ completely removes the sign
problem, where no manifold can. Thus the method of
subtractions is strictly more powerful than that of
complexification.
The manifold used in [20,21] to improve the sign

problem of the Thirring model in 1þ 1 and 2þ 1 dimen-
sions was motivated (post hoc) by the leading-order term in
the heavy-dense expansion. In [25] it was shown that a
manifold of that form can entirely remove the sign problem
coming from that leading-order term. This choice of

manifold is therefore equivalent to a subtraction con-
structed from that term.
The complexification method has been applied to real-

time observables through the lattice Schwinger-Keldysh
formalism [26]. The determination of real-time observables
on the lattice remains a largely unexplored area. Future
work should be able to apply the subtraction method to
real-time calculations through the same formalism.
The success of the method described in this paper

depends on the availability of a systematic expansion in
which the sign problem can be seen. We have seen that
several options exist for the Thirring model. Examining and
making use of such expansions in other models is a critical
next step.
We noted in Sec. III that in addition to improving the

sign problem, the signal-to-noise ratio associated with the
modified observable was improved from the one associated
with the original observable. This was not explored further
in this paper, but it suggests that the same or a similar
method could be deployed explicitly for treating expensive
signal-to-noise problems. It is not entirely surprising that
this should be possible, as the closely related complex-
ification method has recently been applied to noisy observ-
ables in Abelian gauge theory and complex scalar field
theory [27].
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