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We develop the three-body KKK̄ model for the Kð1460Þ resonance based on the Faddeev equations in
configuration space. A single-channel approach is utilized that takes into account the difference of masses
of neutral and charged kaons. It is demonstrated that the mass splitting of the Kð1460Þ resonance takes a
place around 1460 MeV according to K0K0K̄0, K0KþK− and KþK0K̄0, KþKþK− neutral and charged
particle configurations, respectively. The calculations are performed with two sets of KK and KK̄
phenomenological potentials, where strength interactions are considered the same for the isospin singlet
and triplet states. We study the effect of repulsion of theKK interaction on the mass of theKKK̄ system and
evaluate the effect of the mass polarization. The Coulomb interaction for description of the Kð1460Þ
resonance is considered for the first time. The mass splitting in the Kð1460Þ resonances is evaluated to be in
the range of 10 MeV with taking into account the Coulomb force. The three-body model with the KK̄
potential, which has the different strengths of the isospin singlet and triplet interactions and is related to the
condition of obtaining a quasibound three-body state is also considered. Our results are in reasonable
agreement with the experimental mass of the Kð1460Þ resonance.
DOI: 10.1103/PhysRevD.102.094027

I. INTRODUCTION

Since the early 1960s, when the quark model was devel-
oped, it becameclear that hadrons are not elementaryparticles
but are composed of quarks and antiquarks. In the classical
quark model, a baryon is composed of three quarks, and a
meson is composedofonequarkandone antiquark. Today the
internal structure of hadrons is a prominent topic of high
energy physics [1–4]. Quarks and gluons are confined within
themesons and baryons. Thus, hadrons are composite objects
of quarks and gluons governed by quantum chromodynamics
(QCD), which has been established as the theory describing
the strong interaction. However, QCDs application to low-
energy hadron phenomenology is still relatively unexplored,
and there are open problems to be studied. The interpretation
of hadronic states is one of themost critical issues in hadronic
physics, particularly for the exotic states which cannot be
easily collected as quark-antiquarks or three quark states.
In particular, some specific resonances cannot be simply
explained by the quark model and may be of a more complex
structure. Common features for descriptions of such specific
resonances are predictions for the existence of hadrons with

substructures, which are more complex than the standard
quark-antiquark mesons and the three-quark baryons of the
original quark model that provides a concise description of
most of the low-mass hadrons [3].
In the low energy region,where perturbativeQCDdoes not

work, nonperturbativemethods such as theQCDsumrule [5],
lattice QCD [6,7], chiral perturbation theory [8–11], and field
correlator method (FCM) in QCD [12–15] are needed. The
list of just aforementioned nonperturbative methods is not
meant to be complete. In Ref. [16] a survey of contemporary
studies of hadrons and strongly interacting quarks using
QCD’s Dyson-Schwinger equations, in particular, Faddeev-
type equations are employed for baryon calculations. This
review complements and extends earlier reviews [17–20].
One should mention the functional renormalization group
approach [21] for quantitative first-principle studies of
the QCD phase diagram and the hadron spectrum.
References [22,23] built the foundation for the work [21],
which constitutes a crucial prerequisite for future quantitative
first-principle studies at finite temperature and finite chemical
potential. The comprehensive review of the spectrum and
electromagnetic properties of baryons are described as
relativistic three-quark bound states within QCD, and the
review of nonperturbative light-front Hamiltonian methods*rkezerashvili@citytech.cuny.edu
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are presented in Refs. [24,25]. We cite these works, but the
recent literature on the subject is not limited by them.
The physics of three-body systems has received attention

for decades. The general approach for solutions of the three-
body problem at low energies is based on the use of methods
for studying the dynamics of three particles in discrete and
continuum spectra. Currently, among the most powerful
approaches are the method of Faddeev equations in momen-
tum or configuration spaces, the method of hyperspherical
harmonics (HH), the variational method in the harmonic-
oscillator basis, and the variational method complemented
with the use of explicitly correlated Gaussian basis func-
tions. To investigate the three-body systems in hadron
physics, one should solve the Faddeev equations [26,27].
The method of hyperspherical harmonics in configuration
[28–39] (see also references herein) or momentum
[35,38,40] spaces is another method that is intensively used
in a few-body physics, which despite its conceptual sim-
plicity, offers great flexibility, provides high accuracy, and
can be used to study diverse quantum systems, ranging from
small atoms and molecules to light nuclei and hadrons. It
is a very challenging task to solve the Faddeev equations
exactly, and we are usually introducing some reasonable
approximations of the Faddeev equations, such as the use of
separable potentials, energy-independent kernels, on-shell
two-body scattering amplitudes, the fixed-center approxi-
mation (FCA), and the Faddeev-type Alt-Grassberger-
Sandhas equations [41]. On the other hand, an application
of the HH for the solution of three-body problems always
relies on the reasonable convergence of the method.
Using the unitary extensions of chiral perturbation

theory [11] that is a good representation of QCD at low
energies [9,10], dynamically generated three-body reso-
nances formed via the meson-meson and meson-baryon
interactions were intensively studied using FCA for the
Faddeev equations in Refs. [42–56]. Indeed, the use of
chiral dynamics in the Faddeev equations within a fixed-
center approximation allows the description of three-body
resonances consisting of mesons and baryons. Thus,
hadronic composite states are introduced as few-body
systems in hadron physics [57]. Therefore, interpretation
of the states found in the system of mesons and baryons
becames one of the challenges in theoretical physics [58].
The FCM is a promising formulation of the nonpertur-

bative QCD that gives additional support to the quark
model assumptions. Progress was made [59–62] toward
placing the computation of baryon masses within the FCM
by describing a three particle system within the HH
method. Using the HH approach the ground and p-wave
excited states of nnn, nns, and ssn baryons can be obtained
[62,63] in the framework of the FCM [15].
It is interesting to consider a dynamical generation of

Kð1460Þ pseudoscalar resonance formed by a system of
three kaons. In particular, noteworthy is the possibility
of the formation of the quasibound states of three kaons.

Theobservationofpseudoscalar resonances is of fundamental
importance toward the understanding of the meson spectrum.
Let us go over a short history of Kð1460Þ pseudoscalar
resonance. Kð1460Þ pseudoscalar was a subject of interest
already several decades ago. The first evidence for a strange-
ness-one pseudoscalar meson with a mass of ∼1400 MeV
and a width of∼250 MeV was reported via JP ¼ 0− partial-
wave analysis of the Kππ system in the reaction K�p →
K�πþπ−p [64]. The study of this process was carried out at
SLAC, using a 13 GeV incident K� beam. A few years later,
the diffractive process K−p → K−πþπ−p at 63 GeV was
studied byACCORDCollaboration [65], and the existence of
a broad 0− resonance with a mass ∼1460 MeV may now be
taken as established.However, still thePDGdoes not yet list it
as an “established particle” [66]. In the most recent
study [67] intermediate decays of the Kð1460Þ meson are
found to be roughly consistent with previous studies [64,65],
with approximately equal partial widths to K̄�ð892Þπ− and
½πþπ−�L¼0K−, and its resonant nature is confirmed using a
model-independent partial-wave analysis. This resonance can
be considered as a 21S0 excitation of the kaon in a unified
quark model, which leads to the mass 1450 MeV [68].
By assuming isospin symmetry in the effective kaon-

kaon interactions that is attractive forKK̄ pair and repulsive
for KK pair, the Kð1460Þ pseudoscalar resonance can be
the KKK̄ system. With this idea in mind, in Ref. [69] was
performed the study of the KKK̄ system using the single-
channel variational approach in the framework of the model
[70,71] from one hand, and within the Faddeev equations
formalism in momentum representation. In the latter case,
the two-body on-shell t matrices which describe KK and
KK̄ interactions by using the Bethe-Salpeter equation in a
couple-channel approach are determined and the on-shell
factorization method, from another hand. Dynamical gen-
eration of pseudoscalar Kð1460Þ resonance was considered
in Ref. [72], by studying interactions between the f0ð980Þ
and a0ð980Þ scalar resonances and the lightest pseudoscalar
mesons. In Ref. [73] using the single-channel description of
the KKK̄ system in the framework of the HH method the
mass of Kð1460Þ resonance was calculated. Recently, in
Ref. [74], the KKK̄ system was considered based on the
coupled-channel complex-scaling method by introducing
three channels KKK̄, ππK, and πηK. The resonance energy
and width were determined using two-body potentials that
fit two-body scattering properties. The model potentials
having the form of one-range Gaussians were proposed
based on the experimental information about a0 and f0
resonances. In this model, the KK̄ interaction depends on
the pair isospin. In particular, the isospin triplet KK̄ðI ¼ 1Þ
interaction is essentially weaker than the isospin singlet
KK̄ − KK̄ interaction in the channel πK − KK̄ðI ¼ 0Þ.
The aim of this paper is to systematically investigate the

KKK̄ system in the framework of a new approach for the
kaonic physics—the Faddeev equations in configuration
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space. This approach is suitable to formulate and solve the
KKK̄ bound state problem with the effective phenomeno-
logical KK and KK̄ potentials [69–71] derived in configu-
ration space. Existing calculations in the momentum space
are contradictory to each other. We hope to bring more
clarity in the study of the KKK̄ system using the well-
established method, the Faddeev equations in configuration
space. We are suggesting to consider the bosonic KKK̄
system in terms of Efimov’s physics and show the con-
nection of Efimov’s attraction with the exchange term in the
Faddeev equations. As the option of the consideration of
the universality in three-body systems we suggest to use the
mass polarization. In our work we try to answer the
following questions: (i) What KKK̄ are deeply bound?
(ii) Is there any strange structure peculiar to the KKK̄
system? We present our study of the Kð1460Þ resonance in
the framework of a single-channel nonrelativistic potential
model using the Faddeev equations in configuration space
and considering this resonance by means of a three-body
kaonic system KKK̄. Such consideration allows one to use
KK and KK̄ potentials for a description of the KKK̄
system. In our approach these potentials are only inputs
along with the masses of kaons. Following Ref. [69] we
study the KKK̄ system using effective phenomenological
potentials but taking into account the difference in masses
of K and K̄ kaons. The latter leads to splitting the mass of
the Kð1460Þ resonance according to the following neutral
or charged particle configurations: K0K0K̄0, K0KþK−,
KþK0K̄0, KþKþK−. We consider two cases for the
KKK̄ system. In the first one, the strengths of the isospin
singlet and triplet parts of the KK̄ potential are the same.
Such an approach leads to a simplified version of the
Faddeev equations in configuration space for three particle
systems. The second case is complicated by the isospin
dependence of the KK̄ potential, when the strengths of the
isospin singlet and triplet parts of the potential are different
and related by the condition of obtaining a quasibound
three-body state. Results of our calculations are compared
with the SLAC and ACCMOR Collaboration experimental
values for the mass of Kð1460Þ resonance [64,65] and the
recent experimental study [67].
This paper is organized as follows. In Sec. II we present our

theoretical model. The Faddeev equations in configuration
space are formulated, and we present the particle configura-
tions in a three-body kaonic system KKK̄. The results of
calculations for the masses of different configurations,
interpretation of the results, including a comparison to the
previous ones obtained within different methods, are pre-
sented in Sec. III. The concluding remarks follow in Sec. IV.

II. THEORETICAL MODEL

A. Formalism

Configuration space methods are a valuable tool for the
analysis of the three-body problem with short-range

interactions [75,76]. Considering the KKK̄ system as three
interacted bosons having positions r1, r2, and r3, once the
two-body interactions for the KK̄ and KK subsystems are
defined, one can determine its wave function by solving the
Faddeev equations. The bound state problem for the KKK̄
system we formulate by using the Faddeev equations in
configuration space [77] for the bosonic AAB system with
two identical particles. The total wave function of theKKK̄
system is decomposed into the sum of the Faddeev compo-
nents U and W corresponding to the ðKKÞK̄ and ðKK̄ÞK
types of particles rearrangements: Ψ ¼ U þ ðI þ PÞW,
where P is the permutation operator for two identical
particles. For a three-body system, which includes two
identical bosons, the Faddeev equations represent the set of
two equations for the components U and W [78] that reads

ðHU
0 þ VKK − EÞU ¼ −VKKðW þ PWÞ;

ðHW
0 þ VKK̄ − EÞW ¼ −VKK̄ðU þ PWÞ; ð1Þ

where the potentials for KK and KK̄ pairs are defined as
VKK and VKK̄ , respectively. In Eqs. (1) H

U
0 and HW

0 are the
kinetic energy operators of three particles written in the
Jacobi coordinates (see the Appendix A) corresponding to
the ðKKÞK̄ and ðKK̄ÞK types of the three particles’
rearrangements. The total isospin of the KKK̄ system is
considered to be 1

2
. The set of particles in theKKK̄ system is

defined by total isospin projections, which can be −1=2 or
1=2. The possible isospin configurations with isospin 3=2
are not taken into account in our calculations due to the
smallness of corresponding contributions.
In general, we employ the s-wave isospin dependent

VKK and VKK̄ potentials having singlet and triplet compo-
nents: VKK ¼ diagfvsKK; vtKKg, VKK̄ ¼ diagfvsKK̄; vtKK̄g.
One should mention that due to Bose-Einstein statistics
the strength of the s-wave KK interaction vsKK ¼ 0,
because the isospin singlet wave function of the pair is
antisymmetric. Therefore, the corresponding interaction
should be suppressed. The separation of isospin variables
leads to the following form of the Faddeev equations:

ðHU
0 þ vtKK − EÞU

¼ −vtKK

�
−
1

2
Wt þ

ffiffiffi
3

p

2
Ws −

1

2
pWt þ

ffiffiffi
3

p

2
pWs

�
;

ðHW
0 þ vsKK̄ − EÞWs

¼ −vsKK̄

� ffiffiffi
3

p

2
U þ 1

2
pWs −

ffiffiffi
3

p

2
pWt

�
;

ðHW
0 þ vtKK̄ − EÞWt

¼ −vtKK̄

�
−
1

2
U −

ffiffiffi
3

p

2
pWs −

1

2
pWt

�
: ð2Þ

The singlet and tripletW components of the wave function
are noted by indexes s and t, respectively, U is the triplet
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component, and the exchange operator p acts on the
particles’ coordinates only. Within the s-wave approach,
the equation for the singlet component corresponding to the
KK singlet potential is omitted due to the isospin symmetry.
The similar property is demonstrated for equations describ-
ing AAB systems such as NNK̄ [79,80] and nnp [81].
For the description of the effective kaon-kaon interaction

we use the potentials from Refs. [69–71] that are written
in one-range Gaussian form as VAðrÞ ¼

P
I¼0;1 V

I
A×

exp ½−ðr=bÞ2�PA, where b is the range parameter having
the same value as for the K̄N interaction, PA is the isospin
projection operator, and the index A is related to the
type of interaction A ∈ KK, KK̄. The strength of strongly
attractive s-wave KK̄ interaction in the isospin singlet and
triplet states VI¼0;1

KK̄ ¼ vsKK̄ ¼ vtKK̄ ¼ −1155 − i283 MeV

with b¼0.47 fm and VI¼0;1
KK̄ ¼vsKK̄¼vtKK̄¼630–210iMeV

with b ¼ 0.66 fm are considered the same for the isospins
I ¼ 0 and I ¼ 1 [69–71]. Considering that KK and K̄ K̄
interactions are isospin invariant and that there are no open
decay channels for the K̄ K̄ system, theKK potential is real.
The strength of the s-wave KK interaction for I ¼ 0 is
VI¼0
KK ¼ vsKK ¼ 0, and for isospin I ¼ 1 it has a relatively

weak repulsion that is considered as VI¼1
KK ¼ vtKK̄ ¼

313 MeV and VI¼1
KK̄ ¼ vtKK̄ ¼ 104 MeV for parametriza-

tions with b ¼ 0.47 fm and b ¼ 0.66 fm, respectively. As
mentioned above, the choice of the range parameters b is
related to the description of the K̄N interaction. The value
b ¼ 0.66 fm for the effective K̄N interaction corresponds
to the effective Akaishi-Yamazaki potential derived in
Refs. [82,83] phenomenologically by using K̄N scattering
and kaonic hydrogen data and reproducing the Λð1405Þ
resonance as the K̄p bound state at 1405 MeV. This
potential is energy independent. The value b ¼ 0.47 fm
for the effective K̄N interaction corresponds to the potential
obtained in Ref. [84] within the chiral SU(3) effective field
theory and is derived based on the chiral unitary approach
for the s-wave scattering amplitude with the strangeness
S ¼ −1. This potential reproduces the total cross sections
for the elastic and inelastic K̄p scattering, the threshold
branching ratios, and the πΣmass spectrum associated with
the Λð1405Þ. The strength of the KK̄ interaction was
determined by fitting masses of the f0ð980Þ and a0ð980Þ
resonances with the input width 60 MeV [71]. The strength
of the KK interaction was obtained in Ref. [70] to
reproduce the KK scattering length given by a lattice

QCD calculation in Ref. [85]. Following Ref. [71] we refer
to the kaon-kaon interaction potential with b ¼ 0.47 fm
and b ¼ 0.66 fm as A and B, correspondingly. The set of
values of the potential strength VI

A for each interaction and
two optimized values for the range parameter (sets A and B,
respectively) are given in Table I.
Taking into account that the potentials have the same

components in isospin singlet and triplet states, the
Faddeev equations (2) can be reduced using an algebraic
transformation [79] defined by the diagonal matrix to the
following form:

ðHU
0 þ vtKK − EÞU ¼ −vtKKð1þ pÞ eW;

ðHW
0 þ vKK̄ − EÞ eW ¼ −vKK̄ðU þ p eWÞ: ð3Þ

The diagonal matrix D ¼ ð− 1
2
;

ffiffi
3

p
2
Þ defines this transfor-

mation and the transformation related to theKK̄ potential is
given as vKK̄ ¼ DVKK̄D

T , where VKK̄ ¼ diagfvsKK̄; vtKK̄g.
The corresponding Faddeev components are eW ¼ DW,
where W ¼ ðWs;WtÞT .
For the three-body system described by Eqs. (3) one can

evaluate the mass polarization using the definition

Δ ¼ 2E2 − E3ðVKK ¼ 0Þ: ð4Þ

Here, E2 is KK̄ two-body energy and E3ðVKK ¼ 0Þ is the
three-body energy, when the KK interaction between
identical particles is omitted. The value of Δ is positive
and depends on the mass ratio of the particles [86–88].
When in the system KKK̄ at least two particles are

charged, and also the Coulomb interaction should be
considered. The Coulomb potential can be included as a
perturbation of the Hamiltonian in the left-hand side of
Eq. (3). We present the structure of the set of Faddeev
equations taken into account with the Coulomb interaction
in Appendix A.
The complete isospin model is based on Eqs. (2) with the

splitting of the KK̄ potential to two isospin channels I ¼ 0

and I ¼ 1, which have different strengths of the KK̄
interaction. The splitting of the singlet and triplet compo-
nents proposed in Ref. [74] can be expressed by a ratio
of strength parameters for the components of potential,
VI¼1
KK̄ =V

I¼0
KK̄ . Equations (3) describe the case, when

vtKK̄=v
s
KK̄ ¼ 1. This case corresponds to the AAB system

TABLE I. Sets of parameters for the KK̄ and KK potentials.

A (b ¼ 0.47 fm) B (b ¼ 0.66 fm)

Interaction vs [MeV] vt [MeV] vs [MeV] vt [MeV]

KK̄ −1155 − 283i −1155 − 283i −630 − 210i −630 − 210i
KK 0 313 0 104
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without spins and isospins (bosonic isospinless system) and
the KKK̄ demonstrates properties of such a system.

B. Particle configurations in KKK̄ system

One can consider different particle configurations in
the KKK̄ system. The configurations differ by sets of
masses and pair potentials. The Coulomb potential has to
be included for a description of some configurations. To
select the configuration, we used the difference between
the masses of kaons presented in Table II. These configu-
rations are the following: K0K0K̄0, K0KþK−, KþK0K̄0,
KþKþK−. Using the charge-isospin basis notations, the
configurations can be identified as − −þ, −þ −, þ −þ,
þþ −. Thus, the first two configurations correspond to the
states with the projection of total isospin −1=2 of the KKK̄
system, while the last two have the total isospin projection
þ1=2. Each configuration is represented as theAAB system—
the system with two identical particles—and can be described
by the Faddeev equations (2) and (3): the case when the
strengths of the isospin components of the KK̄ potential are
different and when vtKK̄ ¼ vsKK̄ ¼ 1, respectively.

III. RESULTS

Our interest is to examine the possibility of the existence
of bound kaonic states in the KKK̄ system. For this
purpose, we solve numerically differential Eqs. (2) in the
case of the different strengths for the isospin singlet and
triplet components of the KK̄ potential and Eqs. (3), when
vtKK̄ ¼ vsKK̄. The differential Faddeev equations have been
formulated in the pioneering work of Noyes and Fiedeldey
[89] for the simplest case of s-wave three-particle scattering
and have been generalized in Ref. [90]. Our numerical
procedure for the solution of the Faddeev equations in
configuration space is based on the finite difference
approximation with spline collocations [91,92].

A. Case when the strength of vtKK̄ = vs
KK̄

For this case, results of our calculations for the binding
energy and the mass for the KKK̄ system are presented in
Table III. In this table are also given the result from
Ref. [69] obtained using the variational method for the
single channel three-body potential model with the same
two-body effectiveKK andKK̄ interactions. The total mass
of the KKK̄ system ranges from 1463.8 to 1469.4 MeV,
when we consider the sameK meson massmK ¼ 496 MeV
as in Refs. [69,73]. The quasibound state for the KKK̄ with
spin-parity 0− and total isospin 1=2 is found below the
three-kaon threshold.
Studying the various particle configurations of the KKK̄

system and their dependence on the particles masses, we are
considering the following kaonic masses: the mass mK ¼
496 MeV [69] corresponds to the K0K0K̄0 system, where

TABLE II. Kaons and antikaons with the mass deference and
isospin projections.

Particle
(Antiparticle) Quarks Mass [MeV]

Isospin
projection

Kþ (K−) us 493.7 1=2 (−1=2)
K0 (K̄0) ds 497.6 −1=2 (1=2)

TABLE III. The mass of the Kð1460Þ resonance for the potentials of the A and B parameter sets (without the Coulomb force), Ac and
Bc (the Coulomb force is included), M ¼ P

γ mγ − jE3j, mγ is kaon mass, γ ¼ 1, 2, 3. The energy of the KKK̄ quasibound state
(I ¼ 1=2) is E3. The E2 is the energy of the bound KK̄ pair. The masses and energies are given in MeV. δ ¼ Δ=jE3ðVKK ¼ 0Þj is the
relative contribution of the mass polarization. The result of Ref. [69] is given in parentheses. The upper bound for the mass of the three-
body quasibound state is shown as

P
γ mγ − jE2j. mK is the averaged kaon mass.

System Particle Mass Mass Mass upper
Resonance AAB masses Model E3 E3ðVKK ¼ 0Þ E2 polarization δ [%] M bound

Kð1460Þ KKK̄ 496.0 [69] A −19.8 (−21) −32.1 −11.25 30.0 1468.2 1476.7
495.7 A −19.7 −31.9 −11.18 29.9 1467.4 1475.9

B −22.2 −29.4 −11.17 24.0 1464.9 1475.9

K0ð1460Þ K0K0K̄0 497.6 A −20.4 −33.0 −11.61 29.6 1469.7 1481.2
B −22.8 −30.1 −11.45 23.9 1467.3 1481.3

K0ð1460Þ K0KþK− mK− ¼ 493.7, A −19.3 −31.3 −10.96 29.7 1465.8 1474.1
mK ¼ 495.7 B −21.9 −29.0 −11.03 23.8 1463.2 1474.1

Kþð1460Þ KþK0K̄0 mK̄0 ¼ 497.6, A −20.1 −32.5 −11.40 29.8 1468.9 1477.6
mK ¼ 495.7 B −22.5 −29.8 −11.34 23.9 1466.5 1477.7

Kþð1460Þ KþKþK− 493.7 A −18.9 −30.9 −10.74 29.5 1462.2 1470.4
Ac −20.9 � � � � � � � � � 1460.2 � � �
B −21.6 −28.7 −10.87 24.3 1459.5 1470.2
Bc −23.3 � � � � � � � � � 1457.8 � � �
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mK ¼ ð2mKþ þmK̄0Þ=3; the mass mK ¼ 493.7 MeV cor-
responds to the KþKþK− system; the mass mK ¼
497.6 MeV corresponds to the K0K0K̄0 system. For the
K0KþK− andKþK0K̄0 configurationswe used the averaged
mass of kaons for particle pair K0Kþ, mK ¼ 495.7 MeV.
The difference of the masses for K0 and Kþ violates the

AAB model with two identical particles of the KKK̄
system. However, the approach with the averaged mass
is completely satisfied with the AABmodel due to the set of
the proposed potentials. The Coulomb potential acting in
the K0KþK− system also violates the AAB symmetry, and,
therefore, we omitted the consideration of the Coulomb
force for the K0KþK− configuration. The Coulomb poten-
tials in the KþKþK− system were included in the calcu-
lations due to correspondence to the AAB symmetry. A
brief description of the Faddeev equations in configuration
space with the Coulomb force acting in theKKK̄ is given in
Appendix A.
The comparison of our energy E ¼ −21 MeV with the

result obtained in Ref. [69] shows some disagreement.
We assume that it could be related to the numerical
methods utilized to solve the corresponding equations. In
Ref. [69] the variational method is used, which depends
on a choice of initial basis functions. We use the direct
numerical method [92] for the solution of the Faddeev
equations in configuration space. Here, the direct sol-
ution means a solution method based on the finite-
differential approximation of the boundary problem for
eigenvalues with the discretization of the coordinate
space. The analysis of the method is performed in
Appendix C 1, where two cross-check tests are given.
The first is related to the test of our computer codes for
the solution of a problem similar to the one considered
for the KKK̄ system with the comparison with results of
other authors. In the second one, we proposed an
alternative way to solve the Faddeev equations by using
the cluster reduction method [93,94]. Both tests provided
evidence that the accuracy for the results listed in
Tables III and IV is reached in our calculations.
Let us continue the analysis of data from Table III, where

the results of calculation for the E3ðVKK ¼ 0Þ are also
presented. The E3ðVKK ¼ 0Þ is defined as the energy of the
quasibound state of the three-body system when the
repulsive KK interaction is omitted. In this case, the set

of Eqs. (3) is reduced to the single equation for the eW
Faddeev component:

ðHW
0 þ vKK̄ − EÞ eW ¼ −vKK̄p eW: ð5Þ

The exchange term presented at the right-hand side of the
equation provides the existence of a bound state with energy
E3ðVKK ¼ 0Þ. In Table III are shown the two-body energy of
bound pair E2 and three-body energy E3ðVKK ¼ 0Þ. Based
on the analysis performed in Ref. [88] and according to
Eq. (4), the relation between E2 and E3ðVKK ¼ 0Þ can be
rewritten as

jE3ðVKK ¼ 0Þ=E2j > 2: ð6Þ

The results of the calculations given in Table III are in
agreement with this relation. In nuclear physics, this relation
is called the “mass polarization effect” [88]. In terms of the
Efimov physics [95,96], the relation (4) is explained by the
Efimovattraction as a result of amediated attraction between
two particles by the exchange of the third particle. Note that
an expression, which is similar to Eq. (6), has been
previously obtained in Ref. [97] for bosonic two-dimen-
sionalAAB systems to describe the relation of two-body and
three-body energies. Interestingly enough to note that due to
universality, Efimov physics applies to virtually any field of
quantum physics, be it atomic and molecular physics,
nuclear physics, condensed matter physics, or even high-
energy physics (see, for example, [98,99]).
The relation (6) agrees with the so-called “Efimov

scenario” [96] defined for the model situation when pair
potential is simply scaled by a multiplicative factor. To
illustrate this fact, in Fig. 1, we present the results of
calculations for the dependence of the ratio E3=E2 on two-
body energy jE2j (left panel) and the value 1=

ffiffiffiffiffiffiffiffijE2j
p

(right
panel). The 1=

ffiffiffiffiffiffiffiffijE2j
p

coincides with two-body scattering
length a2 due to approximation jE2j ≈ ℏ2=ðmKa22Þ. These
dependencies are obtained by introducing the scaled factor
α, which parametrizes the KK̄ potential and scales it as
vKK̄ → αvKK̄. Therefore, it differs by a multiplicative factor
α. These dependencies are parametrically obtained. The
parameter is the multiplicative factor of α, defining the
scaled KK̄ potential. The region of the Efimov physics
corresponds to small values of jE2j (large values of
1=

ffiffiffiffiffiffiffiffijE2j
p

). Within this region, the ratio of E3=E2 quickly
increases, and a possibility for an excited state is opening.
In Fig. 2 we show the result for the A parameter set of the
KK̄ potential (α ¼ 1). The corresponding state of the
K0K0K̄0 system is far from the Efimov states. The ratio
E3=E2 asymptotically approaches 2. The repulsive KK
potential makes the E3=E2 ratio to be smaller than the
E3ðVKK ¼ 0Þ=E2 ratio. The strength of the KK repulsion
defines the difference. What will happen if the KK
interaction would be attractive? It is clear that an attractive

TABLE IV. The mass and width of the K0K0K̄0 resonance
using the A and B parameter sets for the KK and KK̄ potentials.
The results of Ref. [69] are shown in parentheses. The kaon
masses are given in MeV.

Potentials/Kaon mass M [MeV] Γ [MeV]

A=497.6 1469.7 105
A=496.0 1468.1 (1467) 104 (110)
B=497.6 1467.3 117
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AA potential will make the ratio E3=E2 larger than
E3ðVAA ¼ 0Þ=E2. An example of such a situation with
an attractive AA potential is given in Appendix C 1.
Following Ref. [88] we evaluated the relative contribu-

tion of the mass polarization δ ¼ Δ=jE3ðVKK ¼ 0Þj to the
energy of the KKK̄ quasibound state for different physical
particle configurations. The corresponding results are
presented in Table III. The value of δ depends on two
factors: the mass ratio of kaons and the type of the KK̄
potential. When the mass ratio approaches one, the
dependence of the mass polarization on the particle
configuration is hidden for the considered systems. The
second factor is more significant here. One can see the
dependence by comparing the results for the potentials of
the A and B parameter sets.

Summarizing the comparison, we conclude that the mass
polarization effect for the potential of the A parameter set is
about 30% and for the set B is about 24%. There is a
correlation between two-body scattering length a2 obtained
with the potential that bounds nonidentical particles and the
relative contribution of the mass polarization δ [88]. The
larger scattering length corresponds to the smaller mass
polarization. For the KKK̄ system, the potentials of the B
parameter set demonstrate larger scattering length and
smaller mass polarization. This relation is shown in
Fig. 2 along with the results obtained in Ref. [88] for
the αΛΛ system with phenomenological potentials having
different scattering parameters. The relatively small mass
polarization in the αΛΛ system is clarified by domination of
the α-particle mass in the system, due to the ratio
mΛ=mα ≪ 1. The correlation between of the relative con-
tribution of the mass polarization δ and two-body scattering
length is only approximately linear, because the dependence
of two-body parameters on the strength of a potential ismore
complex than the parametric dependence of a potential on
the strength parameter considered above.
To show the difference between the A and B parameter

sets for the KK̄ potential, we averaged Eq. (5): hHW
0 iþ

hvKK̄i þ hvKK̄pi ¼ E3ðVKK̄ ¼ 0Þ. To evaluate the aver-
aged kinetic energy hHW

0 i, the method proposed in
Ref. [100] was used. We considered Eq. (5) with scaled
kaon masses by a factor γ within the small vicinity of the
point γ ¼ 1. The energy becomes a function of γ ¼ 1� Δγ
and dEðγÞ=dγ ¼ −1=γ2hHW

0 i. The linear approximation
for this derivation gives an evaluation of the averaged
kinetic energy. The exchange term hvKK̄pi depends on the
mass ratio and does not contribute to hHW

0 i as one can
see from the numerical results listed in Table III. Using
the pattern hHW

0 i þ hvKK̄i þ hvKK̄pi ¼ E3ðVKK̄ ¼ 0Þ,
the results of averaging can be written as follows:

FIG. 1. The dependence of the ratio E3=E2 on two-body energy jE2j (left panel) and the value 1=
ffiffiffiffiffiffiffiffijE2j

p
, which is proportional to the

two-body scattering length a2 (right panel) for the K0K0K̄0 system. The calculations are performed using the potentials with parameters
A. These are the parametric dependencies. The parameter is the factor α which defines the scaled KK̄ potential as vKK̄ → αvKK̄ . The
vertical line corresponds to α ¼ 1.

FIG. 2. The correlation between the relative contribution of the
mass polarization δ and two-body scattering length a2 for the
αΛΛ and KKK̄ systems calculated with different pair potentials.
The mass ratios are mΛ=mα ≈ 1=4 and mK=mK̄ ≈ 1, respectively.
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274 − 214 − 93 ¼ −33 and 182 − 142 − 70 ¼ −30 for the
potentials of theA andBparameter sets, respectively. Here, all
values are given inMeV.We see that the potentials in the set A
are “stronger” because they act on shorter distances with the
larger strength. We can assume that the KKK̄ system
describedwith theAparameter set potentials ismore compact.
One can assume that the contribution of the exchange

term hvKK̄pi could correspond to the value evaluated by
Eq. (4) for the mass polarization term. We rewrite the
expressions presented above as 274ð1 − 214=274 −
93=274Þ ¼ −33 and 182ð1 − 142=182 − 70=182Þ ¼ −30
for the potentials of sets A and B, respectively. The
evaluation of jhvKK̄pi=hHW

0 ij gives 34% and 39% for
the potentials of the sets A and B, respectively. These
values are in disagreement with the results of the mass
polarization term in Table III. Note that the mass polari-
zation is related to the kinetic energy operator in the
Schrödinger equation [88]. By using the exchange term,
one cannot directly separate this kinetic part. Thus, the δ
more adequately evaluates the relative contribution of the
mass polarization. At the same time, one can make sure that
the relative contribution of the exchange term (Efimov
attraction) increases with decreasing the strength of the
potential according to the “Efimov scenario.”
In Table III we also present the upper bounds for the

mass of the three-body quasibound state calculated asP
γ mγ − jE2j, where mγ , γ ¼ 1, 2, 3 are the kaon masses.

The values define a maximal value for the three-body
resonance mass when the quasibound state is approxi-
mately located on the two-body threshold. Obviously, the
calculated mass M of the three-body resonance is less than
the mass of the upper bound state.
The mass spectrum and the mass difference for differ-

ent particle configurations of the KKK̄ system are shown

in Fig. 3. The left panel presents the mass spectrum for
different particle configurations of the KKK̄ system
calculated with the A and B parameter sets of pair
potentials. It is worthwhile to notice that the spectrum
obtained for the set of parameters B is shifted by 2 MeV
relative to the spectrum obtained using the potentials with
the set of parameters A. This shift is not surprising
because the two-body quasibound energy of the model is
approximately larger by 2 MeV and depends on the two-
body attractive KK̄ potential. It is interesting enough to
consider the difference between the average isospin
model, without taking into account the difference of
kaon masses and the particle configuration model. The
right panel in Fig. 3 presents the mass difference M −
MKKK̄ for different particle configurations calculated with
the parameters of pair potentials for set A. One can note
that it varies from 1 to 7 MeV for different particle
configurations.
In Table IV, we present the results of our calculations for

the mass and width of the K0K0K̄0 resonance using the A
and B parameter sets for the KK and KK̄ potentials. In
these calculations we did not consider the mass difference
of K and K̄ kaons. However, we considered the different
value of the mass for the kaon as it is listed in Table IV. The
comparison of our results with those obtained with the
variational method [69] shows that the mass and width of
Kð1640Þ are close enough, 1467 MeV and 110 MeV [69],
respectively. The alternative scenario is observed for the
HH method [73] and the Faddeev calculations in the
momentum representation [69]: the difference for the width
is more than 50%. In particular, for the Faddeev calcu-
lations in the momentum representation Γ ¼ 50 MeV [69],
which coincides with results obtained within the HH
method [73], where the width falls into the 41–49 MeV

FIG. 3. Mass spectrum for different particle configurations of the KKK̄ system calculated with the A and B parameter sets for pair
potentials (left panel). The mass difference M −MKKK̄ for different particle configurations calculated with the set A for parameters of
potentials (right panel).
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range for all sets of the KK̄ and KK interactions. The
details of our method for evaluation of the width Γ are given
in Appendix B.
Taking into account the difference of our results and the

results of [69], we test our codes, which is presented in
Appendix C 1. In the first test, we considered the system
npp, which is described by Eqs. (3) as a bosonic isospin-
less model by direct solution of the Faddeev equations in
configuration space. The second test is related to the
alternative approach for the solution of the Faddeev
equations in configuration space for the KKK̄ system
using the cluster reduction method (CRM).
It is interesting to consider the density distribution of

particles for the KKK̄ system calculated in the framework
of the Faddeev equations in configuration space. The
spatial configuration of particles in the KKK̄ system can
be understood by plotting the spatial probability ampli-
tudes, i.e., the squared modulus of the Faddeev components
jUðx; yÞj2 and jWðx; yÞj2 in terms of the Jacobi coordinates
x and y. In Fig. 4 we present calculation results of the
probability distribution for the charged kaon resonance
Kþð1460Þ described as the KþKþK− system by using the
potentials with the parameter set B. In these figures are
presented the contour plots of the squared modulus
jUðx; yÞj2 and jWðx; yÞj2 in the frame of 5 fm × 5 fm,
as well as the related spatial configurations. The careful
examination of the contour plots shows that the squared
modulus’ maximal values differ by 2 orders and, therefore,
the corresponding spatial configurations probabilities. The
componentWðx; yÞ is dominant in the total wave function.
The localization of the particles in the system corresponds
to the highest probability associated with the component
Wðx; yÞ for the x and y coordinates values. The coordi-
nates’ modules in the most favorable position are approx-
imately related to the ratio of jyj=jxj ∼ 1.5. The squared
modulus of the Wðx; yÞ component displays very large
asymmetry, being strongly elongated in the y direction. The
spatial configuration presented in the inset reflects
this ratio. Let us note that the localization of Kþ mesons
must be symmetrical relative to the K− due to exchange
symmetry for the identical Kþ mesons. The inset in the
lower panel in Fig. 4 presents two positions of the particles
in the KKK̄ system that satisfy this condition. For the first
position, the ratio jyj=jxj < 1.5. The second position
corresponds to the ratio jyj=jxj ≈ 1.5. According to the
spatial probability distribution for the component Wðx; yÞ
given in Fig. 4, the second position is the most probable.
Thus, the particles in the KþKþK− system are distributed
along one line as a chainlike spatial configuration
ðKþÞ − ðK−Þ − ðKþÞ. The distance between KþK− is
0.8 fm, while the distance between KþKþ is twice larger.
The latter is not surprising because the KþK− interaction is
strong and attractive, while the interaction between the
identical particles KþKþ is weak and repulsive. The other
spatial configuration has a low probability and can be

represented as a triangle spatial configuration with the basis
side and height of 0.8 fm, respectively.

B. Case when the strength of vtKK̄ and vs
KK̄

is different

Let us now focus on the dependence of three-body
energy on the strength of isospin splitting of the KK̄
potential. To consider this case, one should solve Eqs. (2).
In Fig. 5 we present the calculation results for KþK̄0K0

systems for the potentials of the parameter set A. The
splitting means that the isospin triplet component of the
potential decreases as vtKK̄ ¼ ð1 − ξÞvsKK̄ under the con-
dition that the isospin singlet potential is not changed and

FIG. 4. The probability for distribution of the particles in the
KþKþK− system. The contour plot of the squared modulus of the
Faddeev component jUðx; yÞj2 (upper panel) and jWðx; yÞj2
(lower panel) versus the corresponding Jacobi coordinates.
The insets show the most probable configurations of the particles.
The y coordinate is marked by the red color. For the U
rearrangement ðKþ þ KþÞ þ K− (upper panel), the Jacobi coor-
dinate x connects Kþ and Kþ mesons, while for the W
rearrangement Kþ þ ðKþ þ K−Þ (lower panel), the Jacobi coor-
dinate x connects Kþ and K− mesons.
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provides the two-body threshold Es
2 about 11 MeV (see

Table V). The value of 0.3 for the scaling parameter ξ
corresponds to the relation between the singlet and triplet
components of the KK̄ potential proposed in Ref. [74]. Our
calculations show that the triplet bound state exists when
the scale parameter ξ is less than 0.15. Thus, the model
proposed in [74] assumes that the triplet state is not bound.
The quasibound state of theKþK0K̄0 system has the energy
−12.4 MeV, which is near the two-body threshold.
Because of the isospin splitting of the KK̄ interaction,
the relation (6) is invalidated and the opposite relation
takes place: jE3ðVKK ¼ 0Þ=Es

2j < 2. Also the value of
2E2 − Es

3ðVKK ¼ 0Þ becomes negative in contrast to the
positive value of Δ in Eq. (4).

IV. SUMMARY

We developed a new framework for the Faddeev calcu-
lations in configuration space for the Kð1460Þ dynamically
generated resonance in this work. Our three-body non-
relativistic single channel model predicts a quasibound
state for the KKK̄ system with the mass around 1460 MeV.
The calculations are performed using two sets of phenom-
enologicalKK andKK̄ potentials, when the strength ofKK̄
interaction has no difference in the singlet and triplet
isospin states, as well as taking into account various
particle configurations of the KKK̄ system. Our study
was extended to a more complicated case when the isospin
singlet and triplet parts of theKK̄ potential are different and
related by the condition of obtaining a quasibound three-
body state.
In our study, the mass difference between the kaons was

taken into account to separate physical particle configura-
tions of the KKK̄ system: K0K0K̄0, K0KþK−, KþK0K̄0,
KþKþK−. These improvements enable us to investigate
these kaonic configurations systematically, moreover the
first time the Coulomb interaction has been taken into
account for the description of the charged configurations.
The mass splitting in the Kð1460Þ resonances is evaluated
to be in the range of 10 MeV with taking into account the
Coulomb force in the case of charged resonances. It is
worth mentioning that a hypothetical chainlike spatial
configuration ðKþÞ − ðK−Þ − ðKþÞ would constitute a
favorable structure of the KKK̄ system.
We considered the mass polarization effect in the KKK̄

system and evaluated the effect of the repulsion strength of
theKK potential. The mass polarization term, which is well
separated in the Schrödinger equation as a part of the
kinetic energy operator and the exchange term defined by
the Faddeev equations, is evaluated and discussed. This
term is closely related to the “Efimov attraction.” Our
calculations demonstrate that a peculiar feature of the
mechanism for the binding of the KKK̄ system is the
s-wave kaon exchange. We compare the contributions of

FIG. 5. The energy E3 of quasiresonance in the KþK0K̄0

system (potential with the A parameter set) for different values of
the scaling parameter ξ defined for the triplet KK̄ potential as
vtKK̄ → ð1 − ξÞvsKK̄ [74]. The E2 energy of subsystem KK̄
[isospin singlet (s) or isospin triplet (t)]. The vertical line
corresponds to the value of the ratio vtKK̄=v

s
KK̄ proposed in [74].

TABLE V. The mass of the Kð1460Þ resonance for potentials with the parameter sets A and B (without the
Coulomb force) and the scaling parameter ξ ¼ 0.3, vtKK̄=v

s
KK̄ ¼ 0.7 [74]. The notations are the same as in Table III.

Γ is the width of three-body resonance.

Resonance
System

Model E3 Γ E3ðVKK ¼ 0Þ Es
2

Mass Mass upper
AAB M bound

K0ð1460Þ K0K0K̄0 A −12.9 70 −18.2 −11.61 1479.9 1481.2
B −14.7 78 −18.8 −11.45 1478.1 1481.3

K0ð1460Þ K0KþK− A −12.2 67 −17.1 −10.96 1472.9 1474.1
B −14.0 76 −18.0 −11.03 1471.1 1474.1

Kþð1460Þ KþK0K̄0 A −12.7 69 −17.8 −11.40 1476.3 1477.6
B −14.4 77 −18.9 −11.34 1474.6 1477.7

Kþð1460Þ KþKþK− A −11.9 69 −16.7 −10.74 1469.2 1470.4
B −13.8 76 −17.7 −10.87 1467.3 1470.2

I. FILIKHIN et al. PHYS. REV. D 102, 094027 (2020)

094027-10



the mass polarization term (the characteristic term of the
Schrödinger equation) and the exchange term, which is
clearly defined in the Faddeev approach in configuration
space. The exchange interaction becomes the maximal for a
system with two identical particles, such as the KKK̄
system. Thus, the bosonic model for the KKK̄ system leads
to a strongly bound state of this system. A model with a
significant isospin splitting of the KK̄ potential generates a
weakly bounded KKK̄ system, because the contribution of
the exchange interaction is reduced due to the significant
decrease of the KK̄ attraction. We have demonstrated that
the model for the KKK̄ system with KK̄ interaction having
the same strength in the isospin singlet and triplet states is
far from Efimov physics. The evaluation of the mass
polarization in the KKK̄ system in the framework of the
Faddeev equations in configuration space allows us to
understand, explain, and interpret the contribution from the
KK potential to the mass of the Kð1460Þ as a dynamically
generated resonance. It is shown that the contribution of
mass polarization into the energy of the KKK̄ system is
large (up to 30%) and depends linearly on the KK̄
scattering length. Specifically, the contribution is defined
by the mass ratio of nonidentical particles. As a result,
relative contributions can be the same for different systems.
We also studied the impact of isospin splitting of the KK̄

interaction on the energy of the KKK̄ quasibound state.
Generally, a model with the isospin dependence of a KK̄
potential leads to a decreasing binding energy of the
system. In particular, we found that the KK̄ potential with
an essential difference of isospin components produces a
weak quasibound state. The comparison of our calculations
with the recent experimental study 1482.40� 3.58�
15.22 MeV [67], where the first uncertainty is statistical
and the second systematic, shows that the mass of the
Kð1460Þ resonance is in a satisfactory agreement with the
mass upper bound, calculated within our three-body model
with isospin splitting KK̄ potential. Because of the exper-
imental uncertainties in the relevant observable, one can
explore the possible range for the ratio of the strengths of
isospin triplet and singlet components of the KK̄ inter-
action. On the other hand, our results obtained by the model
with the same strength of the KK̄ interaction in the isospin
singlet and triplet states are in reasonable agreement with
the SLAC and ACCMOR Collaboration experimental
values of the mass of Kð1460Þ resonance [64,65].
It is worth noticing that despite its simplicity, the single-

channel model can reproduce the mass of the Kð1460Þ
resonance. In our consideration there are no any fitting
parameters, and we are using s-wave KK̄ and KK two-
body potentials and kaon masses only as the inputs in our
model. The key ingredient of the model is the proper
description of the isospin-dependent KK̄ interaction.
Therefore, some refinements can be done, such as using
more realistic two-body potentials, including p-wave

components, and/or considering the coupled-channel
approach. However, these will not affect dramatically the
main conclusions obtained within the present approach.
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APPENDIX A: COULOMB POTENTIAL

The general form of the Faddeev equations with
Coulomb interactions reads as follows [77]:

fH0 þ Vs
γðjxγjÞ þ

X3
β¼1

VCoul
β ðjxβjÞ − EgΨγðxγ; yγÞ

¼ −VγðjxγjÞ
X
β≠γ

Ψβðxβ;xβÞ; ðA1Þ

where VCoul
β is the Coulomb potential between the particles

belonging to the pair β and Vγ is the short-range pair
potential in the channel γ (γ ¼ 1, 2, 3). In (A1) H0 ¼
−Δxγ − Δyγ is the kinetic energy operator, E is the total
energy, Ψ is the wave function of the three-body system
given as a sum over three Faddeev components,
Ψ ¼ P

3
γ¼1Ψγ , xγ, and yγ are the Jacobi coordinates for

three particles with unequal masses m1, m2, and m3 having
positions r1, r2, and r3 defined as

xi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mjmk

mj þmk

r
ðrj − rkÞ;

yi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mjðmj þmkÞ

M

r �
−ri þ

mjrj þmkrk
mj þmk

�
;

R ¼ ðm1r1 þm2r2 þm3r3Þ;
M ¼ m1 þm2 þm3; i ≠ j ≠ k ¼ 1; 2; 3: ðA2Þ

For a system with two identical particles (A1) is reduced to
two equations. The system KþKþK− has two types of
Coulomb potentials. The first one is repulsive and describes
the interaction between two particles of the same charge
and the second is attractive and describes the interaction
between two opposite charged particles. Each potential
gives the contribution to each equation of the set. For
example, the Coulomb potential of the first type is written
as n1=jxj for the first equation and n2=jx0j for the second
equation of the set (3), where x0 ¼ x=2þ y and nk, k ¼ 1,
2 is the reduced charge nk ¼ e2mk=ℏ2, and mk is a reduced
mass of the corresponding particle pair.
The particle configurations and corresponding Coulomb

forces are schematically presented in Fig. 6. Note that the
Coulomb potential of the particle configuration K0KþK−

violates the paradigm of the AAB system. To describe this

THREE-BODY MODEL FOR Kð1460Þ RESONANCE PHYS. REV. D 102, 094027 (2020)

094027-11



system with the Coulomb potential, one has to use the
Faddeev equations (A1) for three nonidentical particles.

APPENDIX B: THE WIDTH OF THE
KKK̄ SYSTEM

For evaluation of the width of the KKK̄ quasiresonance,
we taken into account that the real part of the complex KK̄
potentials dominates with the ratio for strengths of
ϵ ¼ 283=1155 for the potential of the A parameter set
and ϵ ¼ 210=630 for the potential with set B. One can write
the Hamiltonian of the KKK̄ system as HR þ iϵImVKK̄ ,
where HR ¼ H0 þ ReVKK̄ þ VKK . We have taken into
account that the KK potential has no imaginary part.
This complex-value expression for the Hamiltonian can
be transformed into the real 2 × 2 matrix representation:�

HR −ϵImVKK̄

ϵImVKK̄ HR

�
:

The obtained matrix is a rotation-scaling matrix. The
complex eigenvalues of the matrix are HR � iϵImVKK̄ .
The energy E and width Γ can be obtained by the averaging
E ¼ hHRi � iϵhVKK̄i ¼ ER � iΓ=2. We have evaluated
the averaged KK̄ potential energy as hVKK̄i for the
K0K0K̄0 particle configuration. The corresponding results
using potentials with the A and B parameter sets are
presented in Table IV. A similar result for the parameter
set A was obtained in Ref. [69], where the variational
calculations have been performed.

APPENDIX C: NUMERICAL SOLUTION OF THE
FADDEEV EQUATIONS: THE CODE TESTING

1. Bosonic model for nnp system with MT-V potential

Our calculation for the KKK̄ system is tested by using
the simple model for the nnp system with the spin-
independent Malfliet-Tjon nucleon-nucleon potential of
the version V (MT-V) [101]. The potential corresponds
to a bosonic model for the nnp system, when an isospin/
spin independent s-wave potential is used. The MT-V
bosonic model was motivated by spin averaging for the
spin-dependent MT-III potential [102]. The configuration
space Faddeev calculations for the model are based on

Eqs. (3). The MT-V potential is defined as VNNðrÞ ¼P
i¼1;2 Ui exp ½−ðμirÞ�=r, where Ui and μ are strength and

range parameters, respectively. The range parameters are
μ1 ¼ 1.55 fm−1, μ1 ¼ 3.11 fm−1. We used two sets for
strength parameters of the potential known from literature
[103]: (1) U1 ¼ −570.316 MeV, U2 ¼ 1438.4812 MeV,
and (2) U1 ¼ −578.098 MeV, U2 ¼ 1458.047 MeV. The
results of the calculations are given in Table. VI. Our results
are in good agreement with the results obtained in
Ref. [103], where the Faddeev equations in configuration
space were also applied. Note that the mass polarization
evaluated by the value Δ=jE3jðVKK ¼ 0Þ is similar to the
kaonic system KKK̄ due to the similar mass ratio. For the
bosonic model of the nnp system, the above mentioned
(Sec. III) correlations between two- and three-body param-
eters take place. In particular, the ratio E3=E2 with
dependence on two-body energy jE2j presented in Fig. 7
shows the Efimov effect when two-body energy is close to
the three-body threshold. Here, the nn potential is scaled by
a factor α as Vnn → αVnn with the condition α > 0. The
strong attraction of the nn pair makes the ratio E3=E2 larger
in comparison with the E3ðVnn ¼ 0Þ=E2 case, when the nn
interaction is omitted. The results of our calculations for the
nnp system with two sets of the MT-V potential for the
correlation between the relative contributions of the mass
polarization δ and two-body scattering length a are
represented in Fig. 7. A similar dependence is shown in
Fig. 2 obtained in the case of the KKK̄ and αΛΛ systems.
The correlation between δ and a is represented by a linear
dependence with the negative slope as one can see in Fig. 2.

2. Cluster reduction method versus direct
numerical solution

The cluster reduction method [93,94] was alternatively
used for a numerical solution of the Faddeev equations (2).
The method is based on the expansion of the components
U and W in terms of the basis of the eigenfunctions of the
two-body Hamiltonian of the subsystems:

Uðx;yÞ¼
XN
i≥1

ϕU
i ðxÞFU

i ðyÞ; Wðx;yÞ¼
XN
i≥1

ϕW
i ðxÞFW

i ðyÞ:

ðC1Þ

FIG. 6. The structure of the Coulomb force in the
particle configurations of the KKK̄ system, (a) K0KþK−, and
(b) KþKþK−.

TABLE VI. The energy (E3) of the bound state of the nnp
system within different variants for MT-V nucleon-nucleon
potential. The E2 is the energy of the bound np pair. The
energies are given in MeV. The relative contribution of the mass
polarization (MP) δ ¼ Δ=jE3ðVKK ¼ 0Þj is shown. The results of
calculations from [103] are listed in parentheses.

Potential E3 E3ðVnn ¼ 0Þ E2 MP [%]

MT-V(1) −7.54 (−7.54) −1.01 −0.35 30.7
MT-V(2) −8.04 (−8.0424) −1.16 −0.41 29.3
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Here, the functions FU
i and FW

i , i ¼ 1; 2;…, N describe the
relative motion of “clusters” in each rearrangement channel
ðKKÞK̄ and KðKK̄Þ, respectively. The functions FU

i (FW
i )

depend on the relative coordinate y. The solutions of the
two-body Schrödinger equations form a complete set of
eigenfunctions in the box, x ⊂ ½0; Rx�:�

−
ℏ2

2μU
∂2
x þ VsNN¼0

NN ðxÞ
�
ϕU
i ðxÞ ¼ ϵUi ϕ

U
i ðxÞ;�

−
ℏ2

2μW
∂2
x þ VNK̄ðxÞ

�
ϕW
i ðxÞ ¼ ϵWi ϕ

W
i ðxÞ;

where μU (and μW) is a reduced mass of the pairs and
ϕU
i ð0Þ ¼ ϕU

i ðRxÞ ¼ 0 (ϕW
i ð0Þ ¼ ϕW

i ðRxÞ ¼ 0), i ¼ 1;
2;…; N. The parameter Rx is chosen to be large enough
to reproduce the pair binding energy. In our calculations
Rx ¼ 35 fm is used. The number N is chosen by the
condition of total convergence of calculation results, when
N consequently increases.
The comparison of the CRM and direct solution is

presented in Fig. 8. The results obtained using both
methods are in good agreement. The CRM calculations
for the case of complete set of potentials and the case of
restriction VK0K0 ¼ 0 demonstrate the repulsive nature of
the KK potential. The convergence of the calculation
results, as a function of the number N of the terms in
Eq. (C1) is different for these cases. In the first case, the
decrease of binding energy changes to increase when the

calculation becomes “more precise” by increasing the
number N. For the second case, we have a monotonic
decrease in the binding energy. Such behavior is related to
the consequent inclusion of the attraction for the KK̄ pair
and repulsion for the KK pair.

FIG. 7. The ratio E3=E2 with dependence on two-body energy jE2j for the nnp system calculated with the MT-V (1) potential. The
parameter is factor α defining the scaled nn potential Vnn → αVnn. Left panel: The vertical line corresponds to α ¼ 1. Right panel: The
correlations between the relative contribution of the mass polarization δ and the np-scattering length a in nnp systems calculated with
two versions of NN MT-V potential.

FIG. 8. The binding energy of the KKK̄ system (K0K0K̄0)
calculated using CRM for different numbers of the terms in the
expansion (C1). The case when theKK potential is omitted is also
shown. The horizontal lines (solid and dashed) represent the
results of the direct numerical solution of the Faddeev equations.
The parameter set B of the potentials was applied.
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