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We investigate the appearance of straight infinite Wilson lines lying on the self-dual plane in the context
of the self-dual sector of the Yang-Mills theory and in a connection to the Lagrangian implementing the
maximally helicity violating (MHV) vertices (MHV Lagrangian) according to the Cachazo-Svrcek-Witten
method. It was already recognized in the past by two of the authors, that such Wilson line functional
provides the field transformation of positive helicity fields between the Yang-Mills theory on the light cone
and the MHV Lagrangian. Here we discuss in detail the connection to the self-dual sector and we provide a
new insight into the solution for the minus helicity field transformation, which can be expressed in terms of
a functional derivative of the straight infinite Wilson line on the self-dual plane.
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I. INTRODUCTION

Since the publication of the famous paper on maximally
helicity violating (MHV) amplitudes by Parke and Taylor
[1], there has been an enormous development in methods of
calculating scattering amplitudes in quantum chromody-
namics (QCD), without use of the Feynman diagrams.
Indeed, this direct technique, which is more than a half of
century old, is extremely inefficient when confronted with
today’s needs. Proliferation of diagrams is huge even for
small multiplicity processes. Moreover, individual dia-
grams do not respect gauge invariance leading to large
cancellations between distinct sets of diagrams. In addition,
other more subtle properties of the theory are not utilized.
In particular, the incredible simplicity of the Parke-Taylor
result for the tree-level MHV amplitudes has been recog-
nized as a result of a “geometry” of the theory. It turns out
that these amplitudes are supported on a line in the twistor
space (four-dimensional complex projective space) [2],
which in turn corresponds to a point in Minkowski space.
Therefore, the MHV amplitudes constitute “interaction
vertices” in the Minkowski space. Indeed, arbitrary tree
amplitude can be constructed by gluing together MHV

amplitudes, what is now known as the Cachazo-Svrcek-
Witten (CSW) method [3]. This leads further to discovery
of on-shell recursion relations [4,5], the so-called Britto-
Cachazo-Feng-Witten (BCFW) method. It allows for con-
structing an on-shell amplitude with arbitrary number of
external legs, from the on-shell amplitudes with less
number of legs where the external momenta have been
deformed to the complex domain. Since the building blocks
are on shell, the recursion is fully gauge invariant. It was
also shown that the CSW method can be viewed as a
particular case of the BCFW recursion [6]. In parallel, the
on-shell conditions for internal lines were also intensively
used to progress in calculation of loop amplitudes and are
known as unitarity methods [7–11]. In recent years, the on-
shell methods have been also intensively studied from a
completely geometric point of view. In particular, it was
recognized that the external data describing scattering
amplitudes (i.e., the momenta in spinor representation
together with momentum conservation) constitute the so-
called positive Grassmannian (see [12] for a pedagogical
review and original references). This leads to the concept of
the so-called amplituhedron [13], whose volume gives
scattering amplitudes in maximally supersymmetric theory.
This concept has been recently extended also to non-
supersymmetric theories [14].
Let us point out that besides exploring on-shell methods

it is also important to study full off mass shell dynamics of
fields. Although for some theories the scattering matrix
(targeted in on-shell methods) can be considered as a
physical object, in QCD it is not the case due to the color
confinement. Therefore, one needs a bridge connecting
physical hadrons with partons. This is usually achieved by
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means of collinear factorization theorems, which utilize
the on-shell scattering amplitudes for the short distance
part of the process and parton distribution functions and
fragmentation functions for the nonperturbative part [15].
They depend however on the kinematics of a scattering
process and not all processes can be factorized into
nonperturbative hadronic wave function and on-shell
scattering amplitude. Notably, there is a large class of
processes occurring at high energies that are described in
terms of so-called kT-factorization [16–18], which utilizes
gauge invariant off-shell amplitudes (equivalent to
Reggeon scattering amplitudes in high-energy kinematics)
[19–23]. Therefore, it is also important to study off-mass
shell correlators and form factors, beyond purely on-shell
functions. Application of geometric methods has been less
intensively studied in that context, but some interesting
results do exist [24–26]. Due to the above, the study of
dynamics of fields in more traditional way, i.e., using
quantum field theory, is also important.
In the present work, we continue exploring the con-

nection of the MHV vertices used in the CSW method
and straight infinite Wilson lines on certain complex
plane, which has been started in [27]. These Wilson lines
emerge as the transformation of the positive helicity
Yang-Mills field appearing in the light-cone action to
a new action where the MHV vertices are explicit.
Such transformations have been studied for the first time
in [28] and further developed in [29–34]. As a first
objective, we explore the connection of this Wilson line
to the self-dual sector of the Yang-Mills theory. The
scattering amplitudes in that sector have been discussed
in detail in the literature [35–39], as well as the inte-
grability of the self-dual equations of motion [40–43].
Despite the fact that there exists rich and mathematically
sophisticated literature on the subject, there is no direct
discussion of the infinite Wilson line discovered in [27]
in that context. The second objective of the paper is to
extend the discussion beyond the self-dual sector. As
mentioned, the straight infinite Wilson line functional
considered in [27] transforms the positive helicity fields
to new fields that constitute the MHV action. Here, we
present an analogous solution for the minus helicity field,
which turns out to be transformed by certain functional
derivative of the Wilson line.
The structure of the paper is as follows. In Sec. II, we

discuss the self-dual sector. We recall the equations of
motion and structure of the tree level currents existing in the
theory. Next, we discuss how the straight infinite Wilson
line emerges as an inverse functional to the generating
function for the solutions. In Sec. III, we extend the
discussion of Wilson lines beyond the self-dual sector.
We find a direct relation of the Wilson line from the self-
dual sector to the transformation of the minus helicity fields
that leads to the MHVaction. The last section is devoted to
a summary and description of future prospects.

II. THE SELF-DUAL YANG-MILLS THEORY

A. Classical EOM and scattering amplitudes

Our starting point is the full Yang-Mills action in the
light-cone gauge Aþ ¼ 0, where the A− fields (appearing
quadratically) were integrated out from the theory [44]
leaving only two complex fields A•, A⋆ that correspond
to plus-helicity and minus-helicity gluon fields. We use
here very convenient so-called “double-null” coordinates
defined as vþ ¼ v · η, v− ¼ v · η̃, v• ¼ v · εþ⊥, v⋆ ¼ v · ε−⊥
with the two lightlike basis four-vectors η ¼ ð1; 0; 0;−1Þ=ffiffiffi
2

p
, η̃ ¼ ð1; 0; 0; 1Þ= ffiffiffi

2
p

, and two spacelike complex four-
vectors spanning the transverse plane ε�⊥ ¼ 1ffiffi

2
p ð0; 1;�i; 0Þ.

With the above definitions, one can easily raise and lower
indices, taking care of the flip þ ↔ − and ⋆ ↔ •, where
the latter causes also the sign change. The action can be
written as

SðLCÞY−M½A•; A⋆� ¼
Z

dxþðLðLCÞ
þ− þ LðLCÞ

þþ− þ LðLCÞ
þ−− þ LðLCÞ

þþ−−Þ;

ð1Þ

where the individual terms in the Lagrangian read

LðLCÞ
þ− ½A•; A⋆� ¼ −

Z
d3xTrÂ•

□Â⋆; ð2Þ

LðLCÞ
þþ−½A•; A⋆� ¼ −2ig

Z
d3xTr∂−1

− ∂•Â
•½∂−Â

⋆; Â•�; ð3Þ

LðLCÞ
−−þ½A•; A⋆� ¼ −2ig

Z
d3xTr∂−1

− ∂⋆Â⋆½∂−Â
•; Â⋆�; ð4Þ

LðLCÞ
þþ−−½A•; A⋆� ¼ −2g2

Z
d3xTr½∂−Â

•; Â⋆�∂−2
− ½∂−Â

⋆; Â•�;

ð5Þ

where □ ¼ 2ð∂þ∂− − ∂•∂⋆Þ. Above, the bold position
vector is defined as x≡ ðx−; x•; x⋆Þ. We denote Â ¼
Aata as the color algebra element and use the normalization
of color generators that fulfill ½ta; tb� ¼ i

ffiffiffi
2

p
fabctc. With

this normalization, our coupling constant is rescaled as g →
g=

ffiffiffi
2

p
comparing to “standard” normalization of the action.

The fully covariant form of the self-dual equations is

F̂μν ¼ �F̂μν; ð6Þ

where F̂μν ¼ ∂μÂν − ∂νÂμ − ig½Âμ; Âν� and the Hodge dual
is defined as �F̂μν ¼ −iϵμναβF̂αβ. The corresponding self-
dual equation in light-cone gauge and upon eliminating the
A− field reads

□Â• þ 2ig∂−½ð∂−1
− ∂•Â

•Þ; Â•� ¼ 0; ð7Þ

HIREN KAKKAD, PIOTR KOTKO, and ANNA STASTO PHYS. REV. D 102, 094026 (2020)

094026-2



which can be obtained from the following truncation of the
full action [36]:

SðLCÞSDYM½A•; A⋆� ¼
Z

dxþ½LðLCÞ
þ− þ LðLCÞ

þþ−�: ð8Þ

We are interested in the classical solution to the self-dual
equations of motion (EOM) (7) that gives us information
about scattering amplitudes. The tree-level Green functions
can be extracted by coupling the classical action to an
external current

W½A•; A⋆; J� ¼ SðLCÞSDYM½A•; A⋆� þ
Z

dxþTrĴÂ⋆ ð9Þ

and postulating the power series solution

A•
a½j�ðxÞ ¼

X∞
n¼1

Z
d4y1…d4ynΨ

ab1…bn
n ðx; y1;…; ynÞ

× jb1ðy1Þ…jbnðynÞ: ð10Þ
Above, the current J has been replaced by a current that
accommodates the on-shell pole

jaðxÞ ¼ □−1JaðxÞ: ð11Þ

Assuming the currents ja are supported on the light cone,
the momentum space off-shell currents Ψ̃ab1…bn generated
by the solution (10) correspond to the off-shell currents
similar to the Berends-Giele currents [45], i.e., to an
amplitude of an off-shell gluon with momentum P and
plus helicity (momentum incoming) scattering into n on-
shell gluons with momenta k1;…; kn. The solution can be
obtained iteratively, see Fig. 1, and reads [37,46]

Ψ̃afb1…bng
n ðP; fp1;…; pngÞ
¼ −ð−gÞn−1δ4ðp1 þ � � � þ pn − PÞ

Trðtatb1 � � � tbnÞ
ṽ�ð1���nÞ1
ṽ�
1ð1���nÞ

1

ṽ�21ṽ
�
32 � � � ṽ�nðn−1Þ

; ð12Þ

where we introduced spinorlike variables following [47]

ṽij ¼ pþ
i

�
p⋆
j

pþ
j
−
p⋆
i

pþ
i

�
; ṽ�ij ¼ pþ

i

�
p•
j

pþ
j
−

p•
i

pþ
i

�
: ð13Þ

We use a shorthand notation for the sum of momenta
p1 þ…pn ≡ p1…n. The curly braces denote the symmet-
rization with respect to color and momentum variables, i.e.,
pairs fbi; pig. Here and in what follows we always skip
factors of 2π accompanying conservation delta functions.
The ṽij, ṽ�ij symbols have the property that in addition to
being directly proportional to the spinor products hiji and
½ij� (see, e.g., [47]), they can be defined in terms of the
polarization vectors

ε�i ¼ ε�⊥ −
pi · ε�⊥
pi · η

η ð14Þ

as follows:

ṽ�ij ¼ −ðεþi · kjÞ; ṽij ¼ −ðε−i · kjÞ: ð15Þ

This turns out to be important in the context of the inverse
functional to (10) as we discuss in the next subsection.
The off-shell currents Ψ̃ab1…bn

n can be turned into on-
shell −;þ; � � � ;þ scattering amplitude by putting the
incoming off-shell gluon on mass shell and amputating
the propagator, or equivalently, the energy denominator

D̃1…n ¼ 2

�Xn
i¼1

Ei − Eð1…nÞ

�
: ð16Þ

Above, the light-cone energy

Ei ¼
k•ik

⋆
i

kþi
ð17Þ

is equal to the “minus” momentum component obtained
from the on-shell condition k2i ¼ 0. Since the solution (12)
does not have the 1=D̃1…n factor (it gets canceled—see
Fig. 1), we get zero upon amputation and imposing the on-
shell limit, i.e., when the minus component is conserved.
Thus, the on-shell −;þ; � � � ;þ tree amplitude is zero in
agreement with well-known general analysis.

B. The straight infinite Wilson line

It is very interesting how the self-dual equation encodes
the infinite Wilson line spanning over the transverse
complex plane. Obviously, due to the integrability property
of the theory, the relation to Wilson lines should not be a
surprise [40], but the following exposition is new and quite
elementary.

FIG. 1. The tree-level off-shell currents generated by the
classical solution to the self-dual theory satisfy the light-cone
variant of the Berends-Giele recursion. The plus signs indicate
the helicity of gluons. The vertical double-dashed line denotes the
energy denominator D̃1…n ¼ 2ðPn

i¼1 Ei − EPÞ, where the light-
cone energy for a momentum k is Ek ¼ k•k⋆=kþ.
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Let us consider an inverse functional to (10). First,
note that the kernels Ψ̃n are functions exclusively of
the three momenta p≡ ðpþ; p•; p⋆Þ, up to the minus
component momentum conservation delta function
δðp−

1 þ � � � þ p−
n − P−Þ. Therefore, we define the three-

dimensional (3D) kernels Ψ̃afb1…bng
n ðP; fp1;…;pngÞ using

Ψ̃afb1…bng
n ðP; fp1;…; pngÞ
¼ δðp−

1 þ � � � þ p−
n − P−ÞΨ̃afb1…bng

n ðP; fp1;…;pngÞ:
ð18Þ

We can get rid of the minus component delta function in
(10) by Fourier transforming it with respect to the minus
momentum component,

Ã•
a½j�ðxþ;PÞ

¼
X∞
n¼1

Z
d3p1…d3pnΨ̃

afb1…bng
n ðP; fp1;…;pngÞ

× j̃b1ðxþ;p1Þ…j̃bnðxþ;pnÞ: ð19Þ

We assume that the inverse functional has the expansion

j̃a½A•�ðxþ;PÞ

¼
X∞
n¼1

Z
d3p1…d3pnΓ̃

afb1…bng
n ðP; fp1;…;pngÞ

× Ã•
b1ðxþ;p1Þ…Ã•

bnðxþ;pnÞ: ð20Þ

Inserting (20) into (19), one finds1

Γ̃afb1…bng
n ðP; fp1;…;pngÞ

¼ ð−gÞn−1 δ
3ðp1 þ � � � þ pn − PÞTrðtatb1…tbnÞ
ṽ�
1ð1���nÞṽ

�
ð12Þð1���nÞ � � � ṽ�ð1���n−1Þð1���nÞ

: ð21Þ

Noticing that each of the factors in the denominator is
actually a scalar product of a sum of subsequent momenta
and the same polarization vector (14),

ṽ�ð1…iÞð1…nÞ ¼ −ðp1 þ � � � þ piÞ · εþP ; ð22Þ

it is not difficult to prove [27] that (21) are the momentum
space expansion coefficients of the functional directly
related to the following straight infinite Wilson line along
εþP (in the light-cone gauge):

ja½A�ðxÞ ¼
Z

∞

−∞
dαTr

�
1

2πg
ta

× ∂−P exp

�
ig
Z

∞

−∞
dsεþα · Âðxþ sεþα Þ

��
; ð23Þ

where

ε�α ¼ ϵ�⊥ − αη ð24Þ

is a generic polarization vector. Thus, from the posi-
tion space point of view, the functional (23) is the
(derivative of) Wilson line integrated over all possible
directions. However, after passing to momentum space and
integrating over α, the generic polarization vector (24)
becomes εþP .
One may worry that the functional (23) is in contra-

diction with the EOM with the current [compare (7)],

□Â• þ 2ig∂−½ð∂−1
− ∂•Â

•Þ; Â•� −□ĵ ¼ 0; ð25Þ

as it contains terms at most quadratic in the fields, whereas
(23) contains all powers. However, the current j in (25) is
supported on the light cone and only the second term in the
expansion of (23), Γ̃2, contains implicit pole 1=P2. We
discuss this point in Appendix A. In view of the above, the
functional (23) is a more general object than the external
current j, and therefore we rename it as follows:

B•
a½A�ðxÞ≡ ja½A�ðxÞ: ð26Þ

The Wilson line (23) has been already recognized in [27]
as the relation between the positive helicity Yang-Mills
field and positive helicity field in the MHV action—we
shall come back to this point in the next section. It is also
worth mentioning that interestingly the kernels Γ̃n contain
the same diagrams as Ψ̃n, but different energy denomi-
nators; see [27] for details.
Let us now discuss the origin of the Wilson line (23) in

more geometrical terms.
Notice first that this Wilson line lies within the plane

spanned by η and ϵþ⊥. It is a null plane, i.e., any tangent
vector is lightlike. It is interesting that this plane is also a
self-dual plane, i.e., any bivector wμν ¼ uμvν − uνvμ with
tangent vectors u,v is self-dual (such plane is also called
α-plane or β-plane in the twistor space formulation [41]).
Therefore, any Wilson line lying within the plane is the
functional of the self-dual connection A and one can
attempt to reconstruct the connection from the Wilson line.
A generic Wilson line functionalUC½A�ðx; yÞ depends on

two end points and a path C, and thus cannot be used to
solve for the self-dual gauge field. The trick is now to
choose the simplest possible path crossing arbitrary point
and extending over the whole plane, i.e., the straight line
(see Fig. 2). Let us assume we pick up the line along the

1Virtually identical calculation has been done in [27] in the
context of a transformation between Yang-Mill action and the
MHVaction. In this section, we repeat these steps referring solely
to the self-dual action.
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vector εα defined in (24). In addition to being independent
on the end points, the resulting infinite Wilson line
Uα½A�ðxÞ is gauge invariant with respect to the small gauge
transformations. Finally, integration over α reduces the
functionalUα½A�ðxÞ to a functional independent on the path
details U½A�ðxÞ. One can now find an inverse functional
A½U�ðxÞ which is the generating functional for the off-shell
amplitudes. Notice the functional U can be treated here as
the fundamental representation field as it depends only on
color and position. It is the origin of the B• field defined
in (26).
Although the procedure outlined above is quite intuitive,

the detailed mathematical treatment and connection to
integrability of the self-dual sector are beyond the scope
of the present paper.

III. THE MHV LAGRANGIAN

In the previous section, we recalled the self-dual Yang-
Mills theory and showed how straight infinite Wilson line
functional, integrated over all directions, emerges as an
inverse functional to the solution of the EOM. It can be
interpreted as a new field B•

a in the fundamental color
representation; see Eq. (26).
It turns out [27] that mapping A• → B•½A•� given by (23)

is one of the two Mansfield transformations taking the full
Yang-Mills action to the action with MHV vertices [28].
The second transformation relates the starred fields A⋆ →
B⋆½A•; A⋆� and will be discussed in more details below.

A. Recap of the MHV action

The action involving MHV vertices reads [28]

SðLCÞY−M½B̃•; B̃⋆�

¼
Z

dxþðLðLCÞ
þ− þ LðLCÞ

−−þ þ � � � þ LðLCÞ
−−þ���þ þ…Þ; ð27Þ

where the form of the kinetic term is analogous to the one in
(1) but with A fields replaced by the B fields, whereas the
n-point interaction terms are

LðLCÞ
−−þ���þ ¼

Z
d3p1…d3pnδ

3ðp1 þ � � � þ pnÞ

× Ṽb1…bn
−−þ���þðp1;…;pnÞB̃⋆

b1
ðxþ;p1Þ

× B̃⋆
b2
ðxþ;p2ÞB̃•

b3
ðxþ;p3Þ…B̃•

bn
ðxþ;pnÞ; ð28Þ

with the MHV vertices

Ṽb1…bn
−−þ���þðp1;…;pnÞ ¼ gn−1

�
pþ
1

pþ
2

�
2

Trðtb1…tbnÞ

×
ṽ�421

ṽ�1nṽ
�
nðn−1Þṽ

�
ðn−1Þðn−2Þ…ṽ�21

: ð29Þ

The Wilson line functional (23) appears here naturally as
a consequence of mapping the −þþ helicity vertex of the
Yang-Mills theory, which is not present in the CSW
method, to a new free theory of B fields, as proposed in
[28]. This vertex constitutes the self-dual theory as dis-
cussed in the previous section.
Because there are at most two B⋆ fields for arbitrarily

large vertex, we see that the MHVaction is almost entirely
occupied by the Wilson lines. Of course, it is the “impurity”
injected by the B⋆ fields that gives the rich structure of the
full Yang-Mills theory.

B. Relation of B⋆ field to infinite Wilson line

The structure of the B⋆ field has not been discussed in the
literature in a more geometrical manner. Actually, only the
functional A⋆½B•; B⋆� and not its inverse has been so far
calculated [29], as this is what is needed to derive the MHV
action. Here we are interested in exploring the structure of
the new field B⋆ as seen in the original theory.
In order to find an expression for B⋆½A•; A⋆� similar to

(23), we first derive the functional in momentum space as a
power series. This is done in a similar way as for the B•

field (see Appendix B for details). We obtain

B̃⋆
aðxþ;PÞ ¼ Ã⋆

aðxþ;PÞ þ
X∞
n¼2

Z
d3p1 � � � d3pn

× ϒ̃ab1fb2���bng
n ðP;p1; fp2; � � �pngÞÃ⋆

b1
ðxþ;p1Þ

× Ã•
b2
ðxþ;p2Þ � � � Ã•

bn
ðxþ;pnÞ; ð30Þ

FIG. 2. The inverse functional to the generating functional
for the self-dual solutions is given by the straight infinite Wilson
line lying on the plane spanned by εþα ¼ ϵþ⊥ − αη (with
ϵþ⊥ ¼ ð0; 1; i; 0Þ= ffiffiffi

2
p

, η ¼ ð1; 0; 0;−1Þ= ffiffiffi
2

p
) and integrated over

all α (the dashed lines represent tilted Wilson lines due to the
change of α).
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where

ϒ̃ab1fb2���bng
n ðP;p1; fp2; � � �pngÞ

¼ n

�
pþ
1

pþ
1���n

�
2

Γ̃ab1���bn
n ðP;p1 � � �pnÞ: ð31Þ

Note that the kernels (31) are very similar to the Wilson
line kernels (21), modulo the prefactor. Indeed, it turns out
that the solution for the B⋆ field has the following compact
functional form in the position space:

B⋆
aðxÞ ¼

Z þ∞

−∞
dαTr

�
1

2πg
ta∂−1

−

Z
d4y½∂2

−A⋆
cðyÞ�

δ

δA•
cðyÞ

P exp

�
ig
Z þ∞

−∞
dsÂ•ðxþ sεαÞ

��
: ð32Þ

The proof of this formula is given in Appendix C. Because
the infinite Wilson line in (32) is the same as in (23), we can
write the above formula in terms of the functional deriva-
tive of B• field as follows:

B⋆
aðxÞ ¼

Z
d3y

�∂2
−ðyÞ

∂2
−ðxÞ

δB•
aðxþ;xÞ

δA•
cðxþ; yÞ

�
A⋆
cðxþ; yÞ; ð33Þ

where ∂−ðxÞ ¼ ∂=∂x−. From the above formula, it is easy
to see that the momentum space expression (30) with the
kernels (31) indeed satisfies (32). The differential operator
∂2
−ðyÞ=∂2

−ðxÞ will give the momentum-dependent prefactor
in (31), whereas the functional derivative will replace one

A• by A⋆ in the Wilson line B•. For nth term in the
expansion, there are n possibilities to do so; thus, the factor
of n in (31).
Geometrically, the functional (32) is just the infinite

Wilson line patched with one A⋆ field—see Fig. 3. It is
interesting to note that it is natural to think about the A⋆
fields as belonging to Wilson lines living within the anti-
self-dual plane spanned by ε−α (recall that the B• lives on the
plane spanned by εþα ). Therefore, the solution (32) looks a
bit like a cut through a bigger structure, spanning over both
planes. Such possible extension of the Wilson line appli-
cation in MHV formalism is beyond the scope of the
present paper and is left for future study.
In the end of this subsection, let us note that from

Eq. (33) one can derive another interesting formula for the
B• field. Differentiating (33) over ∂−ðxÞ and using the
Mansfield’s transformation rule for the A⋆ field [28],

∂−A⋆
aðxÞ ¼

Z
d3y

δB•
cðxþ; yÞ

δA•
aðxþ;xÞ

∂−B⋆
cðxþ; yÞ; ð34Þ

we easily obtain the following equation:

Z
d3y

�
∂−1
− ðxÞδB̂

•ðxþ;xÞ
δÂ•ðxþ;yÞ

��
∂−ðyÞ

δB̂•ðxþ;zÞ
δÂ•ðxþ;yÞ

�
¼ δ3ðx− zÞ:

ð35Þ

Integrating by parts over y−, we see that merely the operator
∂−ðyÞ=∂−ðxÞ is responsible for inverting the functional
derivative of the Wilson line.

IV. SUMMARY

In this paper, we have explored structures in the Yang-
Mills theory that give rise to the MHV vertices in the CSW
formulation. These structures turn out to be functionals of
the gauge fields, directly related to the straight infinite
Wilson lines extending over a complex self-dual plane
spanned by εþα defined in Eq. (24). Similar Wilson lines
appear in the literature in the context of the gauge invariant
amplitudes with some external partons being kept off shell.
The functionals that involve complexified, straight,

infinite Wilson lines transform the original fields appearing
in the light-cone Yang-Mills action to the fields which enter
the MHV action. The light-cone action involves just two
components of the gauge field that correspond to plus and
minus helicity gluons. The transformation of the plus
helicity field is given solely by the solution to the self-
dual equation of motion. Therefore, we explored in details
the connection between the Wilson line and the self-dual
sector of the Yang-Mills theory. To be precise, we showed
that the Wilson line expression satisfies the self-dual EOM,
when the currents are restricted to the support on the light
cone. Thus, the Wilson line itself represents a more general
object than the self-dual current. We have also found the

FIG. 3. The solution to the B⋆ field can be represented as the
straight infinite Wilson line similar to the one from Fig. 2, but
where one A• field has been replaced by the A⋆ field. Alter-
natively, one can patch the semi-infinite Wilson line with the A⋆
field, as shown in the figure. The bar over exp function denotes
the functional incorporating the n factor in series expansion,
i.e., expðxÞ ¼ x expðxÞ.
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explicit compact form of the transformation for the minus
helicity field in position space. This turns out to be given by
the functional derivative of the Wilson line solution, which
effectively replaces one of the plus fields along the line by
the minus field.
There are further possible avenues to follow. One of

them is to investigate further the geometry of the solutions.
The Wilson lines corresponding to the positive helicity
fields live on the plane spanned by the εþα . On the other
hand, one could think of the minus helicity fields as
belonging to the gauge links which live in the plane
spanned by ε−α . Since the transformation for the minus
helicity field that takes the Yang-Mills theory to the MHV
action involves both plus and minus helicity fields, it
appears to be a certain cut through a bigger geometrical
object which is spanned over both planes. Investigation of

such possible extensions of Yang-Mills field transforma-
tions is left for the future.
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APPENDIX A: VANISHING OF HIGHER ORDER
TERMS IN THE WILSON LINE EXPANSION IN

THE ON-SHELL LIMIT

In this appendix, we prove that

ja½A�ðxÞ ¼
Z

∞

−∞
dαTr

�
1

2πg
ta∂−P exp

�
ig
Z

∞

−∞
dsεþα · Âðxþ sεþα Þ

��
ðA1Þ

satisfies the self-dual EOM,

□Â• þ 2ig∂−½ð∂−1
− ∂•Â

•Þ; Â•� −□ĵ ¼ 0: ðA2Þ

To this end, we first Fourier transform (A2),2

− P2Ã•
aðPÞ þ igfabc

Z
d4p1d4p2δ

4ðp1 þ p2 − PÞ
�
pþ
12

pþ
1

× ṽ12

�
Ã•
bðp1ÞÃ•

cðp2Þ þ P2j̃aðPÞ; ðA3Þ

where P2 ¼ 2ðPþP− − P•P⋆Þ. Recall that the self-dual solution is expressed in terms of ja currents having the support on
the light cone. Thus, we need to assume P2 → 0.
The Fourier transform of (A1) is

j̃aðPÞ ¼
X∞
n¼1

Z
d4p1…d4pnΓ̃

afb1…bng
n ðP; fp1;…; pngÞÃ•

b1ðp1Þ…Ã•
bnðpnÞ; ðA4Þ

where

Γ̃afb1…bng
n ðP; fp1;…; pngÞ ¼ ð−gÞn−1 δ

4ðp1 þ � � � þ pn − PÞTrðtatb1 � � � tbnÞ
ṽ�
1ð1���nÞṽ

�
ð12Þð1���nÞ � � � ṽ�ð1���n−1Þð1���nÞ

: ðA5Þ

Above is the 4D version of the Wilson line kernel (21), cf. (18). In what follows, we skip the color indices for more compact
formulas. For further use, we can write

P2Γ̃nðp1; p2; � � �pnÞ ¼ −PþD1���nΓ̃nðp1; p2; � � �pnÞ; ðA6Þ

where

D1���n ¼ 2

�
P•P⋆
Pþ − P−

�
¼ 1

Pþ
Xn
i;j¼1

ṽijṽ�ji; ðA7Þ

2We follow the Fourier transform convention as in [27].
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where we have used an identity similar to the Schouten
identity for spinor products in the on-shell case. The above
expression holds because the momenta p1;…; pn are
on shell.
Let us now proceed term by term in (A3). Since the first

term in (A4) is Ã•
aðPÞ, it cancels out the first term of (A3).

For the second term in (A4), we have

Γ̃2ðp1; p2Þ ¼ −g
δ4ðp1 þ p2 − PÞ

ṽ�
1ð12Þ

Trðtatb1tb2Þ: ðA8Þ

It is easy to show that the above expression can be
written as

Γ̃2ðp1; p2Þ ¼
δ4ðp1 þ p2 − PÞ

ṽ21ṽ�12

ig
2
fcb1b2

�
pþ
12

pþ
1

× ṽ12

�
:

ðA9Þ

Using (A7), we get

P2Γ̃2ðp1; p2Þ ¼ −igfcb1b2
�
pþ
12

pþ
1

ṽ12

�
δ4ðp1 þ p2 − PÞ:

ðA10Þ
Comparing this with the second term of (A3), we see that
they cancel out. An important point to note is that Eq. (A10)
represents a three-gluon vertex where the incoming gluon is
off shell and the outgoing gluons are on shell. When we
impose the on-shell condition, P2 → 0, the quantity on the
right side of (A10) represents three-gluon vertex with all
gluons on shell. This we knowmust be zero. Hence, we have

ṽ12 → 0: ðA11Þ

Since we have canceled the two terms present in (A2)
(the g0 and g1 terms), we now need to show that

X∞
n¼3

�Z
d4p1 � � � d4pnP2Γ̃nðp1; p2; � � �pnÞÃ•ðp1ÞÃ•ðp2Þ � � � Ã•ðpnÞ

�
P2→0

¼ 0: ðA12Þ

From Eq. (A7), we have

P2 ¼ −
Xn
i;j¼1

ṽijṽ�ji ¼
Xn
i;j¼1

pþ
j

pþ
i
ṽijṽ�ij: ðA13Þ

Above, we see that each term in the expansion of P2 is
positive definite. Hence, under the limit P2 → 0, each term
in (A13) must independently go to zero. Thus,

P2 → 0 ⇒ ṽijṽ�ji → 0 ∀ i; j: ðA14Þ

The implication of the expression above (which will be
useful later) is the following. Since the three gluon vertex

for splitting P → pipj, with i, j on shell, is proportional to
ṽij (cf. (A10), we must conclude that the on-shell limit is
approached by

ṽij → 0 ∀ i; j: ðA15Þ
This follows from the fact that for n ¼ 2 Eq. (A13) is just
∼ṽ12ṽ�21. On the other hand, the fully on-shell three-gluon
vertex is ∼ṽ12 and must be zero due to momentum
conservation. Thus, in the on-shell limit ṽ12 → 0. This
holds for any three-gluon vertex with on-shell legs.
In [27], it was shown that Γ̃nðp1; p2; � � �pnÞ can be

written as

Γ̃nðp1; p2; � � �pnÞ ¼ ð−gÞn−1δ4ðp1 þ � � � þ pn − PÞ −2
D1���n

×
vnðn−1Þṽ�ð1���n−1Þð1���nÞ þ vðn−1Þðn−2Þṽ�ð1���n−2Þð1���nÞ þ � � � v21ṽ�1ð1���nÞ

ṽ�
1ð1���nÞṽ

�
ð12Þð1���nÞ � � � ṽ�ð1���n−1Þð1���nÞ

; ðA16Þ

where

vij ¼
1

pþ
j
ṽji ¼

�
p⋆
i

pþ
i
−
p⋆
j

pþ
j

�
: ðA17Þ

Using this, we can write

P2Γ̃nðp1; p2; � � �pnÞ ¼ ð−gÞn−1δ4ðp1 þ � � � þ pn − PÞ2Pþ

×
vnðn−1Þṽ�ð1���n−1Þð1���nÞ þ vðn−1Þðn−2Þṽ�ð1���n−2Þð1���nÞ þ � � � v21ṽ�1ð1���nÞ

ṽ�
1ð1���nÞṽ

�
ð12Þð1���nÞ � � � ṽ�ð1���n−1Þð1���nÞ

: ðA18Þ
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It can be rewritten as

P2Γ̃nðp1; p2; � � �pnÞ ¼ ð−gÞn−1δ4ðp1 þ � � � þ pn − PÞ2Pþ

×

�
vnðn−1Þ

ṽ�
1ð1���nÞṽ

�
ð12Þð1���nÞ � � � ṽ�ð1���n−2Þð1���nÞ

þ vðn−1Þðn−2Þ
ṽ�
1ð1���nÞṽ

�
ð12Þð1���nÞ � � � ṽ�ð1���n−3Þð1���nÞṽ�ð1���n−1Þð1���nÞ

þ � � �
�
: ðA19Þ

Using Eqs. (A11) and (A17), we see that each term in the above expression is zero under the limit P2 → 0. Therefore, the
whole expression vanishes in that limit.

APPENDIX B: PROOF OF THE B⋆ FIELD EXPANSION IN MOMENTUM SPACE

In this appendix, we derive the momentum space power series for B̃⋆ðxþ;PÞ which we postulate to have the following
expansion:

B̃⋆
aðxþ;PÞ ¼ Ã⋆

aðxþ;PÞ þ
X∞
n¼2

Z
d3p1 � � � d3pnϒ̃

ab1fb2���bng
n ðP;p1; fp2; � � �pngÞ

× Ã⋆
b1
ðxþ;p1ÞÃ•

b2
ðxþ;p2Þ � � � Ã•

bn
ðxþ;pnÞ; ðB1Þ

where, throughout the derivation, the curly braces represent that the enclosed momenta and color indices are symmetrized.
The goal is to find the coefficient functions ϒ̃n which we shall derive for a first few terms and generalize the result.
The Ã• and Ã⋆ fields were shown in [27] to have the following power series expansions:

Ã•
aðxþ;PÞ ¼ B̃•

aðxþ;PÞ þ
X∞
n¼2

Z
d3p1 � � � d3pnΨ̃

afb1���bng
n ðP; fp1 � � �pngÞ

× B̃•
b1
ðxþ;p1ÞB̃•

b2
ðxþ;p2Þ � � � B̃•

bn
ðxþ;pnÞ; ðB2Þ

where

Ψ̃afb1���bng
n ðP; fp1 � � �pngÞ ¼ −ð−gÞn−1

ṽ�ð1���nÞð1Þ
ṽ�ð2Þð1Þṽ

�
ð3Þð2Þ � � � ṽ�ðnÞðn−1Þṽ�ð1Þð1���nÞ

× δ3ðp1 þ � � � þ pn − PÞTrðtatb1 � � � tbnÞ ðB3Þ

and

Ã⋆
aðxþ;PÞ ¼ B̃⋆

aðxþ;PÞ þ
X∞
n¼2

Z
d3p1 � � � d3pnΩ̃

ab1fb2���bng
n ðP;p1; fp2; � � �pngÞ

× B̃⋆
b1
ðxþ;p1ÞB̃•

b2
ðxþ;p2Þ � � � B̃•

bn
ðxþ;pnÞ; ðB4Þ

with

Ω̃ab1fb2���bng
n ðP;p1; fp2; � � �pngÞ ¼ n

�
pþ
1

pþ
1���n

�
2

Ψ̃ab1���bn
n ðP;p1 � � �pnÞ: ðB5Þ

The kernel Ψ̃ab1���bn
n ðP;p1 � � �pnÞ can be written as

Ψ̃ab1���bn
n ðP;p1 � � �pnÞ ¼

X
permutations

Trða1 � � � nÞΨnð1 � � � nÞ; ðB6Þ

EXPLORING STRAIGHT INFINITE WILSON LINES IN THE … PHYS. REV. D 102, 094026 (2020)

094026-9



where the sum is over all permutations of (1 � � � n). Above, we have introduced the following notation for convenience:

Trða1 � � � nÞ ¼ Trðtatb1 � � � tbnÞ; ðB7Þ

Ψnð1 � � � nÞ ¼ −
1

n!
ð−gÞn−1

ṽ�ð1���nÞð1Þ
ṽ�ð2Þð1Þṽ

�
ð3Þð2Þ � � � ṽ�ðnÞðn−1Þṽ�ð1Þð1���nÞ

δ3ðp1 þ � � � þ pn − PÞ: ðB8Þ

The same notations will be used for the coefficient functions of the power series for B̃• in the momentum
space, Γ̃ab1���bn

n ðP;p1 � � �pnÞ.
To obtain ϒ̃n, we substitute Eqs. (B4) and (B2) in (B1) and equate the terms of equal order. To differentiate the color

indices and momentum variables, we use c1; c2; � � � cn as the color indices and q1; q2; � � � qn as momentum for (B1) and,
respectively, d1; d2; � � � dn and s1; s2; � � � sn for (B2) and b1; b2; � � �bn and p1; p2; � � �pn for (B4).
The first order term is trivial. For the second order, we get

0 ¼
Z

d3q1d3q2ϒ̃
ac1fc2g
2 ðP;q1; fq2gÞB̃⋆

c1ðxþ;q1ÞB̃•
c2ðxþ;q2Þ

þ
Z

d3p1d3p2Ω̃
ab1fb2g
2 ðP;p1; fp2gÞB̃⋆

b1
ðxþ;p1ÞB̃•

b2
ðxþ;p2Þ: ðB9Þ

Substituting for Ω̃2 using expression (B5) for n ¼ 2, we have

ϒ̃ab1fb2g
2 ðP;p1; fp2gÞ ¼ −2

�
pþ
1

pþ
12

�
2

½Ψ2ð12ÞTrða12Þ þΨ2ð21ÞTrða21Þ�: ðB10Þ

Using the result Ψ2 ¼ −Γ2 from [27], we obtain

ϒ̃ab1fb2g
2 ðP;p1; fp2gÞ ¼ 2

�
pþ
1

pþ
12

�
2

Γ̃ab1b2
2 ðP;p1;p2Þ: ðB11Þ

For the third order term, we proceed analogously. We have

0 ¼
Z

d3q1d3q2d3q3ϒ̃
ac1fc2c3g
3 ðP;q1; fq2;q3gÞB̃⋆

c1ðxþ;q1ÞB̃•
c2ðxþ;q2Þ

× B̃•
c3ðxþ;q3Þ þ

Z
d3p1d3p2d3p3Ω̃

ab1fb2b3g
3 ðP;p1; fp2;p3gÞB̃⋆

b1
ðxþ;p1Þ

× B̃•
b2
ðxþ;p2ÞB̃•

b3
ðxþ;p3Þ þ

Z
d3q1d3q2ϒ̃

ac1fc2g
2 ðP;q1; fq2gÞ

×

�Z
d3p1d3p2Ω̃

c1b1fb2g
2 ðq1;p1; fp2gÞB̃⋆

b1
ðxþ;p1ÞB̃•

b2
ðxþ;p2ÞB̃•

c2ðxþ;q2Þ

þ B̃⋆
c1ðxþ;q1Þ

Z
d3s1d3s2Ψ̃

c2fd1d2g
2 ðq2; fs1; s2gÞB̃•

d1
ðxþ; s1ÞB̃•

d2
ðxþ; s2Þ

�
: ðB12Þ

Integrating the third term with respect to q1 and the fourth term with respect to q2, we see each term will have only three
momentum variables. All the terms can be combined into one integral by renaming the momentum variables to t1; t2; t3,
and color indices to e1, e2, e3. With this, we have

0 ¼
Z

d3t1d3t2d3t3B̃⋆
e1ðxþ; t1ÞB̃•

e2ðxþ; t2ÞB̃•
e3ðxþ; t3Þ½ϒ̃ae1fe2e3g

3 ðP; t1; ft2; t3gÞ þ Ω̃ae1fe2e3g
3 ðP; t1; ft2; t3gÞ

þϒ̃ac1fe3g
2 ðP; t1 þ ft2g; ft3gÞΩ̃c1e1fe2g

2 ðq1; t1; ft2gÞþϒ̃ae1fc2g
2 ðP; t1; ft2 þ t3gÞΨ̃c2fe2e3g

2 ðq2; ft2; t3gÞ�: ðB13Þ

Substituting for Ω̃3, Ω̃2, and ϒ̃2, we get
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ϒ̃ae1fe2e3g
3 ðP; t1; ft2; t3gÞ ¼ −½Ω̃ae1fe2e3g

3 ðP; t1; ft2; t3gÞþϒ̃ac1fe3g
2 ðP; t1 þ ft2g; ft3gÞΩ̃c1e1fe2g

2 ðq1; t1; ft2gÞ
þϒ̃ae1fc2g

2 ðP; t1; ft2 þ t3gÞΨ̃c2fe2e3g
2 ðq2; ft2; t3gÞ�: ðB14Þ

In order to proceed, we introduce the following notation:

ΨB
n ð1 � � � nÞ ¼ ðn!ÞΨnð1 � � � nÞ ðB15Þ

and similar for Γ̃n. This will be necessary to decouple the symmetry factors n! hidden in the kernels from the dynamical part.
Using the notation (B15), expression (B14) can be written, after a bit of algebra, as

ϒ̃ae1fe2e3g
3 ðP; t1; ft2; t3gÞ ¼

�
tþ1
tþ123

�
2 1

2
½ð−ΨB

3 ð123Þ þ ΓB
2 ð½12�3ÞΓB

2 ð12Þ þ ΓB
2 ð1½23�ÞΓB

2 ð23ÞÞTrða123Þ

þð−ΨB
3 ð132Þ þ ΓB

2 ð½13�2ÞΓB
2 ð13Þ þ ΓB

2 ð1½32�ÞΓB
2 ð32ÞÞTrða132Þ

þð−ΨB
3 ð213Þ þ ΓB

2 ð½21�3ÞΓB
2 ð21Þ þ ΓB

2 ð2½13�ÞΓB
2 ð13ÞÞTrða213Þ

þð−ΨB
3 ð231Þ þ ΓB

2 ð½23�1ÞΓB
2 ð23Þ þ ΓB

2 ð2½31�ÞΓB
2 ð31ÞÞTrða231Þ

þð−ΨB
3 ð312Þ þ ΓB

2 ð½31�2ÞΓB
2 ð31Þ þ ΓB

2 ð3½12�ÞΓB
2 ð12ÞÞTrða312Þ

þð−ΨB
3 ð321Þ þ ΓB

2 ð½32�1ÞΓB
2 ð32Þ þ ΓB

2 ð3½21�ÞΓB
2 ð21ÞÞTrða321Þ�; ðB16Þ

where ½ij� ¼ ti þ tj. From [27], we note that each term on the right-hand side is a permutation of ΓB
3 .

The expression (B16) can thus be compactly written as

ϒ̃ae1fe2e3g
3 ðP; t1; ft2; t3gÞ ¼ 3

�
tþ1
tþ123

�
2

Γ̃ae1e2e3
3 ðP; t1; t2; t3Þ: ðB17Þ

This can be readily generalized for any n as

ϒ̃ab1fb2���bng
n ðP;p1; fp2; � � �pngÞ ¼ n

�
pþ
1

pþ
1���n

�
2

Γ̃ab1���bn
n ðP;p1 � � �pnÞ: ðB18Þ

APPENDIX C: PROOF OF THE EXPRESSION FOR B⋆ IN TERMS
OF THE WILSON LINE DERIVATIVE

In this appendix, we prove Eq. (32), which we repeat below for convenience,

B⋆
aðxÞ ¼

Z þ∞

−∞
dαTr

�
1

2πg
ta∂−1

−

Z
d4y½∂2

−A⋆
c ðyÞ�

δ

δA•
cðyÞ

P exp

�
ig
Z þ∞

−∞
dsÂ•ðxþ sεαÞ

��
: ðC1Þ

For convenience, let us rewrite (C1) as follows:

B⋆
aðxÞ ¼

Z þ∞

−∞
dαTr

�
1

2πg
ta∂−1

− GðxÞ
�
; ðC2Þ

where

GðxÞ ¼
Z

d4y½∂2
−A⋆

cðyÞ�
δ

δA•
cðyÞ

P exp

�
ig
Z þ∞

−∞
dsÂ•ðxþ sεαÞ

�
: ðC3Þ

The functional derivative of the path ordered integral will give a series containing in each term a Dirac delta
(δ4ðxþ siεα − yÞ) for the position space variables and a Kronecker delta (δcbi) for the color indices. Integrating with
respect to y, we get
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GðxÞ ¼ ig
Z þ∞

−∞
ds1∂2

−Â
⋆ðxþ s1εαÞ þ ðigÞ2

Z þ∞

−∞
ds1

Z
s1

−∞
ds2fÂ•ðxþ s1εαÞ

× ∂2
−Â

⋆ðxþ s2εαÞ þ ∂2
−Â

⋆ðxþ s1εαÞÂ•ðxþ s2εαÞg þ ðigÞ3
Z þ∞

−∞
ds1

×
Z

s1

−∞
ds2

Z
s2

−∞
ds3fÂ•ðxþ s1εαÞÂ•ðxþ s2εαÞ∂2

−Â
⋆ðxþ s3εαÞ

þ Â•ðxþ s1εαÞ∂2
−Â

⋆ðxþ s2εαÞÂ•ðxþ s3εαÞ
þ ∂2

−Â
⋆ðxþ s1εαÞÂ•ðxþ s2εαÞÂ•ðxþ s3εαÞg þ � � � : ðC4Þ

The above expression can be rewritten as

Gðxþ;xÞ ¼ ig
Z þ∞

−∞
ds1

Z þ∞

−∞
d3p1ð−ipþ

1 Þ2e−is1eα·p1 Ã⋆
b1
ðxþ;p1Þtb1e−ix·p1

þ ðigÞ2
Z þ∞

−∞
ds1

Z
s1

−∞
ds2

Z þ∞

−∞
d3p1d3p2e−is1eα·p1e−is2eα·p2e−ix·ðp1þp2Þ

× fÃ•
b1
ðxþ;p1Þtb1ð−ipþ

2 Þ2Ã⋆
b2
ðxþ;p2Þtb2 þ ð−ipþ

1 Þ2Ã⋆
b1
ðxþ;p1Þtb1

× Ã•
b2
ðxþ;p2Þtb2g þ ðigÞ3

Z þ∞

−∞
ds1

Z
s1

−∞
ds2

Z
s2

−∞
ds3

Z þ∞

−∞
d3p1d3p2d3p3

× e−is1eα·p1e−is2eα·p2e−is3eα·p3e−ix·ðp1þp2þp3Þ

× fÃ•
b1
ðxþ;p1Þtb1 Ã•

b2
ðxþ;p2Þtb2ð−ipþ

3 Þ2Ã⋆
b3
ðxþ;p3Þtb3

þ Ã•
b1
ðxþ;p1Þtb1ð−ipþ

2 Þ2Ã⋆
b2
ðxþ;p2Þtb2 Ã•

b3
ðxþ;p3Þtb3

þ ð−ipþ
1 Þ2Ã⋆

b1
ðxþ;p1Þtb1 Ã•

b2
ðxþ;p2Þtb2 Ã•

b3
ðxþ;p3Þtb3g þ � � � ; ðC5Þ

where eα ≡ ð−α; 0;−1Þ are the ðx−; x•; x⋆Þ coordinates of εα. For the ordered integrals, we have

Z þ∞

−∞
ds1 � � �

Z
sn−1

−∞
dsne−is1eα·p1 � � � e−isneα·pn ¼ 2πδðeα · p1���nÞ

in−1

ðeα · p2���n þ iϵÞðeα · p3���n þ iϵÞ � � � ðeα · pn þ iϵÞ ; ðC6Þ

where pi���m ≡ pi þ piþ1 þ � � � þ pm−1 þ pm. Substituting (C5) in (C2) and integrating with respect to α, B̃⋆
aðxþ;PÞ in

momentum space reads

B̃⋆
aðxþ;PÞ ¼ Ã⋆

aðxþ;PÞ þ ð−gÞ
Z þ∞

−∞
d3p1d3p2

δ3ðP − p12Þ
ṽ�
1ð12Þ

�
Ã•
b1
ðxþ;p1Þ

�
pþ
2

pþ
12

�
2

Ã⋆
b2
ðxþ;p2Þ þ

�
pþ
1

pþ
12

�
2

Ã⋆
b1
ðxþ;p1ÞÃ•

b2
ðxþ;p2Þ

�
Trðtatb1tb2Þ

þ ð−gÞ2
Z þ∞

−∞
d3p1d3p2d3p3

δ3ðP − p123Þ
ṽ�
1ð123Þṽ

�
ð12Þð123Þ

�
Ã•
b1
ðxþ;p1ÞÃ•

b2
ðxþ;p2Þ

�
pþ
3

pþ
123

�
2

Ã⋆
b3
ðxþ;p3Þ þ Ã•

b1
ðxþ;p1Þ

�
pþ
2

pþ
123

�
2

Ã⋆
b2
ðxþ;p2ÞÃ•

b3
ðxþ;p3Þ

þ
�
pþ
1

pþ
123

�
2

Ã⋆
b1
ðxþ;p1ÞÃ•

b2
ðxþ;p2ÞÃ•

b3
ðxþ;p3Þ

�
Trðtatb1tb2tb3Þ þ � � � : ðC7Þ

An important point to note, which will be useful later, is that the kernels in (C7) (outside the curly braces) are exactly same
as the Wilson line (23) coefficient functions in momentum space (21) denoted by Γ̃nðP;p1;…;pnÞ. Each term in (C7)
(except for the first term which is unity) can be compactly written in terms of Γ̃nðP;p1;…;pnÞ. The second term of (C7),
following the notations (B7), (B8), reads
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½B̃⋆
aðxþ;PÞ�2nd ¼ 2

Z þ∞

−∞
d3p1d3p2Γ2ð12ÞTrða12Þ

×

�
Ã•
b1
ðxþ;p1Þ

�
pþ
2

pþ
12

�
2

Ã⋆
b2
ðxþ;p2Þ þ Ã⋆

b1
ðxþ;p1Þ

�
pþ
1

pþ
12

�
2

Ã•
b2
ðxþ;p2Þ

�
: ðC8Þ

Above, renaming ðp1; b1Þ ↔ ðp2; b2Þ in the first term, we get

½B̃⋆
aðxþ;PÞ�2nd ¼ 2

Z þ∞

−∞
d3p1d3p2Ã

⋆
b1
ðxþ;p1ÞÃ•

b2
ðxþ;p2Þ

�
pþ
1

pþ
12

�
2

½Γ2ð12ÞTrða12Þ þ Γ2ð21ÞTrða21Þ�: ðC9Þ

Compactly, we have

½B̃⋆
aðxþ;PÞ�2nd ¼

Z þ∞

−∞
d3p1d3p2Ã

⋆
b1
ðxþ;p1ÞÃ•

b2
ðxþ;p2Þ

�
2

�
pþ
1

pþ
12

�
2

Γ̃ab1b2
2 ðP;p1;p2Þ

�
: ðC10Þ

We see that the expression in the square bracket is exactly ϒ̃2 of (31).
The third term of (C7) is

½B̃⋆
aðxþ;PÞ�3rd ¼ ð3!Þ

Z þ∞

−∞
d3p1d3p2d3p3Γ3ð123ÞTrða123Þ

�
Ã•
b1
ðxþ;p1Þ

× Ã•
b2
ðxþ;p2Þ

�
pþ
3

pþ
123

�
2

Ã⋆
b3
ðxþ;p3Þ þ Ã•

b1
ðxþ;p1Þ

�
pþ
2

pþ
123

�
2

Ã⋆
b2
ðxþ;p2Þ

× Ã•
b3
ðxþ;p3Þ þ

�
pþ
1

pþ
123

�
2

Ã⋆
b1
ðxþ;p1ÞÃ•

b2
ðxþ;p2ÞÃ•

b3
ðxþ;p3Þ

�
: ðC11Þ

Above, renaming the variables such that we have Ã⋆
b1
ðxþ;p1Þ in all the terms, we get

½B̃⋆
aðxþ;PÞ�3rd ¼ ð3!Þ

Z þ∞

−∞
d3p1d3p2d3p3Ã

⋆
b1
ðxþ;p1ÞÃ•

b2
ðxþ;p2Þ

× Ã•
b3
ðxþ;p3Þ

�
pþ
1

pþ
123

�
2

½Γ3ð123ÞTrða123Þ þ Γ3ð213ÞTrða213ÞþΓ3ð321ÞTrða321Þ�: ðC12Þ

Exploring the symmetry with respect to the pairs ðb2;p2Þ and ðb3;p3Þ, keeping ðb1;p1Þ fixed, we rewrite the above
expression as

½B̃⋆
aðxþ;PÞ�3rd ¼ ð3!Þ

Z þ∞

−∞
d3p1d3p2d3p3Ã

⋆
b1
ðxþ;p1ÞÃ•

b2
ðxþ;p2Þ

× Ã•
b3
ðxþ;p3Þ

�
pþ
1

pþ
123

�
2
�
1

2
Γ3ð123ÞTrða123Þ þ

1

2
Γ3ð132ÞTrða132Þ

þ 1

2
Γ3ð213ÞTrða213Þ þ

1

2
Γ3ð312ÞTrða312Þ þ

1

2
Γ3ð321ÞTrða321Þ þ

1

2
Γ3ð231ÞTrða231Þ

�
: ðC13Þ

Compactly,

½B̃⋆
aðxþ;PÞ�3rd ¼

Z þ∞

−∞
d3p1d3p2d3p3Ã

⋆
b1
ðxþ;p1ÞÃ•

b2
ðxþ;p2ÞÃ•

b3
ðxþ;p3Þ

�
3

�
pþ
1

pþ
123

�
2

Γ̃ab1b2b3
3 ðP;p1;p2;p3Þ

�
: ðC14Þ

Comparing with (31), we see that the expression in the square bracket is ϒ̃3.
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The nth term of (C7) is

½B̃⋆
aðxþ;PÞ�nth ¼ n!

Z þ∞

−∞
d3p1 � � � d3pnΓnð12 � � � nÞTrða12 � � � nÞ

×

�
Ã•
b1
ðxþ;p1Þ � � � Ã•

bn−1
ðxþ;pn−1Þ

�
pþ
n

pþ
1���n

�
2

Ã⋆
bn
ðxþ;pnÞ

þ Ã•
b1
ðxþ;p1Þ � � �

�
pþ
n−1

pþ
1���n

�
2

Ã⋆
bn−1

ðxþ;pn−1ÞÃ•
bn
ðxþ;pnÞ

þ � � � þ
�

pþ
1

pþ
1���n

�
2

Ã⋆
b1
ðxþ;p1ÞÃ•

b2
ðxþ;p2Þ � � � Ã•

bn
ðxþ;pnÞ

�
: ðC15Þ

We introduce the following notation for convenience:

�
pþ
i

pþ
1���n

�
2

¼ Λi; ðC16Þ

Ã⋆
bi
ðxþ;piÞ ¼ Ã⋆

i Ã•
bj
ðxþ;pjÞ ¼ Ã•

j: ðC17Þ

Renaming each of the n terms in (C15) such that we have Ã⋆
b1
ðxþ;p1Þ and Λ1 in all of them, we get

½B̃⋆
aðxþ;PÞ�nth ¼ n!

Z þ∞

−∞
d3p1 � � � d3pnÃ

⋆
1 Ã

•
2 � � � Ã•

nΛ1

× ½Γnð12 � � �nÞTrða12 � � � nÞ þ Γnð213 � � � nÞTrða213 � � � nÞ þ � � �
þ Γnððn − 1Þ2 � � � ðn − 2Þ1nÞTrðaðn − 1Þ2 � � � ðn − 2Þ1nÞ
þ Γnðn2 � � � ðn − 1Þ1ÞTrðan2 � � � ðn − 1Þ1Þ�: ðC18Þ

The above expression has n terms in the integral. Each term has symmetry with respect to the pairs ðbn;pnÞ � � � ðb2;p2Þ.
Thus, keeping ðb1;p1Þ fixed, each term can be written as a sum of ðn − 1Þ! terms (all permutation of 2 � � �n). With this, we
get

½B̃⋆
aðxþ;PÞ�nth ¼ ðn!Þ

Z þ∞

−∞
d3p1 � � �d3pnÃ

⋆
1 Ã

•
2 � � � Ã•

nΛ1

1

ðn − 1Þ!
×

X
permutations

Trða1 � � � nÞΓnð1 � � � nÞ: ðC19Þ

Compactly, we have

½B̃⋆
aðxþ;PÞ�nth ¼

Z þ∞

−∞
d3p1 � � �d3pnÃ

⋆
b1
ðxþ;p1ÞÃ•

b2
ðxþ;p2Þ � � �

× Ã•
bn
ðxþ;pnÞ

�
n

�
pþ
1

pþ
1���n

�
2

Γ̃ab1���bn
n ðP;p1 � � �pnÞ

�
: ðC20Þ

The expression in square bracket is exactly (31). Thus, we have proven that the position space functional (C1) corresponds
to (30) with (31), upon transforming to momentum space.
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