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Heavy baryon wave functions, Bakamjian-Thomas approach
to form factors, and observables in A, — A,(3*)£7 transitions
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Motivated by the calculation of observables in the decays A, — A. (%i)fﬂ, we present a calculation of
form factors in the quark model. Our scheme combines a spectroscopic model with the internal wave
functions and the Bakamjian-Thomas (BT) relativistic formalism to get the wave functions in motion. In the
heavy quark limit, the current matrix elements provide the Isgur-Wise (IW) function. This limit is covariant,
satisfies a large set of sum rules, and has been successfully applied to mesons. On the other hand, for
baryons, we meet difficulties using standard spectroscopic models. This leads us to propose a
phenomenological model, a Q-pointlike-diquark model, nonrelativistic, with harmonic oscillator forces,
giving both a reasonable low-lying spectrum and the expected slope of the IW function. To begin, we
extract this slope from lattice QCD data and find it to be around p3 ~ 2, that we use as a guideline. We are
not able to reproduce the right p}\ using certain typical standard linear + Coulomb potential models, both
with three quarks Qgq or in a Q-pointlike-diquark picture. These difficulties seem to derive from the high
sensitivity of p3 to the structure of the light quark subsystem in a relativistic scheme. Finally, we present
our model, and fixing its parameters to yield the correct spectrum and p3 ~ 2, we apply it to the calculation
of observables. By studying Bjorken sum rule, we show that the inelastic IW function is large, and
therefore, the transitions A, — A, (%’ %’)fﬂ could be studied at LHCb. Interestingly, some observables in

the 7 case present zeroes for specific values of g that could be tests of the Standard Model.

DOI: 10.1103/PhysRevD.102.094023

I. INTRODUCTION

Possible physics beyond the Standard Model (SM),
suggesting lepton flavor universality violation (LFUV),
has been pointed out by data of different experiments on
B —» D®¢y [1-3], summarized in [4]. That has attracted
much attention in the Standard Model (SM) and also in
models for new physics (NP) [5-12], in particular, following
lattice calculations of the form factors in the SM [13,14].

With the intention of providing predictions for observ-
ablesin A, — AE*)KD, we consider the quark model, which
can describe the ground state and also the excitations, not
calculated still in lattice QCD. Moreover, we use the BT
relativistic framework, that yields a Lorentz invariant Isgur-
Wise (IW) function in terms of internal hadron wave
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functions, deduced from a quark model spectroscopic
Hamiltonian describing the states at rest.

We have used this guideline in the meson case
B — D™ ¢p, for the ground state [15] and orbitally excited
D mesons [16]. In the meson case, we did use the
spectroscopic Hamiltonian of Godfrey and Isgur (GI), that
describes a wealth of meson data [17]. In this way, it was
obtained a reasonable and theoretically founded description
of IW functions, both elastic and inelastic [18].

The BT scheme is an approach to hadron motion, which
can be combined with any internal wave function. In quark
model calculations [19,20], the spectroscopic model pro-
viding these wave functions could be either nonrelativistic,
as in [19], or relativistic, as in Pervin et al. [20]. But
whatever the type of spectroscopic equation, both schemes
apply the nonrelativistic treatment for the hadron motion. In
[19], although a careful calculation of the spectrum and
wave functions is done, a very small IW slope is found
p% ~0.6-1, instead of p% ~2 for the A, as indicated by
our fit below to lattice QCD [13] and LHCb data [21].

As has been shown in the meson case [15,18,22], the BT
calculation gives a large enhancement for the IW slope with
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respect to the nonrelativistic calculation with the same
internal wave functions. This is due to the Lorentz trans-
formation of the spatial arguments of the wave function in
motion. This effect gives, with respect to the nonrelativistic
slope (pfg = 2m?R? for a Gaussian), an additional con-
tribution that is independent of the wave function shape and
parameters and very large since it is roughly §p* =~ 0.75 for
a model with a scalar light quark, and 6p? ~ 1 for a meson
[22], in agreement with a Bethe-Salpeter approach [23].
We can write an explicit formula for the slope in
the BT scheme for a Q —¢g Gaussian wave function
exp (—R*p?/2) for a Q — g bound state. The product of
the initial and final wave functions with Lorentz trans-
formation along Oz gives exp [-R*(w(p®)? + 2 (p7)> +
»~1 m?)]. Integrating over p, and expanding around w = 1,
one finds the slope, giving the result p?> = 2m?*R? + 1. The
+1 is the enhancement with respect to the nonrelativistic
result, which is the first term. The Jacobian expanded in
terms of the internal velocity gives —0.25, whence the final
enhancement 0.75 + O(v?/c?) for a j¥ = 0* light cloud.
On the other hand, for a meson, there is the contribution +i
from the heavy quark current, and the slope is around 1.
For baryons, the structure of the three-quark wave
function and the BT expression for the IW function makes
this enhancement effect difficult to evaluate, as it is strongly
dependent on this structure. The general expectation is that
the enhancement of p* should be larger than for mesons. In
the simple case of wave functions factorized in |7,|, |F3],
one would have an enhancement for two light quarks twice
the one for one light quark, 5p* ~ 2 x 0.75 = 1.5, pointing
naturally towards p% ~2 or more. But it could be much
larger for a wave function of the type of [20]. One observes
a very strong dependence of p% on the structure of the wave

function. For instance, for a Gaussian in the relative 71 p
coordinates, it depends strongly on the ratio R,/R, and
may acquire much too large values.

Another important feature of the BT approach is that it
implements automatically the heavy quark effective theory
(HQET) sum rules like Bjorken’s or the curvature sum rules,
which help to constrain the contributions of higher states.

Trying to apply this scheme to heavy baryons, we have
found problems.

There are several quark model approaches that could
provide the required internal wave functions. Among the
standard linear 4+ Coulomb potentials, there is work paral-
lel to GI for mesons, the relativistic Hamiltonian of
Capstick and Isgur for the Qggq system [24], which is a
rather complicated model that reproduces a large spectrum
of states, but for which it is not easy to obtain the wave
functions. Second, the work of Albertus et al. [19], using a
nonrelativistic kinetic energy, writes explicitly the wave
functions, but these are not easy to use. Third, there is the
quark model study of Pervin er al. for A, baryons [20],
which is more manageable, to which we refer now.

In the present paper, we have computed the IW function
A, — A, in terms of a generic internal Qgq wave function.
Then, we have used an internal wave function given by [20]
to compute numerically the IW function and the slope. As
pointed out below, using the parameters of Pervin et al.
[20], we have found a slope p3 ~ 4. This is much larger
than the estimate by LHCb, pf\ ~ 1.8 [21], and the value
that follows from lattice QCD calculations by Detmold
et al. [13], that gives pf\ ~ 2, as we show below. We identify
the origin of this large value of the slope, and we comment
on the related work by Cardarelli and Simula in the light
front formulation of the BT approach [25].

Then, we turn to the simpler scheme of a quark-diquark
model, a bound state of a heavy quark and a color triplet
pointlike diquark. This model has been widely used to
compute heavy baryon spectra and heavy baryon form
factors [26]. Concerning the spectrum, there is the inter-
esting paper by Bing Chen et al. [27], a nonrelativistic
model with QCD-inspired potential, that also presents
problems for the IW slope.

On the other hand, within the quark-diquark scheme, but
renouncing to QCD-inspired potentials, a simple non-
relativistic harmonic oscillator model can be adjusted to
give reasonable level spacings, and one can get also the IW
slope in the BT scheme p3 ~ 2. In this paper, we will adopt,
for the moment, this simple model for the internal wave

functions in view of the computation of A, — AE*)ff/
observables. Recently, the Mainz group has issued a paper
[28] on some observables that could be useful to test LFUV
in A, > A.(3*,37)¢0 transitions. However, as our
approach is different, we still present our results and
compare with their work and other related literature.

In Sec. II, we present a fit to the lattice QCD data, that
yields a slope of the IW function p ~2 and quotes the
value given by LHCb. In Sec. III, we expose the numerical
problem that we find on computing the IW slope for Qggq
baryons with the wave functions of Ref. [20], and we trace
back the origin of this difficulty using a Gaussian wave
function, in the spirit of Cardarelli and Simula [25]. We turn
to the quark-diquark model in Sec. IV, we compute the IW
functions for the elastic and inelastic cases in the BT
scheme from the wave functions of the Bing Chen et al
Hamiltonian [27], and we find a too small slope compared
to the lattice result. In Sec. V, in front of these difficulties, to
compute the observables, we renounce to models with
QCD-inspired potentials and use quark-diquark wave
functions deduced from a nonrelativistic harmonic oscil-
lator model, adjusted to give the desired p3 ~2. In
Appendix A, we define the baryon form factors in different
conventions, in Appendix B, we give some details of the
involved calculation of the Qggq elastic IW function in the
BT scheme, in Appendix C, we compute the elastic and
inelastic quark-diquark IW functions in the BT scheme, in
Appendix D, we make explicit the quark-diquark wave
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functions within the Bing Chen et al. scheme, and finally, in
Appendix E, we give the expressions for the helicity
amplitudes and the observables as formulated by the
Mainz group, that we have used for our applications in
Sec. V.

II. LHCb MEASUREMENT OF THE
dr'/dq* SHAPE, LATTICE FORM FACTORS,
AND SLOPE OF THE IW FUNCTION

A. LHCb measurement of the dI'/dq® shape

The differential rate of the decay A, = A, +¢~ 4+ 0y
writes, for m, = 0 and the heavy quark limit form factors,

dar G2
F |Vch|2m%\bmf\c Vw?—1

aw 127
X [Bw(l =2rw + r2) +2r(w? = D]|ExW))?, (1)

where r = my_/m,,.

Formula (1) is an approximation to the more general
formula (10) given for the decay rate in Appendix 1 of the
LHCb paper [21] in terms of the different form factors
fo(@®). f+(a%). F1(a%). 90(4%). 9:(a°). 9.1(a°).

The LHCb fit relies on the approximation that all these
form factors are approximated by the first order term in the
O(1/mg) expansion, fo(q?). ...g; (¢*) = Ex(w). However,
the O(1/m) corrections to these form factors contain also
terms of the type A&y(w)/mg, as we can see by the
inspection of our Appendix A.

Therefore, here £,(w) is an approximation to the IW
function, with unspecified 1/m,, errors. In the next sub-
section, we try to extract the IW function from the form
factors calculated in lattice QCD by taking into account
these 1/m, corrections.

With the “dipole” ansatz,

an = (25)™ @)

w—+1
LHCDb finds the value of this piip parameter [21],
anp =-£, (1) =1.82£0.03, (3)
and the curvature,
o-ﬁip =& (1) =42240.12. (4)

Of course, the very small errors in Egs. (3) and (4) are not to
be taken as the actual errors on the real IW slope and
curvature.

The main reason for adopting the shape (2) is that it
satisfies a number of theorems in the heavy quark limit of
HQET that constrain the successive zero recoil derivatives
of the baryon IW function [29,30]. In particular, there is the
bound on the curvature,

A + (PR)?]- (5)

| W

2
op 2

It has been established [30] that the “dipole” form (2),
that depends on a single parameter, satisfies these con-
straints provided that p3 > 1.

B. Fits to lattice data on form factors

Early studies of the A;, — A £v lattice form factors in the
quenched approximation were provided in Refs. [31,32]. In
the former study, a value was given for the slope of the IW
function, p ~ 2.4 with a 15% error, showing no dependence
on the heavy quark masses and a value was also obtained for
the HQET parameter A ~ 0.75 with a 20% error.

A great wealth of new precise data in lattice QCD has
been obtained recently by W. Detmold et al. [13], which
have given results for all the form factors entering in the
process A, — A.£D, within the Standard Model.

Our aim is now to try to extract information on the slope
of the IW function &, (w) and other parameters, A and the
heavy quark masses my (Q = b, c), from these lattice
calculations, that are summarized in Fig. 12 of Ref. [13].

We adopt a simple HQET model, keeping the form
factors up to first order in 1/mg included, as given in the
formulas of Appendix A.

Inspection of the formulas of Appendix A shows that, at
this first order, besides the dependence of the form factors
on the ITW function &, (w), on the heavy quark masses
my(Q = b,c) and on the HQET parameter A, there is
another subleading function A(w) that, due to Luke’s
theorem [33], must vanish at w = 1. For this function, since
the domain in w is not large, we adopt the parametrization,

Alw) = A'(1)(w = 1). (6)

Moreover, we will adopt the explicit “dipole” form (2) for
the leading IW function.

1. The IW function slope from lattice form factors

In the approximation that we adopt, HQET up to the first
order in 1/m, included, there are two quantities that isolate
the IW function, where all dependence on A and the
parameter A’(1) defined by (6) cancels. These quantities are
differences of ratios that, up to O(1/ sz) corrections, are
identical to the TW function &, (w),

wH1f (w)—g.(w)
R =
1(v) 20 fi(1)=g.(1)
fiw) = fi(w)
fr() = f (1)
Inspection of the formulas of Appendix A shows indeed

that these ratios do not depend on A and on the parameter
A’(1), that cancel in these quantities,

(7)

Ry(w) = (8)
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Ry(w) = Ex(w) + O(1/m}). ©)

To have information on the IW function, we will use the
z-expansion parametrization in [13], that we will fit with
our HQET model of form factors, that includes up to
O(1/mg) corrections, made explicit in Appendix A. The
lattice data are parametrized by the z expansion [34] for
each form factor,

1 ,
- 7 lag +ajz! (%) + -],
(m{J;)]e)z

gy - YAy

_\/tﬁ—qz—ﬂ/fi—to’

where ty = (mAb - m,\c)z,

(10)

f . .
e and ti are given in

Table VII, a, a] up to O(z) in Table VIIL, and a)), a/, a}
up to O(z?) in Table X of [13].

We do not pretend to make a fit on the two ratios (7), (8)
with their errors. We just take the z-expansion central
values at face value, to see if for the two ratios we find
reasonable consistent values for the IW function slope p3,
using both expansions up to O(z) and up to O(z?). For the
IW function, we adopt the “dipole” parametrization (2),
that satisfies the rigorous results that constrain the
successive zero recoil derivatives of the baryon IW function
[29,30].

To perform the fits, we select a number of points
(“synthetic data points”), ¢>=0.,2.,4.,6.,8.,10.,11.,¢2,
of the z expansions of the lattice fits for the form factors, up to
first order and up to second order in z, and we use the
Mathematica package FindFit to fit our HQET model of
form factors of Appendix A, that includes O(1/mg) cor-
rections. For the IW function &, (w), we consider the domain

r—

10 k A
038 k A
06 k A
0.4 k a

02l ]

()0 '1 L L L L 1 L L L L 1 L
1.00 1.05 1.10

" 1 " " " "
1.15 1.20

FIG. 1.

1 <w < 1.2, where there are data points measured on the
lattice. For the individual form factors, we will consider
below the z expansions and the fits for the whole phase space.

The results for the IW function are given in Figs. 1 and 2.
From the ratio R;(w), we get from the fit in the region
1 <w < 1.2, p& ~2.20 for the first order expansion in z, to
be compared with the true slope of the IW function (7)
=&\ (1) = 2.11, and p3 =~ 2.03 for the second order in z, to
be compared with the true slope —&) (1) = 1.99. On the
other hand, from the ratio R,(w), we get results that are
close in both cases, pf\ ~ 2.25, compared to the true slope
=&, (1) =2.16 at first order in z, and =&} (1) = 2.21 at
second order.

We can safely conclude that the slope is consistent with
the following ranges obtained from the fit. For the first
order z expansion, we get the domain,

plz\ ~2.20-2.24, (11)
while for the z2 order, we obtain the range,
pf\ ~2.03-2.25. (12)

Although our fits are somewhat naive, from (11), (12),
we can safely conclude that the data on A, — A, form
factors [13] can be described in HQET up to O(1/my)
included, with the slope of the “dipole” form for the TW
function (2),

p% ~2.15 +0.10. (13)

2. Fits to the different form factors

We do not want to make an overall fit on the whole set of
form factors with their errors (errors that we do not master)
but just to study individually each form factor of Fig. 12 of
[13] by making a fit to the central values of these domains,
given by the z expansion up to order z.

R
1.0} A
0.8} A
0.6} A
0.4} A

02f ]

00 L. . v ]
1.15 1.20

" " " " 1 "
1.00 1.05 1.10

Fits to the ratio R (w) =~ &(w) (7), (9) with the Isgur-Wise function (2) (continuous curve) using the parametrization of the

lattice data up to first order in the z expansion (dashed curve, left) that yields the slope p% = 2.20, and up to second order (dashed curve,

right), that gives p3 ~ 2.03.
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FIG. 2. Fits to the ratio Ry(w) = &, (w) (8), (9) with the Isgur-Wise function (2) (continuous curve) using the parametrization of the
lattice data up to the first order in the z expansion (dashed curve, left) that yields the slope pf\ ~ 2.24, and up to the second order (dashed

curve, right) that gives p% ~2.25.

We take these central values at face value, to see if for
each form factor we find reasonable results for the set of
parameters,

A'(1), (14)

and how these parameters compare between the different
form factors, i.e., how dispersed they are.

Since we have an independent estimate of the slope of
the IW function (11), (12), we now fix

p3 =215, (15)
and we use FindFit to perform constrained fits for m,. and

my, and A, assuming the following domains, from different
analyses within HQET [35,36], in GeV units:

115<m, <135, 4.10<m, <440, 0.60<A<0.90,
(16)
and the slope of the 1/m, form factor A’(1) as a free

parameter.

We take now the data for each form factor, the central
values of Fig. 12 of [13], that are fitted by the first order z
expansion. Choosing a number of values of these
z-expansion curves and the HQET model up to O(1/m,)
of Appendix A, the resulting fit obtained with FindFit gives
the plots of Fig. 3 and the parameters of Table 1.

We summarize the values for the parameters obtained
from the fits for the different form factors in Table 1.

Let us comment on Fig. 3 and Table 1. First, the
values obtained for the parameters m,, m, and A are of
course within the imposed limits (16). The fits are quite
good for all form factors, except for g, (A, — A.) and
g1 (A, = A,) at large g* or near zero recoil w = 1. In the
lattice data, one sees that g, (¢2x)> 94 (@ax) < 1, while the
calculation of the model gives g, (g2u) = 94+ (G2ax) = 1.

The discrepancy is due to the same 1/ mé correction at
w = 1, since one has

9+ (Gmax) = 91 (@imax)- (17)

Indeed, it is well-known that at zero recoil w = 1 there is a
negative 1/m7 correction for g, (¢ ), and this explains
the discrepancy between the lattice data and the model. The
1/ m2Q correction satisfies a sum rule that gives this sign,
see, for example, the discussion of the meson form factor
Fp+ at zero recoil in the review paper [37].

As a numerical example, from the range (13), we adopt
for p3 ~2.15, in Table 1, the following ranges for the quark
masses and subleading parameters:

m.~125+0.10GeV, m,~4.25+0.15GeV
A~075+0.15GeV, A'(1)~—0.35+0.15GeV. (18)

It is worth to emphasize that the parameter A’(1) turns
out to be negative and sizeable. This is a new result from the
present analysis of form factors. Interestingly, the sign and
magnitude is in qualitative agreement with the expression

obtained in the nonrelativistic quark model, A’(1) = — 4 p2

[formula (126) of Ref. [36] ]. ’

3. Correlation between p3 and the
slope parameter A’'(1)

There is a correlation between p% and the slope param-
eter A’(1). Indeed, taking the heavy quark limit in the
expression of the form factors, except for A’(1), one finds,
for all six form factors, for small w — 1,

F(w)~1+ [(Lju ! )A'(l)—pi] (w—l)—i—O(A),

th 2mc mQ

(19)
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FIG. 3.

that yields an effective slope,

o[ (s rr-n] o)

Of course, one must take into account that the terms

O(MAQ) contribute to the coefficient of p3, so that the relation

(20)

Center values of lattice form factors in first order of the z expansion [13] (dashed lines) compared to the fit using the HQET
model up to O(1/mg) (continuous curves) obtained from FindFit.

is somewhat different according to the form factors
(Appendix A). For instance,

fr()= <2Lmb+ﬁ>A’(l)— [1 +;\<217b+2%€)]p%
e

and different expressions depending on ﬁ pf\ for the

derivatives of the other form factors, as, for example,
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TABLE 1. Fits with the constraints (16) and arbitrary value for
A'(1).

Form factor ~ m, (GeV) m, (GeV) A (GeV) A'(1) (GeV)
fo(A, = AL) 1.33 4.34 0.66 -0.21
fi(A, = AL 1.15 4.13 0.90 —0.35
(A, = AL 1.15 4.40 0.90 —-0.25
go(Ap = AL) 1.35 4.10 0.60 —-0.41

g1 (A = AL) 1.35 4.38 0.60 —-0.49

g (A = AL) 1.35 4.10 0.60 -0.50

1 1
(1)~ | =— A'(l
(1) (2mb+2mc) (1)
1 1 2
1+A _ . 22
|:+ <2mb 2m mb+m6)]p/\ ( )

These O(1/my) differences between the slopes of the
different form factors allow us to determine separately p,z\
and A’(1), but the tendency of the correlation remains the
same. This correlation indicates that with some increase of
p3, itis possible from the above discussion, A’(1), which is
found negative for p3 ~2.15, that it should decrease in
magnitude, or even change its sign.

The values of Table 1 correspond to the choice
p,z\ = 2.15, the central value of the domain (13). Had we
adopted a higher value for the slope, then A’(1) would be
negative but with a smaller absolute magnitude, and for
p3 ~2.5-2.6, there is a change of sign for A’(1), although
this depends on the particular form factor.

III. ELASTIC IW FUNCTION FOR THE Qqq
SYSTEM IN THE BAKAMJIAN-THOMAS
QUARK MODEL

For the ground state, we have the total wave function,

wt = \/— Z 4”23140231)( 231° (23)

P(231)

The flavor wave function writes 90/2\31 —T(dzl/lg ud3)Q;,
the spin wave function ;(231 is antisymmetric in the 2,3 quarks
and the full antisymmetry of the baryon wave function
follows from the antisymmetry of the color singlet wave
function.

For the simple case of the nonrelativistic harmonic
oscillator, the ground state internal wave function (see,
for example, Appendix A of Ref. [38]) writes

( PR, + pﬁRﬁ)
P 5 :

(24)

p({p;}) = (27)

1/2
(R
77'.3

where the relative momentum variables p,, and p; for m, =

m3 = m are defined by
b \ﬁml(pz+p3)—2mpl
4 2 my +2m )

p, = \%(Pz - Ps3),
(25)

The wave function (24) is normalized according to
dpl - 2
H 5> pi)le(p}P =1, (26)
i=1

or equivalently,

3\/_/ dpp dpﬂ Iw({pp,pg}lz—l (27)

Some words of caution concerning the wave function
(24). First, this expression is valid in the limiting case of
equal masses for the two light quarks [38], but, in general,
crossed terms of the form p,.p, could appear. Here,
we restrict ourselves to the simplest case of the non-
relativistic harmonic oscillator with two light quarks of
equal mass.

Assuming that the harmonic oscillator spring constant is
flavor independent, the reduced radii R, and R, are
given, in terms of the equal mass baryon radius R, by
the expressions,

m; +2m

R, 28
3 (28)

RC=R', Ri=

In the center-of-mass, p; + p, + p3 = 0, relations (25)
give

1

p, = \E(Pz - P3), P, = \/%(Pz +p3). (29)

In the heavy quark limit m < m, the reduced radii (28)
become

R4
R} = R*, R} = 5 (30)

Finally, we can obtain the explicit form of the baryon IW
function with harmonic oscillator wave functions by
replacing the expression (24) for the initial and final states
in the general formula (B31) of Appendix B.
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We find

¢3V3RIR, [ dp, 1 dp; 1

() = () [V a2 ) )

7 3

< exp {— (M (2.2 + (p3.)? = 202] + 25 = Root(p 1) (o) = <p2.p3>}) }

4

4

< exp {— (M (2.0 + (p3.0)* = 2m2) + 25 Ro 51, ) (o) - <p2.p3>1) }

4

" [m*(1+v.0') + m(v +0').(py + p3) + (p2.0) (p3.0') + (p3.0)(p2.V') + (p2.p3) (1 = v.0)]

4

. (31)

21/ (py.v + m)(p3.v + m)(py.v’ + m)(ps3.v' + m)

where the factor \/(p,.v)(p3.v)(p,.v")(p3.v") in the first
line is due to the Jacobian of the change of variables in the
BT scheme, and the complicated factor in the last line
comes from the Wigner rotations [15], computed in the
baryon case in Appendix B.

A. An attempt to a concrete calculation
of the IW function

In Pervin et al. [20], the spectrum of heavy baryonic states
has been studied with a linear + Coulomb Hamiltonian, with
diagonalization in harmonic oscillator (HO) or pseudocou-
lombic (PC) bases and with kinetic energy either nonrela-
tivistic or relativistic. In practice, the ground state wave
function seems to be well represented by one Gaussian or one
PC wave function. Choosing the Hamiltonian with relativistic
energy and the HO basis, we read from their tables in the
entry corresponding to the semi relativistic treatment in the
basis of harmonic oscillator wave functions, the light quark
mass and the ground state internal wave function necessary
for the BT calculation, the latter being well approximated by
one Gaussian, Eq. (24). They are given as follows:

m=038GeV, R2=R:=216GeV2 (32)

We have computed the slope of the IW function (31) and
have found

P2 =4.0l. (33)

This value is much larger than the ranges (11), (12)
determined in Sec. II

Notice that the last factor in (31), due to the Wigner
rotations, gives a very small numerical contribution to
the slope.

It must be emphasized that this value is different and
larger from the one given by the authors,

pA =133, (34)

the reason being that they use a nonrelativistic treatment
to calculate the form factors, where, in principle,

p% = 3m?R3. This shows the tendency of the relativistic
BT treatment to enhance the slope, which is what one
would like. But, of course, the enhancement is too large,
and it is worse with the PC basis.

On trying to understand this disappointing result, one
notices that, as found by the authors of [20], there could be
artifacts due to the smallness of the HO or PC expansion
bases. On the other hand, in BT, there is for baryons, in
contrast with mesons, a particular sensitivity of the value of
p3 to the detailed structure of the wave function, as we
argue below. This emphasizes the need for larger bases.

B. General discussion

In the meantime, in view of this conclusion concerning
the above Gaussian wave function, we proceed as follows.
We pursue the investigation with the Gaussian shape (24)
now considered as a model, with the objective of inves-
tigating the dependence of p3 on the shape of the generic
internal wave functions in the BT scheme, and in particular,
to understand the high value obtained above, p% ~ 4. In fact,
a somewhat similar discussion has been done numerically
by Cardarelli and Simula [25] in the null plane formalism,
which is known to be equivalent to the BT formalism in the
heavy quark limit. However, one must avoid to give a
physical interpretation to the Gaussian wave function, as we
will see below. Here, we will rather develop a mathematical
analysis to understand the variations of the slope p3.

The formula (31) and its expansion at a small velocity to
extract p3, keeping for simplicity the terms coming from
the Gaussians, and disregarding the contributions from the
Jacobian and from the Wigner rotations gives
3R} + R,

) -

p} = 3m’R} + (P2 + P5°)

3
3R2—R%2 /1 _ .
# <§P2-P3 + pIps - m2>, (35)

with 2, 3 labeling the two light quarks, and (...) denoting
averages on the wave functions. The first term is the
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nonrelativistic contribution, the two others are relativistic
corrections. The third term corresponds to crossed terms
that, of course, are absent in mesons.

This formula shows that p3 depends on two parameters,
instead of one in the nonrelativistic limit (the term
p% = 3m’R3), and one can get very high values because
for sz, < 3R? the last two terms in the expression are
positive, and when R becomes small, the (...) averages
become large. Indeed,

G =) =3 (i) 09

R 3R

G =3 (-m i) 0D

R} 3R:

i.e., the momenta are equal, large, and antiparallel in
average (and of course (p9 p?) becomes also large).
Then, the magnitude of pi is controlled by the ratio
R?/R3, and p} diverges when R — 0 at fixed R;, in
agreement with the numerical findings of Cardarelli and
Simula in the null plane formalism [25].

Though the interpretation of this limit as corresponding
to the pointlike diquark model given in this reference is at
odds with our analysis of the quark-diquark model, which
gives a small pf\, analogous to mesons (Sec. IV of the
present paper), this is understandable, since in this limit
Rf, — 0 the Gaussian is not the physical solution calculated
from a QCD inspired Hamiltonian.

In fact, the last two terms in Eq. (35) diverge for
R,/R; — 0 or oo, but in one case, they have the same
sign, and whence p12\ diverges, while in the other case, the
divergences cancel when R, is help fixed, and p} tends to a
finite positive value.

It can be seen that these large values are related to the
crossed term in the arguments of the two Gaussians with
the coefficient —2(p5.p3)(3R; — R3) that give a large
positive contribution balancing the factorizable one
—(p2* + P3*)(3R? + R%) when R approaches 0.

On the other hand, imposing

R2 =3R2, (38)

which corresponds to canceling the “crossed” terms, the
expression (35) simplifies very much, and one finds

px =3m’R2 + 2, (39)

corresponding to the factorization of the wave function in
P2, P3- The value (39) is not at odds with the slope
determined from the lattice data in Sec. II, p3 ~ 2.

To repeat, the BT result is quite unlike the nonrelativistic
treatment, which always gives pi = 3m>R?, independently
of Rlz,: it depends now strongly on R,/R;.

One sees that in the relativistic treatment pX can get
arbitrary large values, while none of the two radii is
supposed to be large.

Of course, let us recall that there is no claim to a dynamical
calculation in all this discussion, but only an analysis of the
relation between a generic Gaussian internal wave function
and p3, specific to the relativistic BT formalism.

However, it is interesting to note that the condition (39),
which corresponds to a reasonable value of p3, corresponds
also to a situation where the distance between the two light
quarks would be larger than the distance between each light
quark and the heavy quark. This seems consistent with the
intuition that the Compton wavelength of each light quark
is large, and this is in fact the situation that seems to be
found in dynamical calculations, like the one of Hernandez
et al. in the nonrelativistic quark model [39], as well as in
lattice studies [40,41]. Indeed, it is very important to recall
that also in lattice QCD calculations one finds a gg system
with a large separation. Let us emphasize that in concluding
these calculations, the term diguark must be taken with care
since it is often meant on the contrary as a pointlike
diquark, especially when speaking of diquark models. And,
of course, these calculations question the very idea of a
point-diquark model, at least when claiming to QCD
inspired models, as we discuss in the next section.

Let us recall now another important conclusion coming
from the above discussion. In the BT scheme, the value of the
IW function slope for the Qgq system depends strongly on
the spatial configuration of the light diquark. This illustrates
strikingly the contrast between the BT scheme and the
nonrelativistic treatment of the center-of-mass motion of
hadrons, for which there is no dependence of the slope on R s
but only on R;. Therefore, in this relativistic scheme, there is
a need to have a very good calculation of the wave function.

Interestingly, in Ref. [19], the wave function has been
calculated very carefully, although in a spectroscopic
model with nonrelativistic kinetic energy, which may be
less worrying for a baryon. As to the authors themselves,
they propose a rather low value p3 ~0.6-1., too low of
course. But this value derives from the nonrelativistic
treatment of the center-of-mass motion of the baryons.

It would be worth applying the BT formalism to the wave
function of [19] to see whether it yields a correct slope.
Indeed, the relativistic BT treatment could enlarge the value
appreciably, as explained above.

IV. THE Q-POINTLIKE-DIQUARK MODELS

As a possible alternative, the models with a pointlike
diquark instead of two light quarks would be attractive
because of their simplicity. One must note that the diquark
may be also considered as extended, like in the works of
Ebert et al. [26], but this is a different idea, outside of the
present discussion (see also Ref. [42]). The quark-diquark
model has been widely used to compute properties of the
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baryon spectrum and also relevant form factors in heavy
baryon transitions [26].

Nevertheless, considering the several findings that have
been recalled in the previous section, showing definitely
that the gq light quark subsystem has a large size,
comparable with the one of the whole baryon, it is
paradoxical to appeal to a pointlike diquark model. And
indeed, our conclusion below in Sec. IV B is that such a
model is not valid in the context of the QCD-inspired
potentials, since it leads to a too low value p3 ~ 1 as for
mesons, which is quite logical since they are both two-body
bound states with one heavy quark, and the potential is
quite similar to the one for mesons.

On the other hand, this negative argument does not apply
if we renounce to a QCD-inspired potential and introduce a
nonstandard harmonic oscillator potential, whose strength
can be freely adjusted. And indeed, we develop such a
model as a provisory solution in the next section.

In Sec. IVA, we first develop the general BT framework
for models with scalar pointlike diquark model, which will
serve for both sections and then apply it to the model of
Bing Chen et al., with a standard QCD-inspired potential,
in Sec. IV B.

A. Isgur-Wise functions in the BT scheme

Let us indeed present the general calculation of the IW
functions for a scalar 0t and 3 under color, pointlike
particle, in the field of a heavy quark. As we will see now,
there are no Wigner rotations in this case, and the BT results
for IW functions simplify enormously.

1. Elastic IW function
One finds the simple expression (C3) of Appendix C,

fA(v.v’)—/ég;pig(ﬂ(B;Tp)z)*
% (B po)v/ (pat) (o) (40)
with
o(BS p2) 0 (B3 p2) =p((p2-t') = md ) o((py.0)2 —md).
(41)

where mp, denotes is the scalar diquark mass, of the order of
twice the light quark mass, mp ~2m.

2. IW function for L=1 excited states
In this case, one finds expression (C8) of Appendix C,
V3
- _re B * B;l
W2 -1 (271')3 p(2)§01( v p2) (p( ) p2)
_ /
N pa-(v—wv')

() 5 (p2.v)(p2.7).
2.V — mp

—_—

dpz 1 1

—_—

op(v0) =

(42)

where one can see that the 1/(w — 1) singularity in the
overall factor cancels with the numerator p,.(v — wv') that
vanishes when w — 1.

3. Bjorken sum rule

From (40), the slope of the elastic IW function is
pi==¢Ex(1)

Z—fﬂz A oodp\/ﬁw(p)*{(w%pﬁﬁ)qo(p)
+4(m}+ p?)[2(m3,+2p*)¢ (p) + p(m3,+ pH) " (p)]},
(43)

and using (42) and the completeness relation for radial
wave functions,

n n)* 5(17 - k)
Do (el () =2 S5 )
we compute the sum >, |6 (1)|? that gives
1 0 1
WM =— | dp——oo
N e
x p*[pe(p)" + 2(m} + p*)o" (p)]
< [pp(p) +2(mp + p)¢' (). (45)

Integrating by parts this expression, one finds precisely
the rhs of (43); i.e., one finds the Bjorken sum rule,

Pi =D e (). (46)

Moreover, from the positivity of (45), one recovers the
lower bound already established by heavy quark symmetry
in Ref. [43],

Pi = 0. (47)

4. An improved bound on the slope

However, in this Q-diquark model, one can demonstrate
a better lower bound due to the absence of the Wigner
rotations, just by using the careful analysis of the different
contributions to the meson IW slope given in Ref. [22].
One finds that the expression for the slope writes

1 [o (P2 +zp%\?
PA=73 / dpp*e(p) (——=——) o(p). (48)
2 0 2

where
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o d
P’ =\/p* +mj Zzld—py (49)

and one has demonstrated that the lower bound of expres-
sion (48) is given by

1
PAZ 3 (50)

i.e., an improved bound relative to the general bound (47).

Moreover, this bound was obtained on general grounds
for a heavy baryon with light cloud j = 0 [30] for the shape
(2) of the IW function.

B. Elastic and inelastic IW functions from wave
functions in a QCD-inspired potential model

The heavy baryon spectrum has been studied by
Bing Chen et al. within the Q-diquark description with a
QCD-inspired Hamiltonian [27],

p’> 4a .
(2— ~3 >+ br + C + spin dependent terms> v = Ey,
U r

(51)
where p is the reduced mass,
_ _™Mphg (52)
InD'+an,

and p is the relative momentum of the heavy quark Q and
light pointlike diquark of mass my,.

One notices that the potential in (51) is very similar to the
one for a meson. This is easily understood: the interquark
potential inside baryons is known to be half the one inside
mesons, but on the other hand, there are two quarks on a
diquark. This leads to a similarity in wave functions and
finally for p3, except that the mass here is heavier than for a
light quark.

The wave functions corresponding to the spin-independent
part of the Hamiltonian (51) are given in Appendix D for
the heavy quark limit, and with the free f parameter
characterizing the variational basis chosen to = 0.4.

Inserting the heavy quark limit wave function (pé”) (p)
(D3) into the expression (40) and with the reduced mass
parameter that describes the spectrum within the Bing Chen
et al. Hamiltonian,

1 =045 GeV, (53)

one finds the elastic IW function &,(w) of Fig. 4. An
excellent fit is the “dipole” function (2),

an=(2)" (54

12 14 1.6 18 20

FIG. 4. Elastic Isgur-Wise function £, (w) obtained in the Q-
diquark model with the Bing Chen et al. wave function (D3).

with the slope and curvature,

=127, o3 =225 (55)

The slope is lower than the value p3 =~ 2 obtained from
the data of lattice QCD described in Sec. II. This low value
is easily understood because this model amounts to a
meson system, except for details of spin and for the light
diquark mass which should be larger than for one quark.
One must also take into account the difference of the
definition for baryons against mesons that have a +1/4 for
the slope.

Consequently, the much too low value of p}\ (55)
compels us to abandon the model, at least for form factors,
as this is seen to be an unavoidable consequence of the
scheme.

Nevertheless, we add for completeness the predictions of
the model for the L = 1 excitation. In the Bing Chen et al.

model, from ¢"(p) (D3) and ¢\"(p) (D4) and the
parameter (53), we find the inelastic IW function o, (w)
of Fig. 5. The zero recoil value, the slope, and the curvature
of the inelastic IW function are

12~

FIG. 5. [Inelastic Isgur-Wise function o, (w) obtained in the
Q-diquark model with the Bing Chen er al. wave functions
(D3), (D4).
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on() =111, o\ (1)==1.89, o&L(1)=4.16.  (56)

This corresponds to the lowest excitation n = 0 of the
inelastic L =0 — L =1 IW function, and the Bjorken
sum rule is almost saturated by it. Indeed, the rhs of (46)
has a large contribution from the n = 0O state,

pt =127 > [oA(1)]? = 1.11%2 = 1.23. (57)

V. SPECTRUM AND IW FUNCTIONS WITH
HARMONIC OSCILLATOR WAVE FUNCTIONS

As explained in the preceding Secs. III and IV, we have
not obtained a satisfactory description of the baryon IW
function neither using the internal wave function for three
quarks deduced by Pervin et al. from a standard linear +
Coulomb interquark potential nor using the two-body wave
functions we have deduced from the pointlike diquark
model of Bing Chen et al.

Compared to the lattice QCD result, p% has been found
either much too large with a three-quark wave function of
Pervin et al. or much too low for the diquark model of Bing
Chen et al. This situation is quite different from the meson
case, where the various standard spectroscopic models with
relativistic kinetic energy combined with the BT scheme
give consistently p? ~ 1, in good agreement with data.

Why one fails in the case of the Bing Chen et al. is clear
from the discussion: the pointlike diquark assumption
directly contradicts the dynamical calculations of the three
quark system, in particular those of lattice QCD, which
show definitely that the diquark system has a large
extension. In fact, the model is close to a heavy meson,
with a similar potential, and the BT formalism yields
consistently p3 not much above ~1.

For the Pervin et al. wave function, one has no reason to
suspect the linear + Coulomb spectroscopic Hamiltonian,
and the reason is less obvious: the calculation of the wave
function clearly requires larger bases, since the authors
have observed a very large discrepancy between the HO
and PC bases—all the more since in a three-quark system,
as we have shown in Sec. III, the pf\ deduced from BT is
very sensitive to the details of the wave functions, in
contrast with a nonrelativistic treatment.

Then, leaving the correct solution of the three-quark case
for a further investigation, we turn presently, for the
phenomenological purpose of computing the observables,
to a very simple model that is able to fit the observed p3. It
is a pointlike diquark model, but quite different from the
one above with a QCD-inspired potential, with now a
harmonic oscillator potential of arbitrary strength, which
can be fitted both to the low-lying spectrum and to the
desired p3. Such a model is analogous in spirit with HO
models used in the beginning of the quark model, except for
the further simplification of using a pointlike diquark

picture. The reason to expect sensible results from such
a rough model is the fact that, in a first approximation, pf\
seems the main parameter controlling the heavy limit of the
form factors, because dipole fits describe well the overall
shape of &, (w) both in the model and on the lattice.

Let us assume harmonic-oscillator wave functions for the
ground state Ay (Q = b, ¢) and for the tower of the radially
excited L = 1 states (n > 0) according to the Hamiltonian,

| L _
<2ﬂ+2Kr +C>I/I—El//, (58)
where the reduced mass u is given by (52) and my, is the
light diquark mass. The spring tension K in Eq. (58) is
flavor independent, the usual hypothesis for the harmonic
oscillator Hamiltonian, and well satisfied for meson and
baryon spectra.

From (58), in terms of the reduced mass ¢ and the n = 0
level spacing,

1- 1+ (59)
= m — —-m —
“ =2 A2 )
the spring tension is given by
K = pao’. (60)

For very large mg, p~mp, where mp is the diquark
mass mp, =~ 2m, and m the light quark mass. For finite m,
one has y < mp, and u ~ 0.4 GeV, in the case of charmed
quarks.

According to (58), the wave functions read

p2R2
)
nl(n+1)!

R5/2 Lf,/z 2R2

20(p) = (4m) /R exp (— (61)

o1 (p) = (=1)"(4m)/ 20"

2R2
><exp<—p2 >

that are normalized according to

[ sl = 1.

We will consider also the wave functions for n > 0 and
L =1 in order to verify that Bjorken SR holds.

Let us consider harmonic oscillator parameters that
describe qualitatively the spectrum data, namely,

(62)

1+ 1-
my, (5 ) —2286GeV, my (5 > —2.595GeV,
n=0 n=0

(63)
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that gives the level spacing and reduced mass,

1- I+
®=my, <§ ) —my, <§ ) ~(0.309 GeV,
n=0 n=0

p= "M .40 GeV, (64)
mp +m,

for a light quark mass m ~"2~0.30 GeV and a charm
quark mass like in Sec. I, m,. ~ 1.25 GeV. Therefore, the
spring tension (59) will be

K =0.038 GeV>. (65)
Although the quantum numbers are still not confirmed,

we consider now the natural candidate for the radial
excitation, as assumed in [27],

1+
n=1
This gives the level spacing my (%) _, —my (37),_, =

0.481 GeV, while our simple model pr_edicts

1+ 1+
My, 5 — My, 5 =2w = 0.618 GeV, (67)
n=1 n=0

some 20% higher.

However, since the IW function is defined in the heavy
quark limit, we should take the reduced mass for mgy — 0.
To summarize, the spring tension K is kept fixed, and the
reduced mass becomes in the heavy quark limit g — my,,
where myp, is the diquark mass. One has then, in the heavy
quark limit, the radius squared of the wave function,

R = (mDIW (68)

One finds for some illustrative cases, for m, = 1.25 GeV,
the radius squared, the elastic slope p3, and, using
formula (42), the square of the n = 0 inelastic IW function

L=0-L=1at zero recoil [¢\’(1)[2,

mp = 0.6 GeV, R? =6.76 GeV2,
=199,  |oV(1))> =193 (69)
mp =08 GeV,  R?>=1534 GeV~2,
pi =248, V()P =242 (70)

Notice that within HQET one has, for baryons, the

parameter A,

/_\sz, (71)

and the value A = mj ~0.8 GeV is precisely the one
adopted in the HQET study of Leibovich and Stewart [35].
Here, to compute the interesting observables, we would
like to adjust mp in order to obtain the central value for the
slope obtained from the lattice data. We get roughly,

mp = 0.67 GeV, R? = 6.20 GeV~2,

pi =215 |\ (1) =2.10. (72)

We plot in Fig. 6 the elastic IW function for the set of
parameters (72).

A very good fit to the IW function of Fig. 6 is given by
the “dipole” form with p = 2.15. Comparing the values
for p2 and |6\ (1)|%, we observe that the lowest radial
excitation n = 0 largely dominates the rhs of Bjorken
SR (46).

Therefore, we conclude that the lowest inelastic IW
function (L =0,n=0) - (L =1,n=0) is large, and
thus, there is a good prospect for this transition to be well
observed at LHCb.

We plot in Fig. 7 the inelastic IW function o, (w) with
the set of parameters (72).

10k
08|
06|

€a

04

02f

1.0 12 14 1.6 1.8 20

FIG. 6. Elastic Isgur-Wise function £,(w) obtained in the
Q-diquark model with the harmonic oscillator wave function
(61) and the parameters (72).

FIG. 7.
n=0) obtained in the Q-diquark model with the harmonic
oscillator wave functions (61), (62) and the parameters (72).

Inelastic Isgur-Wise function (L =0,n =0) - (L =1,
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A reasonable “dipole” fit to Fig. 7 is given by

2, (1)

o =a(37) o)
with

on(1) =144,  o\(1) =2.57. (74)

VI. OBSERVABLES IN
Ay — A, (1)#7 TRANSITIONS

The Mainz group has extensively formulated a number
of different observables that could allow us to test the
lepton flavor universality violation [44]. The expressions
for the observables in terms of helicity amplitudes are given
below in Appendix E.

A. Observables for A, — A, (3*)Cv(€=e1)
transitions

For the numerical calculations of the form factors and
helicity amplitudes, we adopt the “dipole” shape expression
for the IW function, with the slope (13) determined from
the lattice data in Sec. II,

2 \%
fA(W) = <w—+1> ! )

The ansatz (75) is close to the numerical calculation in the
BT model within the Q-diquark scheme with HO NR
internal wave function (62) with parameters (72).

For the function A(w), we adopt

pi =215+0.10. (75)

Aw)=A'(1)(w=1)f(w), A'(1)=-0.35£0.15, (76)
where the function f(w) satisfies f(1) =1 and is intro-
duced to soften the behavior of A(w) for large w, near wy,,,
because lattice data give only the slope (18). As an

example, we could use simply f(w) = &5 (w). So, we take
A(w) =A"(1)(w=1)én(w),

We will below comment further the role of the function
f(w) in (76), when discussing the comparison of the
spectrum with experiment in Sec. VI A 1. Moreover, for
m,., my,, we use the central values (18), and for A, we adopt
the value of our model (72), that agrees within errors with
the lattice determination (18),

A'(1)==-035+0.15. (77)

m,=125GeV, m,=4.25GeV, A=m,=0.67GeV.

(78)
The observables are given in Appendix E in terms of the

helicity amplitudes HXZ/ fw, that are given in terms of the
form factors by the expressions,

via _ VOxi
& TP

V/A V Q:F V/A V/A
Héo - \/q_z (M:I:fl/ iquz/ )
HYA = 204 ()"" £ Mofy™h).

+5+1
In the physical processes, the V — A chiral combination
(ET) appears, and one has the parity relations between the
V/A helicity amplitudes,

V/A V/A
H (MJF 1/ iq2f3/)

(79)

= HY

v
H Ay Ay

—Ay Ay Héxz.—aw = _H?Z,/lw‘ (80)

The form factors in (79) are described in Appendix A.1.

1. The normalized theoretical rate
compared to LHCb data

Among the observables, only the shape of the LHCb data
on the differential rate is known, but not the absolute
magnitude [21]. We compare the LHCb rate normalized to
one with the predictions of our model.

As a first remark, let us notice that our model of form
factors up to O(1/mg) included, with essentially a single
main parameter p3, can well reproduce the LHCb normal-
ized rate, as shown in Fig. 8. We have used the “dipolar”
shape (75) with a slope slightly lower than the domain
obtained from the lattice, pf\ = 2, the mass parameters (78),
and the assumption A(w) = 0.

We consider next the comparison with the parameters
obtained from the lattice. Since the value of the slope
p,z\ =2 is at the lower edge of the domain (75) and the
assumption A(w) = 0 is at odds with the values (76), we
need to check the effect of the range of the lattice values.

We now compare the lattice parameters (75), (76), (78)
with the LHCb data. With the aim of clarifying the
discussion, we choose three sets of parametrizations, all
of them with the mass parameters (78).

0.12

FIG. 8. Normalized rate ;—52 /T compared to the LHCb data. We
use the “dipolar” shape with p,z\ = 2, the mass parameters (78),
and we assume A(w) = 0.
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(1) The Ilattice (75), (76) central values pf\ =2.15,
A’(1) =-0.35, and the linear approximation
A(w) =-0.35(w—1).

(2) The Ilattice (75), (76) central values pf\ =2.15,
A/(1) = -0.35, and softened A(w) as w increases,
A(w) = =0.35(w = 1)Ex(w).

(3) The lattice (75), (76) smallest values pf\ =2.05,
A'(1) =-0.20, and softened A(w) as w in-
creases, A(w) = —0.20(w — 1)&x (w).

We compare these different choices to the data in Fig. 9.
We observe that the set of parameters (1) describes the data
very poorly, in particular due to the linear behavior of A(w)
and also due to a slightly too large slope. The set (2) is
somewhat better, due to the softening of A(w) at large w.
Finally, the parameters (3) describe the data rather well,
although not as well as the naive choice of Fig. 8.

The main conclusion of this discussion is that the LHCb
normalized rate agrees within errors with the fit to the
lattice data of form factors performed in Sec. II, that are
summarized in formulas (75), (76), (78).

2. Other observables

We have seen that there are no sizeable differences
between the set of parameters (p%,A’(1)) = (2.05,-0.20)
(Fig. 9) and the naive ansatz (p%,A’(1)) = (2,0) (Fig. 8).
For the calculation of the rest of the observables, we will
use for simplicity the latter set. Moreover, all observables
that are given by ratios of squared of helicity amplitudes are
not sensitive to the small differences between the param-
eters used in Fig. 8 and the set (3) in Fig. 9.

3. Comments on other observables
Ay = AGH)Cv (E=en)

We compare the differential rate for e and = modes
in Fig. 10.

It is interesting to observe the shape of the forward-
backward asymmetry in Fig. 11 for the electron mass and
for the 7 mass, where we observe a zero in the distribution.

0.12
0.10f

008 [

0.04

002+

P T T TS S R S
0 2 4 6 8 10 q

FIG. 9. Normalized rate Td; /T" compared to the LHCb data for
the three sets of parameters (1), (2), and (3), respectively, lower,
middle, and upper curves at w = 1 (or ¢> = 0).

D e mode ==
f 7 mode ==

A I Y/

1 " "
2 4 6 8 10

FIG. 10. %2 for the electron and tau modes. In the electron case,
one has ;—; — 0 for g> = 0.

From (E7), for m,~0, the electron case, the FB
asymmetry is given by

_3Hp _§|H+%+1|2 - ‘H—%—1|2
ZHIOI 2 HIOI

Ag(q®) = (81)

From the V — A structure of the theory, the left-handed
final baryon dominates, and therefore, we expect to have
the inequality,

2

Hogal < |Ho P (52)
and similar inequalities for other helicity amplitudes. From
(82) and (81), we expect Afz(g?) to be positive, as we
observe in Fig. 11.

Let us see how the inequality (82) holds in our model
of the form factors described in Appendix A.l. Just for
illustration, keeping only the heavy quark limit terms, one
finds indeed

Hp = |H+%+1|2 - |H—%—1|2

— =8\ [a(m3, 3 P <0 (83)

with A(a, b, c) = a* + b* + ¢* = 2a*b* — 2b*c* — 2c2a?,
so that

04l

06

[ emode ——
—0.8} 7 mode ==

FIG. 11. Forward-backward asymmetry A% (¢?) for the elec-
tron and tau modes.
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P R R Y I
2

_02L ¢ mode ==
[ 7 mode ——

FIG. 12. Convexity parameter Cy(g?) for the electron and tau
modes.

2 2 2
q° = my, +my —2my mp W,

/I(mf\h, mil_, q*) = 2my, mp_V/ w? — 1. (84)
In the presence of a nonvanishing lepton mass m,, the
forward-backward (FB) asymmetry (E7) presents a zero.
In particular, for the 7z case, one has a zero in the FB
asymmetry as shown in Fig. 11. It is interesting to have a
theoretical idea of the position of this zero, which, keeping
only the heavy quark limit terms, is

q(z)<Af3B> = nmy m127 - m%v

(85)
which qualitatively agrees with the one of Fig. 11, com-
puted taking into account 1/m, subleading terms.

The convexity parameter (E8) is plotted in Fig. 12 and
the longitudinal and transverse hadron polarizations in
Figs. 13 and 14.

Other observables, defined in Appendix E, are illustrated
in Figs. 12-16, both for the massless and for the heavy
lepton in the final state. In particular, we observe in Fig. 15
that in the 7 case, the longitudinal lepton polarization
P%(g?) has a zero in the neighborhood of ¢*> ~4. GeV>.
Indeed, performing an expansion in powers of ;Z—I and %
one finds the position of this zero,

-0.8

-10

FIG. 13. Longitudinal hadron polarization P!(¢*) for the
electron and tau modes.

0.8
0.6}
h [
P oal
021

e mode ——

7 mode ——

n n 1 n n i 1 n n n 1 n n n 1 n n n 1 n n q2
2 4 6 8 10

FIG. 14. Transverse hadron polarization P’ (g?) for the electron
and tau modes.

2 2
G (P?) zzmz(l +2m—§—3m—;>, (86)

U n,

that is numerically reasonable. The transverse lepton
polarization is plotted in Fig. 16.

B. Observables for A, —> A.(37)¢v (€=e.7)
transitions

To compute the form factors, we refer to the expressions
and discussion of Appendix A.2, taken from Leibovich and
Stewart [35]. We neglect the subleading Lagrangian per-
turbations (A14), that amounts to take [cf. (A16)] 6(w) =
ox(w) and the central value of (A20), 6; = 0. We are left
with the leading and subleading contributions proportional
to the inelastic IW function.

For the inelastic IW function o(w) = 6, (w), we use the
calculation (73), (74) done with the same parameters used
in the elastic case (69),

on(w) = 1.44 <i> " (87)

w+ 1

Moreover, for the rest of the parameters, we also use the
central values (78), and

02l

[ e mode —
[ 7 mode ——

L L L L L
2 4 6 8 10 7

FIG. 15. Longitudinal lepton polarization PZ(g?) for the
electron and tau modes. P¢(g?) is very close to —1, unlike PZ(g?).
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08}
0.6

V) L
P.z 04

021

t e mode —
t 7 mode ==
L Il

2

FIG. 16. Transverse lepton polarization P%(g?) for the electron
and tau modes. P¢(g?) is very small, unlike P%(g?).

A =095 GeV. (88)

The helicity amplitudes HXZ/ fw are in this case,

via _ V9=
Hoy =7 M=o
q
a_ VO A
H) = \/% (M9 F 4?93
q
A A
B =20 (g = Mgy (89)
In the physical processes, the V — A chiral combination

(E1) appears, and the parity relations between helicity
amplitudes are now,

V/A V/A
/ :F‘]293/)

H sz,—zw = _H/‘I/z,/lw’ Héaz,—xw = Hfz,zw- (90)

The differential rate is plotted in Fig. 17 for the ¢ and
7 modes.

For the electron case, the FB asymmetry is given by (81)
and again, although the final state parity has changed, from
the V — A structure of the theory, the left-handed final
baryon dominates, and we expect to have the inequality
(82) and A& (g?) to be positive for all values of ¢2, as we
indeed observe in Fig. 18.

20

dr

dq2 10

05/

t e mode ==
f 7 mode ==

" " ot 1 " " " 1 " " " 1 "
2 4 6 8 4

FIG. 17. diqz for the electron and tau modes. In the electron case,
one has j—(; — 0 for ¢ = 0.

10~

05

FIG. 18. Forward-backward asymmetry A%y (g?) for the elec-
tron and tau modes.

The convexity parameter, the longitudinal hardon polari-
zation, the transverse hardon polarization, the longitudinal
lepton polarization and the transverse lepton polarization
are plotted, respectively, in Figs. 19-23.

It is interesting to see how the inequality (82) holds in
our model of the form factors described in Appendix A.2.
Similarly to what we have done above for the ground
state, keeping only the heavy quark limit terms, one finds
indeed

1 n n n 1 n n n 1 n n n 1 n n 2
I 2 a4
L e mode =
7 MOde m—
-05
Cr
-10
-15
FIG. 19. Convexity parameter Cy(g?) for the electron and tau
modes.
1 1 1 1 2
2 4 6 8 q
[ e mode mm
02 [ 7 mode —
—04l
ph »
-06|
-08|
1ok

FIG. 20. Longitudinal hadron polarization P’(g*) for the
electron and tau modes.
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08l
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q

—02[

FIG.21. Transverse hadron polarization P! (g?) for the electron
and tau modes.

02F

e mode =——
T mode ==

2

L L L L
2 4 6 8 1

FIG. 22. Longitudinal lepton polarization P%(g>) for the
electron and tau modes. P¢(g?) is very close to —1, unlike PZ(g?).

0.8 -
0.6
P oal
02}
e mode ——
[ 7 mode =
2
L L L L
0 2 4 6 8 7

FIG. 23. Transverse lepton polarization P%(g?) for the electron
and tau modes. P¢(q?) is very small, unlike P%(g?).

Hp = |H > = [H_|?
16

= =L (w = 1) [ (W) <0.

For the 7 case, one has a zero in the FB asymmetry.
Keeping only the heavy quark limit terms, one finds the same
value for the position of this zero as in the elastic case (85),

q(z)(AlT:B) = nmy \/ mi - m%

(o1)

(92)

Also, we observe in Fig. 22 that, in the 7z case, the
longitudinal lepton polarization PZ(g?) has a zero in the
neighborhood of ¢ ~4. GeV?. However, in this case,
unlike the ground state, we have not found a simple
analytic expression for the position of this zero because

. . 2 2
the expansion in powers of % and “$ converges slowly.
mb nlb

C. /¢ observables sensitive to LFUV

We now compute the relevant ratio of rates to test LFU
(Iepton flavor universality),

1+ I'(A A (F
R (1) = He = AG ). (93)
2 F(Ab d AC(E )el/)
and we find, for the ground state,
R I 0.317 94
T/t 5 — Y s ( )
and for the transition to the excited state,
1_

An interesting observable is the forward-backward
asymmetry A%, which has a very different behavior for
the light leptons and for the 7. In this latter case Ay, unlike

Aép, presents a zero at g3(Afg) ~ m,y/m3 — m?, for both

1* and - quantum numbers (Figs. 11, 18). It would be very
interesting to have a measurement of the position of the
zero, that could be a test of the SM.

For both cases 3 and 4~ (Figs. 13, 20), in the region of
common phase space, the longitudinal hadron polarization
is very similar for light leptons and for the z. This could be
also an interesting test of the SM.

The transverse hadron polarization is very different for
7* and §~ (Figs. 14, 21). This shows clearly that this
observable strongly depends on the internal wave function,
as it is quite different for J* and 1~ states, that have very
different wave functions.

For both cases %i (Figs. 15, 22), the longitudinal electron
polarization is very close to —1, while it has a very different
behavior for the 7, that presents a zero at g> ~ 4 GeV?. These
features could also provide interesting tests of the SM.

Also for both %i (Figs. 16, 23), the transverse electron
polarization is very small while for the 7 it is positive and
sizeable for most of the phase space.

D. Comparison with previous work

1. The work of Gutsche et al.

Our calculation of the observables relies on the helicity
formalism of the Mainz group paper by Gutsche et al
[7,44], where the calculations for the ground state
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transitions A, — A.(35)£0 for £ = e, T were done in their

covariant confined quark model (CCQM). This work was
recently extended to the A, — A.(37,37)¢ transitions for
¢ =e, 7[28].

We would like to compare some aspects of their
approach with our own.

First, in the CCQM, baryons are composites of Qgq,
with the quantum numbers of the different states given by
local interpolating fields with the correct quantum num-
bers, a compositeness condition, and a simple universal
Gaussian form for the vertex functions. Moreover, the
calculation is done at finite mass [45].

Our approach is a naive quark model in a Q-diquark
scheme with a harmonic-oscillator potential, reproducing
qualitatively the spectrum, and giving within the BT
scheme a reasonable slope for the IW function, consistent
with the lattice data. The quantum numbers for the L = 0
and the L = 1 states are then related by the Schrodinger
equation giving the wave functions for both states, the main
parameters being the HO radius and the masses.

It is encouraging that for the ground state transitions,
Ay = A (370 (€ = e, 1), we find plots that are close to
the ones of Ref. [7], in particular the position of the zero in
the forward-backward asymmetry for the 7 case. It would
be very interesting to find the position of this zero in a
theoretical scheme as model independent as possible, to put
it on solid ground as a test of the Standard Model.

On the other hand, our numbers obtained for the ratios
R./s(37)~0.317 and R, /(5~) ~0.141 are within the range
of the predictions of Ref. [28], R, ,(3") ~ 0.30 £ 0.06 and
R,/¢(57) ~0.13 £ 0.03, so that they seem to be on a firm
ground.

2. Other HQET based analyses

As pointed out above, we have adopted a simple HQET
model, keeping the form factors up to first order in 1/m
included, as given in the formulas of Appendix A, and then
fitting the lattice results with the simple quark model within
the BT scheme of Sec. V in order to compute the various
observables in Sec. VI.

There are recent papers based on the HQET expansion
that are relevant to our work, in particular, [46,47]. We will
now comment in some detail the former of these papers.

The paper by Bernlochner et al. [46] relies on a HQET
expansion in 1/m, powers and radiative corrections,
including O(Aqcep/mg) and O(asAqep/mg) (Q = b, ¢)
terms, as well as corrections of O(Agep/mz).

Unlike Ref. [46], we do not take into account explicitly
the QCD perturbative corrections to HQET, and therefore,
it must be understood that our slope p3 accounts by itself
roughly for such effects.

Note that in the paper [46], the parameter A’(1) has been
absorbed into the slope, introducing an effective slope, that

in our notation reads p3 — (z%nb +5-)A'(1), dependent on

the quark masses, and common to all form factors. This is
of course correct, but only up to 0(/_\,0/2\ /mg) corrections,
that differ according to the chosen form factor, as we have
made explicit in two examples in Sec. II B 3. Then, fitting
the slope p% and A’(1) from the different form factors
allows us to separate both quantities. And therefore, it also
follows that the slope of [46] ¢'(1) differs from our —p3.

We would like to distinguish our treatment of the lattice
data and the one of [46]. The lattice data by Detmold et al.,
Ref. [13], have been parametrized in this paper by the z
expansion [35] for each form factor, with two fits, at O(z)
and O(z?).

Our aim has been a simple one, namely to compare our
model for the form factors up to the first order in the 1/m
expansion, with the two O(z) and O(z?) fits done on the
lattice data (our Figs. 1-3) by using the Mathematica
package FindFit. We have chosen the following ‘““synthetic
data points” ¢> =0.,2.,4.,6.,8.,10.,11., g%, from the
lattice z expansion fit. The agreement is good up to a
couple of details that we underline, due to 1/ sz correc-
tions. Although our fitting procedure is more naive of the
one of [46], this paper only plots three points with rather
large errors, at g> = 0.5,5.5,10.0 GeV?, compared to the
range measured by the lattice ¢”/g%. = [0.60-0.95]
(Figs. 8-9 of [13]), that shows small errors.

On the other hand, although in Ref. [46] the slope
{'(1) 2 2.04 is close to our determination, the curvature
¢"(1) ~3.16 (Table I) appears to be rather low in com-
parison with our fits. Indeed, with a p3 ~2.15 with our
dipole fit, which satisfies the HQET lower bound (5) on the
curvature [29,30], 6% = &(1) > 2[p + (p2)?], we find
ox ~5.7, ie, a term +2.8(w—1)? in the expansion.
However, this is partly compensated by our next negative
term —3.0(w — 1)*, which is still not negligible.

Finally, let us remark that [46] finds R(A.) =
0.324 £0.004, that is close to our ratio (94). Their
Fig. 1 for %—%2 agrees within errors with our Fig. 8 and
with our red curve of Fig. 9. This seems to show that the
normalized decay rate is essentially given by the lattice data
on the shape of the form factors, since both our work and
[46] rely on fits to these data.

VII. CONCLUSIONS

Our objective has been the calculation of the observables
in the decays A, — AF£D, that could provide tests of
lepton flavor universality violation.

We have done this in a quark model that, unlike present
lattice QCD calculations, allows not only the computation
of transitions within the ground state, but also those to the
L =1 excitations.

The BT method is very suited for such a calculation; the
wave functions are three-dimensional, but the result is
covariant in the heavy quark limit.

094023-19



BECIREVIC, LE YAOUANC, MORENAS, and OLIVER

PHYS. REV. D 102, 094023 (2020)

The BT approach can explain the value of the slope of
the baryon IW function pf\, very different from the non-
relativistic value, as it happens for mesons.

The slope p% is a very important parameter to describe
the form factors, and it is at the same time a discriminant of
the different models. The adopted dipolar fit for the IW
function satisfies a number of theorems that have been
found in the heavy quark limit of HQET that the different
derivatives of the IW function must satisfy.

To test the different models, we have analyzed the lattice
data on the form factors, and we have shown that the slope
of the IW function is of the order p3 = 2. On the other hand,
we have demonstrated that the slope of the subleading form
factor A’(1) can be determined independently of p3.

We have found a number of difficulties of the standard
QCD-inspired Hamiltonian approaches, both in the three
quark Qgg model and also in quark pointlike-diquark
models. We have thoroughly discussed these problems.

In particular, for the Qgq system, we have discussed in
detail the problems that we have found to describe the slope
of the IW function p3. As a model, we have adopted
harmonic oscillator wave functions and studied the differ-
ent limits according to the values of the radii R2, R? that
correspond to the two Jacobi variables. This discussion
gives an insight on the structure of the Qgg system, in
particular of the light gg cloud, that can be helpful in the
construction of realistic models for the Qgg wave function.

In view of the encountered difficulties, we have adopted
a preliminary quark pointlike-diquark model that allows a
qualitative description of the spectrum, and of the IW slope
p% =2, in agreement with lattice data.

We have computed the different observables proposed by
the Mainz group for both transitions A, — A.(3)£7,
emphasizing the differences between e and 7 transitions.

Using the Bjorken sum rule, we find in our model that
the lowest inelastic IW function o (w), which describes the
(L =0) - (L = 1) transitions, is large, and thus, there is a
good prospect for the decays A, = A.(37.37)€v to be
studied in detail at LHCb. Both decays depend on o, (w)
because the states %‘, %‘ belong to the same doublet in the
heavy quark limit.

We have seen that some observables, the forward-
backward asymmetries, and the longitudinal lepton polari-
zation present a zero at some characteristic value of g> for
the 7 case. The positions of these zeros could provide tests
of physics beyond the Standard Model. In particular, the
forward-backward asymmetry for both A, — A.(3*)w

cases presents a zero for ¢* =~ m,\/m3 — m>.

We do not study for the moment the case of the inelastic
transitions A, = A.(37)¢(¢ = e, 7). In the quark model,
one has to consider a § =1 diquark coupled to L = 1.
We postpone this study since we would like to analyze
and compute the different observables that could be
interesting for our purpose, besides the one computed
in Ref. [28].

As a word of caution, we have to say that our results for
the observables are preliminary, as we will need in the
future to treat systematically the three quark system Qgq to
study the spectrum and the IW function, and then turn to
phenomenological applications.
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APPENDIX A: BARYON FORM FACTORS AND THE HEAVY QUARK EXPANSION

1. Baryon form factors A, — A, (%*) up to order 1/m,

From Falk and Neubert [48], the six conventional form factors f;,g; (i = 1, 2, 3) write

(Ac(p',8")|er" DIy (p,s)) = ap (P, s 17" = if 20" q, + f3q"]up, (P, s)

(Ac(P's 8" er'ysb|Ay(p, s)) = i (P, s") i7" — 120" q, + 93" |ysup, (P> $)-

The form factors f3, g3 will contribute to A, — A zv.

(A1)

The alternative notation, convenient for HQET, is given in terms of the four velocities,

(Ac(v', ") [er"bl Ay (v, 5)) = aa (P,
(A, sT)[er"bys| Ay (v, 5)) = (v,

The form factors f;, g; write, in terms of the F;, G;,

S')[Fiy# + Fovk + F3v'™uy, (v, s)
s)[Giy" + Gov + G3v™ysup, (v, s).

(A2)
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F F3
=F
S 1+ (ma, +my) (2”1/\,, + 2mA(.>

£y F F £y = F, Fs
2 3 2mAb zmAl_
G, G;
g1 =Gy = (mp, —my ) (zm/\b + 2mAC)
G, G; G, G;

92 :_ZmAb_ZmAC’ 93 :2mAh_2mAc'

ZmAh 2mAC ’

(A3)

In terms of HQET form factors, up to order miQ, one has

2m,

"
Fa(w) = Gafw) = 5, Ba(w)
Fa(w) = =Ga(w) = 5, Ba(w), (A)
where the miQ corrections read

Biw) = A £0() + AGw),

By(w) = ~R &\ () (A3)

The terms proportional to A&, (w) correspond to the first
order current perturbation in HQET, while the form factor
A(w) corresponds to the Lagrangian insertion perturbation,
|

(AP )i / dxT{J(0). Ly ()} As (. 5))

= A(W)Ile[FMAb. (A6)
Luke’s theorem [33] implies at zero recoil,
Bi(1)=A(1)=0 (A7)

An interesting feature of formulas (A3), (A4) is that the
form factors f,, f3 and g,, g3 are of the order 1/ mé
Let us finally give the notation for the form factors used
in the lattice calculations [13]. In terms of the form factors
(A1), (A2), the definition used in [13] is the following.
For the vector form factors,

2

q
=f1+
Fo =it s
fi=rfi+ (mp, +mp)f>
7
fo=fit———f3 (A8)
mAb — I’I’lAr
and for the axial form factors,
_ 7
9+ =9 ———— R
mpy, — My

b c

g1 =091 — (mAb - mA()g2
_ 7’
=91~ — 93

(A9)
mp, +mpy,

2. Baryon form factors A, — A, (%‘) up to
the order 1/m,

The matrix elements read

(Acley,bIN,) = a(pa. $2) 1,9y (4%) — i0,wa* 95 (%) + q,95 (a*)]ysu(py.s1)

(AclerursblAy) = (P2, 52)lrugt (4%) —

i0,,6" 95 (q%) + 4,94 (¢*)]u(py. s1).

(A10)

Notice the presence (absence) of ys in the V(A) matrix elements for A;, — A.(37) due to the intrinsic negative parity of the

final state.

The alternative notation in terms of the four velocities is given by [35]

(N (0, 8) e bl Ay (v, 5)) = iin, (0, 8')[dy, 7" + dy,0* + dy,v"]ysup, (v, 5)

(Ac(v', ) [er"bys| Ay (v, s)) = tin (Vs ") [da 7" + da, v + dy 0" ]up, (v, 5),

and the relation between both notations is

(Al1)
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dy dy
g}’:d}/—(m,\b—m,\c)< 24 3)

2mp,  2mp,
g‘{=—2d2v—d3v, 95 = 4 _ 4
my, 2my, 2mp,  2my,
& d3
dy _ d§ dy _ d§
B Sy "y P Ty amy A2

Neglecting for the moment the subleading terms depen-
dent on Lagrangian insertions and keeping only the
subleading 1/m,, terms that are proportional to the inelastic
IW function o(w), the form factors (A11) are given by the
expressions of Leibovich and Stewart [35],

dY = % [(w=1)o+e3wA = A)o—e, (A —wh)o]

v — \%[ 26— ep(A' + Ao, dg:%[e,,(&m)a]
)= \%[(w+1)a+e 3(wA' = A)o —e,(AN' —wA)o]
@ — \1@[ 26+ 26, (A = A)ol,

di = \%[26,,(& —A)ol]. (A13)

The subleading Lagrangian perturbations give the
following extra contributions to the preceding form
factors [35]:

AdY = f{e (22007 = 1)1 + (w = 1) (¢, — 2]
—es[~(w = D))}

AdY = \/_{266[ (B = 25s)]
—2ep[~(w+ Doy + ) + ¢}

AdY :\}gzeh[ (w+ 1)o1 = Pl

Adf = f{e [2002 = 1oy + (w + 1) (i), — 2his)]
—ey[=(w+ D]}

1 c c
A} = = {=2ecldiiy = 2] + 260l= i+ P}

Adf = &1 = Pig)- (Al4)

Z52el=(0=1)

According to Leibovich and Stewart, the chromomag-
netic functions qﬁma)g are expected to be small because the

j¥ =17 doublet mass splittings are small, and they are

taken

oy =0  (Q=c,b). (A15)
The functions qﬁ,(dQ”) can be absorbed by the Isgur-Wise
function by replacing ¢ with

~ c b
5(w) = 6(w) + ecion (W) + esig, (). (AL6)
Moreover, [35] assumes
Pin(1) =0 (A17)
as predicted by QCD in the large N, limit, and therefore,
(1) ~ao(1). (A18)

One is left then with two IW functions, &(w) and o (w),
and defining the ratio,

(A19)

Leibovich and Stewart assume a constant ratio for 6 (w) =
constant = 6; within the range,

—1 GeV < &, < 1 GeV. (A20)

APPENDIX B: THE Qgq ELASTIC IW FUNCTION
&E,(w) IN THE BT SCHEME

Let us begin with the general formula for a transition
matrix element in the Bakamjian-Thomas relativistic quark
model in terms of 2 x 2 matrices [15],

d
P/‘0|P / P Z/p/kak
2\ MM,

k/OkO
H 10,0 Z Z 4’;

pl pl ‘ ‘ S8,
x [D}(RT)O(py, p1) D1 (Ry]

(Kb k)

o o
$151

XHD (R'R) g 05,5, (Ko
=2

k,), (BI)

where 1 labels the active quark, the matrix element of the
currrent operator O is

0(p/v p)s’,s =

(p’.5'|0p. s). (B2)
and the vectors k;, the 0 components k¥ and p?, M, and the
Wigner rotations R; are functions of the p; defined as

follows:
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pl=1/pi +mi.  My=/(Zp;)*,

ki=Bg)p.  R,=B;'By, B (B3)

where B, is the boost (v/p2.0) = p and D;(R) is the
matrix of rotation R for the spin ;.

The internal wave function of the baryon A, with heavy
quarks Q = b or ¢ and polarization y will write

¥, (Ko, K3) = )y, 0(Ka, k3),  (B4)

i
)(glf) ﬁ (02

because the spectator quarks 2, 3 are in a state of spin and

isospin 0, and the notation )(§1> for the active quark means

(+1/2) _ (-1/2) _ (+1/2) (=1/2) _
X =Xo1p =land y )57 =y, =0.

Considering the polarized states A, the matrix element
(B1) writes then

p >:/ dp, dp; ij;'OZkPg
HT ) ey ey T MMy

k/OkO )
! !
1l pi 2o, 2 Pk

85,85 51:52,53

< [D4 (R O(py. PP (R )],

(P

3
x [ Di(RR), 0, s, (ko Ks).
=2

(B5)
From the wave function (B4), one gets
;o 1 [ dpy dps [X;P)2kph

<P,,U|0‘P,ﬂ>—* 3 3

2) (2n)° (2n) MM,

IOkO
X H 0 ? (k). K, o (ks k)
X (x "D} (R O(P). p)Dy (R ™))

x Tr[D,(R5'R;)'6,D3(R5'R3)0],
(B6)
and using the relation,
o:D(R)o, = D(R7')’, (B7)

one obtains

(P 4 |OIP, ) = l/ dp, dps Z P kak
2) (=)} (2n)* | MM,
3 /OkO
X /() () (k/z’kg)*go(k%k.%)

i=1 i
x (Z“IDRT)O(P), p1)D(Ry )W)
x Tr[D(R3'R{R5IR,)], (B8)

where we have omitted the index indicating on which quark
the Wigner rotation acts and keep it only on the rotation,
because all these matrices act on the spin 4. Equation (B6) is
the final formula in the 2 x 2 matrix formalism and at a
finite mass.

We now pass to a 4 x 4 matrix formulation,

mimy 1 + Y° REE
(p17pl) pl()p(l) D) —— B lOBpll D) 5
1 0

and will have, for the spinor matrix element,

("D} (R O(ph.py) Dy (R )y ™))
_1 m'ym

4\ ppl

T (1+7°)B B, OB, By, (1477 H),
(B10)

since HT”O commutes with the Wigner rotations, and we
have made explicit the rotations in terms of boost matrices
according to (B3). In the last equation, O denotes simply
the Dirac matrix in the current cOb.

In terms of the boosted spinors,

=B, 0 =708,
the spinor matrix element in (B10) writes

(T (1 4 90)
= (B (1 +7")B B OB, B, (14 /) B AL,

B.'B.'OB,By (1 +7°)7")

(B12)
and using the identities,
BB, (I +°)B;! = (my + 1) (1 + ﬂ)’
2m, (kK +my)
B, (1+ /"By B; — O ), (B13)

2m) (K2 + m))

094023-23



BECIREVIC, LE YAOUANC, MORENAS, and OLIVER PHYS. REV. D 102, 094023 (2020)

one gets the formula in the 4 x 4 form,

1 [m'm 1 1
(ﬂ/)TD/ R/—l 19) /, D. (R (u)y — 1'%
(r {(RTHO(PY, p1)D1 (R )W) = 4 ppY V2my (K + my) /2m (K] + m))
x (0 (1 ) (it + 1) O(my + 1) (1 + phd”). (B14)

We have now to compute the trace in formula (B8) that reads, in the 4 x 4 Dirac matrix formalism and in terms of the
boost matrices,

1
THD(RS RGRYRy)] = S Trl(1+ ) R5 'RIRE R

1
— §Tr[(1 + yO)B;SIBngPSB;ngM/Bkg (1+ yO)B;,le;,prrzB;jBuBkz(l +79)]

1
= ETr[Bu(l + yO)B,;'B,;'B,,Bkg(l +7°)B !B, (1 + }'O)B,:,;B;,'BMB,{Z(I +7°)B;!], (B15)
because 1 + y° commutes with the Wigner rotations, the quarks 2, 3 are spectators, and then one has p, = p) and p; = p},
and we have inserted the products B;'B, = B;,lBM/ = 1 within the trace.

We now use relations of the type (B13) and (1 + #)(1 + #) = 2(1 + ¢), (m + p>)(m + p>) = 2m(m + p,)..., and one
finally gets

1 1
Tr[D(R;'R{RSR,)] =

S+ m) (KD + m) (RS + m) (kY + m)

Tr[(1+ ) (m + po) (1 + ) (m + p3)]. (BI6)

The computation of the trace finally gives

1
(24 m) (4 m) (K3 -+ m) (£ + m)

X [m*(1+uad)+m(u+u').(pr+ p3) + pa.p3 + (u.p2) (' .p3) + (u.p3) (' .p2) — (u.u') (pr.p3)].
(B17)

Tr[D(RF'RSRTR,)| =

So one gets finally the matrix element,

ot =g | G [ T et kotha )
1 1 1
BTN GET V(8 m) (K + m) (8 + m) (k2 + m)
X [m?* (14 wu') +m(u +u').(py + p3) + pa.ps + (w.p2) (W' .p3) + (u.p3) (' .py) = (wu')(pa-p3)]
x (7 (i + 1) O(my + p1)zi"), (BI8)
because (1 + ;/i))(,(j‘) = 2)(,(,”>, ( (1+4)= ;‘(u’,'/).

In the heavy quark limit [15], one has

/
(u7u/) N (1), 1/), (ﬂ p_}) N (U, U'), Z p kak Uol)lo

my ’ml M/MO
K kP
milmi’l -1, (K9, k5) = (P20, p2.t), (K3, &5) = (p3.v, p3.0),
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and since p, = p), p; =

p4 for the spectator quarks, one gets the heavy quark limit matrix element,

dpz 1 dp3 1
(P4 0[P p) = ——— / Lo K (ks k)
271_) g 2 3
l \/(P2~U )(p3.0)(p2.v")(p3.0")

2.\/(pyv +m)(ps.v +m)(psv) +m)(ps.v' + m)
X [m*(1+0.0') + m(v +0').(py + p3) + (p2.0)(p3.0") + (p3.0) (p2.V) + (p2.p3) (1 — v.0)]

one gets

% ()—(Sﬁt’)o)(g}ﬂ)). (B19)
Finally, identifying with the definition of the Isgur-Wise function within the same normalization convention,
(A (P )| OIA (P, ) = w—“” o)z o). (B20)
dp, 1 dp; 1 .
en0) = [ s V) ) (2 (s o0 )l o)
Lt + m(v +0).(p2+ p3) + (p2.0)(p3-V) + (p3.0) (p2-v') + (P2.p3)(1 = 0.')] (B21)

2/ (py.v + m)(p3.v +m)(py.v' + m)(ps.v) + m)

where the arguments of the internal wave function are the
three-dimensional parts of the four vectors,

ki =B p;, ki=B.'p; (i=2,3). (B22)

The factor \/(p,.v)(p3.v)(p2-v")(p3.v') in the first line
of (B21) comes from the Jacobian, and the last line comes
from the Wigner rotations.

One can observe that the expression of the Isgur-Wise
function (B21) is fully covariant, in particular due to the

i
Lorentz invariant measures ‘pp‘ i=2,3).

As we will see below, to get covariance of the IW
function, one needs, in (B21), rotational invariance of the
internal wave functions.

For v.v' = 1, one finds that, due to the normalization of
the internal wave function, the Isgur-Wise function is
correctly normalized,

En(l) = / (""2 s )P =1, (B23)

21)* (2m)°

The expressions of the IW functions in the baryon case
(B21) contain Lorentz invariant measures % and a Lorentz

invariant kernel. However, we have the prloduct of wave
functions ¢(k’, k)*@(k,, k;) and to show that both IW

functions are Lorentz invariant, we need to demonstrate
that these products are also Lorentz invariant.
Consider now the product of wave functions,

o(k5, k) o (ks k3)

(By'p2. By pa). (B24)

=¢(B,'p. B! p3)e
The radial wave functions are rotational invariant, so that
they can be redefined as follows:
p(ka. k3) = y(k3 k3. ky k), (B25)
and similarly, for ¢(k’, k%).
One has

_—

k3=(B,'p2)*=((B;'p)")* —m*=(py.v)*~m?, (B26)
where the last equalities follow from the invariance
of the scalar product because, defining the four vector
vo = (1,0), one has

k)= (B;'p2)° = (B, py).vg = pr.(B,vg) = (B27)

Do-v.

What is missing are the three-dimensional scalar
products like
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Ko-ks = (B;pa).(B; ' ps) = (B7' pa)°(B7' ps)° = (B! po). (B ps). (B28)
and using relations (B27) and the invariance of the scalar product, we have
Ky.K3 = (p2.9)(p3.v) = (P2.pP3). (B29)
Finally, we have the Lorentz scalar wave function,
p(k2. K3) = y((p2.v)> = m?, (p3.0)* = m?, (p2.v)(p3.0) = (P2.p3)). (B30)

and similarly, for ¢(k5, K%).
Finally the baryon Isgur-Wise function writes in the explicit Lorentz invariant form,

L (0f) = / (gg; pl (‘;5;3 L ) ) (2 (a0

Xy ((pr')? =m?, (p3.0')* = m?, (p2.0')(p3.0') = (p2-p3))*

Xy ((pa-v)* —m?, (p3.0)* = m?, (p2.0)(p3.v) = (P2-P3))

(4 v.0) + m(v + ). (pa + p3) + (p2.0) (p3-0) + (P3.0) (P2t') + (P2-p3) (1 = v.0)]
2/ (p2.v +m)(p3.v +m)(py.v' + m)(ps3.v/ + m)

(B31)

APPENDIX C: THE Q POINTLIKE-DIQUARK IW FUNCTIONS IN THE BT SCHEME
1. The elastic IW function

This case is much simpler than the three-quark one Qgg, because the diquark is in a § = 0, L = 0 state, and there are no
Wigner rotations on the spectator diquark.
The matrix element reads

(P’

/0 1.0
Py = [0 [l Z"”kﬂ\/",oijo (1) (ks THZ4* D(RT)O(pf, p1)D(R )], (C1)

(277)3 M6M0 i Vi

that gives, in the heavy quark limit,

dp, 1 .
(P W |OP,p) = \/—,0()(1, v )/(2753? (P2-v)(p20")g' (k))*(ky), (C2)
2
corresponding to the simple expression of the IW function,
dp, 1 .
() = [ e T2 () gk, (©3)
2

that is covariant because k3 = (p,.v)? —m?, k% = (p,.v')?> —m?, where m is the diquark mass, and is correctly
normalized, £,(1) = 1.

2. The inelastic L=0 — L=1 IW function
> ,P kak kﬁok?
MM,

x Zq) / DRI O] p)DR W, 0l (ky), (C4)

S50

(P 40P, u) = (k2)
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where

oY (k) = 1 W (k)

W sy 1 " ()
W 0) = D (1 = am YT
m

where J = 5 orJ =
The sum over the Clebsch-Gordan coefficients can be written as

> (i =m, ’|Jﬂ>Y” Ty = |Z oW Vicy]y ) (KK

m

- ¢47z|k g ke

Passing now to the 4 x 4 matrix formulation and taking the heavy quark limit, one finds, after some algebra,

(P Oy =] / (d"“ (K)o (k)

Vo4 ) pz
Xmii {[pz_<p2'”/)?5/]75(1+;5')0(1 +¢)}){§ﬂ)
2.V')" =

(Co)

Particularizing to J = and identifying to the HQET matrix element defining the Isgur-Wise function o(w) [35],

o\wW) _(/
(P, W' |OP, u) =- \(/37) wfﬁ)y5(75+w)0)((vﬂ)],
one finds

. V3 sz
w2 —1 (271) p2

pa-(v —wr')

V2P ==

o(w) = (P2.0) (P20’ (Ky) (k)

APPENDIX D: BING CHEN et al. L=0 AND L=1 WAVE FUNCTIONS
IN THE QUARK-DIQUARK MODEL

In an expansion in terms of L =0 and L = 1 on harmonic oscillator bases,

() oy n(47)3/42n (n)* 1 ip(P’ ex P’
o ) = 1yanpion [ (B Ve (- 2)

" 1 2 2
ol ) = (1amp R ola (B ) exo (- 253

the ground state wave function reads, with the calculation of the wave function in the heavy quark limit,

20(p) = —0.99403254" (p) — 8.5672485 x 10-3¢{" (p)
—9.9527270 x 102\ (p) — 2.4497384 x 1020’
—2.7361497 x 1024 (p) — 1.4908912 x 102" (
— 12411494 x 10~ 2% (p) — 9.4764605 x 103" (
~ 6.3898186 x 104" (p) O

p
p

p

9)

)
)
)
—8.0367858 x 104} (p)

p P)
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and the L = 1 wave function,

¢1(p) = 09482319\ (p) — 0.2740721¢{" (p)
+0.14977500") (p) — 47684737 x 1029 (p)
+3.0210067 x 102" (p) = 7.8150993 x 10-3¢!” (p)
+7.4121789 x 103¢% (p) — 5.9317378 x 104" (p)
+2.1176776 x 103" (p) + 9.3134667 x 1044\ (p).

APPENDIX E: HELICITY AMPLITUDES AND OBSERVABLES

The expressions for the helicity amplitudes and observables as formulated by Gutsche ef al. [28] are summarized here.

In terms of V — A chiral helicity amplitudes,

Hﬁz’lw = Hﬂ‘u/z,iw - H?Z./IW (El)
(451 helicity of the final A., Ay : helicity of the final virtual W).
Gutsche et al. define the following bilinears in terms of helicity amplitudes:
Hy = |H+%+1|2 + |H—%—1|27 Hp = |H+%+1|2 - |H—%—1|2
Hy = |H+%0|2 + |H—%o|2’ He, = |H+%o|2 - |H—%0|2
Hs = |H+%t|2 + |H—%z 27 HSP = ‘H+%t|2 - |H—%t|2
H;r =Re (H o HH*_%O +H +%0H+_%_1>, Hyr, = Re <H “ HH*_%0 -H +%OHT_%_I)
Hgr = Re <H+%+1Hi%t + H+%,Hi%_1>, Hyr, =Re <H+%+1Hi%t - H+%,Hi%_1>
Hg, = Re (H%OH:? + H_%OH!) . Hsy, =Re <H+%0H1él - H_%OH;) , (E2)
where the left (right) column corresponds to parity con-  where
serving (parity violating) quantities, and
G%|Vcb|2M?
Huw = Hy + Hy + 6,(Hy +Hy +3H),  (E3) e T (E6)
with the dependence on the lepton mass given by Forward-backward asymmetry,
2
m
5, — ¢ E4 dI'(F) — dI'(B 3Hp+45,H
‘ 24> (E4) Abs(d?) :M: il i M Ak (E7)
dI'(F) + dI'(B) 2 Hiot
In terms of these quantities, the interesting observables ) o )
read as below. Convexity parameter (second derivative of the zenithal
Differential rate angular distribution),
dr (g% — m2)?|p,| 5 1 W) 3 Hy —2H,
=, el el C =——>=—(1-26,) ———. (E8
dq2 F() quz HtO[’ (ES) F(q ) Htot d(COS 9)2 4 ( f) Htot ( )
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Longitudinal hadron polarization,

M+ My, +8,(Hp + Hy, +3Hs,)

P(q?) (E9)
: Htol
Tranverse hadron polarization,
3r Hpr —26/H
Pig) = - (EL0)

42 Hiot

Longitudinal lepton polarization,

My + My = 8,(Hy +Hy +3Hy)

PL(q?) = = NG
tot
Transverse lepton polarization,
3z Hp - 2HSL
Pi(q?) = - 0 . E12
() =~ Vo (E12)
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