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Motivated by the calculation of observables in the decays Λb → Λcð12�Þlν̄, we present a calculation of
form factors in the quark model. Our scheme combines a spectroscopic model with the internal wave
functions and the Bakamjian-Thomas (BT) relativistic formalism to get the wave functions in motion. In the
heavy quark limit, the current matrix elements provide the Isgur-Wise (IW) function. This limit is covariant,
satisfies a large set of sum rules, and has been successfully applied to mesons. On the other hand, for
baryons, we meet difficulties using standard spectroscopic models. This leads us to propose a
phenomenological model, a Q-pointlike-diquark model, nonrelativistic, with harmonic oscillator forces,
giving both a reasonable low-lying spectrum and the expected slope of the IW function. To begin, we
extract this slope from lattice QCD data and find it to be around ρ2Λ ∼ 2, that we use as a guideline. We are
not able to reproduce the right ρ2Λ using certain typical standard linear þ Coulomb potential models, both
with three quarks Qqq or in a Q-pointlike-diquark picture. These difficulties seem to derive from the high
sensitivity of ρ2Λ to the structure of the light quark subsystem in a relativistic scheme. Finally, we present
our model, and fixing its parameters to yield the correct spectrum and ρ2Λ ∼ 2, we apply it to the calculation
of observables. By studying Bjorken sum rule, we show that the inelastic IW function is large, and
therefore, the transitions Λb → Λcð12−; 32−Þlν̄ could be studied at LHCb. Interestingly, some observables in

the τ case present zeroes for specific values of q2 that could be tests of the Standard Model.

DOI: 10.1103/PhysRevD.102.094023

I. INTRODUCTION

Possible physics beyond the Standard Model (SM),
suggesting lepton flavor universality violation (LFUV),
has been pointed out by data of different experiments on
B̄ → Dð�Þlν [1–3], summarized in [4]. That has attracted
much attention in the Standard Model (SM) and also in
models for new physics (NP) [5–12], in particular, following
lattice calculations of the form factors in the SM [13,14].
With the intention of providing predictions for observ-

ables in Λb → Λð�Þ
c lν̄, we consider the quark model, which

can describe the ground state and also the excitations, not
calculated still in lattice QCD. Moreover, we use the BT
relativistic framework, that yields a Lorentz invariant Isgur-
Wise (IW) function in terms of internal hadron wave

functions, deduced from a quark model spectroscopic
Hamiltonian describing the states at rest.
We have used this guideline in the meson case

B̄ → Dð�Þlν̄, for the ground state [15] and orbitally excited
D mesons [16]. In the meson case, we did use the
spectroscopic Hamiltonian of Godfrey and Isgur (GI), that
describes a wealth of meson data [17]. In this way, it was
obtained a reasonable and theoretically founded description
of IW functions, both elastic and inelastic [18].
The BT scheme is an approach to hadron motion, which

can be combined with any internal wave function. In quark
model calculations [19,20], the spectroscopic model pro-
viding these wave functions could be either nonrelativistic,
as in [19], or relativistic, as in Pervin et al. [20]. But
whatever the type of spectroscopic equation, both schemes
apply the nonrelativistic treatment for the hadron motion. In
[19], although a careful calculation of the spectrum and
wave functions is done, a very small IW slope is found
ρ2Λ ≃ 0.6–1, instead of ρ2Λ ≃ 2 for the Λb, as indicated by
our fit below to lattice QCD [13] and LHCb data [21].
As has been shown in the meson case [15,18,22], the BT

calculation gives a large enhancement for the IW slope with
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respect to the nonrelativistic calculation with the same
internal wave functions. This is due to the Lorentz trans-
formation of the spatial arguments of the wave function in
motion. This effect gives, with respect to the nonrelativistic
slope (ρ2NR ¼ 1

2
m2R2 for a Gaussian), an additional con-

tribution that is independent of the wave function shape and
parameters and very large since it is roughly δρ2 ≃ 0.75 for
a model with a scalar light quark, and δρ2 ≃ 1 for a meson
[22], in agreement with a Bethe-Salpeter approach [23].
We can write an explicit formula for the slope in

the BT scheme for a Q − q̄ Gaussian wave function
exp ð−R2p2=2Þ for a Q − q̄ bound state. The product of
the initial and final wave functions with Lorentz trans-
formation along Oz gives exp ½−R2ðwðpzÞ2 þ wþ1

2
ðpTÞ2 þ

w−1
2
m2Þ�. Integrating over p, and expanding around w ¼ 1,

one finds the slope, giving the result ρ2 ¼ 1
2
m2R2 þ 1. The

þ1 is the enhancement with respect to the nonrelativistic
result, which is the first term. The Jacobian expanded in
terms of the internal velocity gives −0.25, whence the final
enhancement 0.75þOðv2=c2Þ for a jP ¼ 0þ light cloud.
On the other hand, for a meson, there is the contributionþ 1

4

from the heavy quark current, and the slope is around 1.
For baryons, the structure of the three-quark wave

function and the BT expression for the IW function makes
this enhancement effect difficult to evaluate, as it is strongly
dependent on this structure. The general expectation is that
the enhancement of ρ2 should be larger than for mesons. In
the simple case of wave functions factorized in jr⃗2j; jr⃗3j,
one would have an enhancement for two light quarks twice
the one for one light quark, δρ2 ≃ 2 × 0.75 ¼ 1.5, pointing
naturally towards ρ2Λ ≃ 2 or more. But it could be much
larger for a wave function of the type of [20]. One observes
a very strong dependence of ρ2Λ on the structure of the wave

function. For instance, for a Gaussian in the relative λ⃗; ρ⃗
coordinates, it depends strongly on the ratio Rρ=Rλ and
may acquire much too large values.
Another important feature of the BT approach is that it

implements automatically the heavy quark effective theory
(HQET) sum rules like Bjorken’s or the curvature sum rules,
which help to constrain the contributions of higher states.
Trying to apply this scheme to heavy baryons, we have

found problems.
There are several quark model approaches that could

provide the required internal wave functions. Among the
standard linear þ Coulomb potentials, there is work paral-
lel to GI for mesons, the relativistic Hamiltonian of
Capstick and Isgur for the Qqq system [24], which is a
rather complicated model that reproduces a large spectrum
of states, but for which it is not easy to obtain the wave
functions. Second, the work of Albertus et al. [19], using a
nonrelativistic kinetic energy, writes explicitly the wave
functions, but these are not easy to use. Third, there is the
quark model study of Pervin et al. for ΛQ baryons [20],
which is more manageable, to which we refer now.

In the present paper, we have computed the IW function
Λb → Λc in terms of a generic internalQqq wave function.
Then, we have used an internal wave function given by [20]
to compute numerically the IW function and the slope. As
pointed out below, using the parameters of Pervin et al.
[20], we have found a slope ρ2Λ ≃ 4. This is much larger
than the estimate by LHCb, ρ2Λ ≃ 1.8 [21], and the value
that follows from lattice QCD calculations by Detmold
et al. [13], that gives ρ2Λ ≃ 2, as we show below. We identify
the origin of this large value of the slope, and we comment
on the related work by Cardarelli and Simula in the light
front formulation of the BT approach [25].
Then, we turn to the simpler scheme of a quark-diquark

model, a bound state of a heavy quark and a color triplet
pointlike diquark. This model has been widely used to
compute heavy baryon spectra and heavy baryon form
factors [26]. Concerning the spectrum, there is the inter-
esting paper by Bing Chen et al. [27], a nonrelativistic
model with QCD-inspired potential, that also presents
problems for the IW slope.
On the other hand, within the quark-diquark scheme, but

renouncing to QCD-inspired potentials, a simple non-
relativistic harmonic oscillator model can be adjusted to
give reasonable level spacings, and one can get also the IW
slope in the BT scheme ρ2Λ ≃ 2. In this paper, we will adopt,
for the moment, this simple model for the internal wave

functions in view of the computation of Λb → Λð�Þ
c lν̄

observables. Recently, the Mainz group has issued a paper
[28] on some observables that could be useful to test LFUV
in Λb → Λcð12�; 32−Þlν̄ transitions. However, as our
approach is different, we still present our results and
compare with their work and other related literature.
In Sec. II, we present a fit to the lattice QCD data, that

yields a slope of the IW function ρ2Λ ≃ 2 and quotes the
value given by LHCb. In Sec. III, we expose the numerical
problem that we find on computing the IW slope for Qqq
baryons with the wave functions of Ref. [20], and we trace
back the origin of this difficulty using a Gaussian wave
function, in the spirit of Cardarelli and Simula [25]. We turn
to the quark-diquark model in Sec. IV, we compute the IW
functions for the elastic and inelastic cases in the BT
scheme from the wave functions of the Bing Chen et al.
Hamiltonian [27], and we find a too small slope compared
to the lattice result. In Sec. V, in front of these difficulties, to
compute the observables, we renounce to models with
QCD-inspired potentials and use quark-diquark wave
functions deduced from a nonrelativistic harmonic oscil-
lator model, adjusted to give the desired ρ2Λ ≃ 2. In
Appendix A, we define the baryon form factors in different
conventions, in Appendix B, we give some details of the
involved calculation of the Qqq elastic IW function in the
BT scheme, in Appendix C, we compute the elastic and
inelastic quark-diquark IW functions in the BT scheme, in
Appendix D, we make explicit the quark-diquark wave
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functions within the Bing Chen et al. scheme, and finally, in
Appendix E, we give the expressions for the helicity
amplitudes and the observables as formulated by the
Mainz group, that we have used for our applications in
Sec. V.

II. LHCb MEASUREMENT OF THE
dΓ=dq2 SHAPE, LATTICE FORM FACTORS,

AND SLOPE OF THE IW FUNCTION

A. LHCb measurement of the dΓ=dq2 shape

The differential rate of the decay Λb → Λc þ l− þ ν̄l
writes, for ml ¼ 0 and the heavy quark limit form factors,

dΓ
dw

¼ G2
F

12π3
jVcbj2m2

Λb
m3

Λc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
× ½3wð1 − 2rwþ r2Þ þ 2rðw2 − 1Þ�jξΛðwÞj2; ð1Þ

where r ¼ mΛc
=mΛb

.
Formula (1) is an approximation to the more general

formula (10) given for the decay rate in Appendix 1 of the
LHCb paper [21] in terms of the different form factors
f0ðq2Þ; fþðq2Þ; f⊥ðq2Þ, g0ðq2Þ; gþðq2Þ; g⊥ðq2Þ.
The LHCb fit relies on the approximation that all these

form factors are approximated by the first order term in the
Oð1=mQÞ expansion, f0ðq2Þ;…g⊥ðq2Þ ≃ ξΛðwÞ. However,
the Oð1=mQÞ corrections to these form factors contain also
terms of the type Λ̄ξΛðwÞ=mQ, as we can see by the
inspection of our Appendix A.
Therefore, here ξΛðwÞ is an approximation to the IW

function, with unspecified 1=mQ errors. In the next sub-
section, we try to extract the IW function from the form
factors calculated in lattice QCD by taking into account
these 1=mQ corrections.
With the “dipole” ansatz,

ξΛðwÞ ¼
�

2

wþ 1

�
2ρ2dip

: ð2Þ

LHCb finds the value of this ρ2dip parameter [21],

ρ2dip ¼ −ξ0Λð1Þ ¼ 1.82� 0.03; ð3Þ
and the curvature,

σ2dip ¼ ξ00Λð1Þ ¼ 4.22� 0.12: ð4Þ
Of course, the very small errors in Eqs. (3) and (4) are not to
be taken as the actual errors on the real IW slope and
curvature.
The main reason for adopting the shape (2) is that it

satisfies a number of theorems in the heavy quark limit of
HQET that constrain the successive zero recoil derivatives
of the baryon IW function [29,30]. In particular, there is the
bound on the curvature,

σ2Λ ≥
3

5
½ρ2Λ þ ðρ2ΛÞ2�: ð5Þ

It has been established [30] that the “dipole” form (2),
that depends on a single parameter, satisfies these con-
straints provided that ρ2Λ ≥ 1

4
.

B. Fits to lattice data on form factors

Early studies of theΛb → Λclν lattice form factors in the
quenched approximation were provided in Refs. [31,32]. In
the former study, a value was given for the slope of the IW
function,ρ2Λ ≃ 2.4with a 15%error, showing no dependence
on the heavy quark masses and a valuewas also obtained for
the HQET parameter Λ̄ ≃ 0.75 with a 20% error.
A great wealth of new precise data in lattice QCD has

been obtained recently by W. Detmold et al. [13], which
have given results for all the form factors entering in the
process Λb → Λclν̄l within the Standard Model.
Our aim is now to try to extract information on the slope

of the IW function ξΛðwÞ and other parameters, Λ̄ and the
heavy quark masses mQ (Q ¼ b; c), from these lattice
calculations, that are summarized in Fig. 12 of Ref. [13].
We adopt a simple HQET model, keeping the form

factors up to first order in 1=mQ included, as given in the
formulas of Appendix A.
Inspection of the formulas of Appendix A shows that, at

this first order, besides the dependence of the form factors
on the IW function ξΛðwÞ, on the heavy quark masses
mQðQ ¼ b; cÞ and on the HQET parameter Λ̄, there is
another subleading function AðwÞ that, due to Luke’s
theorem [33], must vanish at w ¼ 1. For this function, since
the domain in w is not large, we adopt the parametrization,

AðwÞ ¼ A0ð1Þðw − 1Þ: ð6Þ
Moreover, we will adopt the explicit “dipole” form (2) for
the leading IW function.

1. The IW function slope from lattice form factors

In the approximation that we adopt, HQET up to the first
order in 1=mQ included, there are two quantities that isolate
the IW function, where all dependence on Λ̄ and the
parameter A0ð1Þ defined by (6) cancels. These quantities are
differences of ratios that, up to Oð1=m2

QÞ corrections, are
identical to the IW function ξΛðwÞ,

R1ðwÞ ¼
wþ 1

2

f⊥ðwÞ − g⊥ðwÞ
f⊥ð1Þ − g⊥ð1Þ

ð7Þ

R2ðwÞ ¼
f⊥ðwÞ − fþðwÞ
f⊥ð1Þ − fþð1Þ

: ð8Þ

Inspection of the formulas of Appendix A shows indeed
that these ratios do not depend on Λ̄ and on the parameter
A0ð1Þ, that cancel in these quantities,
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R1ðwÞ ¼ ξΛðwÞ þOð1=m2
QÞ

R2ðwÞ ¼ ξΛðwÞ þOð1=m2
QÞ: ð9Þ

To have information on the IW function, we will use the
z-expansion parametrization in [13], that we will fit with
our HQET model of form factors, that includes up to
Oð1=mQÞ corrections, made explicit in Appendix A. The
lattice data are parametrized by the z expansion [34] for
each form factor,

fðq2Þ ¼ 1

1 − q2

ðmf
poleÞ2

½af0 þ af1z
fðq2Þ þ � � ��;

zfðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tfþ − q2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tfþ − t0

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tfþ − q2

q
−þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tfþ − t0

q ; ð10Þ

where t0 ¼ ðmΛb
−mΛc

Þ2, mf
pole and tfþ are given in

Table VII, af0 ; a
f
1 up to OðzÞ in Table VIII, and af0 ; a

f
1 ; a

f
2

up to Oðz2Þ in Table X of [13].
We do not pretend to make a fit on the two ratios (7), (8)

with their errors. We just take the z-expansion central
values at face value, to see if for the two ratios we find
reasonable consistent values for the IW function slope ρ2Λ,
using both expansions up to OðzÞ and up to Oðz2Þ. For the
IW function, we adopt the “dipole” parametrization (2),
that satisfies the rigorous results that constrain the
successive zero recoil derivatives of the baryon IW function
[29,30].
To perform the fits, we select a number of points

(“synthetic data points”), q2¼0:;2:;4:;6:;8:;10:;11:;q2max,
of the z expansions of the lattice fits for the form factors, up to
first order and up to second order in z, and we use the
Mathematica package FindFit to fit our HQET model of
form factors of Appendix A, that includes Oð1=mQÞ cor-
rections. For the IW function ξΛðwÞ, we consider the domain

1 ≤ w ≤ 1.2, where there are data points measured on the
lattice. For the individual form factors, we will consider
below the z expansions and the fits for thewhole phase space.
The results for the IW function are given in Figs. 1 and 2.

From the ratio R1ðwÞ, we get from the fit in the region
1 ≤ w ≤ 1.2, ρ2Λ ≃ 2.20 for the first order expansion in z, to
be compared with the true slope of the IW function (7)
−ξ0Λð1Þ ¼ 2.11, and ρ2Λ ≃ 2.03 for the second order in z, to
be compared with the true slope −ξ0Λð1Þ ¼ 1.99. On the
other hand, from the ratio R2ðwÞ, we get results that are
close in both cases, ρ2Λ ≃ 2.25, compared to the true slope
−ξ0Λð1Þ ¼ 2.16 at first order in z, and −ξ0Λð1Þ ¼ 2.21 at
second order.
We can safely conclude that the slope is consistent with

the following ranges obtained from the fit. For the first
order z expansion, we get the domain,

ρ2Λ ≃ 2.20–2.24; ð11Þ

while for the z2 order, we obtain the range,

ρ2Λ ≃ 2.03–2.25: ð12Þ

Although our fits are somewhat naive, from (11), (12),
we can safely conclude that the data on Λb → Λc form
factors [13] can be described in HQET up to Oð1=mQÞ
included, with the slope of the “dipole” form for the IW
function (2),

ρ2Λ ≃ 2.15� 0.10: ð13Þ
2. Fits to the different form factors

We do not want to make an overall fit on the whole set of
form factors with their errors (errors that we do not master)
but just to study individually each form factor of Fig. 12 of
[13] by making a fit to the central values of these domains,
given by the z expansion up to order z.

1.00 1.05 1.10 1.15 1.20
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.00 1.05 1.10 1.15 1.20
0.0

0.2

0.4

0.6

0.8

1.0

1.2

FIG. 1. Fits to the ratio R1ðwÞ ≃ ξðwÞ (7), (9) with the Isgur-Wise function (2) (continuous curve) using the parametrization of the
lattice data up to first order in the z expansion (dashed curve, left) that yields the slope ρ2Λ ≃ 2.20, and up to second order (dashed curve,
right), that gives ρ2Λ ≃ 2.03.
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We take these central values at face value, to see if for
each form factor we find reasonable results for the set of
parameters,

ρ2Λ; mc; mb; Λ̄; A0ð1Þ; ð14Þ

and how these parameters compare between the different
form factors, i.e., how dispersed they are.
Since we have an independent estimate of the slope of

the IW function (11), (12), we now fix

ρ2Λ ≃ 2.15; ð15Þ

and we use FindFit to perform constrained fits for mc and
mb and Λ̄, assuming the following domains, from different
analyses within HQET [35,36], in GeV units:

1.15≤mc ≤ 1.35; 4.10≤mb ≤ 4.40; 0.60≤ Λ̄≤ 0.90;

ð16Þ

and the slope of the 1=mQ form factor A0ð1Þ as a free
parameter.
We take now the data for each form factor, the central

values of Fig. 12 of [13], that are fitted by the first order z
expansion. Choosing a number of values of these
z-expansion curves and the HQET model up to Oð1=mQÞ
of Appendix A, the resulting fit obtained with FindFit gives
the plots of Fig. 3 and the parameters of Table 1.
We summarize the values for the parameters obtained

from the fits for the different form factors in Table 1.
Let us comment on Fig. 3 and Table 1. First, the

values obtained for the parameters mc, mb and Λ̄ are of
course within the imposed limits (16). The fits are quite
good for all form factors, except for gþðΛb → ΛcÞ and
g⊥ðΛb → ΛcÞ at large q2 or near zero recoil w ¼ 1. In the
lattice data, one sees that g⊥ðq2maxÞ; gþðq2maxÞ < 1, while the
calculation of the model gives g⊥ðq2maxÞ ¼ gþðq2maxÞ ¼ 1.

The discrepancy is due to the same 1=m2
Q correction at

w ¼ 1, since one has

gþðq2maxÞ ¼ g⊥ðq2maxÞ: ð17Þ

Indeed, it is well-known that at zero recoil w ¼ 1 there is a
negative 1=m2

Q correction for g⊥ðq2maxÞ, and this explains
the discrepancy between the lattice data and the model. The
1=m2

Q correction satisfies a sum rule that gives this sign,
see, for example, the discussion of the meson form factor
FD� at zero recoil in the review paper [37].
As a numerical example, from the range (13), we adopt

for ρ2Λ ≃ 2.15, in Table 1, the following ranges for the quark
masses and subleading parameters:

mc≃1.25�0.10GeV; mb≃4.25�0.15GeV

Λ̄≃0.75�0.15GeV; A0ð1Þ≃−0.35�0.15GeV: ð18Þ

It is worth to emphasize that the parameter A0ð1Þ turns
out to be negative and sizeable. This is a new result from the
present analysis of form factors. Interestingly, the sign and
magnitude is in qualitative agreement with the expression
obtained in the nonrelativistic quark model, A0ð1Þ ¼ − Λ̄

2
ρ2Λ

[formula (126) of Ref. [36] ].

3. Correlation between ρ2Λ and the
slope parameter A0ð1Þ

There is a correlation between ρ2Λ and the slope param-
eter A0ð1Þ. Indeed, taking the heavy quark limit in the
expression of the form factors, except for A0ð1Þ, one finds,
for all six form factors, for small w − 1,

FðwÞ≃1þ
��

1

2mb
þ 1

2mc

�
A0ð1Þ−ρ2Λ

�
ðw−1ÞþO

�
Λ̄
mQ

�
;

ð19Þ
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FIG. 2. Fits to the ratio R2ðwÞ ≃ ξΛðwÞ (8), (9) with the Isgur-Wise function (2) (continuous curve) using the parametrization of the
lattice data up to the first order in the z expansion (dashed curve, left) that yields the slope ρ2Λ ≃ 2.24, and up to the second order (dashed
curve, right) that gives ρ2Λ ≃ 2.25.

HEAVY BARYON WAVE FUNCTIONS, BAKAMJIAN-THOMAS … PHYS. REV. D 102, 094023 (2020)

094023-5



that yields an effective slope,

F0ð1Þ ≃
��

1

2mb
þ 1

2mc

�
A0ð1Þ − ρ2Λ

�
þO

�
Λ̄
mQ

�
: ð20Þ

Of course, one must take into account that the terms
Oð Λ̄

mQ
Þ contribute to the coefficient of ρ2Λ, so that the relation

is somewhat different according to the form factors
(Appendix A). For instance,

f0⊥ð1Þ≃
�

1

2mb
þ 1

2mc

�
A0ð1Þ−

�
1þ Λ̄

�
1

2mb
þ 1

2mc

��
ρ2Λ;

ð21Þ
and different expressions depending on Λ̄

2mQ
ρ2Λ for the

derivatives of the other form factors, as, for example,
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FIG. 3. Center values of lattice form factors in first order of the z expansion [13] (dashed lines) compared to the fit using the HQET
model up to Oð1=mQÞ (continuous curves) obtained from FindFit.
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f0þð1Þ ≃
�

1

2mb
þ 1

2mc

�
A0ð1Þ

−
�
1þ Λ̄

�
1

2mb
þ 1

2mc
−

2

mb þmc

��
ρ2Λ: ð22Þ

These Oð1=mQÞ differences between the slopes of the
different form factors allow us to determine separately ρ2Λ
and A0ð1Þ, but the tendency of the correlation remains the
same. This correlation indicates that with some increase of
ρ2Λ, it is possible from the above discussion, A0ð1Þ, which is
found negative for ρ2Λ ≃ 2.15, that it should decrease in
magnitude, or even change its sign.
The values of Table 1 correspond to the choice

ρ2Λ ¼ 2.15, the central value of the domain (13). Had we
adopted a higher value for the slope, then A0ð1Þ would be
negative but with a smaller absolute magnitude, and for
ρ2Λ ≃ 2.5–2.6, there is a change of sign for A0ð1Þ, although
this depends on the particular form factor.

III. ELASTIC IW FUNCTION FOR THE Qqq
SYSTEM IN THE BAKAMJIAN-THOMAS

QUARK MODEL

For the ground state, we have the total wave function,

ψ sμ ¼ 1ffiffiffi
3

p
X
Pð231Þ

φ
ΛQ

231φ
s
231χ

0μ
231: ð23Þ

The flavor wave function writes φ
ΛQ

231¼ 1ffiffi
2

p ðd2u3−u2d3ÞQ1,
the spinwave function χ0μ231 is antisymmetric in the 2,3 quarks
and the full antisymmetry of the baryon wave function
follows from the antisymmetry of the color singlet wave
function.
For the simple case of the nonrelativistic harmonic

oscillator, the ground state internal wave function (see,
for example, Appendix A of Ref. [38]) writes

φðfpigÞ ¼ ð2πÞ3
�
3

ffiffiffi
3

p
R3
ρR3

λ

π3

�1=2

exp

�
−
p2
ρR2

ρ þ p2
λR

2
λ

2

�
;

ð24Þ

where the relative momentum variables pρ and pλ form2 ¼
m3 ¼ m are defined by

pρ ¼
1ffiffiffi
2

p ðp2 − p3Þ; pλ ¼
ffiffiffi
3

2

r
m1ðp2 þ p3Þ − 2mp1

m1 þ 2m
:

ð25Þ

The wave function (24) is normalized according to

Z Yn
i¼1

dpi

ð2πÞ3 δ
�Xn

i¼1

pi

�
jφðfpigj2 ¼ 1; ð26Þ

or equivalently,

1

3
ffiffiffi
3

p
Z

dpρ

ð2πÞ3
dpλ

ð2πÞ3 jφðfpρ;pλgj2 ¼ 1: ð27Þ

Some words of caution concerning the wave function
(24). First, this expression is valid in the limiting case of
equal masses for the two light quarks [38], but, in general,
crossed terms of the form pρ:pλ could appear. Here,
we restrict ourselves to the simplest case of the non-
relativistic harmonic oscillator with two light quarks of
equal mass.
Assuming that the harmonic oscillator spring constant is

flavor independent, the reduced radii Rρ and Rλ are
given, in terms of the equal mass baryon radius R, by
the expressions,

R4
ρ ¼ R4; R4

λ ¼
m1 þ 2m
3m1

R4: ð28Þ

In the center-of-mass, p1 þ p2 þ p3 ¼ 0, relations (25)
give

pρ ¼
1ffiffiffi
2

p ðp2 − p3Þ; pλ ¼
ffiffiffi
3

2

r
ðp2 þ p3Þ: ð29Þ

In the heavy quark limit m ≪ m1, the reduced radii (28)
become

R4
ρ ¼ R4; R4

λ ¼
R4

3
: ð30Þ

Finally, we can obtain the explicit form of the baryon IW
function with harmonic oscillator wave functions by
replacing the expression (24) for the initial and final states
in the general formula (B31) of Appendix B.

TABLE I. Fits with the constraints (16) and arbitrary value for
A0ð1Þ.
Form factor mc (GeV) mb (GeV) Λ̄ (GeV) A0ð1Þ (GeV)
f0ðΛb → ΛcÞ 1.33 4.34 0.66 −0.21
f⊥ðΛb → ΛcÞ 1.15 4.13 0.90 −0.35
fþðΛb → ΛcÞ 1.15 4.40 0.90 −0.25
g0ðΛb → ΛcÞ 1.35 4.10 0.60 −0.41
g⊥ðΛb → ΛcÞ 1.35 4.38 0.60 −0.49
gþðΛb → ΛcÞ 1.35 4.10 0.60 −0.50
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We find

ξΛðv:v0Þ ¼ ð2πÞ6 3
ffiffiffi
3

p
R3
ρR3

λ

π3

Z
dp2

ð2πÞ3
1

p0
2

dp3

ð2πÞ3
1

p0
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2:vÞðp3:vÞðp2:v0Þðp3:v0Þ

p
× exp

�
−
�
3R2

λ þ R2
ρ

4
½ðp2:v0Þ2 þ ðp3:v0Þ2 − 2m2� þ 3R2

λ − R2
ρ

4
2½ðp2:v0Þðp3:v0Þ − ðp2:p3Þ�

��

× exp

�
−
�
3R2

λ þ R2
ρ

4
½ðp2:vÞ2 þ ðp3:vÞ2 − 2m2� þ 3R2

λ − R2
ρ

4
2½ðp2:vÞðp3:vÞ − ðp2:p3Þ�

��

×
½m2ð1þ v:v0Þ þmðvþ v0Þ:ðp2 þ p3Þ þ ðp2:vÞðp3:v0Þ þ ðp3:vÞðp2:v0Þ þ ðp2:p3Þð1 − v:v0Þ�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp2:vþmÞðp3:vþmÞðp2:v0 þmÞðp3:v0 þmÞp ; ð31Þ

where the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp2:vÞðp3:vÞðp2:v0Þðp3:v0Þ

p
in the first

line is due to the Jacobian of the change of variables in the
BT scheme, and the complicated factor in the last line
comes from the Wigner rotations [15], computed in the
baryon case in Appendix B.

A. An attempt to a concrete calculation
of the IW function

In Pervin et al. [20], the spectrum of heavy baryonic states
has been studiedwith a linear þ Coulomb Hamiltonian, with
diagonalization in harmonic oscillator (HO) or pseudocou-
lombic (PC) bases and with kinetic energy either nonrela-
tivistic or relativistic. In practice, the ground state wave
function seems to bewell represented by oneGaussian or one
PCwave function. Choosing theHamiltonianwith relativistic
energy and the HO basis, we read from their tables in the
entry corresponding to the semi relativistic treatment in the
basis of harmonic oscillator wave functions, the light quark
mass and the ground state internal wave function necessary
for the BT calculation, the latter being well approximated by
one Gaussian, Eq. (24). They are given as follows:

m ¼ 0.38 GeV; R2
ρ ¼ R2

λ ¼ 2.16 GeV−2: ð32Þ
We have computed the slope of the IW function (31) and

have found

ρ2Λ ¼ 4.01: ð33Þ
This value is much larger than the ranges (11), (12)
determined in Sec. II.
Notice that the last factor in (31), due to the Wigner

rotations, gives a very small numerical contribution to
the slope.
It must be emphasized that this value is different and

larger from the one given by the authors,

ρ2Λ ¼ 1.33; ð34Þ
the reason being that they use a nonrelativistic treatment
to calculate the form factors, where, in principle,

ρ2Λ ¼ 3m2R2
λ . This shows the tendency of the relativistic

BT treatment to enhance the slope, which is what one
would like. But, of course, the enhancement is too large,
and it is worse with the PC basis.
On trying to understand this disappointing result, one

notices that, as found by the authors of [20], there could be
artifacts due to the smallness of the HO or PC expansion
bases. On the other hand, in BT, there is for baryons, in
contrast with mesons, a particular sensitivity of the value of
ρ2Λ to the detailed structure of the wave function, as we
argue below. This emphasizes the need for larger bases.

B. General discussion

In the meantime, in view of this conclusion concerning
the above Gaussian wave function, we proceed as follows.
We pursue the investigation with the Gaussian shape (24)
now considered as a model, with the objective of inves-
tigating the dependence of ρ2Λ on the shape of the generic
internal wave functions in the BT scheme, and in particular,
to understand the high value obtained above, ρ2Λ ≃ 4. In fact,
a somewhat similar discussion has been done numerically
by Cardarelli and Simula [25] in the null plane formalism,
which is known to be equivalent to the BT formalism in the
heavy quark limit. However, one must avoid to give a
physical interpretation to the Gaussian wave function, as we
will see below. Here, we will rather develop a mathematical
analysis to understand the variations of the slope ρ2Λ.
The formula (31) and its expansion at a small velocity to

extract ρ2Λ, keeping for simplicity the terms coming from
the Gaussians, and disregarding the contributions from the
Jacobian and from the Wigner rotations gives

ρ2Λ ¼ 3m2R2
λ þ

3R2
λ þ R2

ρ

3
hp⃗2

2 þ p⃗3
2i

þ 3R2
λ − R2

ρ

2

	
1

3
p⃗2:p⃗3 þ p0

2p
0
3 −m2



; ð35Þ

with 2, 3 labeling the two light quarks, and h…i denoting
averages on the wave functions. The first term is the
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nonrelativistic contribution, the two others are relativistic
corrections. The third term corresponds to crossed terms
that, of course, are absent in mesons.
This formula shows that ρ2Λ depends on two parameters,

instead of one in the nonrelativistic limit (the term
ρ2Λ ¼ 3m2R2

λ), and one can get very high values because
for R2

ρ < 3R2
λ the last two terms in the expression are

positive, and when R2
ρ becomes small, the h…i averages

become large. Indeed,

hp⃗2
2i ¼ hp⃗3

2i ¼ 3

4

�
1

R2
ρ
þ 1

3

1

R2
λ

�
ð36Þ

hp⃗2:p⃗3i ¼
3

4

�
−

1

R2
ρ
þ 1

3

1

R2
λ

�
; ð37Þ

i.e., the momenta are equal, large, and antiparallel in
average (and of course hp0

2p
0
3i becomes also large).

Then, the magnitude of ρ2Λ is controlled by the ratio
R2
λ=R

2
ρ, and ρ2Λ diverges when R2

ρ → 0 at fixed Rλ, in
agreement with the numerical findings of Cardarelli and
Simula in the null plane formalism [25].
Though the interpretation of this limit as corresponding

to the pointlike diquark model given in this reference is at
odds with our analysis of the quark-diquark model, which
gives a small ρ2Λ, analogous to mesons (Sec. IV of the
present paper), this is understandable, since in this limit
R2
ρ → 0 the Gaussian is not the physical solution calculated

from a QCD inspired Hamiltonian.
In fact, the last two terms in Eq. (35) diverge for

Rρ=Rλ → 0 or ∞, but in one case, they have the same
sign, and whence ρ2Λ diverges, while in the other case, the
divergences cancel when Rλ is help fixed, and ρ2Λ tends to a
finite positive value.
It can be seen that these large values are related to the

crossed term in the arguments of the two Gaussians with
the coefficient −2ðp⃗2:p⃗3Þð3R2

λ − R2
ρÞ that give a large

positive contribution balancing the factorizable one
−ðp⃗2

2 þ p⃗3
2Þð3R2

λ þ R2
ρÞ when R2

ρ approaches 0.
On the other hand, imposing

R2
ρ ¼ 3R2

λ ; ð38Þ

which corresponds to canceling the “crossed” terms, the
expression (35) simplifies very much, and one finds

ρ2Λ ¼ 3m2R2
λ þ 2; ð39Þ

corresponding to the factorization of the wave function in
p2, p3. The value (39) is not at odds with the slope
determined from the lattice data in Sec. II, ρ2Λ ≃ 2.
To repeat, the BT result is quite unlike the nonrelativistic

treatment, which always gives ρ2Λ ¼ 3m2R2
λ , independently

of R2
ρ: it depends now strongly on Rρ=Rλ.

One sees that in the relativistic treatment ρ2Λ can get
arbitrary large values, while none of the two radii is
supposed to be large.
Of course, let us recall that there is no claim to a dynamical

calculation in all this discussion, but only an analysis of the
relation between a generic Gaussian internal wave function
and ρ2Λ, specific to the relativistic BT formalism.
However, it is interesting to note that the condition (39),

which corresponds to a reasonable value of ρ2Λ, corresponds
also to a situation where the distance between the two light
quarks would be larger than the distance between each light
quark and the heavy quark. This seems consistent with the
intuition that the Compton wavelength of each light quark
is large, and this is in fact the situation that seems to be
found in dynamical calculations, like the one of Hernandez
et al. in the nonrelativistic quark model [39], as well as in
lattice studies [40,41]. Indeed, it is very important to recall
that also in lattice QCD calculations one finds a qq system
with a large separation. Let us emphasize that in concluding
these calculations, the term diquarkmust be taken with care
since it is often meant on the contrary as a pointlike
diquark, especially when speaking of diquark models. And,
of course, these calculations question the very idea of a
point-diquark model, at least when claiming to QCD
inspired models, as we discuss in the next section.
Let us recall now another important conclusion coming

from the above discussion. In theBT scheme, thevalue of the
IW function slope for the Qqq system depends strongly on
the spatial configuration of the light diquark. This illustrates
strikingly the contrast between the BT scheme and the
nonrelativistic treatment of the center-of-mass motion of
hadrons, for which there is no dependence of the slope onRρ,
but only onRλ. Therefore, in this relativistic scheme, there is
a need to have a very good calculation of the wave function.
Interestingly, in Ref. [19], the wave function has been

calculated very carefully, although in a spectroscopic
model with nonrelativistic kinetic energy, which may be
less worrying for a baryon. As to the authors themselves,
they propose a rather low value ρ2Λ ≃ 0.6–1., too low of
course. But this value derives from the nonrelativistic
treatment of the center-of-mass motion of the baryons.
It would be worth applying the BT formalism to the wave

function of [19] to see whether it yields a correct slope.
Indeed, the relativistic BT treatment could enlarge the value
appreciably, as explained above.

IV. THE Q-POINTLIKE-DIQUARK MODELS

As a possible alternative, the models with a pointlike
diquark instead of two light quarks would be attractive
because of their simplicity. One must note that the diquark
may be also considered as extended, like in the works of
Ebert et al. [26], but this is a different idea, outside of the
present discussion (see also Ref. [42]). The quark-diquark
model has been widely used to compute properties of the

HEAVY BARYON WAVE FUNCTIONS, BAKAMJIAN-THOMAS … PHYS. REV. D 102, 094023 (2020)

094023-9



baryon spectrum and also relevant form factors in heavy
baryon transitions [26].
Nevertheless, considering the several findings that have

been recalled in the previous section, showing definitely
that the qq light quark subsystem has a large size,
comparable with the one of the whole baryon, it is
paradoxical to appeal to a pointlike diquark model. And
indeed, our conclusion below in Sec. IV B is that such a
model is not valid in the context of the QCD-inspired
potentials, since it leads to a too low value ρ2Λ ≃ 1 as for
mesons, which is quite logical since they are both two-body
bound states with one heavy quark, and the potential is
quite similar to the one for mesons.
On the other hand, this negative argument does not apply

if we renounce to a QCD-inspired potential and introduce a
nonstandard harmonic oscillator potential, whose strength
can be freely adjusted. And indeed, we develop such a
model as a provisory solution in the next section.
In Sec. IVA, we first develop the general BT framework

for models with scalar pointlike diquark model, which will
serve for both sections and then apply it to the model of
Bing Chen et al., with a standard QCD-inspired potential,
in Sec. IV B.

A. Isgur-Wise functions in the BT scheme

Let us indeed present the general calculation of the IW
functions for a scalar 0þ and 3̄ under color, pointlike
particle, in the field of a heavy quark. As we will see now,
there are noWigner rotations in this case, and the BT results
for IW functions simplify enormously.

1. Elastic IW function

One finds the simple expression (C3) of Appendix C,

ξΛðv:v0Þ ¼
Z

dp2

ð2πÞ3
1

p0
2

φðB−1
v0 p2

⟶

Þ�

× φðB−1
v p2

⟶

Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2:vÞðp2:v0Þ

p
ð40Þ

with

φðB−1
v0 p2

⟶

Þ�φðB−1
v p2

⟶

Þ¼φððp2:v0Þ2−m2
DÞ�φððp2:vÞ2−m2

DÞ;
ð41Þ

wheremD denotes is the scalar diquark mass, of the order of
twice the light quark mass, mD ≃ 2m.

2. IW function for L = 1 excited states

In this case, one finds expression (C8) of Appendix C,

σΛðv:v0Þ ¼
ffiffiffi
3

p

w2 − 1

Z
dp2

ð2πÞ3
1

p0
2

φ1ðB−1
v0 p2

⟶

Þ�φðB−1
v p2

⟶

Þ

×
p2:ðv − wv0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2:v0Þ2 −m2

D

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2:vÞðp2:v0Þ

p
; ð42Þ

where one can see that the 1=ðw − 1Þ singularity in the
overall factor cancels with the numerator p2:ðv − wv0Þ that
vanishes when w → 1.

3. Bjorken sum rule

From (40), the slope of the elastic IW function is

ρ2Λ¼−ξ0Λð1Þ

¼−
1

24π2

Z
∞

0

dp
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
Dþp2

p pφðpÞ�fð6m2
Dpþ5p3ÞφðpÞ

þ4ðm2
Dþp2Þ½2ðm2

Dþ2p2Þφ0ðpÞþpðm2
Dþp2Þφ00ðpÞ�g;

ð43Þ

and using (42) and the completeness relation for radial
wave functions,

X
n

φðnÞ
1 ðp2ÞφðnÞ�

1 ðk2Þ ¼ 2π2
δðp − kÞ

p2
; ð44Þ

we compute the sum
P

n jσðnÞð1Þj2 that gives

X
n

jσðnÞð1Þj2 ¼ 1

24π2

Z
∞

0

dp
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
D þ p2

p
× p2½pφðpÞ� þ 2ðm2

D þ p2Þφ0�ðpÞ�
× ½pφðpÞ þ 2ðm2

D þ p2Þφ0ðpÞ�: ð45Þ

Integrating by parts this expression, one finds precisely
the rhs of (43); i.e., one finds the Bjorken sum rule,

ρ2Λ ¼
X
n

jσðnÞð1Þj2: ð46Þ

Moreover, from the positivity of (45), one recovers the
lower bound already established by heavy quark symmetry
in Ref. [43],

ρ2Λ ≥ 0: ð47Þ

4. An improved bound on the slope

However, in this Q-diquark model, one can demonstrate
a better lower bound due to the absence of the Wigner
rotations, just by using the careful analysis of the different
contributions to the meson IW slope given in Ref. [22].
One finds that the expression for the slope writes

ρ2Λ ¼ 1

2π2

Z
∞

0

dpp2φðpÞ�
�
p0zþ zp0

2

�
2

φðpÞ; ð48Þ

where
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p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

D

q
z ¼ i

d
dpz ; ð49Þ

and one has demonstrated that the lower bound of expres-
sion (48) is given by

ρ2Λ ≥
1

3
; ð50Þ

i.e., an improved bound relative to the general bound (47).
Moreover, this bound was obtained on general grounds

for a heavy baryon with light cloud j ¼ 0 [30] for the shape
(2) of the IW function.

B. Elastic and inelastic IW functions from wave
functions in a QCD-inspired potential model

The heavy baryon spectrum has been studied by
Bing Chen et al. within the Q-diquark description with a
QCD-inspired Hamiltonian [27],�
p2

2μ
−
4αs
3r

þ brþ Cþ spin dependent terms
�
ψ ¼ Eψ ;

ð51Þ

where μ is the reduced mass,

μ ¼ mDmQ

mD þmQ
; ð52Þ

and p is the relative momentum of the heavy quark Q and
light pointlike diquark of mass mD.
One notices that the potential in (51) is very similar to the

one for a meson. This is easily understood: the interquark
potential inside baryons is known to be half the one inside
mesons, but on the other hand, there are two quarks on a
diquark. This leads to a similarity in wave functions and
finally for ρ2Λ, except that the mass here is heavier than for a
light quark.
Thewave functions corresponding to the spin-independent

part of the Hamiltonian (51) are given in Appendix D for
the heavy quark limit, and with the free β parameter
characterizing the variational basis chosen to β ¼ 0.4.
Inserting the heavy quark limit wave function φðnÞ

0 ðpÞ
(D3) into the expression (40) and with the reduced mass
parameter that describes the spectrum within the Bing Chen
et al. Hamiltonian,

μ ¼ 0.45 GeV; ð53Þ

one finds the elastic IW function ξΛðwÞ of Fig. 4. An
excellent fit is the “dipole” function (2),

ξΛðwÞ ¼
�

2

wþ 1

�
2ρ2Λ

; ð54Þ

with the slope and curvature,

ρ2Λ ¼ 1.27; σ2Λ ¼ 2.25: ð55Þ

The slope is lower than the value ρ2Λ ≃ 2 obtained from
the data of lattice QCD described in Sec. II. This low value
is easily understood because this model amounts to a
meson system, except for details of spin and for the light
diquark mass which should be larger than for one quark.
One must also take into account the difference of the
definition for baryons against mesons that have a þ1=4 for
the slope.
Consequently, the much too low value of ρ2Λ (55)

compels us to abandon the model, at least for form factors,
as this is seen to be an unavoidable consequence of the
scheme.
Nevertheless, we add for completeness the predictions of

the model for the L ¼ 1 excitation. In the Bing Chen et al.

model, from φðnÞ
0 ðpÞ (D3) and φðnÞ

1 ðpÞ (D4) and the
parameter (53), we find the inelastic IW function σΛðwÞ
of Fig. 5. The zero recoil value, the slope, and the curvature
of the inelastic IW function are

FIG. 4. Elastic Isgur-Wise function ξΛðwÞ obtained in the Q-
diquark model with the Bing Chen et al. wave function (D3).

FIG. 5. Inelastic Isgur-Wise function σΛðwÞ obtained in the
Q-diquark model with the Bing Chen et al. wave functions
(D3), (D4).
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σΛð1Þ¼ 1.11; σ0Λð1Þ¼−1.89; σ00Λð1Þ¼ 4.16: ð56Þ

This corresponds to the lowest excitation n ¼ 0 of the
inelastic L ¼ 0 → L ¼ 1 IW function, and the Bjorken
sum rule is almost saturated by it. Indeed, the rhs of (46)
has a large contribution from the n ¼ 0 state,

ρ2Λ ¼ 1.27 ≥ ½σΛð1Þ�2 ¼ 1.112 ¼ 1.23: ð57Þ

V. SPECTRUM AND IW FUNCTIONS WITH
HARMONIC OSCILLATOR WAVE FUNCTIONS

As explained in the preceding Secs. III and IV, we have
not obtained a satisfactory description of the baryon IW
function neither using the internal wave function for three
quarks deduced by Pervin et al. from a standard linear þ
Coulomb interquark potential nor using the two-body wave
functions we have deduced from the pointlike diquark
model of Bing Chen et al.
Compared to the lattice QCD result, ρ2Λ has been found

either much too large with a three-quark wave function of
Pervin et al. or much too low for the diquark model of Bing
Chen et al. This situation is quite different from the meson
case, where the various standard spectroscopic models with
relativistic kinetic energy combined with the BT scheme
give consistently ρ2 ≃ 1, in good agreement with data.
Why one fails in the case of the Bing Chen et al. is clear

from the discussion: the pointlike diquark assumption
directly contradicts the dynamical calculations of the three
quark system, in particular those of lattice QCD, which
show definitely that the diquark system has a large
extension. In fact, the model is close to a heavy meson,
with a similar potential, and the BT formalism yields
consistently ρ2Λ not much above ≃1.
For the Pervin et al. wave function, one has no reason to

suspect the linear þ Coulomb spectroscopic Hamiltonian,
and the reason is less obvious: the calculation of the wave
function clearly requires larger bases, since the authors
have observed a very large discrepancy between the HO
and PC bases—all the more since in a three-quark system,
as we have shown in Sec. III, the ρ2Λ deduced from BT is
very sensitive to the details of the wave functions, in
contrast with a nonrelativistic treatment.
Then, leaving the correct solution of the three-quark case

for a further investigation, we turn presently, for the
phenomenological purpose of computing the observables,
to a very simple model that is able to fit the observed ρ2Λ. It
is a pointlike diquark model, but quite different from the
one above with a QCD-inspired potential, with now a
harmonic oscillator potential of arbitrary strength, which
can be fitted both to the low-lying spectrum and to the
desired ρ2Λ. Such a model is analogous in spirit with HO
models used in the beginning of the quark model, except for
the further simplification of using a pointlike diquark

picture. The reason to expect sensible results from such
a rough model is the fact that, in a first approximation, ρ2Λ
seems the main parameter controlling the heavy limit of the
form factors, because dipole fits describe well the overall
shape of ξΛðwÞ both in the model and on the lattice.
Let us assume harmonic-oscillator wave functions for the

ground state ΛQ (Q ¼ b; c) and for the tower of the radially
excited L ¼ 1 states (n ≥ 0) according to the Hamiltonian,�

p2

2μ
þ 1

2
Kr2 þ C

�
ψ ¼ Eψ ; ð58Þ

where the reduced mass μ is given by (52) and mD is the
light diquark mass. The spring tension K in Eq. (58) is
flavor independent, the usual hypothesis for the harmonic
oscillator Hamiltonian, and well satisfied for meson and
baryon spectra.
From (58), in terms of the reduced mass μ and the n ¼ 0

level spacing,

ω ¼ mΛc

�
1

2

−
�
−mΛc

�
1

2

þ�
; ð59Þ

the spring tension is given by

K ¼ μω2: ð60Þ
For very large mQ, μ ≃mD, where mD is the diquark

mass mD ≃ 2m, and m the light quark mass. For finite mQ,
one has μ < mD, and μ ≃ 0.4 GeV, in the case of charmed
quarks.
According to (58), the wave functions read

φ0ðpÞ ¼ ð4πÞ3=4R3=2 exp

�
−
p2R2

2

�
ð61Þ

φðnÞ
1 ðpÞ¼ð−1Þnð4πÞ3=42nþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!ðnþ1Þ!
ð2nþ3Þ!

s
R5=2jpjL3=2

n ðp2R2Þ

×exp

�
−
p2R2

2

�
ð62Þ

that are normalized according toZ
dp

ð2πÞ3 jφðpÞj
2 ¼ 1:

We will consider also the wave functions for n > 0 and
L ¼ 1 in order to verify that Bjorken SR holds.
Let us consider harmonic oscillator parameters that

describe qualitatively the spectrum data, namely,

mΛc

�
1

2

þ�
n¼0

¼ 2.286GeV; mΛc

�
1

2

−
�

n¼0

¼ 2.595GeV;

ð63Þ
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that gives the level spacing and reduced mass,

ω ¼ mΛc

�
1

2

−
�

n¼0

−mΛc

�
1

2

þ�
n¼0

≃ 0.309 GeV;

μ ¼ mDmc

mD þmc
≃ 0.40 GeV; ð64Þ

for a light quark mass m ≃ mD
2
≃ 0.30 GeV and a charm

quark mass like in Sec. II, mc ≃ 1.25 GeV. Therefore, the
spring tension (59) will be

K ¼ 0.038 GeV3: ð65Þ

Although the quantum numbers are still not confirmed,
we consider now the natural candidate for the radial
excitation, as assumed in [27],

mΛc

�
1

2

þ�
n¼1

¼ 2.767 GeV: ð66Þ

This gives the level spacing mΛc
ð1
2
þÞn¼1

−mΛc
ð1
2
þÞn¼0

¼
0.481 GeV, while our simple model predicts

mΛc

�
1

2

þ�
n¼1

−mΛc

�
1

2

þ�
n¼0

¼ 2ω ¼ 0.618 GeV; ð67Þ

some 20% higher.
However, since the IW function is defined in the heavy

quark limit, we should take the reduced mass for mQ → ∞.
To summarize, the spring tension K is kept fixed, and the
reduced mass becomes in the heavy quark limit μ → mD,
where mD is the diquark mass. One has then, in the heavy
quark limit, the radius squared of the wave function,

R2 ¼ 1

ðmDKÞ1=2
: ð68Þ

One finds for some illustrative cases, for mc ¼ 1.25 GeV,
the radius squared, the elastic slope ρ2Λ, and, using
formula (42), the square of the n ¼ 0 inelastic IW function

L ¼ 0 → L ¼ 1 at zero recoil jσð0ÞΛ ð1Þj2,

mD ¼ 0.6 GeV; R2 ¼ 6.76 GeV−2;

ρ2Λ ¼ 1.99; jσð0ÞΛ ð1Þj2 ¼ 1.93 ð69Þ

mD ¼ 0.8 GeV; R2 ¼ 5.34 GeV−2;

ρ2Λ ¼ 2.48; jσð0ÞΛ ð1Þj2 ¼ 2.42: ð70Þ

Notice that within HQET one has, for baryons, the
parameter Λ̄,

Λ̄ ≃mD; ð71Þ

and the value Λ̄ ¼ mD ≃ 0.8 GeV is precisely the one
adopted in the HQET study of Leibovich and Stewart [35].
Here, to compute the interesting observables, we would

like to adjust mD in order to obtain the central value for the
slope obtained from the lattice data. We get roughly,

mD ¼ 0.67 GeV; R2 ¼ 6.20 GeV−2;

ρ2Λ ¼ 2.15; jσð0ÞΛ ð1Þj2 ¼ 2.10: ð72Þ
We plot in Fig. 6 the elastic IW function for the set of

parameters (72).
A very good fit to the IW function of Fig. 6 is given by

the “dipole” form with ρ2Λ ¼ 2.15. Comparing the values

for ρ2Λ and jσð0ÞΛ ð1Þj2, we observe that the lowest radial
excitation n ¼ 0 largely dominates the rhs of Bjorken
SR (46).
Therefore, we conclude that the lowest inelastic IW

function ðL ¼ 0; n ¼ 0Þ → ðL ¼ 1; n ¼ 0Þ is large, and
thus, there is a good prospect for this transition to be well
observed at LHCb.
We plot in Fig. 7 the inelastic IW function σΛðwÞ with

the set of parameters (72).

FIG. 6. Elastic Isgur-Wise function ξΛðwÞ obtained in the
Q-diquark model with the harmonic oscillator wave function
(61) and the parameters (72).

FIG. 7. Inelastic Isgur-Wise function ðL¼ 0; n¼ 0Þ→ ðL¼ 1;
n¼ 0Þ obtained in the Q-diquark model with the harmonic
oscillator wave functions (61), (62) and the parameters (72).
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A reasonable “dipole” fit to Fig. 7 is given by

σΛðwÞ ¼ σΛð1Þ
�

2

wþ 1

�
2σ0Λð1Þ

; ð73Þ

with

σΛð1Þ ¼ 1.44; σ0Λð1Þ ¼ 2.57: ð74Þ

VI. OBSERVABLES IN
Λb → Λcð12�Þlν̄ TRANSITIONS

The Mainz group has extensively formulated a number
of different observables that could allow us to test the
lepton flavor universality violation [44]. The expressions
for the observables in terms of helicity amplitudes are given
below in Appendix E.

A. Observables for Λb → Λcð12 + Þlνðl= e;τÞ
transitions

For the numerical calculations of the form factors and
helicity amplitudes, we adopt the “dipole” shape expression
for the IW function, with the slope (13) determined from
the lattice data in Sec. II,

ξΛðwÞ ¼
�

2

wþ 1

�
2ρ2Λ

; ρ2Λ ¼ 2.15� 0.10: ð75Þ

The ansatz (75) is close to the numerical calculation in the
BT model within the Q-diquark scheme with HO NR
internal wave function (62) with parameters (72).
For the function AðwÞ, we adopt

AðwÞ¼A0ð1Þðw−1ÞfðwÞ; A0ð1Þ¼−0.35�0.15; ð76Þ

where the function fðwÞ satisfies fð1Þ ¼ 1 and is intro-
duced to soften the behavior of AðwÞ for large w, near wmax,
because lattice data give only the slope (18). As an
example, we could use simply fðwÞ ¼ ξΛðwÞ. So, we take
AðwÞ¼A0ð1Þðw−1ÞξΛðwÞ; A0ð1Þ¼−0.35�0.15: ð77Þ
We will below comment further the role of the function

fðwÞ in (76), when discussing the comparison of the
spectrum with experiment in Sec. VI A 1. Moreover, for
mc, mb, we use the central values (18), and for Λ̄, we adopt
the value of our model (72), that agrees within errors with
the lattice determination (18),

mc¼1.25GeV; mb¼4.25GeV; Λ̄¼mD¼0.67GeV:

ð78Þ

The observables are given in Appendix E in terms of the
helicity amplitudes HV=A

λ2;λW
, that are given in terms of the

form factors by the expressions,

HV=A
þ1

2
t
¼

ffiffiffiffiffiffiffi
Q�

p ffiffiffiffiffi
q2

p ðM∓fV=A1 � q2fV=A3 Þ

HV=A
þ1

2
0
¼

ffiffiffiffiffiffiffi
Q∓

p ffiffiffiffiffi
q2

p ðM�f
V=A
1 � q2fV=A2 Þ

HV=A
þ1

2
þ1

¼ ffiffiffiffiffiffiffiffiffiffi
2Q∓

p ðfV=A1 �M�f
V=A
2 Þ: ð79Þ

In the physical processes, the V − A chiral combination
(E1) appears, and one has the parity relations between the
V=A helicity amplitudes,

HV
−λ2;−λW ¼ HV

λ2;λW
; HA

−λ2;−λW ¼ −HA
λ2;λW

: ð80Þ

The form factors in (79) are described in Appendix A.1.

1. The normalized theoretical rate
compared to LHCb data

Among the observables, only the shape of the LHCb data
on the differential rate is known, but not the absolute
magnitude [21]. We compare the LHCb rate normalized to
one with the predictions of our model.
As a first remark, let us notice that our model of form

factors up to Oð1=mQÞ included, with essentially a single
main parameter ρ2Λ, can well reproduce the LHCb normal-
ized rate, as shown in Fig. 8. We have used the “dipolar”
shape (75) with a slope slightly lower than the domain
obtained from the lattice, ρ2Λ ¼ 2, the mass parameters (78),
and the assumption AðwÞ ¼ 0.
We consider next the comparison with the parameters

obtained from the lattice. Since the value of the slope
ρ2Λ ¼ 2 is at the lower edge of the domain (75) and the
assumption AðwÞ ¼ 0 is at odds with the values (76), we
need to check the effect of the range of the lattice values.
We now compare the lattice parameters (75), (76), (78)

with the LHCb data. With the aim of clarifying the
discussion, we choose three sets of parametrizations, all
of them with the mass parameters (78).

FIG. 8. Normalized rate dΓ
dq2 =Γ compared to the LHCb data. We

use the “dipolar” shape with ρ2Λ ¼ 2, the mass parameters (78),
and we assume AðwÞ ¼ 0.
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(1) The lattice (75), (76) central values ρ2Λ ¼ 2.15,
A0ð1Þ ¼ −0.35, and the linear approximation
AðwÞ ¼ −0.35ðw − 1Þ.

(2) The lattice (75), (76) central values ρ2Λ ¼ 2.15,
A0ð1Þ ¼ −0.35, and softened AðwÞ as w increases,
AðwÞ ¼ −0.35ðw − 1ÞξΛðwÞ.

(3) The lattice (75), (76) smallest values ρ2Λ ¼ 2.05,
A0ð1Þ ¼ −0.20, and softened AðwÞ as w in-
creases, AðwÞ ¼ −0.20ðw − 1ÞξΛðwÞ.

We compare these different choices to the data in Fig. 9.
We observe that the set of parameters (1) describes the data
very poorly, in particular due to the linear behavior of AðwÞ
and also due to a slightly too large slope. The set (2) is
somewhat better, due to the softening of AðwÞ at large w.
Finally, the parameters (3) describe the data rather well,
although not as well as the naive choice of Fig. 8.
The main conclusion of this discussion is that the LHCb

normalized rate agrees within errors with the fit to the
lattice data of form factors performed in Sec. II, that are
summarized in formulas (75), (76), (78).

2. Other observables

We have seen that there are no sizeable differences
between the set of parameters ðρ2Λ; A0ð1ÞÞ ¼ ð2.05;−0.20Þ
(Fig. 9) and the naive ansatz ðρ2Λ; A0ð1ÞÞ ¼ ð2; 0Þ (Fig. 8).
For the calculation of the rest of the observables, we will
use for simplicity the latter set. Moreover, all observables
that are given by ratios of squared of helicity amplitudes are
not sensitive to the small differences between the param-
eters used in Fig. 8 and the set (3) in Fig. 9.

3. Comments on other observables
Λb → Λcð12+ Þlν (l= e;τ)

We compare the differential rate for e and τ modes
in Fig. 10.
It is interesting to observe the shape of the forward-

backward asymmetry in Fig. 11 for the electron mass and
for the τ mass, where we observe a zero in the distribution.

From (E7), for ml ≃ 0, the electron case, the FB
asymmetry is given by

Ae
FBðq2Þ ¼ −

3

2

HP

Htot
¼ −

3

2

jHþ1
2
þ1j2 − jH−1

2
−1j2

Htot
: ð81Þ

From the V − A structure of the theory, the left-handed
final baryon dominates, and therefore, we expect to have
the inequality,

jHþ1
2
þ1j2 < jH−1

2
−1j2; ð82Þ

and similar inequalities for other helicity amplitudes. From
(82) and (81), we expect Ae

FBðq2Þ to be positive, as we
observe in Fig. 11.
Let us see how the inequality (82) holds in our model

of the form factors described in Appendix A.1. Just for
illustration, keeping only the heavy quark limit terms, one
finds indeed

HP ¼ jHþ1
2
þ1j2 − jH−1

2
−1j2

¼ −8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

Λb
; m2

Λb
; q2Þ

q
½ξΛðwÞ�2 < 0 ð83Þ

with λða; b; cÞ ¼ a4 þ b4 þ c4 − 2a2b2 − 2b2c2 − 2c2a2,
so that

FIG. 10. dΓ
dq2 for the electron and tau modes. In the electron case,

one has dΓ
dq2 → 0 for q2 → 0.

FIG. 11. Forward-backward asymmetry Al
FBðq2Þ for the elec-

tron and tau modes.

FIG. 9. Normalized rate dΓ
dq2 =Γ compared to the LHCb data for

the three sets of parameters (1), (2), and (3), respectively, lower,
middle, and upper curves at w ¼ 1 (or q2 ¼ 0).
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q2 ¼ m2
Λb

þm2
Λc

− 2mΛb
mΛc

w;

λðm2
Λb
; m2

Λc
; q2Þ ¼ 2mΛb

mΛc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
: ð84Þ

In the presence of a nonvanishing lepton mass ml, the
forward-backward (FB) asymmetry (E7) presents a zero.
In particular, for the τ case, one has a zero in the FB

asymmetry as shown in Fig. 11. It is interesting to have a
theoretical idea of the position of this zero, which, keeping
only the heavy quark limit terms, is

q20ðAτ
FBÞ ¼ mτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

b −m2
c

q
; ð85Þ

which qualitatively agrees with the one of Fig. 11, com-
puted taking into account 1=mQ subleading terms.
The convexity parameter (E8) is plotted in Fig. 12 and

the longitudinal and transverse hadron polarizations in
Figs. 13 and 14.
Other observables, defined in Appendix E, are illustrated

in Figs. 12–16, both for the massless and for the heavy
lepton in the final state. In particular, we observe in Fig. 15
that in the τ case, the longitudinal lepton polarization
Pτ
zðq2Þ has a zero in the neighborhood of q2 ≃ 4. GeV2.

Indeed, performing an expansion in powers of mτ
mb

and mc
mb
,

one finds the position of this zero,

q20ðPτ
zÞ ≃ 2m2

τ

�
1þ 2

m2
c

m2
b

− 3
m2

τ

m2
b

�
; ð86Þ

that is numerically reasonable. The transverse lepton
polarization is plotted in Fig. 16.

B. Observables for Λb → Λcð12− Þlν (l= e;τ)
transitions

To compute the form factors, we refer to the expressions
and discussion of Appendix A.2, taken from Leibovich and
Stewart [35]. We neglect the subleading Lagrangian per-
turbations (A14), that amounts to take [cf. (A16)] σ̃ðwÞ≡
σΛðwÞ and the central value of (A20), σ̂1 ¼ 0. We are left
with the leading and subleading contributions proportional
to the inelastic IW function.
For the inelastic IW function σðwÞ≡ σΛðwÞ, we use the

calculation (73), (74) done with the same parameters used
in the elastic case (69),

σΛðwÞ ¼ 1.44

�
2

wþ 1

�
5.14

: ð87Þ

Moreover, for the rest of the parameters, we also use the
central values (78), and

FIG. 13. Longitudinal hadron polarization Ph
z ðq2Þ for the

electron and tau modes.

FIG. 14. Transverse hadron polarization Ph
xðq2Þ for the electron

and tau modes.

FIG. 15. Longitudinal lepton polarization Pl
z ðq2Þ for the

electron and tau modes. Pe
zðq2Þ is very close to−1, unlike Pτ

zðq2Þ.

FIG. 12. Convexity parameter CFðq2Þ for the electron and tau
modes.
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Λ̄0 ¼ 0.95 GeV: ð88Þ

The helicity amplitudes HV=A
λ2;λW

are in this case,

HV=A
þ1

2
t
¼

ffiffiffiffiffiffiffi
Q∓

p ffiffiffiffiffi
q2

p ðM�g
V=A
1 ∓ q2gV=A3 Þ

HV=A
þ1

2
0
¼

ffiffiffiffiffiffiffi
Q�

p ffiffiffiffiffi
q2

p ðM∓gV=A1 ∓ q2gV=A2 Þ

HV=A
þ1

2
þ1

¼
ffiffiffiffiffiffiffiffiffi
2Q�

p
ð−gV=A1 �M∓gV=A2 Þ: ð89Þ

In the physical processes, the V − A chiral combination
(E1) appears, and the parity relations between helicity
amplitudes are now,

HV
−λ2;−λW ¼ −HV

λ2;λW
; HA

−λ2;−λW ¼ HA
λ2;λW

: ð90Þ
The differential rate is plotted in Fig. 17 for the e and

τ modes.
For the electron case, the FB asymmetry is given by (81)

and again, although the final state parity has changed, from
the V − A structure of the theory, the left-handed final
baryon dominates, and we expect to have the inequality
(82) and Ae

FBðq2Þ to be positive for all values of q2, as we
indeed observe in Fig. 18.

The convexity parameter, the longitudinal hardon polari-
zation, the transverse hardon polarization, the longitudinal
lepton polarization and the transverse lepton polarization
are plotted, respectively, in Figs. 19–23.
It is interesting to see how the inequality (82) holds in

our model of the form factors described in Appendix A.2.
Similarly to what we have done above for the ground
state, keeping only the heavy quark limit terms, one finds
indeed

FIG. 17. dΓ
dq2 for the electron and tau modes. In the electron case,

one has dΓ
dq2 → 0 for q2 → 0.

FIG. 18. Forward-backward asymmetry Al
FBðq2Þ for the elec-

tron and tau modes.

FIG. 19. Convexity parameter CFðq2Þ for the electron and tau
modes.

FIG. 20. Longitudinal hadron polarization Ph
z ðq2Þ for the

electron and tau modes.

FIG. 16. Transverse lepton polarization Pl
xðq2Þ for the electron

and tau modes. Pe
xðq2Þ is very small, unlike Pτ

xðq2Þ.
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HP ¼ jHþ1
2
þ1j2 − jH−1

2
−1j2

¼ −
16

3
mbmcðw2 − 1Þ3=2½σΛðwÞ�2 < 0: ð91Þ

For the τ case, one has a zero in the FB asymmetry.
Keeping only the heavy quark limit terms, one finds the same
value for the position of this zero as in the elastic case (85),

q20ðAτ
FBÞ ¼ mτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

b −m2
c

q
: ð92Þ

Also, we observe in Fig. 22 that, in the τ case, the
longitudinal lepton polarization Pτ

zðq2Þ has a zero in the
neighborhood of q2 ≃ 4. GeV2. However, in this case,
unlike the ground state, we have not found a simple
analytic expression for the position of this zero because

the expansion in powers of m2
τ

m2
b
and m2

c
m2

b
converges slowly.

C. τ=l observables sensitive to LFUV

We now compute the relevant ratio of rates to test LFU
(lepton flavor universality),

Rτ=l

�
1

2

�� ¼ ΓðΛb → Λcð12�ÞτνÞ
ΓðΛb → Λcð12�ÞeνÞ

; ð93Þ

and we find, for the ground state,

Rτ=l

�
1

2

þ�
≃ 0.317; ð94Þ

and for the transition to the excited state,

Rτ=l

�
1

2

−
�
≃ 0.141: ð95Þ

An interesting observable is the forward-backward
asymmetry Al

FB, which has a very different behavior for
the light leptons and for the τ. In this latter case Aτ

FB, unlike

Ae
FB, presents a zero at q20ðAτ

FBÞ ≃mτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

b −m2
c

q
, for both

1
2
þ and 1

2
− quantum numbers (Figs. 11, 18). It would be very

interesting to have a measurement of the position of the
zero, that could be a test of the SM.
For both cases 1

2
þ and 1

2
− (Figs. 13, 20), in the region of

common phase space, the longitudinal hadron polarization
is very similar for light leptons and for the τ. This could be
also an interesting test of the SM.
The transverse hadron polarization is very different for

1
2
þ and 1

2
− (Figs. 14, 21). This shows clearly that this

observable strongly depends on the internal wave function,
as it is quite different for 1

2
þ and 1

2
− states, that have very

different wave functions.
For both cases 1

2
� (Figs. 15, 22), the longitudinal electron

polarization is very close to −1, while it has a very different
behavior for the τ, that presents a zero at q2 ≃ 4 GeV2. These
features could also provide interesting tests of the SM.
Also for both 1

2
� (Figs. 16, 23), the transverse electron

polarization is very small while for the τ it is positive and
sizeable for most of the phase space.

D. Comparison with previous work

1. The work of Gutsche et al.

Our calculation of the observables relies on the helicity
formalism of the Mainz group paper by Gutsche et al.
[7,44], where the calculations for the ground state

FIG. 23. Transverse lepton polarization Pl
xðq2Þ for the electron

and tau modes. Pe
xðq2Þ is very small, unlike Pτ

xðq2Þ.

FIG. 21. Transverse hadron polarization Ph
xðq2Þ for the electron

and tau modes.

FIG. 22. Longitudinal lepton polarization Pl
z ðq2Þ for the

electron and tau modes. Pe
zðq2Þ is very close to−1, unlike Pτ

zðq2Þ.
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transitions Λb → Λcð12�Þlν̄ for l ¼ e, τ were done in their
covariant confined quark model (CCQM). This work was
recently extended to the Λb → Λcð12−; 32−Þlν̄ transitions for
l ¼ e, τ [28].
We would like to compare some aspects of their

approach with our own.
First, in the CCQM, baryons are composites of Qqq,

with the quantum numbers of the different states given by
local interpolating fields with the correct quantum num-
bers, a compositeness condition, and a simple universal
Gaussian form for the vertex functions. Moreover, the
calculation is done at finite mass [45].
Our approach is a naive quark model in a Q-diquark

scheme with a harmonic-oscillator potential, reproducing
qualitatively the spectrum, and giving within the BT
scheme a reasonable slope for the IW function, consistent
with the lattice data. The quantum numbers for the L ¼ 0
and the L ¼ 1 states are then related by the Schrödinger
equation giving the wave functions for both states, the main
parameters being the HO radius and the masses.
It is encouraging that for the ground state transitions,

Λb → Λcð12þÞlν̄ (l ¼ e; τ), we find plots that are close to
the ones of Ref. [7], in particular the position of the zero in
the forward-backward asymmetry for the τ case. It would
be very interesting to find the position of this zero in a
theoretical scheme as model independent as possible, to put
it on solid ground as a test of the Standard Model.
On the other hand, our numbers obtained for the ratios

Rτ=lð12þÞ ≃ 0.317 and Rτ=lð12−Þ ≃ 0.141 are within the range
of the predictions of Ref. [28], Rτ=lð12þÞ ≃ 0.30� 0.06 and
Rτ=lð12−Þ ≃ 0.13� 0.03, so that they seem to be on a firm
ground.

2. Other HQET based analyses

As pointed out above, we have adopted a simple HQET
model, keeping the form factors up to first order in 1=mQ
included, as given in the formulas of Appendix A, and then
fitting the lattice results with the simple quark model within
the BT scheme of Sec. V in order to compute the various
observables in Sec. VI.
There are recent papers based on the HQET expansion

that are relevant to our work, in particular, [46,47]. We will
now comment in some detail the former of these papers.
The paper by Bernlochner et al. [46] relies on a HQET

expansion in 1=mQ powers and radiative corrections,
including OðΛQCD=mQÞ and OðαsΛQCD=mQÞ (Q ¼ b, c)
terms, as well as corrections of OðΛ2

QCD=m
2
cÞ.

Unlike Ref. [46], we do not take into account explicitly
the QCD perturbative corrections to HQET, and therefore,
it must be understood that our slope ρ2Λ accounts by itself
roughly for such effects.
Note that in the paper [46], the parameter A0ð1Þ has been

absorbed into the slope, introducing an effective slope, that
in our notation reads ρ2Λ − ð 1

2mb
þ 1

2mc
ÞA0ð1Þ, dependent on

the quark masses, and common to all form factors. This is
of course correct, but only up to OðΛ̄ρ2Λ=mQÞ corrections,
that differ according to the chosen form factor, as we have
made explicit in two examples in Sec. II B 3. Then, fitting
the slope ρ2Λ and A0ð1Þ from the different form factors
allows us to separate both quantities. And therefore, it also
follows that the slope of [46] ζ0ð1Þ differs from our −ρ2Λ.
We would like to distinguish our treatment of the lattice

data and the one of [46]. The lattice data by Detmold et al.,
Ref. [13], have been parametrized in this paper by the z
expansion [35] for each form factor, with two fits, at OðzÞ
and Oðz2Þ.
Our aim has been a simple one, namely to compare our

model for the form factors up to the first order in the 1=mQ

expansion, with the two OðzÞ and Oðz2Þ fits done on the
lattice data (our Figs. 1–3) by using the Mathematica
package FindFit. We have chosen the following “synthetic
data points” q2 ¼ 0.; 2.; 4.; 6.; 8.; 10:; 11:; q2max from the
lattice z expansion fit. The agreement is good up to a
couple of details that we underline, due to 1=m2

Q correc-
tions. Although our fitting procedure is more naive of the
one of [46], this paper only plots three points with rather
large errors, at q2 ¼ 0.5; 5.5; 10.0 GeV2, compared to the
range measured by the lattice q2=q2max ¼ ½0.60–0.95�
(Figs. 8–9 of [13]), that shows small errors.
On the other hand, although in Ref. [46] the slope

ζ0ð1Þ ≃ 2.04 is close to our determination, the curvature
ζ00ð1Þ ≃ 3.16 (Table I) appears to be rather low in com-
parison with our fits. Indeed, with a ρ2Λ ≃ 2.15 with our
dipole fit, which satisfies the HQET lower bound (5) on the
curvature [29,30], σ2Λ ¼ ξ00Λð1Þ ≥ 3

5
½ρ2Λ þ ðρ2ΛÞ2�, we find

σ2Λ ≃ 5.7, i.e., a term þ2.8ðw − 1Þ2 in the expansion.
However, this is partly compensated by our next negative
term −3.0ðw − 1Þ3, which is still not negligible.
Finally, let us remark that [46] finds RðΛcÞ ¼

0.324� 0.004, that is close to our ratio (94). Their
Fig. 1 for 1

Γ
dΓ
dq2 agrees within errors with our Fig. 8 and

with our red curve of Fig. 9. This seems to show that the
normalized decay rate is essentially given by the lattice data
on the shape of the form factors, since both our work and
[46] rely on fits to these data.

VII. CONCLUSIONS

Our objective has been the calculation of the observables
in the decays Λb → Λ�

c lν̄, that could provide tests of
lepton flavor universality violation.
We have done this in a quark model that, unlike present

lattice QCD calculations, allows not only the computation
of transitions within the ground state, but also those to the
L ¼ 1 excitations.
The BT method is very suited for such a calculation; the

wave functions are three-dimensional, but the result is
covariant in the heavy quark limit.
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The BT approach can explain the value of the slope of
the baryon IW function ρ2Λ, very different from the non-
relativistic value, as it happens for mesons.
The slope ρ2Λ is a very important parameter to describe

the form factors, and it is at the same time a discriminant of
the different models. The adopted dipolar fit for the IW
function satisfies a number of theorems that have been
found in the heavy quark limit of HQET that the different
derivatives of the IW function must satisfy.
To test the different models, we have analyzed the lattice

data on the form factors, and we have shown that the slope
of the IW function is of the order ρ2Λ ≃ 2. On the other hand,
we have demonstrated that the slope of the subleading form
factor A0ð1Þ can be determined independently of ρ2Λ.
We have found a number of difficulties of the standard

QCD-inspired Hamiltonian approaches, both in the three
quark Qqq model and also in quark pointlike-diquark
models. We have thoroughly discussed these problems.
In particular, for the Qqq system, we have discussed in

detail the problems that we have found to describe the slope
of the IW function ρ2Λ. As a model, we have adopted
harmonic oscillator wave functions and studied the differ-
ent limits according to the values of the radii R2

ρ, R2
λ that

correspond to the two Jacobi variables. This discussion
gives an insight on the structure of the Qqq system, in
particular of the light qq cloud, that can be helpful in the
construction of realistic models for the Qqqwave function.
In view of the encountered difficulties, we have adopted

a preliminary quark pointlike-diquark model that allows a
qualitative description of the spectrum, and of the IW slope
ρ2Λ ≃ 2, in agreement with lattice data.
We have computed the different observables proposed by

the Mainz group for both transitions Λb → Λcð12�Þlν̄,
emphasizing the differences between e and τ transitions.

Using the Bjorken sum rule, we find in our model that
the lowest inelastic IW function σΛðwÞ, which describes the
ðL ¼ 0Þ → ðL ¼ 1Þ transitions, is large, and thus, there is a
good prospect for the decays Λb → Λcð12−; 32−Þlν̄ to be
studied in detail at LHCb. Both decays depend on σΛðwÞ
because the states 1

2
−; 3

2
− belong to the same doublet in the

heavy quark limit.
We have seen that some observables, the forward-

backward asymmetries, and the longitudinal lepton polari-
zation present a zero at some characteristic value of q2 for
the τ case. The positions of these zeros could provide tests
of physics beyond the Standard Model. In particular, the
forward-backward asymmetry for both Λb → Λcð12�Þτν
cases presents a zero for q2 ≃mτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

b −m2
c

q
.

We do not study for the moment the case of the inelastic
transitions Λb → Λcð32−Þlν̄ðl ¼ e; τÞ. In the quark model,
one has to consider a S ¼ 1 diquark coupled to L ¼ 1.
We postpone this study since we would like to analyze
and compute the different observables that could be
interesting for our purpose, besides the one computed
in Ref. [28].
As a word of caution, we have to say that our results for

the observables are preliminary, as we will need in the
future to treat systematically the three quark systemQqq to
study the spectrum and the IW function, and then turn to
phenomenological applications.
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APPENDIX A: BARYON FORM FACTORS AND THE HEAVY QUARK EXPANSION

1. Baryon form factors Λb → Λcð12 + Þ up to order 1=mQ

From Falk and Neubert [48], the six conventional form factors fi; gi (i ¼ 1, 2, 3) write

hΛcðp0; s0Þjc̄γμbjΛbðp; sÞi ¼ ūΛc
ðp0; s0Þ½f1γμ − if2σμνqν þ f3qμ�uΛb

ðp; sÞ
hΛcðp0; s0Þjc̄γμγ5bjΛbðp; sÞi ¼ ūΛc

ðp0; s0Þ½g1γμ − ig2σμνqν þ g3qμ�γ5uΛb
ðp; sÞ: ðA1Þ

The form factors f3, g3 will contribute to Λb → Λcτν.
The alternative notation, convenient for HQET, is given in terms of the four velocities,

hΛcðv0; s0Þjc̄γμbjΛbðv; sÞi ¼ ūΛc
ðp0; s0Þ½F1γ

μ þ F2vμ þ F3v0μ�uΛb
ðv; sÞ

hΛcðv0; s0Þjc̄γμbγ5jΛbðv; sÞi ¼ ūΛc
ðv0; s0Þ½G1γ

μ þG2vμ þ G3v0μ�γ5uΛb
ðv; sÞ: ðA2Þ

The form factors fi, gi write, in terms of the Fi, Gi,
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f1 ¼ F1 þ ðmΛb
þmΛc

Þ
�

F2

2mΛb

þ F3

2mΛc

�

f2 ¼ −
F2

2mΛb

−
F3

2mΛc

; f3 ¼
F2

2mΛb

−
F3

2mΛc

g1 ¼ G1 − ðmΛb
−mΛc

Þ
�

G2

2mΛb

þ G3

2mΛc

�

g2 ¼ −
G2

2mΛb

−
G3

2mΛc

; g3 ¼
G2

2mΛb

−
G3

2mΛc

: ðA3Þ

In terms of HQET form factors, up to order 1
mQ
, one has

F1ðwÞ ¼ ξΛðwÞ þ
�

1

2mb
þ 1

2mc

�
½B1ðwÞ − B2ðwÞ�

G1ðwÞ ¼ ξΛðwÞ þ
�

1

2mb
þ 1

2mc

�
B1ðwÞ

F2ðwÞ ¼ G2ðwÞ ¼
1

2mc
B2ðwÞ

F3ðwÞ ¼ −G3ðwÞ ¼
1

2mb
B2ðwÞ; ðA4Þ

where the 1
mQ

corrections read

B1ðwÞ ¼ Λ̄
w − 1

wþ 1
ξΛðwÞ þ AðwÞ;

B2ðwÞ ¼ −Λ̄
2

wþ 1
ξΛðwÞ: ðA5Þ

The terms proportional to Λ̄ξΛðwÞ correspond to the first
order current perturbation in HQET, while the form factor
AðwÞ corresponds to the Lagrangian insertion perturbation,

hΛcðp0; s0Þji
Z

dxTfJð0Þ; L1ðxÞgjΛbðp; sÞi

¼ AðwÞūΛc
ΓuΛb

: ðA6Þ

Luke’s theorem [33] implies at zero recoil,

B1ð1Þ ¼ Að1Þ ¼ 0: ðA7Þ

An interesting feature of formulas (A3), (A4) is that the
form factors f2, f3 and g2, g3 are of the order 1=m2

Q.
Let us finally give the notation for the form factors used

in the lattice calculations [13]. In terms of the form factors
(A1), (A2), the definition used in [13] is the following.
For the vector form factors,

fþ ¼ f1 þ
q2

mΛb
þmΛc

f2

f⊥ ¼ f1 þ ðmΛb
þmΛc

Þf2
f0 ¼ f1 þ

q2

mΛb
−mΛc

f3; ðA8Þ

and for the axial form factors,

gþ ¼ g1 −
q2

mΛb
−mΛc

g2

g⊥ ¼ g1 − ðmΛb
−mΛc

Þg2
g0 ¼ g1 −

q2

mΛb
þmΛc

g3: ðA9Þ

2. Baryon form factors Λb → Λcð12− Þ up to
the order 1=mQ

The matrix elements read

hΛcjc̄γμbjΛbi ¼ ūðp2; s2Þ½γμgV1 ðq2Þ − iσμνqνgV2 ðq2Þ þ qμgV3 ðq2Þ�γ5uðp1; s1Þ
hΛcjc̄γμγ5bjΛbi ¼ ūðp2; s2Þ½γμgA1 ðq2Þ − iσμνqνgA2 ðq2Þ þ qμgA3 ðq2Þ�uðp1; s1Þ: ðA10Þ

Notice the presence (absence) of γ5 in the VðAÞ matrix elements for Λb → Λcð12−Þ due to the intrinsic negative parity of the
final state.
The alternative notation in terms of the four velocities is given by [35]

hΛ1=2
c ðv0; s0Þjc̄γμbjΛbðv; sÞi ¼ ūΛc

ðv0; s0Þ½dV1
γμ þ dV2

vμ þ dV3
v0μ�γ5uΛb

ðv; sÞ
hΛcðv0; s0Þjc̄γμbγ5jΛbðv; sÞi ¼ ūΛc

ðv0; s0Þ½dA1
γμ þ dA2

vμ þ dA3
v0μ�uΛb

ðv; sÞ; ðA11Þ

and the relation between both notations is
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gV1 ¼ dV1 − ðmΛb
−mΛc

Þ
�

dV2
2mΛb

þ dV3
2mΛc

�

gV2 ¼ −
dV2

2mΛb

−
dV3

2mΛc

; gV3 ¼ dV2
2mΛb

−
dV3

2mΛc

gA1 ¼ dA1 þ ðmΛb
þmΛc

Þ
�

dA2
2mΛb

þ dA3
2mΛc

�

gA2 ¼ −
dA2

2mΛb

−
dA3

2mΛc

; gA3 ¼ dA2
2mΛb

−
dA3

2mΛc

: ðA12Þ

Neglecting for the moment the subleading terms depen-
dent on Lagrangian insertions and keeping only the
subleading 1=mQ terms that are proportional to the inelastic
IW function σðwÞ, the form factors (A11) are given by the
expressions of Leibovich and Stewart [35],

dV1 ¼ 1ffiffiffi
3

p ½ðw− 1Þσþ ϵc3ðwΛ̄0 − Λ̄Þσ − ϵbðΛ̄0 −wΛ̄Þσ�

dV2 ¼ 1ffiffiffi
3

p ½−2σ − ϵbðΛ̄0 þ Λ̄Þσ�; dV3 ¼ 1ffiffiffi
3

p ½ϵbðΛ̄0 þ Λ̄Þσ�

dA1 ¼ 1ffiffiffi
3

p ½ðwþ 1Þσþ ϵc3ðwΛ̄0 − Λ̄Þσ − ϵbðΛ̄0 −wΛ̄Þσ�

dA2 ¼ 1ffiffiffi
3

p ½−2σþ 2ϵbðΛ̄0 − Λ̄Þσ�;

dA3 ¼ 1ffiffiffi
3

p ½2ϵbðΛ̄0 − Λ̄Þσ�: ðA13Þ

The subleading Lagrangian perturbations give the
following extra contributions to the preceding form
factors [35]:

ΔdV1 ¼ 1ffiffiffi
3

p fϵc½−2ðw2 − 1Þσ1 þ ðw − 1ÞðϕðcÞ
kin − 2ϕðcÞ

magÞ�

− ϵb½−ðw − 1ÞϕðbÞ
kin�g

ΔdV2 ¼ 1ffiffiffi
3

p f2ϵc½−ðϕðcÞ
kin − 2ϕðcÞ

magÞ�

− 2ϵb½−ðwþ 1Þσ1 þ ϕðbÞ
kin þ ϕðbÞ

mag�g

ΔdV3 ¼ 1ffiffiffi
3

p 2ϵb½−ðwþ 1Þσ1 − ϕðbÞ
mag�

ΔdA1 ¼ 1ffiffiffi
3

p fϵc½−2ðw2 − 1Þσ1 þ ðwþ 1ÞðϕðcÞ
kin − 2ϕðcÞ

magÞ�

− ϵb½−ðwþ 1ÞϕðbÞ
kin�g

ΔdA2 ¼ 1ffiffiffi
3

p f−2ϵc½ϕðcÞ
kin − 2ϕðcÞ

mag� þ 2ϵb½−ϕðbÞ
kin þ ϕðbÞ

mag�g

ΔdA3 ¼ 1ffiffiffi
3

p 2ϵb½−ðw − 1Þσ1 − ϕðbÞ
mag�: ðA14Þ

According to Leibovich and Stewart, the chromomag-
netic functions ϕðQÞ

mag are expected to be small because the

jP ¼ 1− doublet mass splittings are small, and they are
taken

ϕðQÞ
mag ¼ 0 ðQ ¼ c; bÞ: ðA15Þ

The functions ϕðQÞ
kin can be absorbed by the Isgur-Wise

function by replacing σ with

σ̃ðwÞ ¼ σðwÞ þ ϵcϕ
ðcÞ
kinðwÞ þ ϵbϕ

ðbÞ
kinðwÞ: ðA16Þ

Moreover, [35] assumes

ϕðcÞ
kinð1Þ ¼ 0; ðA17Þ

as predicted by QCD in the large Nc limit, and therefore,

σ̃ð1Þ ≃ σð1Þ: ðA18Þ
One is left then with two IW functions, σ̃ðwÞ and σ1ðwÞ,
and defining the ratio,

σ̂1ðwÞ ¼
σ1ðwÞ
σ̃ðwÞ : ðA19Þ

Leibovich and Stewart assume a constant ratio for σ̂1ðwÞ ¼
constant ¼ σ̂1 within the range,

−1 GeV < σ̂1 < 1 GeV: ðA20Þ

APPENDIX B: THE Qqq ELASTIC IW FUNCTION
ξΛðwÞ IN THE BT SCHEME

Let us begin with the general formula for a transition
matrix element in the Bakamjian-Thomas relativistic quark
model in terms of 2 × 2 matrices [15],

hP0jOjPi ¼
Z Yn

i¼2

dpi

ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
jp

00
j

P
kp

0
k

M0
0M0

s

×
Yn
i¼1

ffiffiffiffiffiffiffiffiffiffiffi
k00i k

0
i

p00
i p

0
i

s X
s0
1
…s0n

X
s1…sn

φ0
s0
1
…s0n

ðk0
2…k0

nÞ�

× ½D0
1ðR0−1

1 ÞOðp0
1;p1ÞD1ðR1�s0

1
;s1

×
Yn
i¼2

DiðR0−1
i RiÞs0i…siφs1…snðk2…knÞ; ðB1Þ

where 1 labels the active quark, the matrix element of the
currrent operator O is

Oðp0;pÞs0;s ¼ hp0; s0jOjp; si; ðB2Þ

and the vectors ki, the 0 components k0i and p
0
i ,M0 and the

Wigner rotations Ri are functions of the pi defined as
follows:
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p0
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
i þm2

i

q
; M0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΣpjÞ2

q
;

ki ¼ B−1
Σpj

pi; Ri ¼ B−1
pi
BΣpj

Bki ; ðB3Þ

where Bp is the boost ð
ffiffiffiffiffi
p2

p
; 0Þ → p and DiðRÞ is the

matrix of rotation R for the spin Si.
The internal wave function of the baryon ΛQ with heavy

quarks Q ¼ b or c and polarization μ will write

φðμÞ
s1;s2;s3ðk2;k3Þ ¼ χðμÞs1

iffiffiffi
2

p ðσ2Þs2;s3φðk2;k3Þ; ðB4Þ

because the spectator quarks 2, 3 are in a state of spin and

isospin 0, and the notation χðμÞs1 for the active quark means

χðþ1=2Þ
þ1=2 ¼ χð−1=2Þ−1=2 ¼ 1 and χðþ1=2Þ

−1=2 ¼ χð−1=2Þþ1=2 ¼ 0.
Considering the polarized states ΛQ, the matrix element

(B1) writes then

hP0;μ0jOjP;μi ¼
Z

dp2

ð2πÞ3
dp3

ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
jp

00
j

P
kp

0
k

M0
0M0

s

×
Y3
i¼1

ffiffiffiffiffiffiffiffiffiffiffi
k00i k

0
i

p00
i p

0
i

s X
s0
1
;s0
2
;s0
3

X
s1;s2;s3

φðμ0Þ
s0
1
;s0
2
;s0
3
ðk0

2;k
0
3Þ�

× ½D0
1ðR0−1

1 ÞOðp0
1;p1ÞD1ðR1Þ�s0

1
;s1

×
Y3
i¼2

DiðR0−1
i RiÞs0i…siφ

ðμÞ
s1;s2;s3ðk2;k3Þ:

ðB5Þ

From the wave function (B4), one gets

hP0; μ0jOjP; μi ¼ 1

2

Z
dp2

ð2πÞ3
dp3

ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
jp

00
j

P
kp

0
k

M0
0M0

s

×
Y3
i¼1

ffiffiffiffiffiffiffiffiffiffiffi
k00i k

0
i

p00
i p

0
i

s
φðk0

2;k
0
3Þ�φðk2;k3Þ

× ðχðμ0Þ†D0
1ðR0−1

1 ÞOðp0
1;p1ÞD1ðR1ÞχðμÞÞ

× Tr½D2ðR0−1
2 R2Þtσ2D3ðR0−1

3 R3Þσ2�;
ðB6Þ

and using the relation,

σ2DðRÞσ2 ¼ DðR−1Þt; ðB7Þ

one obtains

hP0; μ0jOjP; μi ¼ 1

2

Z
dp2

ð2πÞ3
dp3

ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
jp

00
j

P
kp

0
k

M0
0M0

s

×
Y3
i¼1

ffiffiffiffiffiffiffiffiffiffiffi
k00i k

0
i

p00
i p

0
i

s
φðk0

2;k
0
3Þ�φðk2;k3Þ

× ðχðμ0Þ†DðR0−1
1 ÞOðp0

1;p1ÞDðR1ÞχðμÞÞ
× Tr½DðR−1

3 R0
3R

0−1
2 R2Þ�; ðB8Þ

where we have omitted the index indicating on which quark
the Wigner rotation acts and keep it only on the rotation,
because all these matrices act on the spin 1

2
. Equation (B6) is

the final formula in the 2 × 2 matrix formalism and at a
finite mass.
We now pass to a 4 × 4 matrix formulation,

Oðp0
1;p1Þ →

ffiffiffiffiffiffiffiffiffiffiffiffi
m0

1m1

p00
1 p

0
1

s
1þ γ0

2
B−1

p0
1
OB−1

p1

1þ γ0

2
;

χðμÞ →
1þ γ0

2
χðμÞ; ðB9Þ

and will have, for the spinor matrix element,

ðχðμ0Þ†D0
1ðR0−1

1 ÞOðp0
1;p1ÞD1ðR1ÞχðμÞÞ

¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffi
m0

1m1

p00
1 p

0
1

s
ðχðμ0Þ†ð1þ γ0ÞB−1

k0
1
B−1

u0 OBuBk1ð1þ γ0ÞχðμÞÞ;

ðB10Þ

since 1þγ0

2
commutes with the Wigner rotations, and we

have made explicit the rotations in terms of boost matrices
according to (B3). In the last equation, O denotes simply
the Dirac matrix in the current c̄Ob.
In terms of the boosted spinors,

χðμÞu ¼ Buχ
ðμÞ; χ̄ðμ

0Þ
u ¼ χ̄ðμ0ÞB−1

u0 ; ðB11Þ

the spinor matrix element in (B10) writes

ðχðμ0Þ†ð1þ γ0ÞB−1
k0
1
B−1

u0 OBuBk1ð1þ γ0ÞχðμÞÞ
¼ ðχ̄ðμ0Þu0 Bu0 ð1þ γ0ÞB−1

k0
1
B−1

u0 OBuBk1ð1þ γ0ÞB−1
u χðμÞu Þ;

ðB12Þ

and using the identities,

BuBk1ð1þ γ0ÞB−1
u ¼ ðm1 þ p1Þð1þ =uÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m1ðk01 þm1Þ
p ;

Bu0 ð1þ γ0ÞB−1
k0
1
B−1

u0 ¼ ð1þ =u0Þðm0
1 þ p0

1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m0

1ðk001 þm0
1Þ

p ; ðB13Þ
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one gets the formula in the 4 × 4 form,

ðχðμ0Þ†D0
1ðR0−1

1 ÞOðp0
1;p1ÞD1ðR1ÞχðμÞÞ ¼

1

4

ffiffiffiffiffiffiffiffiffiffiffiffi
m0

1m1

p00
1 p

0
1

s
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m1ðk01 þm1Þ
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m0
1ðk001 þm0

1Þ
p

× ðχ̄ðμ0Þu0 ð1þ =u0Þðm0
1 þ p0

1ÞOðm1 þ =p1Þð1þ =uÞχðμÞu Þ: ðB14Þ

We have now to compute the trace in formula (B8) that reads, in the 4 × 4 Dirac matrix formalism and in terms of the
boost matrices,

Tr½DðR−1
3 R0

3R
0−1
2 R2Þ� →

1

2
Tr½ð1þ γ0ÞR−1

3 R0
3R

0−1
2 R2�

¼ 1

8
Tr½ð1þ γ0ÞB−1

k3
B−1

u Bp3
B−1

p0
3
Bu0Bk0

3
ð1þ γ0ÞB−1

k0
2
B−1

u0 Bp0
2
B−1

p2
BuBk2ð1þ γ0Þ�

¼ 1

16
Tr½Buð1þ γ0ÞB−1

k3
B−1

u Bu0Bk0
3
ð1þ γ0ÞB−1

u0 Bu0 ð1þ γ0ÞB−1
k0
2
B−1

u0 BuBk2ð1þ γ0ÞB−1
u �; ðB15Þ

because 1þ γ0 commutes with the Wigner rotations, the quarks 2, 3 are spectators, and then one has p2 ¼ p0
2 and p3 ¼ p0

3,
and we have inserted the products B−1

u Bu ¼ B−1
u0 Bu0 ¼ 1 within the trace.

We now use relations of the type (B13) and ð1þ =uÞð1þ =uÞ ¼ 2ð1þ =uÞ, ðmþ p2Þðmþ p2Þ ¼ 2mðmþ p2Þ…, and one
finally gets

Tr½DðR−1
3 R0

3R
0−1
2 R2Þ� ¼

1

4

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk02 þmÞðk002 þmÞðk03 þmÞðk003 þmÞ

q Tr½ð1þ =uÞðmþ p2Þð1þ =u0Þðmþ p3Þ�: ðB16Þ

The computation of the trace finally gives

Tr½DðR−1
3 R0

3R
0−1
2 R2Þ� ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk02þmÞðk002 þmÞðk03þmÞðk003 þmÞ

q
× ½m2ð1þu:u0Þþmðuþu0Þ:ðp2þp3Þþp2:p3þðu:p2Þðu0:p3Þþðu:p3Þðu0:p2Þ− ðu:u0Þðp2:p3Þ�:

ðB17Þ

So one gets finally the matrix element,

hP0; μ0jOjP; μi ¼ 1

8

Z
dp2

ð2πÞ3
dp3

ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
jp

00
j

P
kp

0
k

M0
0M0

s Y3
i¼1

ffiffiffiffiffiffiffiffiffiffiffi
k00i k

0
i

p00
i p

0
i

s
φðk0

2;k
0
3Þ�φðk2;k3Þ

×
1ffiffiffiffiffiffiffiffiffiffiffi
p00
1 p

0
1

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk01 þm1Þðk001 þm0

1Þ
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk02 þmÞðk002 þmÞðk03 þmÞðk003 þmÞ
q

× ½m2ð1þ u:u0Þ þmðuþ u0Þ:ðp2 þ p3Þ þ p2:p3 þ ðu:p2Þðu0:p3Þ þ ðu:p3Þðu0:p2Þ − ðu:u0Þðp2:p3Þ�
× ðχ̄ðμ0Þu0 ðm0

1 þ p0
1ÞOðm1 þ p1ÞχðμÞu Þ; ðB18Þ

because ð1þ =uÞχðμÞu ¼ 2χðμÞu ; χ̄ðμ
0Þ

u0 ð1þ =u0Þ ¼ 2χ̄ðμ
0Þ

u0 .
In the heavy quark limit [15], one has

ðu; u0Þ → ðv; v0Þ;
�
p1

m1

;
p0
1

m0
1

�
→ ðv; v0Þ;

P
jp

00
j

P
kp

0
k

M0
0M0

→ v0v00

k01
m1

;
k001
m0

1

→ 1; ðk02; k002 Þ → ðp2:v; p2:v0Þ; ðk03; k003 Þ → ðp3:v; p3:v0Þ;
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and since p2 ¼ p0
2; p3 ¼ p0

3 for the spectator quarks, one gets the heavy quark limit matrix element,

hP0; μ0jOjP; μi ¼ 1ffiffiffiffiffiffiffiffiffiffi
v0v00

p
Z

dp2

ð2πÞ3
1

p0
2

dp3

ð2πÞ3
1

p0
3

φðk0
2;k

0
3Þ�φðk2;k3Þ

×
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp2:vÞðp3:vÞðp2:v0Þðp3:v0Þ
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp2:vþmÞðp3:vþmÞðp2:v0 þmÞðp3:v0 þmÞp

× ½m2ð1þ v:v0Þ þmðvþ v0Þ:ðp2 þ p3Þ þ ðp2:vÞðp3:v0Þ þ ðp3:vÞðp2:v0Þ þ ðp2:p3Þð1 − v:v0Þ�
× ðχ̄ðμ0Þv0 OχðμÞv Þ: ðB19Þ

Finally, identifying with the definition of the Isgur-Wise function within the same normalization convention,

hΛbðP0; μ0ÞjOjΛcðP; μÞi ¼
1ffiffiffiffiffiffiffiffiffiffi
v0v00

p ξΛðv:v0Þðχ̄ðμ
0Þ

v0 OχðμÞv Þ; ðB20Þ

one gets

ξΛðv:v0Þ ¼
Z

dp2

ð2πÞ3
1

p0
2

dp3

ð2πÞ3
1

p0
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2:vÞðp3:vÞðp2:v0Þðp3:v0Þ

p
φðk0

2;k
0
3Þ�φðk2;k3Þ

×
½m2ð1þ v:v0Þ þmðvþ v0Þ:ðp2 þ p3Þ þ ðp2:vÞðp3:v0Þ þ ðp3:vÞðp2:v0Þ þ ðp2:p3Þð1 − v:v0Þ�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp2:vþmÞðp3:vþmÞðp2:v0 þmÞðp3:v0 þmÞp ; ðB21Þ

where the arguments of the internal wave function are the
three-dimensional parts of the four vectors,

ki ¼ B−1
v pi; k0i ¼ B−1

v0 pi ði ¼ 2; 3Þ: ðB22Þ

The factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp2:vÞðp3:vÞðp2:v0Þðp3:v0Þ

p
in the first line

of (B21) comes from the Jacobian, and the last line comes
from the Wigner rotations.
One can observe that the expression of the Isgur-Wise

function (B21) is fully covariant, in particular due to the
Lorentz invariant measures dpi

p0
i
(i ¼ 2, 3).

As we will see below, to get covariance of the IW
function, one needs, in (B21), rotational invariance of the
internal wave functions.
For v:v0 ¼ 1, one finds that, due to the normalization of

the internal wave function, the Isgur-Wise function is
correctly normalized,

ξΛð1Þ ¼
Z

dp2

ð2πÞ3
dp3

ð2πÞ3 jφðp2;p3Þj2 ¼ 1: ðB23Þ

The expressions of the IW functions in the baryon case
(B21) contain Lorentz invariant measures dpi

p0
i
and a Lorentz

invariant kernel. However, we have the product of wave
functions φðk0

2;k
0
3Þ�φðk2;k3Þ and to show that both IW

functions are Lorentz invariant, we need to demonstrate
that these products are also Lorentz invariant.
Consider now the product of wave functions,

φðk0
2;k

0
3Þ�φðk2;k3Þ

¼ φðB−1
v0 p2

���!
;B−1

v0 p3

���!Þ�φðB−1
v p2

���!
;B−1

v p2

���!Þ: ðB24Þ

The radial wave functions are rotational invariant, so that
they can be redefined as follows:

φðk2;k3Þ ¼ ψðk2
2;k

2
3;k2:k3Þ; ðB25Þ

and similarly, for φðk0
2;k

0
3Þ.

One has

k2
2¼ðB−1

v p2

���!Þ2¼ððB−1
v p2Þ0Þ2−m2¼ðp2:vÞ2−m2; ðB26Þ

where the last equalities follow from the invariance
of the scalar product because, defining the four vector
v0 ¼ ð1; 0Þ, one has

k02 ¼ðB−1
v p2Þ0¼ðB−1

v p2Þ:v0¼p2:ðBvv0Þ¼p2:v: ðB27Þ

What is missing are the three-dimensional scalar
products like
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k2:k3 ¼ ðB−1
v p2

���!Þ:ðB−1
v p3

���!Þ ¼ ðB−1
v p2Þ0ðB−1

v p3Þ0 − ðB−1
v p2Þ:ðB−1

v p3Þ; ðB28Þ

and using relations (B27) and the invariance of the scalar product, we have

k2:k3 ¼ ðp2:vÞðp3:vÞ − ðp2:p3Þ: ðB29Þ

Finally, we have the Lorentz scalar wave function,

φðk2;k3Þ ¼ ψððp2:vÞ2 −m2; ðp3:v0Þ2 −m2; ðp2:vÞðp3:vÞ − ðp2:p3ÞÞ; ðB30Þ

and similarly, for φðk0
2;k

0
3Þ.

Finally the baryon Isgur-Wise function writes in the explicit Lorentz invariant form,

ξΛðv:v0Þ ¼
Z

dp2

ð2πÞ3
1

p0
2

dp3

ð2πÞ3
1

p0
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2:vÞðp3:vÞðp2:v0Þðp3:v0Þ

p
× ψððp2:v0Þ2 −m2; ðp3:v0Þ2 −m2; ðp2:v0Þðp3:v0Þ − ðp2:p3ÞÞ�
× ψððp2:vÞ2 −m2; ðp3:vÞ2 −m2; ðp2:vÞðp3:vÞ − ðp2:p3ÞÞ

×
½m2ð1þ v:v0Þ þmðvþ v0Þ:ðp2 þ p3Þ þ ðp2:vÞðp3:v0Þ þ ðp3:vÞðp2:v0Þ þ ðp2:p3Þð1 − v:v0Þ�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp2:vþmÞðp3:vþmÞðp2:v0 þmÞðp3:v0 þmÞp : ðB31Þ

APPENDIX C: THE Q POINTLIKE-DIQUARK IW FUNCTIONS IN THE BT SCHEME

1. The elastic IW function

This case is much simpler than the three-quark one Qqq, because the diquark is in a S ¼ 0, L ¼ 0 state, and there are no
Wigner rotations on the spectator diquark.
The matrix element reads

hP0; μ0jOjP; μi ¼
Z

dp2

ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
jp

00
j

P
kp

0
k

M0
0M0

s Y2
i¼1

ffiffiffiffiffiffiffiffiffiffiffi
k00i k

0
i

p00
i p

0
i

s
φ0ðk0

2Þ�φðk2ÞTr½χ̄ðμ0ÞþDðR0−1
1 ÞOðp0

1;p1ÞDðR1ÞχðμÞ�; ðC1Þ

that gives, in the heavy quark limit,

hP0; μ0jOjP; μi ¼ 1ffiffiffiffiffiffiffiffiffiffi
v0v00

p ðχ̄ðμ0Þþv0 OχðμÞv Þ
Z

dp2

ð2πÞ3
1

p0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2:vÞðp2:v0Þ

p
φ0ðk0

2Þ�φðk2Þ; ðC2Þ

corresponding to the simple expression of the IW function,

ξΛðv:v0Þ ¼
Z

dp2

ð2πÞ3
1

p0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2:vÞðp2:v0Þ

p
φ0ðk0

2Þ�φðk2Þ; ðC3Þ

that is covariant because k2
2 ¼ ðp2:vÞ2 −m2, k02

2 ¼ ðp2:v0Þ2 −m2, where m is the diquark mass, and is correctly
normalized, ξΛð1Þ ¼ 1.

2. The inelastic L= 0 → L= 1 IW function

hP0; μ0jOjP; μi ¼
Z

dp2

ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
jp

00
j

P
kp

0
k

M0
0M0

s Y2
i¼1

ffiffiffiffiffiffiffiffiffiffiffi
k00i k

0
i

p00
i p

0
i

s
φðk2Þ

×
X
s0
1
;s1

φ0ðμ0Þ�
s0
1

ðk0
2Þ½χ̄ðμ

0ÞþDðR0−1
1 ÞOðp0

1;p1ÞDðR1ÞχðμÞ�s0
1
s1
φðμÞ
s1 ðk2Þ; ðC4Þ
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where

φðμÞ
s1 ðk2Þ ¼ χðμÞs1 φðk2Þ

φ0ðμ0Þ�
s0
1

ðk0
2Þ ¼

X
m0

h1μ0 −m0;
1

2
m0jJμ0iYμ0−m

1 χðm
0Þ

s0
1
; ðC5Þ

where J ¼ 1
2
or J ¼ 3

2
.

The sum over the Clebsch-Gordan coefficients can be written as

X
m0

h1μ0 −m0;
1

2
m0jJμ0iYμ0−m

1 χðm0Þ ¼ 1ffiffiffiffiffiffi
4π

p 1

jk0
2j
X
m0

ð−1Þ12þm0 ½σðμ0−m0Þiσ2�μ0;−m0χðm0Þðk0
2Þμ

0−m0

¼ −
1ffiffiffiffiffiffi
4π

p 1

jk0
2j
ðσ:k0

2Þχðμ
0Þ:

Passing now to the 4 × 4 matrix formulation and taking the heavy quark limit, one finds, after some algebra,

hP0; μ0jOjP; μi ¼ 1ffiffiffiffiffiffiffiffiffiffi
v0v00

p 1

4

Z
dp2

ð2πÞ3
1

p0
2

φ0ðk0
2Þ�φðk2Þ

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp2:v0Þ2 −m2
p χ̄ðμ

0Þ
v0 f½=p2 − ðp2:v0Þ=v0�γ5ð1þ =v0ÞOð1þ =uÞgχðμÞv : ðC6Þ

Particularizing to J ¼ 1
2
and identifying to the HQET matrix element defining the Isgur-Wise function σðwÞ [35],

hP0; μ0jOjP; μi ¼ σðwÞffiffiffi
3

p ½χ̄ðμ0Þv0 γ5ð=vþ wÞOχðμÞv �; ðC7Þ

one finds

σðwÞ ¼
ffiffiffi
3

p

w2 − 1

Z
dp2

ð2πÞ3
1

p0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2:vÞðp2:v0Þ

p
φ0ðk0

2Þ�φðk2Þ
p2:ðv − wv0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp2:v0Þ2 −m2Þ2 −m2
p : ðC8Þ

APPENDIX D: BING CHEN et al. L= 0 AND L= 1 WAVE FUNCTIONS
IN THE QUARK-DIQUARK MODEL

In an expansion in terms of L ¼ 0 and L ¼ 1 on harmonic oscillator bases,

φðnÞ
0 ðpÞ ¼ ð−1Þnð4πÞ3=42n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn!Þ2

ð2nþ 1Þ!

s
1

β3=2
L1=2
n

�
p2

β2

�
exp

�
−

p2

2β2

�
ðD1Þ

φðnÞ
1 ðpÞ ¼ ð−1Þnð4πÞ3=42nþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!ðnþ 1Þ!
ð2nþ 3Þ!

s
1

β5=2
jpjL3=2

n

�
p2

β2

�
exp

�
−

p2

2β2

�
; ðD2Þ

the ground state wave function reads, with the calculation of the wave function in the heavy quark limit,

φ0ðpÞ ¼ −0.9940325φð0Þ
0 ðpÞ − 8.5672485 × 10−3φð1Þ

0 ðpÞ
− 9.9527270 × 10−2φð2Þ

0 ðpÞ − 2.4497384 × 10−2φð3Þ
0 ðpÞ

− 2.7361497 × 10−2φð4Þ
0 ðpÞ − 1.4908912 × 10−2φð5Þ

0 ðpÞ
− 1.2411494 × 10−2φð6Þ

0 ðpÞ − 9.4764605 × 10−3φð7Þ
0 ðpÞ

− 6.3898186 × 10−3φð8Þ
0 ðpÞ − 8.0367858 × 10−3φð9Þ

0 ðpÞ; ðD3Þ
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and the L ¼ 1 wave function,

φ1ðpÞ ¼ 0.9482319φð0Þ
1 ðpÞ − 0.2740721φð1Þ

1 ðpÞ
þ 0.1497750φð2Þ

1 ðpÞ − 4.7684737 × 10−2φð3Þ
1 ðpÞ

þ 3.0210067 × 10−2φð4Þ
1 ðpÞ − 7.8150993 × 10−3φð5Þ

1 ðpÞ
þ 7.4121789 × 10−3φð6Þ

1 ðpÞ − 5.9317378 × 10−4φð7Þ
1 ðpÞ

þ 2.1176776 × 10−3φð8Þ
1 ðpÞ þ 9.3134667 × 10−4φð9Þ

1 ðpÞ: ðD4Þ

APPENDIX E: HELICITY AMPLITUDES AND OBSERVABLES

The expressions for the helicity amplitudes and observables as formulated by Gutsche et al. [28] are summarized here.
In terms of V − A chiral helicity amplitudes,

Hλ2;λW ¼ HV
λ2;λW

−HA
λ2;λW

ðE1Þ

(λ2: helicity of the final Λc, λW : helicity of the final virtual W).
Gutsche et al. define the following bilinears in terms of helicity amplitudes:

HU ¼ jHþ1
2
þ1j2 þ jH−1

2
−1j2; HP ¼ jHþ1

2
þ1j2 − jH−1

2
−1j2

HL ¼ jHþ1
2
0j2 þ jH−1

2
0j2; HLP

¼ jHþ1
2
0j2 − jH−1

2
0j2

HS ¼ jHþ1
2
tj2 þ jH−1

2
tj2; HSP ¼ jHþ1

2
tj2 − jH−1

2
tj2

HLT ¼ Re
�
Hþ1

2
þ1H

†
−1
2
0
þHþ1

2
0H

†
−1
2
−1

�
; HLTP

¼ Re
�
Hþ1

2
þ1H

†
−1
2
0
−Hþ1

2
0H

†
−1
2
−1

�

HST ¼ Re

�
Hþ1

2
þ1H

†
−1
2
t
þHþ1

2
tH

†
−1
2
−1

�
; HLTP

¼ Re

�
Hþ1

2
þ1H

†
−1
2
t
−Hþ1

2
tH

†
−1
2
−1

�

HSL ¼ Re

�
Hþ1

2
0H

†
þ1

2
t
þH−1

2
0H

†
−1
2
t

�
; HSLP

¼ Re

�
Hþ1

2
0H

†
þ1

2
t
−H−1

2
0H

†
−1
2
t

�
; ðE2Þ

where the left (right) column corresponds to parity con-
serving (parity violating) quantities, and

Htot ¼ HU þHL þ δlðHU þHL þ 3HSÞ; ðE3Þ

with the dependence on the lepton mass given by

δl ¼ m2
l

2q2
: ðE4Þ

In terms of these quantities, the interesting observables
read as below.
Differential rate,

dΓ
dq2

¼ Γ0

ðq2 −m2
lÞ2jp2j

M7
1q

2
Htot; ðE5Þ

where

Γ0 ¼
G2

FjVcbj2M5
1

192π3
: ðE6Þ

Forward-backward asymmetry,

Al
FBðq2Þ ¼

dΓðFÞ − dΓðBÞ
dΓðFÞ þ dΓðBÞ ¼ −

3

2

HP þ 4δlHSL

Htot
: ðE7Þ

Convexity parameter (second derivative of the zenithal
angular distribution),

CFðq2Þ ¼
1

Htot

d2WðθÞ
dðcos θÞ2 ¼

3

4
ð1 − 2δlÞ

HU − 2HL

Htot
: ðE8Þ
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Longitudinal hadron polarization,

Ph
z ðq2Þ ¼

HP þHLP
þ δlðHP þHLP

þ 3HSPÞ
Htot

: ðE9Þ

Tranverse hadron polarization,

Ph
xðq2Þ ¼ −

3π

4
ffiffiffi
2

p HLT − 2δlHSTP

Htot
: ðE10Þ

Longitudinal lepton polarization,

Pl
z ðq2Þ ¼ −

HU þHL − δlðHU þHL þ 3HSÞ
Htot

: ðE11Þ

Transverse lepton polarization,

Pl
xðq2Þ ¼ −

3π

4
ffiffiffi
2

p ffiffiffiffiffi
δl

p HP − 2HSL

Htot
: ðE12Þ
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Bakamjian-Thomas, Phys. Rev. D 56, 5668 (1997).

[19] C. Albertus, J. Amaro, E. Hernandez, and J. Nieves,
Charmed and bottom baryons: AVariational approach based
on heavy quark symmetry, Nucl. Phys. A740, 333 (2004);
C. Albertus, E. Hernandez, and J. Nieves, Combined non-
relativistic constituent quark model and heavy quark effec-
tive theory study of semileptonic decays of Λb and Ξb

baryons, Phys. Rev. D 71, 014012 (2005).
[20] M. Pervin, W. Roberts, and S. Capstick, Semileptonic

decays of heavy lambda baryons in a quark model, Phys.
Rev. C 72, 035201 (2005).

[21] R. Aaij et al. (LHCb Collaboration), Measurement of the
shape of the Λ0

b → Λþ
c μ

−ν̄μ differential decay rate, Phys.
Rev. D 96, 112005 (2017).

[22] V. Morénas, A. Le Yaouanc, L. Oliver, O. Pene, and J.-C.
Raynal, Slope of the Isgur-Wise function in the heavy mass
limit of quark models a la Bakamjian-Thomas, Phys. Lett. B
408, 357 (1997).

[23] D. Merten, R. Ricken, M. Koll, B. Metsch, and H. Petry,
Weak decays of heavy mesons in a covariant quark model,
Eur. Phys. J. A 13, 477 (2002); D. Merten, H.-R. Petry, F.
Klein, U.-G. Meißner, and U. Thoma, EPJ Web Conf. 134,
02005 (2017).

[24] S. Capstick and N. Isgur, Baryons in a relativized quark
model with chromodynamics, Phys. Rev. D 34, 2809
(1986); AIP Conf. Proc. 132, 267 (1985).

[25] F. Cardarelli and S. Simula, Isgur-Wise form-factors of
heavy baryons within a light front constituent quark model,
Phys. Lett. B 421, 295 (1998); Analysis of the exclusive

HEAVY BARYON WAVE FUNCTIONS, BAKAMJIAN-THOMAS … PHYS. REV. D 102, 094023 (2020)

094023-29

https://doi.org/10.1103/PhysRevD.88.072012
https://doi.org/10.1103/PhysRevD.92.072014
https://doi.org/10.1103/PhysRevD.92.072014
https://arXiv.org/abs/1603.06711
https://doi.org/10.1103/PhysRevLett.115.111803
http://www.slac.stanford.edu/xorg/hfag/semi/winter16/winter16
http://www.slac.stanford.edu/xorg/hfag/semi/winter16/winter16
http://www.slac.stanford.edu/xorg/hfag/semi/winter16/winter16
http://www.slac.stanford.edu/xorg/hfag/semi/winter16/winter16
http://www.slac.stanford.edu/xorg/hfag/semi/winter16/winter16
https://doi.org/10.1103/PhysRevD.88.094012
https://doi.org/10.1103/PhysRevD.88.094012
https://doi.org/10.1103/PhysRevD.85.094025
https://doi.org/10.1103/PhysRevD.91.074001
https://doi.org/10.1103/PhysRevD.91.074001
https://doi.org/10.1103/PhysRevD.91.119907
https://doi.org/10.1103/PhysRevD.91.119907
https://doi.org/10.22323/1.205.0203
https://doi.org/10.22323/1.205.0203
https://doi.org/10.1103/PhysRevD.91.115003
https://doi.org/10.1103/PhysRevD.91.115003
https://doi.org/10.1103/PhysRevD.93.054003
https://doi.org/10.1103/PhysRevD.94.073008
https://doi.org/10.1103/PhysRevD.94.073008
https://doi.org/10.1007/JHEP02(2017)068
https://doi.org/10.1007/JHEP02(2017)068
https://doi.org/10.1103/PhysRevD.92.034503
https://doi.org/10.1007/JHEP08(2017)131
https://doi.org/10.1016/0370-2693(95)01285-0
https://doi.org/10.1016/0370-2693(96)00945-8
https://doi.org/10.1103/PhysRevD.32.189
https://doi.org/10.1103/PhysRevD.56.5668
https://doi.org/10.1016/j.nuclphysa.2004.04.114
https://doi.org/10.1103/PhysRevD.71.014012
https://doi.org/10.1103/PhysRevC.72.035201
https://doi.org/10.1103/PhysRevC.72.035201
https://doi.org/10.1103/PhysRevD.96.112005
https://doi.org/10.1103/PhysRevD.96.112005
https://doi.org/10.1016/S0370-2693(97)00826-5
https://doi.org/10.1016/S0370-2693(97)00826-5
https://doi.org/10.1140/epja/iepja1357
https://doi.org/10.1051/epjconf/201713402005
https://doi.org/10.1051/epjconf/201713402005
https://doi.org/10.1103/PhysRevD.34.2809
https://doi.org/10.1103/PhysRevD.34.2809
https://doi.org/10.1063/1.35361
https://doi.org/10.1016/S0370-2693(97)01581-5


semileptonic decay Λb → Λc þ lþ ν̄ within a light front
constituent quark model, Nucl. Phys. A663, 931 (2000);
Analysis of the Λb → Λc þ lþ ν̄ decay within a light front
constituent quark model, Phys. Rev. D 60, 074018 (1999).

[26] D. Ebert, R. Faustov, and V. Galkin, Spectroscopy and
Regge trajectories of heavy baryons in the relativistic quark-
diquark picture, Phys. Rev. D 84, 014025 (2011); Masses of
excited heavy baryons in the relativistic quark model, Phys.
Lett. B 659, 612 (2008); Semileptonic decays of heavy
baryons in the relativistic quark model, Phys. Rev. D 73,
094002 (2006).

[27] B. Chen, K.-W. Wei, X. Liu, and T. Matsuki, Low-lying
charmed and charmed-strange baryon states, Eur. Phys. J. C
77, 154 (2017).

[28] T. Gutsche, M. Ivanov, J. Koerner, V. Lyubovitskij, P.
Santorelli, and C.-T. Tran, Analyzing lepton flavor univer-
sality in the decays Λb → Λð�Þ

c ð1
2
�; 3

2
−Þ þ lþ ν̄l, Phys. Rev.

D 98, 053003 (2018).
[29] A. Le Yaouanc, L. Oliver, and J.-C. Raynal, Bound on the

curvature of the Isgur-Wise function of the baryon semi-
leptonic decayΛb → Λclν̄l, Phys. Rev.D 79, 014023 (2009).

[30] A. Le Yaouanc, L. Oliver, and J.-C. Raynal, Isgur-Wise
functions and unitary representations of the Lorentz group:
The baryon case j ¼ 0, Phys. Rev. D 80, 054006 (2009).

[31] K. C. Bowler, R. D. Kenway, L. Lellouch, J. Nieves, O.
Oliveira, D. G. Richards, C. T. Sachrajda, N. Stella, and P.
Ueberholz (UKQCD Collaboration), First lattice study of
semileptonic decays of Λb and Ξb baryons, Phys. Rev. D 57,
6948 (1998).

[32] S. Gottlieb and S. Tamhankarn, A lattice study of Λb
semileptonic decay, Nucl. Phys. B, Proc. Suppl. 119, 644
(2003).

[33] M. Luke, Effects of subleading operators in the heavy quark
effective theory, Phys. Lett. B 252, 447 (1990).

[34] C. Bourrely, I. Caprini, and L. Lellouch, Model-independent
description of B → πlν decays and a determination of
jVðubÞj, Phys. Rev. D 79, 013008 (2009); Erratum, Phys.
Rev. D 82, 099902 (2010).

[35] A. Leibovich and I. Stewart, Semileptonic Lambda(b) decay
to excited Lambda(c) baryons at order Lambda(QCD)/m(Q),
Phys. Rev. D 57, 5620 (1998).

[36] Y. Jia, F. Jugeau, and L. Oliver, New results on the baryon
decay Λb → Λclν in heavy quark effective theory, Phys.
Rev. D 86, 014002 (2012).

[37] I. Bigi, M. Shifman, and N. Uraltsev, Aspects of heavy
quark theory, Annu. Rev. Nucl. Part. Sci. 47, 591 (1997).

[38] M. Jarfi, O. Lazrak, A. Le Yaouanc, L. Oliver, O. Pène, and
J.-C. Raynal, Decays of b mesons into baryon—anti-baryon,
Phys. Rev. D 43, 1599 (1991).

[39] H. Hernandez, J. Nieves, and J. M. Verde-Velasco, Test of
the heavy quark-light diquark approximation for baryons
with a heavy quark, Phys. Lett. B 666, 150 (2008).

[40] J. Green, J. Negele, M. Engelhardt, and P. Varilly, Spatial
diquark correlations in a hadron, Proc. Sci. LATTICE2010
(2010) 140 [arXiv:1012.2353].

[41] R. Fukuda and Ph. de Forcrand, Searching for evidence of
diquark states using lattice QCD simulations, Proc. Sci.
LATTICE2016 (2017) 121; C. Alexandrou, Ph. de Forcrand,
and B. Lucini, Evidence for Diquarks in Lattice QCD, Phys.
Rev. Lett. 97, 222002 (2006).

[42] X.-Y. Guo and T. Muta, Isgur-wise function for Λb → Λc in
B-S approach, Phys. Rev. D 54, 4629 (1996).

[43] N. Isgur, M. Wise, and M. Youssefmir, Excited charm
baryons in semileptonic Lambda(b) decay and their con-
tribution to a Bjorken sum rule, Phys. Lett. B 254, 215
(1991).

[44] T. Gutsche, N. Habyl, M. Ivanov, J. Koerner, V.
Lyubovitskij, and P. Santorelli, Physical observables in
the decay Λb → Λcð→ΛπÞ þ τ þ ν̄τ, Int. J. Mod. Phys.
Conf. Ser. 39, 1560112 (2015); Semileptonic decay
Λb → Λcð→ΛπÞ þ τ þ ν̄τ, Phys. Rev. D 91, 074001
(2015); Erratum, Phys. Rev. D 91, 119907 (2015).

[45] T. Gutsche, M. Ivanov, J. Koerner, V. Lyubovitskij, and P.
Santorelli, Theoretical description of the decays Λb →
Λð�Þð1

2
�; 3

2
�Þ þ J=ψ , Phys. Rev. D 96, 013003 (2017).

[46] F. Bernlochner, Z. Ligeti, D. Robinson, and W. Sutcliffe,
New Predictions for Λb → Λc Semileptonic Decays and
Tests of Heavy Quark Symmetry, Phys. Rev. Lett. 121,
202001 (2018); Precise predictions for Λb → Λc semilep-
tonic decays, Phys. Rev. D 99, 055008 (2019).

[47] P. Boer, M. Bordone, E. Graverini, P. Owen, M. Rotondo,
and D. van Dyk, Testing lepton flavour universality in
semileptonic Λb → Λ�

c decays, J. High Energy Phys. 06
(2018) 155.

[48] A. Falk and M. Neubert, Second order power corrections in
the heavy quark effective theory II. Baryon form factors,
Phys. Rev. D 47, 2982 (1993).
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