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We study the lepton-jet correlation in deep inelastic scattering. We perform one-loop calculations for the
spin averaged and transverse spin-dependent differential cross sections depending on the total transverse
momentum of the final state lepton and the jet. The transverse momentum dependent factorization
formalism is applied to describe the relevant observables. To show the physics reach of this process, we
perform a phenomenological study for HERA kinematics and comment on an ongoing analysis of
experimental data. In addition, we highlight the potential of this process to constrain small-x dynamics.
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I. INTRODUCTION

In a recent paper [1], we have proposed the lepton-jet
correlation in deep inelastic scattering (DIS) at the planned
Electron-Ion Collider (EIC) [2–4] as a unique probe to
explore the structure of nucleons/nuclei. In this paper, we
provide a detailed derivation of the formalism and perform a
phenomenological study relevant for the existing jet pro-
duction data in DIS from HERA [5–7], which have been
reanalyzed recently to study the lepton-jet correlation [8].
In the DIS process in electron-nucleon/nucleus colli-

sions, an energetic lepton scatters off the nucleon/nucleus
target and produces a final state jet. In the correlation
measurement, as shown in Fig. 1, we detect both the lepton
and the final state jet,

lðkÞ þ AðPAÞ → l0ðklÞ þ JetðPJÞ þ X; ð1Þ

where the incoming lepton and hadron carry momenta k
and PA, and the outgoing lepton and jet have momenta kl
and PJ, respectively. We further define the rapidities of the
final state lepton and jet as yl and yj and the respective
transverse momenta kl⊥ and PJ⊥. All of these kinematic
variables are defined in the center of mass frame of the
incoming lepton and hadron. At hadron colliders, dijet
correlations have also been studied [9–13] in terms of
similar observables.

Inclusive jet and dijet production has been studied
extensively at the HERA collider. However, all these
measurements were performed in the center of mass frame
of the virtual photon and the nucleon [5–7]. For the
proposed lepton-jet correlation in the center of mass frame
of the incoming lepton and hadron, the leading-order
contribution leads to the final state jet and lepton which
are back-to-back in the transverse plane, that is, the
azimuthal angular distribution will peak around ϕ ¼ π.
The intrinsic transverse momentum of the quark in the
nucleon and higher order gluon radiation will induce an
imbalance between these final state particles. In the
correlation limit that the imbalance transverse momentum
q⊥ ¼ jk⃗l⊥ þ P⃗J⊥j is much smaller than the lepton (and jet)
transverse momentum, we can factorize the differential
cross section in terms of the transverse momentum depen-
dent (TMD) quark distribution [14–20] and the soft factor
associated with the final state jet. This factorization is
similar to that for the semi-inclusive hadron production in
DIS (SIDIS) [21–23], where a final state TMD fragmenta-
tion will contribute as well.
More recently, a number of interesting proposals and

detailed studies of jet physics at the EIC have emerged
[24–37]. In particular, it was shown [24–32] that the sys-
tematic analysis of jet observables including the lepton-jet
correlation can be utilized for the tomography of the nucleon/
nucleus. Togetherwith these investigations, our studies in this
paper and those in Ref. [1] will play an important role to
motivate further jet physics research at the EIC.
The rest of this paper is organized as follows. In Sec. II,

we will present a detailed study on the TMD factorization
for the lepton-jet correlation in ep and eA collisions.
We will introduce the soft factor associated with the jet
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and the TMD quark distribution. One-loop calculations for
both the unpolarized and single-transverse-spin-dependent
differential cross sections will be evaluated explicitly. The
factorization will be demonstrated as well. In Sec. III, we
perform phenomenological studies for the relevant kin-
ematics at HERA. In particular, the TMD quark distribution
at small-x will be investigated by utilizing the currently
known parametrization of the TMD quark distributions. We
emphasize potentially important constraints of these dis-
tributions at small-x from data. This also highlights the
impact of future measurements at the EIC. Finally, we
summarize our paper in Sec. IV.

II. TMD FACTORIZATION AT LOW
IMBALANCE TRANSVERSE MOMENTUM

Including the spin asymmetry, the differential cross
sections for the process of Eq. (1) can written as

d5σðlp → l0JÞ
dyld2kl⊥d2q⊥
¼ σ0ðWUUðQ; q⊥Þ þ ϵαβSα⊥W

β
UTðQ; q⊥ÞÞ: ð2Þ

Here the first term corresponds to the spin-averaged
cross section, and the second to the transverse single
spin-dependent contribution, where ϵαβ is defined as
ϵαβμνPAμkν=PA · k with the convention ϵ0123 ¼ 1. When
q⊥ ≪ Q, whereQ is the virtuality of the exchanged photon,
the structure functions WUU;UT can be formulated in terms
of TMD factorization. In this section, we will demonstrate
this factorization by an explicit calculation at one-loop
order in the correlation limit, that is, q⊥ ≪ Q. We work in
the collinear framework, where the incoming quark dis-
tribution and quark-gluon-quark correlation function (the
Qiu-Sterman matrix element defined below) are the basic
ingredients for the unpolarized and single-transverse spin-
dependent differential cross sections, respectively.
At leading order, the lepton scatters off the quark through

a t-channel virtual photon exchange. The virtuality of the
photon defines the hard-scattering process. The differential
cross section can be written as

d5σð0Þ

dyld2kl⊥d2q⊥
¼ σ0xfqðxÞδð2Þðq⊥Þ ð3Þ

for the unpolarized case, where the prefactor is given by

σ0 ¼
α2ee2q
ŝQ2

2ðŝ2 þ û2Þ
Q4

: ð4Þ

In the above equation, x represents the momentum fraction
of the incoming nucleon carried by the quark, fqðxÞ for the
quark distribution function. The Mandelstam variables ŝ, t̂,
and û are defined as usual for the partonic subprocess; in
particular, we have t̂ ¼ ðkl − kÞ2 ¼ −Q2. At this order, the
transverse momenta of the final state lepton and jet are
balanced which is indicated by the delta function in the
above equation. In addition, the rapidities of the two final
state particles are also correlated,

1 ¼ kl⊥ffiffiffiffiffiffiffi
Sep

p ðeyl þ eyJÞ; ð5Þ

x ¼ kl⊥ffiffiffiffiffiffiffi
Sep

p ðe−yl þ e−yJÞ; ð6Þ

where Sep is the center of mass energy squared of the
incoming lepton and the nucleon, and yJ is the jet rapidity
in the center of mass frame.
The TMD factorization for the two structure functions

WUU;UT can be expressed in terms of the Fourier transform
with respect to the transverse momentum q⊥ as

WUUðQ; q⊥Þ ¼
Z

d2b⊥
ð2πÞ2 e

iq⃗⊥·b⃗⊥W̃UUðQ; b⊥Þ; ð7Þ

Wα
UTðQ; q⊥Þ ¼

Z
d2b⊥
ð2πÞ2 e

iq⃗⊥·b⃗⊥W̃α
UTðQ; b⊥Þ: ð8Þ

The leading-order Born diagram contributions to W̃UU and
W̃UT are given by

W̃ð0Þ
UUðQ; b⊥Þ ¼ xfqðxÞ;

W̃ð0Þα
UT ðQ; b⊥Þ ¼

�
ibα

2

�
xTFðx; xÞ; ð9Þ

where x is defined above, and fqðxÞ represents the
integrated quark distribution function. The single-trans-
verse spin asymmetry comes from the quark Sivers
function [38] and the associated twist-three quark-gluon-
quark correlation function [39,40],

TFðx1; x2Þ ¼
Z

dξ−dη−

4π
eiðk

þ
q1η

−þkþg ξ−Þϵβα⊥ S⊥β

× hPSjψ̄ð0ÞLð0; ξ−ÞγþgFþ
α ðξ−Þ

×Lðξ−; η−Þψðη−ÞjPSi; ð10Þ

where

FIG. 1. The lepton-jet correlation in deep-inelastic scattering
with a nucleon or nucleus at the EIC or HERA.
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x1 ¼ kþq1=P
þ; ð11Þ

xg ¼ kþg =Pþ ¼ x2 − x1; ð12Þ

and L is the light-cone gauge link making the above
definition gauge invariant.
In the following, we are going to derive the one-loop

corrections and show that TMD factorization is valid for
both the unpolarized and the single-transverse spin-depen-
dent cross section in the correlation limit. In particular, the
collinear divergence will be factorized into the relevant
TMD quark distribution and additional soft gluon radiation
into a soft factor associated with the final state jet. The hard
factors will be derived at one-loop order based on these
results. First, we consider the unpolarized case and second
the Sivers asymmetry.

A. The unpolarized differential cross section
at one-loop order

The leading-order diagram lepton-quark scattering dia-
gram is shown in Fig. 2(a). This leads to a Delta function of
q⊥ as δð2Þðq⊥Þ, which means that the lepton and quark in
the final state are back-to-back in the transverse plane. At
higher orders in perturbative QCD, gluon radiation will
contribute a finite transverse momentum. The collinear
gluon parallel to the incoming quark is included as part of
the TMD quark distribution, whereas those parallel to the
final state quark jet are part of jet function. Because the

latter does not contribute to a finite q⊥, it will not appear
explicitly in the TMD factorization formula.
The soft gluon radiation is of particular interest, as it

shows the structure of the TMD factorization. We show the
typical soft gluon radiation diagrams in Fig. 2(b) for the
unpolarized case, and in Figs. 2(c) and 2(d) for transverse
spin-dependent cross sections.
The soft gluon radiation is also important to understand

how the jet contribution enters the TMD factorization and
resummations [41–47]. In the process of (1), we have a
final state jet, where the soft gluon radiation from the jet
will contribute to the imbalance transverse momentum q⊥,
from, for example, the diagram shown in Fig. 2(b),

g2
Z

d3kg
ð2πÞ32Ekg

δð2Þðq⊥ − kg⊥ÞCFSgðkJ; p1Þ: ð13Þ

Here kg is the momentum of the radiated gluon, and p1 and
kJ are the momenta of the initial and final state quark. In
addition, SgðkJ; p1Þ is a shorthand notation for

SgðkJ; p1Þ ¼
2kJ · p1

kJ · kgp1 · kg
: ð14Þ

We have to subtract the soft gluon radiation inside the jet
cone, which actually belongs to the jet. Therefore, this
contribution will depend on the jet size R. In previous
calculations, the out of cone radiation was derived by
assuming a small offshellness for the quark [43–47]. Here
we apply the subtraction method in dimensional regulari-
zation directly. In particular, the jet radius–dependent term
can be written as

IR ¼
Z

dξ
ξ

dϕ
2π

k⃗J⊥ · k⃗g⊥
kJ · kg

ΘðΔkJkg > R2Þ

¼
Z

dξ
ξ

dϕ
2π

k⃗J⊥ · k⃗g⊥
kJ · kg

½1 − ΘðΔkJkg < R2Þ�; ð15Þ

where ξ ¼ kg · p1=kJ · p1, and ΔkJkg represents the distance
between the two particles with momenta kg and kJ. We
apply the narrow jet approximation (NJA) [48] to derive the
R dependence in the above equation. As a result, both terms
in the last line can be evaluated in dimensional regulari-
zation, and the final result is IR ¼ − 1

ϵ ½1 − R−2ϵ�. We have
included a more detailed derivation in Appendix A. Finally,
we find the following contribution:

SgðkJ;p1Þ∝
αs
2π2

1

q2⊥

�
ln
Q2

q2⊥
þ ln

1

R2
þ ln

Q2

k2l⊥
þϵ

�
1

2
ln2

1

R2

��
;

ð16Þ

where we have kept the ϵ term for completeness. These
terms will contribute a finite term when taking the Fourier

(a) (b)

(c) (d)

FIG. 2. Feynman diagrams contributing to the lepton-jet cor-
relation in DIS: (a) the leading order lq → l0q scattering, (b) a
representative diagram for the soft gluon radiation contribution at
one-loop oder, (c) the soft-pole contribution to the single-trans-
verse spin asymmetry for this process, and (d) the same as (c) but
for the hard-pole contribution. The lower parts in (c) and (d)
represent the twist-three quark-gluon-quark correlation function
which depends on the transverse spin of the nucleon. The red
vertical lines in these two diagrams indicate the pole contribution
from the associated quark propagators. In order to obtain the
complete contribution from the hard pole, we have to take into
account the diagrams where the vertical gluon is attached to the
quark line as shown in (d), the gluon line, and the quark line
before the gluon radiation vertex.
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transform to b⊥-space. Compared to the results in
Refs. [44], we find a finite difference due to the ϵ-term
in the above equation. This actually explains the numerical
difference found in Refs. [45,45,47] compared to the full
next-to-leading calculation. In order to derive the above
result, we have averaged over the azimuthal angle of the jet.
This average does not factorize, and our resummed results
given below will not be accurate beyond next-to-leading
logarithmic order αns lnn b⊥ in the resummed exponent.
In addition, we also have collinear gluon contributions

parallel to the incoming quark or the final state quark jet.
The former can be expressed as a quark splitting contri-
bution, whereas the latter is formulated with the jet
splitting. In this paper, we will follow the narrow jet
approximation with the anti-kt [49] algorithm to compute
this contribution. Adding all the above contributions, we
obtain the final result in the transverse momentum space,

WUU ¼
Z

dξ
ξ
xfqðx0Þ

αs
2π2

CF
1

q2⊥

�
1þ ξ2

ð1 − ξÞþ
þ ϵð1 − ξÞ

þδð1 − ξÞ
�
ln
Q2

q2⊥
þ ln

1

R2
þ ln

Q2

k2l⊥

þϵ

�
1

2
ln2

1

R2

���
: ð17Þ

Here and in the following, x0 ¼ x=ξ. Taking the Fourier
transform of the above result to b⊥-space, and adding the
contribution from the virtual graph and the jet (see
Appendix B), we find the final result at one-loop order,

W̃ð1Þ
UUðQ; b⊥Þ ¼

αs
2π

CF

Z
dξ
ξ
xfqðx0Þ

��
−
1

ϵ
þ ln

μ2b
μ2

�

× Pq→qðξÞ þ ð1 − ξÞ þ δð1 − ξÞ
�
3

2
ln
k2l⊥
μ2b

−
1

2
ln2

Q2

k2l⊥
−
1

2

�
ln
Q2

μ2b

�
2

− ln
Q2

k2l⊥R2
ln
k2l⊥
μ2b

þ 3

2
ln

1

R2
þ 3 ln

Q2

k2l⊥
−
3

2
−
2π2

3

��
; ð18Þ

where μb ¼ c0=jb⊥j, c0 ¼ 2e−γE , andPq→qðξÞ ¼ ð1þξ2

1−ξ Þþ is

the quark splitting kernel. This result can be factorized into
the TMD quark distribution and the soft factor associated
with the final state jet. Most importantly, there are no
factorization breaking effects for this process, and the TMD
quark distribution is the same as for SIDIS. This in contrast
to the dijet production process in hadron-hadron collisions,
where TMD factorization is known to be broken at higher
orders in perturbation theory [50–62].
Therefore, the above one-loop result should be factorized

into the following TMD quark distribution:

fðunsubÞq ðx;k⊥Þ¼
1

2

Z
dξ−d2ξ⊥
ð2πÞ3 e−ixξ

−Pþþiξ⃗⊥·k⃗⊥

×hPSjψ̄ðξÞL†
nðξÞγþLnð0Þψð0ÞjPSi; ð19Þ

with the future-pointing gauge link,

LnðξÞ≡ exp

�
−ig

Z
∞

0

dλv · Aðλnþ ξÞ
�
: ð20Þ

This definition contains a light-cone singularity from
higher order corrections. The regulation and subtraction
define the scheme of the TMD distributions. Here, as an
example, we follow the Collins 2011 scheme which
includes a soft factor subtraction as [20]

f̃ðsubÞq ðx; b⊥; μF; ζcÞ ¼ f̃ðunsubÞq ðx; b⊥Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S̃n̄;v2 ðb⊥Þ
S̃n;n̄2 ðb⊥ÞS̃n;v2 ðb⊥Þ

s
:

ð21Þ

Here b⊥ is the Fourier conjugate variable with respect to the
transverse momentum k⊥, μF is the factorization scale, and
we have ζ2c ¼ x2ð2v · PÞ2=v2 ¼ 2ðxPþÞ2e−2yn with yn the
rapidity cutoff in the Collins 2011 scheme. The second
factor represents the soft factor subtraction with the light-
front vectors n ¼ ð1−; 0þ; 0⊥Þ, n̄ ¼ ð0−; 1þ; 0⊥Þ, and v is
off-light-front v ¼ ðv−; vþ; 0⊥Þ with v− ≫ vþ. The light-
cone singularity of the unsubtracted TMDs is canceled by
the soft factor as in Eq. (21) with S̃v1;v2 defined as

S̃v1;v22 ðb⊥Þ ¼ h0jL†
v2ðb⊥ÞL†

v1ðb⊥ÞLv1ð0ÞLv2ð0Þj0i: ð22Þ

The one-loop results for the TMD quark distributions can
be found, for example, in Refs. [20,63]. For convenience,
we list their result

fðsubÞq ðx; q⊥Þ ¼
αs
2π2

CF

q2⊥

Z
dx0

x0
fqðx0Þ

�
1þ ξ2

ð1 − ξÞþ
þϵð1 − ξÞ þ δð1 − ξÞ ln ζ2c

q2⊥

�
: ð23Þ

In Fourier transform b⊥-space, we have

f̃ðsubÞq ðx; b⊥Þ ¼
αs
2π

CF

Z
dξ
ξ
fqðx0Þ

��
−
1

ϵ
þ ln

μ2b
μ̄2

�

× Pq→qðξÞ þ ð1 − ξÞ þ δð1 − ξÞ
�
3

2
ln
μ2

μ2b

þ 1

2

�
ln
ζ2c
μ2

�
2

−
1

2

�
ln
ζ2c
μ2b

�
2
��

: ð24Þ

The soft factor associated with the final state jet can be
defined accordingly,
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S̃Jðb⊥; μFÞ ¼
S̃n1;n̄ðb⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S̃n;n̄ðb⊥Þ

q ; ð25Þ

where n1 represents the jet direction. A one-loop calcu-
lation leads to the following result:

Sð1ÞJ ðk⊥Þ ¼
αs
2π2

1

q2⊥
CF

�
ln

t̂
û
þ ln

1

R2

�
ð26Þ

in the transverse momentum space. In b⊥-space, we obtain,
to first order,

S̃ð1ÞJ ðb⊥Þ ¼
αs
2π

�
− ln

t̂
ûR2

ln
μ2

μ2b
þ 1

2
ln2

1

R2

�
: ð27Þ

From this result, we derive the anomalous dimension at
one-loop order,

γð1Þs ¼ −CF
αs
2π

ln
t̂

ûR2
: ð28Þ

With the above results, we can verify the TMD factorization
at this order,

W̃UUðx; b⊥Þ ¼ xf̃ðsubÞq ðx; b⊥; μF; ζcÞS̃Jðb⊥; μFÞ
×HTMDðQ; μFÞ; ð29Þ

with the hard factor

Hð1Þ
TMD ¼ αsCF

2π

�
−ln2

Q2

k2l⊥
þ 1

2
ln2

1

R2
þ 3

2
ln

1

R2

þ3 ln
Q2

k2l⊥
−
3

2
−
2π2

3

�
; ð30Þ

where we have chosen ζ2c ¼ ŝ and μ2F ¼ k2l⊥ to simplify the
expression.

B. The Sivers asymmetry at one-loop order

The above factorization applies to the single-transverse
spin asymmetry in the process of (1). In Ref. [51], it was
shown that the collinear gluon radiation from the polarized
nucleon can be factorized into the TMD quark Sivers
function. To establish the complete factorization formalism,
we need to demonstrate that the soft gluon radiation can be
factorized and expressed as Eq. (25) as well. The soft gluon
radiation comes from the Feynman diagrams shown in
Fig. 2. Similar diagrams have been calculated for the SIDIS
process, where the final state fragmentation function will
contribute [64,65]. In the current case, it is the final state jet
contribution.
To obtain a nonzero single spin asymmetry, we have to

take into account final state interaction effects, which
generate a phase through a pole from the interference

diagrams, as shown, for example, in Figs. 2(c) and 2(d). We
have marked the pole places in these diagrams, where 2(c)
refers to the so-called soft pole and 2(d) to the hard pole,
similar to the SIDIS process which was calculated in
Refs. [64,65]. There are also soft-fermion pole contribu-
tions from TF and those from the G̃F twist-three function
[65]. These contributions can be analyzed in a similar
manner. In the following, we only consider the soft-gluon
and hard-gluon pole contributions. The soft pole corre-
sponds to the case where the vertical gluon carries zero
longitudinal momentum fraction of the incoming nucleon
when taking the pole, whereas the hard pole corresponds to
a nonzero momentum fraction for the gluon. The calcu-
lations of these diagrams will be the same as those in
Ref. [64]. Again, in the TMD limit, that is, the transverse
momentum of the radiated gluon q⊥ is much smaller than
the hard momentum scale (kl⊥ in our case), there exist
cancellations between the soft- and hard-pole contributions.
This is particularly the case for the soft gluon radiation
diagrams in Figs. 2(c) and 2(d).
For example, the soft-pole diagram of Fig. 2(c) has a

color factor of −1=2Nc, and part of the hard-pole con-
tribution [such as Fig. 2(d)] has a color factor of 1=2Nc as
well. If we decompose the hard-pole contribution into the
color factors CF and 1=2Nc, we find that the term propor-
tional 1=2Nc cancels completely against that from the soft-
pole contribution. The final result will only depend on the
color factor CF, which is proportional to the following
structure:

g2CFϵ
αβS⊥α

Z
d3kg

ð2πÞ32Ekg

δð2Þðq⊥ − kg⊥Þ½SgðkJ; p1Þ�2

× ðkg⊥β − ξkJ⊥βÞ: ð31Þ

Here S⊥ represents the traverse spin vector of the incoming
nucleon. The above result contains a collinear divergence
associated with the final state quark jet when kg⊥ ∼ ξkJ⊥.
As we have shown above, SgðkJ; p1Þ has a single power
collinear divergence. Therefore, the spin-dependent cross
section contribution depends on the combination of
kg⊥ − ξkJ⊥, which will cancel one power of the collinear
divergence from ½SgðkJ; p1Þ�2. As a result, we have only
one collinear divergence associated with soft gluon radi-
ation from the jet. After integrating over ξ, we obtain the
following contribution:

αs
2π2

ϵαβS⊥αq⊥β

ðq2⊥Þ2
�
ln
Q2

q2⊥
þ ln

1

R2
þ ln

Q2

k2l⊥
þ ϵ

�
1

2
ln2

1

R2

��
:

ð32Þ

Adding the collinear gluon radiation which is parallel to
the incoming proton, and the contribution from the virtual
graph and the jet as for the unpolarized case above, we have
the following one-loop result in b⊥-space:

LEPTON-JET CORRELATION IN DEEP INELASTIC … PHYS. REV. D 102, 094022 (2020)

094022-5



W̃α
UTðQ; bÞ ¼ αs

2π

ibα

2
x
Z

dξ
ξ

��
−
1

ϵ
þ ln

μ2b
μ2

�
PT

qg→qg ⊗ TFðx; xÞ − TFðx0; x0Þ
1

2Nc
ð1 − ξÞ

þδð1 − ξÞTFðx; xÞCF

�
−
1

2
ln2

Q2

k2l⊥
−
1

2

�
ln
Q2

μ2b

�
2

− ln
Q2

k2l⊥R2
ln
k2l⊥
μ2b

þ 3

2
ln
k2l⊥b2
c20

þ 3

2
ln

1

R2

þ3 ln
Q2

k2l⊥
−
3

2
−
2π2

3

��
; ð33Þ

where the splitting kernel for the Sivers function is obtained
from the Qiu-Sterman matrix element [66–71].
Again, this can be factorized into the TMD quark Sivers

function and the soft factor associated with the jet,

W̃α
UTðx; b⊥Þ ¼ xf̃⊥αðsubÞ

1T ðx; b⊥; μF; ζcÞS̃Jðb⊥; μFÞ
×HTMDðμFÞ; ð34Þ

where the soft factor and the hard factor are the same as
those in the unpolarized case. Similar to the above case, the
quark Sivers function needs a subtraction as well,

f̃⊥αðsubÞ
1T ðx; b⊥; μF; ζcÞ ¼ f̃⊥αðunsubÞ

1T ðx; b⊥Þ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S̃n̄;v2 ðb⊥Þ

S̃n;n̄2 ðb⊥ÞS̃n;v2 ðb⊥Þ

s
; ð35Þ

with the same soft factor subtraction in the Collins 2011
scheme. The explicit one-loop expression can also be found
in Ref. [63].

C. Resummation

There are large logarithms in the TMD quark distribu-
tions and the soft factor associated with the jet, which can
be resummed by solving the relevant evolution equations.
The TMD quark distribution has been studied extensively
in recent years and can be applied in our case. With
resummation effects taken into account, the final result can
be written as

W̃ðresÞ
UU ¼ xf̃qðx; b⊥; μF ¼ kl⊥; ζc ¼

ffiffiffî
s

p
Þe−ΓsCUU;

W̃ðresÞα
UT ¼ xf̃⊥α

1T ðx; b⊥; μF ¼ kl⊥; ζc ¼
ffiffiffî
s

p
Þe−ΓsCUT; ð36Þ

where fq and f⊥1T represent the standard unpolarized quark
TMD distribution and the Sivers function, respectively.
Here, Γs is associated with the soft factor due to the jet and
it is given by

Γs ¼
Z

k2⊥

c2
0
=b2⊥

dμ2

μ2
γs; ð37Þ

where γð1Þs ¼ αsCF lnðt̂=ûR2Þ=2π. The one-loop expres-
sions for CUU and CUT are given by

CUT¼CUU

¼ αs
2π

CF

�
−ln2

Q2

k2l⊥
þ3ln

Q2

k2l⊥
þ3

2
ln

1

R2
−
3

2
−
2π2

3

�
: ð38Þ

D. Nonglobal logarithms

For the lepton-jet correlation in DIS, nonglobal loga-
rithms (NGLs) [72,73] have to be taken into account. They
start contributing at the order Oðα2sÞ. See Appendix C for a
detailed derivation. (A similar calculation was performed in
Ref. [74]). See also Ref. [75]. The first nonzero contribu-
tion is given by

S̃ð2Þ
NGLðb⊥Þ ¼ −CF

CA

2

�
αs
π

�
2 π2

24
ln2

�
k2l⊥b2⊥
c20

�
: ð39Þ

The resummation of these NGLs is more complicated than
that of the global logarithms in the resummation formula in
Eq. (36). For the kinematics we are interested in, the NGL
contribution is very small and will not be included in the
numerical studies presented below. We leave more detailed
phenomenological studies for future work.

III. PHENOMENOLOGICAL STUDIES FOR
THE HERA EXPERIMENT

Phenomenological results for the lepton-jet correlation at
the EIC have been shown in Ref. [1]. In particular, the
single-transverse spin asymmetries for this process have
been shown to directly probe the quark Sivers function,
whereas the measurement of PT-broadening effects in eA
collisions will be a great opportunity to explore cold
nuclear matter effects through hard probes.
In this section, we will take the opportunity that the

existing experimental data from the HERA collider have
been reanalyzed to study the lepton-jet correlation [8]. We
will compare to these preliminary analyses and comment
on the implications of the experimental measurement. This
will serve as an important cross-check of our formalism and
may also indicate constraints on the small-x modification
of the TMD quark distribution in the proton. This shall
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provide an important guideline for future measurements at
the EIC.
The TMD quark distribution takes the form [76]

f̃qðx; b⊥; μF ¼ kl⊥; ζc ¼
ffiffiffî
s

p
Þ

¼ e−S
q
pertðb�Þ−SqNPðb⊥Þ

X
i

Cq=iðx; μb=μÞ ⊗ fiðx; μbÞ; ð40Þ

where b� ¼ b⊥=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2⊥=b2max

p
with bmax ¼ 1.5 GeV−1,

and fiðx; μÞ is the integrated parton distribution. The
Sudakov form factor for the quark is given by

Sqpertðb⊥Þ¼
Z

k2l⊥

μ2b

dμ2

μ2

�
AqðαsðμÞÞ ln

ŝ
μ2

þBqðαsðμÞÞ
�
; ð41Þ

with Aq ¼ αs
2πCF, Bq ¼ − αs

π
3
2
CF, and where for simplicity

we take the leading-order expression for the coefficient
function C. Numerically, the C-coefficient at one-loop
order, Cð1Þ, only leads to a negligible modification of the
q⊥ distribution. We use the nonperturbative parametriza-
tion of Refs. [76,77],

SqNP ¼ 0.106b2⊥ þ 0.42 lnðQ=Q0Þ lnðb⊥=b�Þ; ð42Þ

with Q2
0 ¼ 2.4 GeV2. We note that with the parametriza-

tions of Refs. [76,77], it was found that there is no
x-dependence for the above nonperturbative form factor.
More recent global analyses in Refs. [78,79] have
applied different parametrizations, where a significant
x-dependence was found in the moderate and large-x
region. However, as far as the small-x TMDs are concerned,
they do not observe a strong x-dependence either (see, e.g.,
Fig. 10 of Ref. [78]).
For the HERA measurement of Ref. [8], the kinematics

is as follows: Q2 > 10 GeV2, 30 > PJ⊥ > 2.5 GeV, and
the pseudorapidity of the jet is jηjj < 1 in the lab frame.
From this kinematics, it was found that the lepton-jet
production is dominated by small-x around 10−3. Before
we compare to the experimental data, it is interesting to
study the behavior of the TMD quark distribution using the
known parametrizations. In Refs. [76,77], the TMD for-
malism was applied to describe the existing Drell-Yan type
processes, and no x-dependence of the nonperturbative
form factor was found by means of a global analysis.
In Fig. 3, we show, as an example, the up quark TMD as

a function of b⊥ for two different values of x. Taking
similar kinematics as relevant for the HERA data [8], we fix
the factorization scale μF ¼ 7 GeV and the energy scale
ζc ¼ 20 GeV. From this figure, we can see that the
TMD quark distribution does evolve with x. However,
the evolution is mild, because it solely comes from the
collinear scale dependence of the TMD quark distribution
in Eq. (40). This, of course, is also because the Drell-Yan

type of data in the global analysis of Refs. [76,77] found no
x-dependence of the nonperturbative form factor.
In Fig. 4, we show the dependence of the TMD quark

distribution on the factorization scale μF at small-xwhich is
relevant for the HERA data. It is interesting to note that in
the range of the transverse momentum of the jet, the scale
dependence is not very strong.
To compare to the HERA measurement, we take an

average transverse momentum for the jet PJ⊥ ¼ 5 GeV
with rapidity ηj ¼ 0 to evaluate the TMD quark distribu-
tions. With that, we plot the azimuthal angular distribution
between the final state lepton and the jet in Fig. 5. The blue
curve represents the prediction with the TMD quark
distribution in Eq. (40) with the nonperturbative form
factor of Eq. (42). In the calculations, we neglect the
nonperturbative contribution from the soft factor associated
with the jet, that is, the SJ factor in the factorization formula
of Eq. (29). Because the soft factor SJ associated with the
final state only contains single logarithms while the TMD
quark distribution contains double logarithms, we expect
that the nonperturbative part of SJ is small compared to that
of the TMD quark distribution. Of course, one will need to
compare to experimental data to test this assumption,
especially through the jet radius dependence of the corre-
lation measurement.

FIG. 3. The up quark TMD distribution as function of the
Fourier transform variable b⊥ for different x. We have fixed the
factorization scale μF ¼ 7 GeV and energy scale ζc ¼ 20 GeV,
which correspond to the kinematics of the HERA data [8].

FIG. 4. The up quark TMD distribution as a function of the
Fourier transform variable b⊥ for different values of the factori-
zation scale μF. We have fixed x ¼ 0.005 and the energy scale
ζc ¼ 20 GeV.
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We further notice that within the HERA kinematics, the
azimuthal angular correlation could be sensitive to gluon
saturation effects [80,81]. Gluon saturation will modify the
TMD quark distribution; see, for example, a calculation in
Ref. [82]. To illustrate how this affects the azimuthal
angular correlation between the final state lepton and the
jet, we include a small-x modification of the nonperturba-
tive part

SqNP → SqNP þ hδq2⊥ib2=4; ð43Þ

with hδq2⊥i ¼ 0.2 GeV2 as an example. This modification
is qualitatively consistent with the observation in Ref. [82]
that transverse momentum broadening arises at small-x
due to gluon saturation effects. We plot this prediction (red
curve) in Fig. 5. We conclude that small-x effects may lead
to a difference in the azimuthal angular distribution shown
in this figure. However, in order to unambiguously deter-
mine small-x gluon saturation effects, more rigorous
studies are needed. For example, we would need to address
the theoretical uncertainties of both curves of this plot. We
hope that future measurements, in particular, those at the
planned EIC, can help to test these predictions and provide
constraints on the small-x contribution to the TMDs.

IV. CONCLUSIONS

In this paper, we have presented a detailed derivation of
the TMD factorization for the azimuthal angular correlation
between the final state lepton and jet in DIS processes.
An explicit one-loop calculation was carried out, and the
factorization has been verified accordingly. We have also
derived the single-transverse spin asymmetry for this
process, which depends on the quark Sivers function.
The calculations are performed within the twist-three
framework and the Sivers function corresponds to the

Qiu-Sterman matrix element. Based on the factorization
formula, we further derived an all order resummation.
The factorization formalism demonstrates the striking

simplicity of this process, where the total transverse
momentum of the final state lepton and jet depends on
the TMD quark distribution plus a soft factor associated
with the jet. This will provide an important channel to
investigate the TMD quark distribution in ep and eA
collisions. Some recent phenomenological studies of this
correlation have shown very promising results for the future
EIC [28,31]. We expect more research along this direction
in the near future.
We have also carried out a phenomenological study on

the TMD quark distribution for HERA kinematics [8]. The
kinematics at HERA are sensitive to the small-x region,
where the TMD parton distributions are not well con-
strained. Therefore, the comparison between theory and
experiment in this region could provide a potential signal
for the x-dependence of the TMD quark distributions.
We look forward to comparing our theory predictions to the
experimental data, which are soon to be published.
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APPENDIX A: SOFT GLUON RADIATION
ASSOCIATED WITH THE JET

Following previous derivations [44], we can calculate the
soft gluon radiation associated with the jet as

Z
d3kg
2Ekg

δð2Þðq⊥ − kg⊥ÞSgðkJ;p1Þ

¼ αs
2π2

1

q2⊥

�
ln

ŝ
q2⊥

þ ln
1

R2
1

þ ln

�
t̂
û

�
þ ϵ

�
1

2
ln2

1

R2
1

þ π2

6

��
;

ðA1Þ

where ŝ, t̂, and û are defined in Sec. II. To arrive at the
above result, an approximation was made in Ref. [44],
where an offshellness was imposed for the jet momentum
k2J ∼ k2J⊥R2 with the jet size R. In the following, we apply
the subtraction method to derive the above result without
any approximation.
First, we notice that the contribution due to soft gluon

radiation can be written as

FIG. 5. The azimuthal angular correlation between the final
state lepton and jet for the HERA kinematics. For the numerical
results, we have chosen an average jet transverse momentum
of 5 GeV at midrapidity in the lab frame to evaluate the TMD
quark distributions. The blue curve represents the result from the
default parametrization of the nonperturbative form factor of
Refs. [76,77] as in Eq. (42). For the red dashed curve, we include
an additional small-x contribution as shown in Eq. (43).
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SgðkJ; p1Þ þ SgðkJ; p2Þ ¼
4

k2g⊥
þ 4

k2g⊥
k⃗J⊥ · k⃗g⊥
kJ · kg

; ðA2Þ

where the first term contributes to the double logarithms
and corresponds to the first term in the bracket of Eq. (A1).
To calculate the second term, we define

IðRÞ ¼
Z

dξ
ξ

dϕ
2π

k⃗J⊥ · k⃗g⊥
kJ · kg

; ðA3Þ

where ξ is the longitudinal momentum of kg with respect to
kJ, ξ ¼ kg · p1=kJ · p1 and ϕ is the azimuthal angle
between kg⊥ and kJ⊥. As mentioned above, we will further
average over this angle to obtain the final result. In the
NJA, IðRÞ → lnð1=R2Þ.
Similarly, we find that

SgðkJ; p1Þ − SgðkJ; p2Þ ¼
4

k2g⊥
kþJ k

−
g − k−J k

þ
g

kJ · kg
: ðA4Þ

It is interesting to notice that the above term does not
contain a divergence associated with the jet. Therefore, we
can integrate over the longitudinal momentum of the gluon,

Z
dξ
ξ

dϕ
2π

kþJ k
−
g − k−J k

þ
g

kJ · kg
¼ ln

t̂
û
: ðA5Þ

Therefore, the only contribution to the soft gluon radiation
where the jet radius and the jet algorithm appear is given by
the integral IðRÞ. This integral can be related to the jet
contribution at one-loop order, which also depends on the
jet algorithm. Previously, as discussed in the above section,
an approximation was made to carry out the integral. In the
following, we derive the result for IðRÞwith the subtraction
method:

IðRÞ ¼
Z

dξ
ξ

dϕ
2π

k⃗1⊥ · k⃗g⊥
k1 · kg

ΘðΔk1kg > R2Þ

¼
Z

dξ
ξ

dϕ
2π

k⃗1⊥ · k⃗g⊥
k1 · kg

½1 − ΘðΔk1kg < R2Þ�; ðA6Þ

where the first term is similar to the global-soft contribu-
tion, and the second term is similar to the collinear-soft
contribution.
First, we notice that

k1 · kg ¼ k1⊥kg⊥½coshðΔYÞ − cosðΔϕÞ�; ðA7Þ

where ΔY and Δϕ are rapidity and angular separation
between kg and kJ. Substituting the above into IðRÞ, we
find that

IðRÞ ¼ 1

2π

Z
dΔYdΔϕ

cosðΔϕÞ
coshðΔYÞ − cosðΔϕÞ

× ½1 − ΘðΔk1kg < R2Þ�
¼ IG − IcsðRÞ: ðA8Þ

The global-soft term can be calculated as

IG ¼ 1

2π

Z
dΔYdΔϕ

cosðΔϕÞ
coshðΔYÞ − cosðΔϕÞ

¼ 1R
π
0 dϕsin−2ϵðϕÞ

Z
π

0

dϕsin−2ϵðϕÞ

× 2

Z
∞

0

dy
cosðϕÞ

coshðyÞ − cosðϕÞ
¼ −

1

ϵ
: ðA9Þ

For the collinear-soft term, we can apply the narrow jet
approximation R ≪ 1,

IcsðRÞ¼
1

2π

Z
dΔYdΔϕ

cosðΔϕÞ
coshðΔYÞ−cosðΔϕÞΘðΔk1kg <R2Þ

¼ 4R−2ϵR
π
0 dϕsin

−2ϵðϕÞ
Z

1

0

dϕðϕÞ−2ϵ
Z ffiffiffiffiffiffiffiffi

1−ϕ2
p

0

dy
1

y2þϕ2

¼R−2ϵ
�
−
1

ϵ

�
: ðA10Þ

Therefore, IðRÞ has a rather simple structure

IðRÞ ¼ −
1

ϵ
½1 − R−2ϵ� ¼ ln

1

R2
þ ϵ

1

2
ln2

1

R2
: ðA11Þ

Certainly, the leading pole cancels and we are left with a
term proportional lnð1=R2Þ.
Substituting the above result into the original

calculation, we find that there should be no π2=6 term
in the terms ∼ϵ in Eq. (A1). This applies to all the soft
gluon radiation contributions associated with the jet calcu-
lated in Refs. [44] and solves the puzzle found in previous
calculations of Refs. [45,45,47].

APPENDIX B: VIRTUAL CONTRIBUTION
AND THE JET CONTRIBUTION

The virtual graph has the following contribution in the
MS scheme:

Γv ¼ αs
2π

CF

�
μ2

Q2

�
ϵ
�
−

2

ϵ2
−
3

ϵ
− 8

�
: ðB1Þ

The jet contribution is given by
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Jq ¼
αs
2π

CF

�
μ2

P2
J⊥

�
ϵ
�
1

ϵ2
þ 1

ϵ
ln

1

R2
þ 3

2

1

ϵ

þ 1

2
ln2

1

R2
þ 3

2
ln

1

R2
þ I0q

�
; ðB2Þ

where I0q for anti-kT jets is defined as

I0q ¼
13

2
−
2

3
π2: ðB3Þ

APPENDIX C: NONGLOBAL LOGARITHMS

NGLs start to contribute at two loops [72–74]. These
contributions arise from the configuration where one of the
soft gluons inside the jet while the second gluon is outside
of jet. For the differential cross section that we are studying
in this paper, these soft gluon emissions will contribute
to a finite transverse momentum. In this section, we will
discuss the emission of two soft gluons that leads to the
NGLs which need to be included in addition to the above
resummation formalism.
The two soft gluon emission matrix elements squared

can be written as [73]

W2 ¼ C2
FSgðp1; kJ; k1ÞSgðp1; kJ; k2Þ

þ Sgðp1; kJ; k1Þ
CFCA

2
½Sgðp1; k1; k2Þ

þSgðkJ; k1; k2Þ − Sgðp1; kJ; k2Þ� ðC1Þ

for strong ordering of k1 ≫ k2, where k1 and k2 are
momenta for the two radiated gluons, and Sgðp1; p2; kÞ
is defined as

Sgðp1; p2; kÞ ¼
2p1 · p2

p1 · kp2 · k
: ðC2Þ

The NGL contribution is obtained from the second term in
Eq. (C1) with color factor CFCA. It can be derived by
integrating over the phase space of k1 and k2 with a delta
function constraining the transverse momentum,

Sð2Þ
NGL ¼ CFCAg4

2

Z
d3k1

ð2πÞ32Ek1

d3k2
ð2πÞ32Ek2

× δð2Þðq⊥ − k2⊥ÞSgðp1; kJ; k1Þ½Sgðp1; k1; k2Þ
þ SgðkJ; k1; k2Þ − Sgðp1; kJ; k2Þ�; ðC3Þ

where we have to impose the kinematics of the leading
NGLs: k1 belongs to the jet associated with kJ and k2 is out
of the jet. For the leading contribution, these conditions can
be simplified as

ðk1þkJÞ2<k1⊥kJ⊥R2; ðk2þkJÞ2>k2⊥kJ⊥R2; ðC4Þ

where R is the jet radius. These can be further translated
into the following ordering of their momenta:

k021⊥
z21

¼ ðk1⊥ − z1kJ⊥Þ2
z21

< k2J⊥R2; ðC5Þ

k022⊥
z22

¼ ðk2⊥ − z2kJ⊥Þ2
z22

> k2J⊥R2; ðC6Þ

where z1;2 are defined as zi ¼ ki · p1=kJ · p1. In the soft
approximation, we have z2 ≪ z1 ≪ 1. For convenience,
we have also introduced two new momentum variables:
k0i⊥ ¼ ki⊥ − zikJ⊥. These variables represent the transverse
momenta relative to the jet momentum which are obtained
by subtracting the momentum components along the jet
direction. With this notation, the NGL contribution can be
evaluated as

Sð2Þ
NGL ¼ CFCA

2

�
αs
π

�
2
Z

dz2
z2

dz1
z1

d2k02⊥
2π

d2k01⊥
2π

× δð2Þðq⊥ − k2⊥ÞΘðz1 − z2ÞΘ
�

k022⊥
z22k

2
J⊥

− R2

�

× Θ
�
R2 −

k021⊥
z21k

2
J⊥

�
1

k021⊥

2z2
z1
k02⊥ · k01⊥

k022⊥ðk02⊥ − z2
z1
k01⊥Þ2

: ðC7Þ

The next step is to average over the azimuthal angle ϕ12

between k01⊥ and k02⊥, which leads to the following
expression:

I ≡ 1

2π

Z
2π

0

dϕ12

2z2
z1
k02⊥ · k01⊥

ðk02⊥ − z2
z1
k01⊥Þ2

¼
k02
2⊥
z2
2

þ k02
1⊥
z2
1

j k022⊥z2
2

− k02
1⊥
z2
1

j
− 1: ðC8Þ

For the NGL configuration, we have k022⊥=z22 > k021⊥=z21.
Therefore, the above result can be written as

I ¼
2
k02
1⊥
z2
1

k02
2⊥
z2
2

− k02
1⊥
z2
1

: ðC9Þ

We can then carry out the integral over k021⊥, and we find the
following expression:

Z
R2z2

1
k2J⊥

0

dk021⊥
k021⊥

I ¼ 2 ln
y

y − R2
; ðC10Þ

where y ¼ k022⊥=k2J⊥z22. We rewrite the z2 integral as an
integral over y. Before we carry out the z2 integral, there are
large logarithms associated with the strong ordering of
z2 ≪ z1. Therefore,

R
dz1=z1Θðz1 − z2Þ ¼ lnð1=z2Þ. When

converting the z2 integral to a y integral, there will be a
logarithm of lnðk2J⊥=k022⊥Þ. A further approximation to
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obtain the leading contribution of the NGLs is to set k02⊥ →
k2⊥ in this logarithm and the overall factor 1=k022⊥. In the
end, we obtain the following result for the NGLs at this
order:

Sð2Þ
NGL ¼ CF

CA

2

�
αs
π

�
2 1

2π

π2

6

1

q2⊥
ln
k2J⊥
q2⊥

; ðC11Þ

where the π2=6 factor comes from the following integral in
the small R limit:

lim
R2→0

Z
∞

R2

dy
y
ln

y
y − R2

¼ π2

6
: ðC12Þ

The above result is for the real gluon radiation. When
Fourier transforming into b⊥-space, and adding the virtual
contribution, we obtain

S̃ð2Þ
NGL ¼ −CF

CA

2

�
αs
π

�
2 π2

24
ln2

k2J⊥b2⊥
c20

: ðC13Þ
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