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Within the nonrelativistic QCD (NRQCD) factorization framework, we compute the Oðαsv2Þ corrections
to the hadronic decay rate of vector quarkonia, exemplified by J=ψ and ϒ. Setting both the renormalization

and NRQCD factorization scales to be mQ, we obtain ΓðJ=ψ→LHÞ¼0.0716 α3s
m2

c
hO1ð3S1ÞiJ=ψ ½1−1.19αsþ

ð−5.32þ3.03αsÞhv2iJ=ψ � and Γðϒ → LHÞ ¼ 0.0716 α3s
m2

b
hO1ð3S1Þiϒ½1 − 1.56αs þ ð−5.32þ 4.61αsÞhv2iϒ�.

We confirm the previous calculation ofOðαsÞ corrections on a diagram-by-diagram basis, with the accuracy
significantly improved. For J=ψ hadronic decay, we find that the Oðαsv2Þ corrections are moderate and
positive, nevertheless unable to counterbalance the huge negative corrections. On the other hand, the effect of
Oðαsv2Þ corrections for ϒðnSÞ is sensitive to the Oðv2Þ NRQCD matrix elements. With the appropriate
choice of the NRQCD matrix elements, our theoretical predictions for the decay rates may be consistent with
the experimental data for ϒð1S; 2SÞ → LH. As a by-product, we also present the theoretical predictions for
the branching ratio of J=ψðϒÞ → 3γ accurate up to Oðαsv2Þ.
DOI: 10.1103/PhysRevD.102.094021

I. INTRODUCTION

The successful predictions of charmonium annihilation
decay rates are among the earliest triumphs of perturbative
QCD [1]. Among the quarkonia families, the spin-triplet
S-wave sates with JPC ¼ 1−−, exemplified by J=ψ and ϒ,
undoubtedly occupy the central stage, whose various decay
channels have been extensively studied both experimentally
and theoretically. Among a variety of decay channels of the
vector quarkonia, the inclusive hadronic decays are particu-
larly interesting and important. Obviously these are not only
the most dominant decay channels, but an ideal place to test
our understanding about the interplay between perturbative
and nonperturbative aspects of QCD. Historically, ϒ →
light hadrons has been employed to calibrate the strong
coupling constant at the scale of bottom mass [2,3].
At lowest order, the inclusive hadronic decays of

vector quarkonia proceed via J=ψðϒÞ → 3g, as demanded
by conservation of C parity. This is very similar to the
ortho-positronium (o-Ps) annihilation decay into three

photons [4], so the corresponding expression can be directly
transplanted supplemented with the proper color factor.
Since quarkonia are essentially the bound states com-

posed of slowly moving heavy quark and heavy antiquark,
the consensus is nowadays that quarkonium annihilation
decay processes can be reliably tackled in nonrelativistic
QCD (NRQCD) factorization framework [5], which effec-
tively organizes the theoretical predictions as double
expansion in αs and v. The OðαsÞ perturbative corrections,
which turn out to be negative, was first computed by
Mackenzie and Lepage in 1981 [2]. In sharp contrast to the
significantly negative OðαsÞ corrections in J=ψ → 3γ, the
OðαsÞ correction in J=ψðϒÞ hadronic decay appears to be
moderate in magnitude. On the other hand, the leading
relativistic corrections to J=ψðϒÞ → 3g; 3γ were first cal-
culated by Keung in 1982 [6]. With reasonable assumption
of the relativistic NRQCD matrix elements for J=ψ, the
Oðv2Þ corrections appear to be significantly negative for
both J=ψðϒÞ inclusive hadronic decay channel and three-
photon channel. Bodwin et al. proceeded further to
compute the Oðv4Þ corrections to the J=ψðϒÞ hadronic
decay [7] (Brambilla et al. later have also investigated the
Oðv4Þ corrections in a slightly different velocity power
counting scheme [8]). It was observed that the relativistic
corrections in the color-singlet channel exhibit decent
convergence pattern, but for consistency one should also
include contributions from various color-octet operator
matrix elements at Oðv4Þ. Unfortunately, the actual values
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of the higher-order NRQCD color-octet matrix elements are
rather poorly known. The proliferation of many poorly
constrained nonperturbative matrix elements severely hin-
ders the predictive power of the NRQCD approach.1

It is interesting to recall how a longstanding puzzle for
J=ψ → 3γ is resolved. After incorporating both substan-
tially negative OðαsÞ and Oðv2Þ corrections, one simply
ends up with a negative, hence unphysical, prediction to the
partial width. Fortunately, the dilemma is greatly reconciled
after including the joint perturbative and relativistic cor-
rection, e.g., the Oðαsv2Þ correction, which turns out to be
positive and unexpectedly sizable [12]. Incorporating this
new piece of correction, with the renormalization scale in
the range 1.2 GeV < μ < 1.4 GeV, one can reach satis-
factory agreement between the state-of-the-art NRQCD
prediction [12] and the latest measurement at BESIII [13]
for the rare decay channel J=ψ → 3γ.
Inspired by the important role played by the Oðαsv2Þ

correction to J=ψ → 3γ, the aim of this work is to
investigate the Oðαsv2Þ correction to the J=ψðϒÞ hadronic
widths. Obviously, the corresponding calculation is much
more challenging than that for J=ψ → 3γ. We note that this
joint radiative and relativistic correction is formally of the
comparable magnitude with the Oðα2sv0Þ and Oðα0sv4Þ
corrections. Nevertheless, unlike these two types of cor-
rections, which are either beyond current calculational
capability or lacking predictive power, we are equipped
with sufficient technicality to tackle the Oðαsv2Þ correc-
tion, and can also make some unambiguous and concrete
predictions. We hope our calculation can serve to further
test the validity of NRQCD factorization approach in these
basic vector quarkonia decay channels.
The remainder of the paper is organized as follows. In

Sec. II, we recapitulate the NRQCD factorization formula
for the hadronic decay of vector quarkonia and set up the
notations. In Sec. III, we sketch the calculational strategy
for the intended NRQCD SDCs. In Sec. IV we present the
main numerical results. In particular, a detailed comparison
with the existing OðαsÞ corrections in a diagram-by-
diagram basis has also been given. We devote Sec. V to
a comprehensive phenomenological analysis. Finally we
summarize in Sec. VI. We also dedicate Appendix to
describe the technicality in treating multibody phase space
integration in dimensional regularization.

II. NRQCD FACTORIZATION FORMULA FOR
HADRONIC WIDTH OF VECTOR QUARKONIA

In line with the NRQCD factorization [5], the annihi-
lation hadronic decay rate of a vector quarkonium V (V
may refer to ϒ or J=ψ) can be expressed as

ΓðV→LHÞ¼F1ð3S1ÞhO1ð3S1ÞiV
þG1ð3S1Þ

m2
Q

hP1ð3S1ÞiVþOðv4ΓÞ; ð1Þ

where LH denotes the abbreviation for light hadrons, and
mQ is the heavy quark mass with quark species Q ¼ c, b.
The four-fermion NRQCD operators in (1) are defined by

O1ð3S1Þ ¼ ψ†σχ · χ†σψ ; ð2aÞ

P1ð3S1Þ ¼
1

2

�
ψ†σχ · χ†

�
−
i
2
D
↔
�

2

σψ

þ ψ†
�
−
i
2
D
↔
�

2

σχ · χ†σψ

�
; ð2bÞ

whose matrix elements are expected to obey the velocity
counting rule and scale as v3 and v5, respectively. Hence,
the second term constitutes theOðv2Þ relativistic correction
to the first term in (1).
The coefficients F and G in (1) are referred to as the

NRQCD short-distance coefficients (SDCs), which capture
the relativistic (k ∼ 1=mQ) short-distance effects of QCD.
Owing to asymptotic freedom, they can be reliably com-
puted in perturbation theory:

F1ð3S1Þ ¼ Fð0Þ
1 ð3S1Þ þ

αs
π
Fð1Þ
1 ð3S1Þ þ � � � ; ð3aÞ

G1ð3S1Þ ¼ Gð0Þ
1 ð3S1Þ þ

αs
π
Gð1Þ

1 ð3S1Þ þ � � � : ð3bÞ

The various SDCs can be deduced via the standard
perturbative matching technique. The key idea is because
the SDCs like F, G are insensitive to the long-distance
physics, we can replace the physical vector quarkonium
state V in (1) with a fictitious quarkonium state carrying the
same quantum number 3S1, yet composed of a free heavy
quark-antiquark pair. Concretely speaking, our matching
equation reads

ΓðQQ̄ð3S1Þ → LHÞ ¼ F1ð3S1ÞhO1ð3S1ÞiQQ̄ð3S1Þ

þG1ð3S1Þ
m2

Q
hP1ð3S1ÞiQQ̄ð3S1Þ

þOðv4ΓÞ: ð4Þ

We can calculate both sides of (4) using perturbative QCD
and NRQCD, then iteratively solve for a variety of SDCs to
a prescribed order in αs. Our main task in this work is to
determine the unknown coefficient G1ð3S1Þ.

1Although the NRQCD matrix elements of the color-octet
production operators have been fitted in various places [9–11],
there does not exist rigorous relation between the color-octet
production matrix elements and the decay matrix elements [5].
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III. TECHNICAL STRATEGY OF CALCULATING
NRQCD SDCS

A. A shortcut to deduce the SDC at Oðv2Þ
In this section we sketch some important technicalities

encountered in the perturbative matching calculation. For
the fictitious vector quarkonium appearing in (4), we assign
the momenta carried by the heavy quarkQ and antiquark Q̄
to be

p ¼ P
2
þ q; p̄ ¼ P

2
− q; ð5Þ

where P and q denote the total momentum and half of
the relative momentum of the QQ̄ pair, respectively. The
on-shell condition indicates

p2 ¼ p̄2 ¼ m2
Q; P · q ¼ 0; P ¼ 4E2; ð6Þ

with E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Q − q2
q

> mQ. Moreover, we assign the

momentum of each massless parton in the decay products
of V to be ki (i ¼ 1, 2, 3 for three particles in the final state,
and i ¼ 1, 2, 3, 4 for four-body decay), which is subject to
the on-shell condition k2i ¼ 0.
To facilitate the perturbative QCD calculation on the left-

hand side of (4), it is convenient to employ the covariant
projector to enforce theQQ̄ pair to be in the spin-triplet and
color-singlet state. The nonrelativistically normalized spin-
triplet/color-singlet projector reads [7]

Π1¼
−1

2
ffiffiffi
2

p
EðEþmQÞ

ð=pþmQÞ
=Pþ2E
4E

=ϵð=̄p−mQÞ⊗
1Cffiffiffiffiffiffi
Nc

p ;

ð7Þ

where ϵμ represents the spin-1 polarization vector.
With the aid of (7), the amplitude for the spin-triplet/

color-singlet QQ̄ pair to annihilating into massless partons
can be obtained through

A ¼ Tr½ÃΠ1�; ð8Þ

where Ã denotes the quark amplitude for QQ̄ → LH with
the external quark spinors amputated, and it is understood
that the trace acts on both spinor and color indices.
We proceed to project out the S-wave piece from (8).

To our purpose, we need to expand the amplitude A
through the second order in q. The desired amplitude for
QQ̄ð3S1Þ → LH can be expanded into

AS ¼ AS0 þAS2 þOðv4Þ; ð9Þ

with

AS0 ¼ Ajq→0; ð10aÞ

AS2 ¼
q2

2ðd − 1Þ I
μν ∂2A
∂qμ∂qν

����
q→0

: ð10bÞ

Here q2 ¼ −q2 is defined in the rest frame of QQ̄ pair, and
the symmetric tensor is given by

Iμν ¼ −gμν þ PμPν

4E2
: ð11Þ

The above AS0 and AS2 represent the Oðv0Þ and Oðv2Þ
amplitudes respectively.
Squaring the S-wave amplitude in (9) and integrating

over multibody phase space, truncating through order-q2,
we then accomplish the calculation of the quark-level decay
rate on the left side of (4). Nevertheless, a technical subtlety
may be worth mentioning. First, some portion of relativistic
correction is hidden in the phase space integral, since the
invariant mass of QQ̄ is 4E2 instead of 4m2

Q. Second, the
squared S-wave amplitude explicitly involves factors P · ki,
which also depend on the variable E other than mQ. As
pointed out in Refs. [12,14], in order to extract the
relativistic correction, it may be more convenient to expand

the quark amplitude (8) in power series of q2

E2. This strategy
guarantees that the relativistic effect is automatically taken
into account in the phase space integral. Finally, we return
to more conventional expressions by further expanding

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Q þ q2
q

in power of v2 ≡ q2

m2
Q
.

Another point in calculating the virtual correction is also
worth mentioning. Prior to conducting loop integration, we
have already expanded the integrand of the quark amplitude
in power series of q2. This operation amounts to directly
extracting the hard matching coefficient in the context of
strategy of region [15]. Therefore, we are no longer
concerned with Coulomb singularity and other soft con-
tributions ubiquitously arising in virtual correction calcu-
lation. As a consequence, calculating the radiative
correction to the NRQCD side of (4) is no longer required.
It suffices to know the following perturbative NRQCD
matrix elements at leading order (LO) in αs:

hO1ð3S1ÞiQQ̄ð3S1Þ
≡ hQðpÞQ̄ðp̄Þð3S1ÞjO1ð3S1ÞjQðpÞQ̄ðp̄Þð3S1Þi ¼ 2Nc;

ð12aÞ

hP1ð3S1ÞiQQ̄ð3S1Þ
≡ hQðpÞQ̄ðp̄Þð3S1ÞjP1ð3S1ÞjQðpÞQ̄ðp̄Þð3S1Þi ¼ 2Ncq2:

ð12bÞ

In a sense, rather than literally follow perturbative matching
calculation, we take an efficient shortcut to obtain the
NRQCD SDCs.
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B. Strategy of calculating virtual and real corrections

To coherently unify the treatment of the virtual and
real corrections to QQ̄ð3S1Þ inclusive decay, we utilize the
optical theorem to organize the calculation for OðαsÞ
correction. Concretely, we follow [2] to consider the
imaginary part of the QQ̄ð3S1Þ forward-scattering ampli-
tude, and place all possible cuts in accordance with
Cutkosky’s rule.
Throughout the work, we choose the Feynman gauge to

compute the quark amplitude, and adopt the dimensional
regularization to regularize both UVand IR divergences.We
use the package FeynArts [16] to generate Feynman diagrams
and the corresponding QQ̄ amplitudes. As illustrated in
Fig. 1, all Feynman diagrams are categorized into a dozen of
groups with distinct topology. The Cutkosky’s cut is
implicitly assumed and acts on all possible places. For each
side of the cut, we apply the spin/color projector (7) together
with (8), (9) and (10) to project out the amplitude for
QQ̄ð3S1Þ transitioning into massless partons throughOðv2Þ.
The packages FeynCalc [17] and FORM [18]/FORMLINK [19]
are utilized for tensor contraction to obtain the squared
S-wave amplitudes.
We utilize the packages APART [20] to conduct partial

fraction and FIRE [21] for the corresponding IBP reduction.
We end up with obtaining 17 MIs for the real corrections
and 58 MIs for the virtual corrections. For all the MIs, we
use the packages FIESTA [22]/SECDEC [23] to perform sector

decomposition (SD).2 For each decomposed sector, we first
use CUBPACK [27]/CUBA [28] to conduct the first-round
rough numerical integration. For those integrals with large
estimated errors, a parallelized integrator HCUBATURE [29]
is utilized to repeat the numerical integration until the
prescribed accuracy is achieved.
Both UV and IR divergences could arise in the NLO

correction calculation. The UV divergence is affiliated only
to the virtual correction calculation. We implement the on-
shell renormalization for the heavy quark wave function
and mass, and renormalize the strong coupling constant
under MS prescription. The virtual correction then becomes
UV finite after standard renormalization procedure.
Nevertheless, both virtual and real corrections are still
plagued with IR divergences. At Oðαsv0Þ, upon summing
both contributions, the IR divergences are exactly canceled
[2]. As we shall see in Sec. IV, a peculiar pattern actually
emerges at Oðαsv2Þ. Upon summing virtual and real
corrections, the IR singularities do not exactly cancel away,
but leave a logarithmic IR divergence as the remnant. This
single IR pole should in fact be factored into the NRQCD

(a)

(e) (f)

(b) (c) (d)

(g) − (j) (k)

(l) (m) (n)

FIG. 1. The relevant Feynman diagrams for the forward-scattering amplitude of QQ̄ð3Sð1Þ1 Þ → QQ̄ð3Sð1Þ1 Þ at Oðα4sÞ. It is tacitly
understood that a Custkosky cut should be placed on all possible intermediate state for each diagram, since we are only interested in the
imaginary part of the amplitude. We follow the same classification convention as Ref. [2]. The solid blob in class n) signifies the one-
loop vacuum polarization diagrams that are composed of gluon and massless quarks.

2To improve efficiency, we have interchanged the order of the
operations for contour deformation [24], SD and series expansion
in the FIESTA. For more technical details, we refer the interested
readers to Refs. [25,26].
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matrix element, so that one finally arrives at IR-finite yet
scale-dependent SDC at Oðαsv2Þ.
Some remarks are in order for treating the multibody

phase space integration. Rather than directly integrating
the squared amplitudes over the three(four)-body phase
space, which appears to be a daunting task, we employ
some modern technique, e.g., the reverse unitarity method
[30,31] to simplify the calculation. The trick is to convert a
phase-space integral into a loop integral, which is facili-
tated by the following identity involving the ith cut
propagator:

Z
dDki
ð2πÞD 2πiδðk2i Þθðk0i Þ ¼

Z
dDki
ð2πÞD

�
1

k2i þ iε
−

1

k2i − iε

�
:

ð13Þ

Since the differentiation operation is insensitive to the �iε
in the propagator, one can fruitfully apply the integration-
by-parts (IBP) identities, which are widely used in reducing
the multiloop integrals into a set of simpler master integrals
(MIs), also to reduce the various phase-space integrals into
a set of simple MIs. We then perform the corresponding
multibody phase space integration numerically with these
much simpler MIs. In Appendix, we provide some details
on how to parametrize the multibody phase space integra-
tion in dimensional regularization.

IV. NUMERICAL RESULTS FOR NRQCD SDCS

In this section, we collect the known results of various
SDCs in the NRQCD factorization formula for J=ψðϒÞ
hadronic decay, and report the major new result of this
work, the Oðαsv2Þ correction to SDC.

A. Leading-order NRQCD SDC

At LO in αs, the inclusive hadronic decay of theQQ̄ð3S1Þ
pair is characterized by its annihilation into three gluons. It
is a straightforward exercise to deduce the LO decay rate in
d ¼ 4 − 2ϵ spacetime dimensions:

Γð0;0ÞðQQ̄ð3S1Þ→3gÞ¼1

3

8ð4E2Þ−1−2ϵα3sð4πÞ2ϵ
Γð2−2ϵÞ

�
20ðπ2−9Þ

27

þ 5

36
ð28þ224ζð3Þ−29π2Þϵ

�
:

ð14Þ

We have introduced the symbol Γði;jÞ to denote the
perturbative decay rate computed at a specific order
in αs and v expansion, e.g., with the superscript ði; jÞ
signifying the joint Oðαisv2jÞ correction. For future usage,
we have deliberately kept the OðϵÞ piece in (14).
Substituting (14) and (12a) into (4), and setting ϵ → 0,

we then solve the SDC at Oðα0sv0Þ:

Fð0Þ
1 ð3S1Þ ¼

20α3s
243m2

Q
ðπ2 − 9Þ: ð15Þ

In deriving this, we have replaced E by mQ, which is valid
at LO in v2. As expected, we have just reproduced the
classical result [2,5,7].

B. SDC at Oðα0
s v2Þ

Following the shortcut to extract the relativistic cor-
rection, as outlined in Sec. III A, we find the Oðα0sv2Þ
correction to the perturbative decay rate to be

Γð0;1ÞðQQ̄ð3S1Þ → 3gÞ

¼ Γð0;0ÞðQQ̄ð3S1Þ → 3gÞ q
2

E2

24 − 7π2

12ðπ2 − 9Þ : ð16Þ

To determine the SDCG1, we need also expand E in (16)

to first order in q2

m2
Q
. Substituting (16) and (12b) into (4), with

the aid of the known LO SDC Fð0Þ
1 in (15), we then deduce

the SDC at Oðα0sv2Þ:

Gð0Þ
1 ð3S1Þ ¼ Fð0Þ

1 ð3S1Þ
�
24 − 7π2

12ðπ2 − 9Þ − 1

�

¼ Fð0Þ
1 ð3S1Þ

132 − 19π2

12ðπ2 − 9Þ ; ð17Þ

which agrees with Refs. [5–7].

C. SDC at Oðαsv0Þ
The QCD radiative correction to the vector quarkonia

hadronic decay, yet at LO in velocity expansion, was first
computed by Mackenzie and Lepage nearly forty years ago
[2]. Dividing all the cut diagrams into several groups of
distinct topology, the authors of [2] tabulate the numerical
result of each individual class of diagrams, some of which
have rather limited accuracy. In order to make a close
comparison with their result, we also adopt the same
classification convention of Feynman diagrams as [2].
In Table I, we tabulate the numerical value of Γð1;0Þ=

ðαsΓð0;0Þ=πÞ for each class of cut diagrams. Following [2],
we also include in the class c) the diagrams with insertion
of heavy quark mass counterterm. Moreover, the entry
“C. T. (δαs)” in Table I signifies those tree diagrams with
insertion of the counterterm for the strong coupling con-
stant. The results from Ref. [2] are also juxtaposed with our
results, which employed the gluon mass λ to regularize IR
divergences. To expedite the comparison, we replace
log λ2=m2

Q in [2] with 1=ϵIR þ log μ2=m2
Q. As can be clearly

observed from the Table I, we find perfect agreement
between our and their results for each class of cut diagrams.
Since we are equipped with the modern IBP method
tailored for multiloop (multibody phase space) integrals
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and the more accurate non-Monte-Carlo integrator, it is
conceivable that a much better numerical accuracy can be
achieved with respect to that in [2].
Summing up the contributions from each class of cut

diagrams, we end up with the IR-finite Oðαsv0Þ correction
to the perturbative decay rate:

Γð1;0ÞðQQ̄ð3S1Þ → 3gÞ

¼ Γð0;0ÞðQQ̄ð3S1Þ → 3gÞ αs
π

�
3

4
β0 ln

μ2R
4E2

þ 11.14ð2Þ − 1.8436nf

�
; ð18Þ

where β0 ¼ 11=3CA − 2=3nf denotes the one-loop coef-
ficient of the QCD β function, with nf signifying the
number of the active light flavors. In this work, we take
nf ¼ 3 for J=ψ decay and nf ¼ 4 for ϒ decay. μR in (18)
represents the renormalization scale, whose explicit occur-
rence is demanded by the renormalization group invariance.
Substituting (18) and (12a) into (4), setting E ¼ mQ, we

then deduce the SDC at Oðα0sv0Þ:

Fð1Þ
1 ð3S1Þ ¼ Fð0Þ

1 ð3S1Þ
αs
π

�
3

4
β0 ln

μ2R
4m2

Q
þ 11.14ð2Þ

− 1.8436nf

�
; ð19Þ

which is compatible with the result in literature [2,5,7], yet
bears a much smaller error.

D. SDC at Oðαsv2Þ
We proceed to determine the numerical value of

Gð1Þ
1 ð3S1Þ, by far the unknown SDC at Oðαsv2Þ.
In Table II, we tabulate the individual contribution from

each class of cut diagrams to the perturbative hadronic
decay rate. The numbering convention for the Feynman
diagrams is the same as Table I. Upon summing all the
individual contribution in Table II, and implementing
standard renormalization procedure, we obtain the follow-
ing inclusive decay rate in QCD side at Oðαsv2Þ:

Γð1;1ÞðQQ̄ð3S1Þ → 3gÞ

¼ Γð0;0ÞðQQ̄ð3S1Þ → 3gÞ αsv
2

π

�
24 − 7π2

12ðπ2 − 9Þ
3

4
β0 ln

μ2R
4E2

þ 16

9

�
1

ϵIR
þ ln

μ2Λ
4E2

�
− 44.424ð6Þ þ 6.3235nf

�
:

ð20Þ

Clearly, the occurrence of Gð0Þ
1 ð3S1Þβ0 ln μR reflects the μR-

independence of the decay rate, which is demanded by the
standard renormalization group equation.
A salient trait in (20) is the occurrence of an uncancelled

single IR pole. We assign the symbol μΛ to denote the scale
accompanied with this single IR pole, which has very
different origin from the QCD renormalization scale μR.
The uncanceled single IR pole in (20), which arises at the

hard region at Oðαsv2Þ, is actually not surprising at all. In
fact, this symptom was first discovered in the Oðαsv2Þ
corrections for J=ψ → eþe− [32] (see also [33]), ηc → γγ

TABLE I. Oðαsv0Þ contribution to the Γð1;0Þ=ðαsΓð0;0Þ=πÞ from each class of cut diagrams, with our results juxtaposed with the
counterparts given in [2]. We have shifted the ’t Hooft unit mass according to μ2 → μ2eγE=ð4πÞ, which is equivalent to renormalizing αs
in the MS scheme. For simplicity, we temporarily set the renormalization scale μR ¼ 2E.

Cut diagrams Virtual corr. Real corr. Real + Virtual Corr. Result from [2]

a) − 2
ϵ − 5.439 — − 2

ϵ − 5.439 − 2
ϵ − 5.439

b) − 1
6ϵ − 0.726 — − 1

6ϵ − 0.726 − 1
6ϵ − ð0.726� 0.002Þ

c) − 4
3ϵ − 0.802 — − 4

3ϵ − 0.802 − 4
3ϵ − ð0.802� 0.002Þ

d) − 1
12ϵ − 0.142 — − 1

12ϵ − 0.142 − 1
12ϵ − ð0.143� 0.001Þ

e) 0.596 — 0.596 0.594� 0.002
f) 4

3ϵ − 8.562 — 4
3ϵ − 8.562 4

3ϵ − ð8.576� 0.022Þ
g)-j) 4.216

ϵ − 17.682 2.534
ϵ þ 21.318 6.75

ϵ þ 3.636 6.75
ϵ þ 3.54ð30Þ

k) − 4.5
ϵ2
− 8.767

ϵ þ 13.921 4.5
ϵ2
þ 8.767

ϵ − 3.461 10.460(7) 10.59� 0.26
l) −3.025 — −3.025 −3.02� 0.04
m) — −0.181 −0.181 −0.19� 0.04
n) 0 3.75−0.5nf

ϵ
1.75
ϵ þ 7.953 1.75

ϵ þ ð7.96� 0.02Þ
þ15.327 − 1.844nf

C. T. (δαs) 2nf−33
4ϵ

— 2nf−33
4ϵ

2nf−33
4ϵ

Total 4.5
ϵ2
− 15.05−0.5nf

ϵ
4.5
ϵ2
þ 15.05−0.5nf

ϵ
11.14ð2Þ − 1.844nf

−21.862ð9Þ 33.003ð7Þ − 1.844nf 3.77(2) (nf ¼ 4) 3.79� 0.53
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[34], J=ψ → 3γ [12], and ηc total hadronic width [35].
Physically, this unremoved IR pole indicates the break-
down of the color transparency once beyond the LO in v.
This IR divergence can be factored in the renormalized
NRQCD matrix element, so that the Oðαsv2Þ SDC will
explicitly depend on the NRQCD factorization scale μΛ,
which naturally ranges from mQv to mQ.
Expanding E in (20) around mQ in power series of

q2=m2
Q, then comparing (20) with (4), we finally obtain the

desired SDC in MS factorization scheme:

Gð1Þ
1 ð3S1Þ ¼ Fð0Þ

1 ð3S1Þ
αs
π

�
132 − 19π2

12ðπ2 − 9Þ
3

4
β0 ln

μ2R
4m2

Q

þ 16

9
ln

μ2Λ
4m2

Q
− 63.82ð2Þ þ 8.6671nf

�
: ð21Þ

Equation (21) constitutes the major new finding of this
work. It is interesting to note that the SDC at Oðαsv2Þ
contains the same ln μΛ term as the case for J=ψ → 3γ [12].
However, (21) also contains a negative non-logarithmic
constant, in sharp contrast with what is found for J=ψ →
3γ [12].

V. PHENOMENOLOGICAL ANALYSIS

Having all the SDCs through OðαsÞ at hand, we are
ready to conduct a detailed phenomenological analysis
based on the NRQCD factorization formula (1).

A. Phenomenology for J=ψðϒÞ → LH

Before launching into concrete numerics, we would like
to first develop some intuition on the relative importance of
the various corrections. Setting μR ¼ μΛ ¼ mQ, we then
obtain

Γ½J=ψ→LH�

¼0.0716
α3shO1ð3S1ÞiJ=ψ

m2
c

× ½1−5.32hv2iJ=ψ −1.19αsþ3.03αshv2iJ=ψ �; ð22aÞ
Γ½ϒ → LH�

¼ 0.0716
α3shO1ð3S1Þiϒ

m2
b

½1 − 5.32hv2iϒ − 1.56αs

þ 4.61αshv2iϒ�: ð22bÞ
To condense the notation, we have introduced the
dimensionless ratio hv2iV to characterize the relativistic
correction:

hv2iV ≡ h0jχ†σ · ϵ�ð− i
2
D
↔
Þ2ψ jVi

m2
Qh0jχ†σ · ϵ�ψ jVi : ð23Þ

To make concrete predictions, we need further specify
various input parameters: the value of heavy quark masses,
various NRQCD matrix elements, as well as the running
strong coupling constant evaluated around the quarkonium
mass. We choose the quark pole mass to be mc ¼ 1.4 GeV
and mb ¼ 4.6 GeV [12]. We take the same value of
NRQCD matrix elements for J=ψ as in Ref. [36]:

TABLE II. Oðαsv2Þ contribution to the Γð1;1Þ=ðαsv2Γð0;0Þ=πÞ from each class of cut diagrams. We have set the scale affiliated with
dimensional regularization to be μ ¼ 2E.

Cut diagrams Virtual corr. Real corr. Virtualþ Real corrs.

a) 8.641
ϵ þ 33.777 — 8.641

ϵ þ 33.777
b) 0.720

ϵ þ 1.797 — 0.720
ϵ þ 1.797

c) 5.761
ϵ þ 5.992 — 5.761

ϵ þ 5.992
d) 0.360

ϵ þ 0.699 — 0.360
ϵ þ 0.699

e) −1.570 — −1.570
f) − 3.983

ϵ þ 26.390 — − 3.983
ϵ þ 26.390

g)–j) − 3.700
ϵ2

− 27.095
ϵ þ 42.489 3.700

ϵ2
− 2.070

ϵ − 125.918 − 29.164
ϵ − 83.429

k) 23.143
ϵ2

þ 77.197
ϵ þ 123.118 − 23.143

ϵ2
− 77.196

ϵ − 140.976 −17.857
l) 11.793 — 11.793
m) — 4.272 4.272
n) — 2.160nf−16.202

ϵ
2.160nf−16.202

ϵ
þ9.392nf − 76.924 þ9.392nf − 76.924

C. T. −2.160nfþ35.645
ϵ

— −2.160nfþ35.645
ϵ

(δαs) −3.069nf þ 50.636 — −3.069nf þ 50.636

Total 19.443
ϵ2

þ −2.160nfþ97.247
ϵ − 19.443

ϵ2
þ 2.160nf−95.469

ϵ
16
9ϵ

−3.069nf þ 295.121ð3Þ þ9.3923nf − 339.545ð6Þ þ6.3235nf − 44.424ð6Þ
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hO1ð3S1ÞiJ=ψ ¼ 0.446 GeV3; hv2iJ=ψ ¼ 0.223: ð24Þ

We also take the values of the NRQCD matrix elements for
ϒðnSÞ from Ref. [37]3:

hO1ð3S1Þiϒð1SÞ ¼ 3.069 GeV3;

hv2iϒð1SÞ ¼ −0.009� 0.003; ð25aÞ
hO1ð3S1Þiϒð2SÞ ¼ 1.623 GeV3; hv2iϒð2SÞ ¼ 0.09:

ð25bÞ
We use the package RUNDEC [39] to compute the QCD

running coupling constant to two-loop accuracy:

αsðmcÞ ¼ 0.36; αsðmbÞ ¼ 0.22: ð26Þ
Our predictions for the hadronic widths of J=ψ and

ϒð1S; 2SÞ are tabulated in Table III. One readily observes
that the Oðαsv2Þ corrections are moderate in magnitude
with respect to Oðα0sv2Þ and Oðαsv0Þ corrections, which
may indicate that NRQCD expansion exhibits reasonable
convergence behavior both in αs and v in these channels. It
is interesting to remark that, this pattern is in sharp contrast
with the situation for J=ψ → 3γ, where one encounters a
very significant positive Oðαsv2Þ correction.
As one easily recognizes from Table III, a salient feature

for J=ψ → LH is the disquietingly negative Oðα0sv2Þ
correction, which is even greater than LO prediction in
magnitude. Even worse, the Oðαsv0Þ radiative correction
further decreases the predicted hadronic width. Although
the new Oðαsv2Þ correction tends to increase the predic-
tion, unfortunately its effect is not significant enough to
bring the predicted hadronic width to a positive value, so
that we are unable to make a meaningful prediction to
confront the measurement.
To closely examine this apparent discrepancy between

theory and experiment, we further display in Fig. 2 the
dependence of J=ψ hadronic decay rate on the renormal-
ization scale μR at various level of accuracy in αs and v

expansion, with the NRQCD factorization scale μΛ ¼ mc
held fixed. In the reasonable range of 1 GeV < μR < 2mc,
we again observe that the total decay rate is always
negative. As mentioned before, the root of this dilemma
can be readily traced from (22a), that is, mainly due to the
substantially negative Oðα0sv2Þ and Oðαsv0Þ corrections
and moderately positive Oðαsv2Þ correction. Thus, we
conclude that the state-of-the-art NRQCD prediction ceases
to yield a physically meaningful result for J=ψ → LH. How
to account for the experimental data from the perspective of
NRQCD factorization remains an open challenge. As a
potentially appealing solution, one may conjecture that the
uncalculated Oðα2sv0Þ correction might be significantly
positive, which would bring the NRQCD prediction closer
to measured value. Unfortunately, the bottleneck of the
current multiloop(leg) calculational capability impedes one
to tackle this type of NNLO perturbative correction in the
foreseeable future.
From Table III, one observes that theOðαsv2Þ correction

has rather minor effect for ϒð1S; 2SÞ → LH, much less
significant than the Oðαsv0Þ and Oðα0sv2Þ corrections. In
Figs. 3 and 4, the hadronic decay rates of ϒð1S; 2SÞ are
displayed as a function of the renormalization scale μR. As
can be easily visualized, though the LO NRQCD prediction
exhibits strong μR dependence, after including the correc-
tions through Oðαsv2Þ, the decay rate becomes much less
sensitive to the variation of μR, especially when μR > mb.
The relativistic corrections in ϒð1SÞ hadronic decay

appear to be negligible, which can be attributed to the
highly suppressed relativistic NRQCD matrix elements, as
clearly seen in (25a). We choose two different values for the
relativistic NRQCD matrix element to make predictions for
ϒð1SÞ → LH. When choosing the values specified in (25a),
the finest NRQCD prediction for ϒð1SÞ hadronic width is
considerably larger than the measured value, which can be
readily seen in Table III and the left panel of Fig. 3.

TABLE III. NRQCD predictions to J=ψðϒðnSÞ → LH at vari-
ous level of accuracy in αs and v, by setting μR ¼ μΛ ¼ mQ. The
last column lists the measured values taken from PDG 2020 [40].

Order

Γ (keV)

V LO Oðv2Þ OðαsÞ Oðαsv2Þ Total Exp. [40]

J=ψ 767 −910 −330 187 −286 59.5� 2.7
ϒð1SÞ 108 5 −37 −1 75 44.1� 1.4
ϒð2SÞ 57 −27 −19 5 15 18.8� 2.0

LO

LO O v2

LO O v2 O s

Total

PDG

500

1000

1500

500

1.5 2.0 2.5

keV

R GeV

FIG. 2. Predicted hadronic width of J=ψ (in unit of keV) as a
function of the renormalization scale μR by holding the NRQCD
factorization scale fixed, μΛ ¼ mc. Different curves designate the
various predictions at various levels of accuracy in αs and v
expansion.

3Note that hv2iϒð1SÞ has also been fitted to be −0.078 through
semi-inclusive decay ϒð1SÞ → D�þX [38], with the magnitude
significantly greater than that given in [37].
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Alternatively, one can estimate the hv2iϒð1SÞ according to
the Gremm-Kapustin (G-K) relation [41]:

hv2iϒð1SÞ ≈
Mϒð1SÞ − 2mb

mb
¼ 0.056; ð27Þ

once mb ¼ 4.6 GeV is chosen. With such choice, the
Oðαsv2Þ correction may reach 10% of the LO decay rate.
Consequently, for mb ≤ μR ≤ 2mb, the hadronic width of
ϒð1SÞ is predicted to be in the range 44–51 keV.
Interestingly, as one can tell from the right panel of
Fig. 3, the finest NRQCD prediction is in satisfactory
agreement with the measured value: 44.1� 1.4 keV [40].
For ϒð2SÞ hadronic width, both the Oðαsv0Þ and

Oðα0sv2Þ corrections are negative and sizeable. The
Oðαsv2Þ correction turns out to be positive, moderate in
magnitude. Incorporating the new piece of Oðαsv2Þ cor-
rection, the finest NRQCD prediction for the hadronic
width is in the range 15–19 keV for mb ≤ μR ≤ 2mb,
compatible with the measured value 18.8� 2.0 keV [40].

B. Phenomenology for J=ψðϒÞ → 3γ

The knowledge of the Oðαsv2Þ correction enables us not
only to present the most complete NRQCD predictions for
hadronic widths of vector quarkonia, but present the finest
NRQCD predictions for the rare electromagnetic decay
J=ψðϒÞ → 3γ.
TheOðαsv2Þ corrections to the partial width of J=ψðϒÞ →

3γ were addressed by the authors some time ago [12]:

ΓðV → 3γÞ

¼ 8ðπ2 − 9Þe6Qα3
9m2

Q
hO1ð3S1ÞiV

�
1 − 12.630

αs
π

þ
�
132 − 19π2

12ðπ2 − 9Þ þ
�
16

9
ln

μ2Λ
m2

Q
þ 68.913

�
αs
π

�
hv2iV

	
;

ð28Þ

whereeQ represents the electric chargeof the heavyquark, and
α denotes the fine structure constant. Curiously, the ln μΛ term

in the Oðαsv2Þ SDC is identical to that in Gð1Þ
1 ð3S1Þ in (21).

Dividing (28) by (1), and plugging the result for various
SDCs through Oðαsv2Þ that are tabulated in Section IV, we
then obtain the state-of-the-art NRQCD predictions for the
branching fractions of J=ψðϒÞ → 3γ. In the spirit of
NRQCD expansion, we further expand the ratio in power
series of αs and v2 and obtain

BrðJ=ψ → 3γÞ

¼ BrðJ=ψ → LHÞ × ΓðJ=ψ → 3γÞ
ΓðJ=ψ → LHÞ

¼ 0.641
α3

α3s

�
0.948 −

αs
π

�
8.42þ 6.40 ln

μ2R
m2

c

�

þ αs
π
hv2iJ=ψ11.51

�
; ð29aÞ

LO LO O v2 O s

LO O v2 Total

PDG

LO LO O v2 O s

LO O v2 Total

PDG

4 5 6 7 8 9

60

80

100

120

140

160

0

50

100

150

4 5 6 7 8 9

R GeV

R GeV

keV
keV

FIG. 3. Predicted decay rate for ϒð1SÞ → LH as a function of μR at various levels of accuracy in NRQCD expansion, with μΛ ¼ mb.
For the plot on the left panel, we take the value of hv2iϒð1SÞ same as in (25a), while on the right panel we take hv2iϒð1SÞ ¼ 0.056 in (27),
which is determined through G-K relation.

LO LO O v2 O s

LO O v2 Total

PDG20

40

60

80

4 5 6 7 8 9 R GeV

keV

FIG. 4. Predicted decay rate for ϒð2SÞ → LH as a function of
μR at various levels of accuracy in NRQCD expansion, with
μΛ ¼ mb.
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Brðϒð1SÞ → 3γÞ

¼ Brðϒ → LHÞ × Γðϒ → 3γÞ
Γðϒ → LHÞ

¼ 0.817
α3

α3s

�
0.0148 −

αs
π

�
0.115þ 0.093 ln

μ2R
m2

b

�

þ αs
π
hv2iϒð1SÞ0.197

�
: ð29bÞ

To reduce the theoretical error, we take BrðJ=ψ → LHÞ ¼
64.1% and Brðϒð1SÞ → LHÞ ¼ 81.7% as experimental
input [40].
As is evident in (29), The LO NRQCD matrix element

has canceled in the ratio. More interestingly, the Oðα0sv2Þ
correction has also completely disappear in the ratio.
Furthermore, the explicit logarithmic dependence on
NRQCD factorization scale μΛ has also disappeared.
In Fig. 5 we display our predictions for the branching

fractions of J=ψ → 3γ (left panel) and ϒð1SÞ → 3γ (right
panel) at various levels of accuracy in αs and v expansion,
with μΛ ¼ mQ. The sensitivity of the branching fractions to
μR seems not to improve much after incorporating
the higher order corrections. This may be attributed to
the sizeable radiative corrections and the α3s factor in the
denominator. Setting μR ¼ mc, the finest NRQCD predic-
tion is BrðJ=ψ → 3γÞ ¼ 1.45 × 10−6, about one order of
magnitude smaller than the measured value 1.16 × 10−5.
As can be seen in Fig. 5, varying the renormalization scale
in the range 1 GeV ≤ μR ≤ 3 GeV, we always observe that
BrðJ=ψ → 3γÞ is far smaller than the experimental meas-
urement. The resolution to this dilemma may need call for
including further higher order relativistic corrections [36],
or incorporating the Oðα2sv0Þ correction. Such a study
appears to be extremely challenging on technical ground,
which is beyond the scope of this work.

In a similar fashion, with the aid of (29b), we can predict
Brðϒð1SÞ → 3γÞ ¼ 2.06þ0.20

−1.55 × 10−7 and Brðϒð2SÞ →
3γÞ ¼ 1.78þ0.11

−0.99 × 10−7, where the uncertainties are esti-
mated by varying μR from mb=2 to 2mb. The uncertainties
looks significant due to strong μR dependence. Alter-
natively, if we choose hv2iϒð1SÞ ¼ 0.056 as indicated
by the G-K relation, the branching fraction shifts to
Brðϒð1SÞ → 3γÞ ¼ 2.33þ0.18

−1.44 × 10−7. It is a clear sign that
the relativistic effect is less important for bottomonium
case, and the branching fraction appears to be insensitive to
the relativistic corrections. We hope future experiments for
ϒ rare electromagnetic decay can test our predictions.

VI. SUMMARY

In summary, we have computed the Oðαsv2Þ corrections
to J=ψðϒÞ hadronic decays, precisely deducing the corre-
sponding SDCs. Unlike the case in J=ψðϒÞ → 3γ, the
corrections are moderate, therefore the expansion in v2

exhibits a decent convergence behavior. We find that the
theoretical predictions for the decay width of J=ψ → LH is
negative through Oðαsv2Þ, which is certainly unphysical
and can be attributed to the sizable and negative relativistic
corrections. On the other hand, we find the theoretical
predictions for ϒð1S; 2SÞ hadronic decays are consistent
with the experimental data, if the NRQCD matrix elements
hv2iϒðnSÞ are appropriately chosen. Incorporating the for-
mulas in the Ref. [12], we derive the branching fraction for
J=ψðϒÞ → 3γ accurate up toOðαsv2Þ. Although theOðv2Þ
relativistic corrections get exactly canceled, we observe a
strong μR dependence in the branching ratio. Once again,
we find the theoretical prediction for BrðJ=ψ → 3γÞ can
not explain the experimental measurement. In our opinion,
the theoretical incompetence to precisely predicting J=ψ
decay in NRQCD factorization approach may be attributed
to the not-yet-known higher-order relativistic and pertur-
bative corrections.

LO LO O v2 O s

Total

PDG

1.5 2.0 2.5

0.5

0.5

1.0

1.5

2.0 LO LO O v2 O s

Total

4 5 6 7 8 9

2

4

6

8
Br 1S 3 107

R GeV

R GeV

Br J 3 105

FIG. 5. NRQCD predictions for the branching fractions of J=ψ → 3γ (left panel) and ϒð1SÞ → 3γ (right panel) with various levels of
accuracy in αs and v expansion, with μΛ fixed to be heavy quark mass. The rare electromagnetic decay ϒ → 3γ has not yet been
observed experimentally. We take hv2iϒð1SÞ ¼ 0.056 in (27), which is inferred from G-K relation.
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APPENDIX: TACTICS IN DEALING WITH
FOUR-BODY PHASE SPACE INTEGRATION

In this Appendix, we present some technical details on
how we parametrize the three-particle and four-particle
phase space integrals in d dimensions. Our central goal is to
eliminate the Heaviside step function in the four-particle
phase space integration through some trick, so that we can
choose some highly precise numerical integrator other than

the widely used, but less accurate, adaptive Monte Carlo
integrator.
We start with the Born-order process for J=ψðϒÞ → LH,

where the decay product is comprised of three gluons. We
define the following Lorentz invariants:

P · k1 ¼ 2x1E2; P · k2 ¼ 2x2E2;

P · k1 ¼ 2ð2 − x1 − x2ÞE2;

k1 · k2 ¼ 2E2ðx1 þ x2 − 1Þ;
k1 · k3 ¼ 2E2ð1 − x2Þ; k2 · k3 ¼ 2E2ð1 − x1Þ; ðA1Þ

where the momenta P and ki (i ¼ 1, 2, 3) have been defined
in Sec. III A. The dimensionless variables x1 and x2 are
constrained to be 1 ≤ x1 þ x2 ≤ 2 by energy conservations.
It is useful to change variables from ðx1; x2Þ to ðx; yÞ so that
the integration range of the new variables lie in a square
[42]:

x1 ¼ x; x2 ¼ 1 − xy; ðA2Þ

with 0 ≤ x; y ≤ 1.
It is then straightforward to parametrize the phase space

integral of three massless particle in d ¼ 4 − 2ϵ space-time
dimensions as

Z
dΦ3 ¼

Z
dd−1k1

2k01ð2πÞd−1
dd−1k2

2k02ð2πÞd−1
dd−1k3

2k03ð2πÞd−1
ð2πÞdδdðP − k1 − k2 − k3Þ

¼ ð4E2Þ1−2ϵ
128π3

ð4πÞ2ϵ
Γð2 − 2ϵÞ

Z
1

0

dx dy x1−2ϵ½yð1 − xÞð1 − yÞ�−ϵ: ðA3Þ

Calculation of the real corrections demands considering the J=ψðϒÞ decay into four massless partons. The four-particle
phase space integration in dimensional regularization is somewhat intriguing. We employ the parametrization scheme
introduced in Ref. [43]. The Mandelstam variables are defined as sij ¼ ki · kj, which obey s12 þ s13 þ s14 þ s23 þ s24 þ
s34 ¼ 4E2 constrained by energy conservation. It is convenient to introduce a set of dimensionless variables xi through
rescaling the Mandelstam invariants by

x1 ¼
s12
4E2

; x2 ¼
s13
4E2

; x3 ¼
s23
4E2

; x4 ¼
s14
4E2

; x5 ¼
s24
4E2

; x6 ¼
s34
4E2

: ðA4Þ

In terms of the dimensionless variables in (A4), the massless four-body phase space can be parametrized as [43]

Z
dΦ4 ¼

Z
dd−1k1

2k01ð2πÞd−1
dd−1k2

2k02ð2πÞd−1
dd−1k3

2k03ð2πÞd−1
dd−1k3

2k04ð2πÞd−1
ð2πÞdδðP − k1 − k2 − k3 − k4Þ

¼ CΓð4E2Þ3d2−4
Z

1

0

Y6
j¼1

dxjδ
�
1 −

X6
i¼1

xi

�
½−λðx1x6; x2x5; x3x4Þ�d−52 Θð−λÞ; ðA5Þ

where λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2ðxyþ xzþ yzÞ is the Källen function,Θ represents the Heaviside step function, and the
volume factor CΓ is given by

CΓ ¼ ð2πÞ4−3dVðd − 1ÞVðd − 2ÞVðd − 3Þ21−2d; ðA6Þ
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with VðdÞ ¼ 2πd=2

Γðd=2Þ designating the area of the unit sphere

imbedded in d-dimensional space.
The presence of Heaviside step function in (A5) gen-

erally renders the integration boundary highly irregular,
so that one has to resort to the Monte Carlo recipe for
numerical integration, with some intrinsic limitation on
integration accuracy. In fact, we can manage to eliminate
the Heaviside function through a clever trick, so that we can
employ a more accurate numerical integrator other than the
Monte Carlo algorithm.
First let us explicitly write down the Källen function in

(A5), abbreviated by λ for simplicity:

λ≡ λðx1x6; x2x5; x3x4Þ
¼ x23x

2
4 þ x22x

2
5 þ x21x

2
6 − 2ðx2x3x4x5 þ x1x2x5x6

þ x1x3x4x6Þ: ðA7Þ
With the aid of Cheng-Wu theorem [44–46], we have the

freedom to pull the variables x1, x2, and x3 outside the
δ-function when carrying out phase space integration (A5).
Consequently, the integration range of x1, x2, and x3 then
become ½0;∞Þ, essentially unbounded. We can freely
rename the variables:

x1 →
x1
x6

; x2 →
x2
x5

; x3 →
x3
x4

: ðA8Þ

Now the Källen function reduces to

λ → x21 þ x22 þ x23 − 2ðx1x2 þ x2x3 þ x1x3Þ
¼ ðx1 − x2Þ2 þ x23 − 2x1x3 − 2x2x3: ðA9Þ

We can divide the integration range for x1 and x2 into two
sectors: x1 ≥ x2 and x1 < x2. For the first sector x1 ≥ x2, it
is convenient to further change the variables:

x2 →
x2
2
; x1 → x1 þ

x2
2
: ðA10Þ

For the second sector x1 < x2, we can also make variable
change:

x1 →
x2
2

x2 → x1 þ
x2
2
: ðA11Þ

The advantage of changing variables is to ensure that the
support of the new variables are within a square, e.g., both
integration ranges of new x1 and x2 lie in ½0;∞Þ.
Without loss of generality, we choose the first sector to

illustrate our recipe. After changing variables in line with
(A10), the Källen function now simplifies to

λ ¼ ðx1 − x3Þ2 − 2x2x3: ðA12Þ

Similarly, we can further break the integration into two
sectors: x1 ≥ x3 and x1 < x3. For the x1 ≥ x3 sector, we are
free to continue to rename the variables:

x3 →
x3
2

x1 → x1 þ
x3
2
: ðA13Þ

And for the x1 < x3 sector, we change the variables as

x1 →
x3
2
; x3 → x1 þ

x3
2
: ðA14Þ

Now the integration range of the new x1 and x3 variables lie
in ½0;∞Þ.
We can repeat the game of dissecting the integral into

two subsectors. For concreteness, let us concentrate on the
subsector x1 ≥ x3. After changing variables as advised in
(A13), the Källen function now reduces to

λ ¼ x21 − x2x3: ðA15Þ

We further rename the variable x2 as

x2 →
x1x2
x3

; ðA16Þ

so that λ in (A15) reduces to

λ ¼ x1ðx1 − x2Þ: ðA17Þ

One more again, we can dissect the integration range
into two sectors: x1 ≥ x2 and x1 < x2. As indicated by
the Heaviside function Θð−λÞ in (A5), the first sub-
sector (x1 ≥ x2) apparently make vanishing contribution.
Therefore, only the second subsector with x1 < x2 survives.
We further change the variables as follows:

x1 →
x2
2
; x2 → x1 þ

x2
2
: ðA18Þ

So the integration range of the new x1 and x2 variables also
lies in ½0;∞Þ. Meanwhile, the Källen function reduces to
λ ¼ − x1x2

2
. Since the Heaviside function Θð−λÞ remains 1

in this prescribed integration support, it can be safely
dropped. This sequences of manipulation can be recur-
sively applied to any integration sector.
At the last step, we can invoke Cheng-Wu theorem again

to put x1, x2, and x3 back inside the δ-function.
Through the aforementioned manipulations, we are able

to eliminate the HeavisideΘ function from the four-particle
phase space integral. Since the support of the multi-
dimensional integration variables is inside a regular hyper-
cube, we can resort to any efficient numerical integrator,
e.g., the parallelized integrator HCUBATURE [29] for high-
precision numerical integration.
As a test, we apply sector decomposition method

together with our parametrization to numerically calculate
five MIs of the massless four-body phase-space type
(labeled by R4, R6, R8;a, R8;b, and R8;r in [43]). These
five MIs have been analytically worked out in 2003 [43],
with which we find exquisite numerical agreement.
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