
 

Diquarks and nucleons under strong magnetic fields in the NJL model

M. Coppola ,1,2 D. Gomez Dumm,3 and N. N. Scoccola1,2
1CONICET, Rivadavia 1917, 1033 Buenos Aires, Argentina

2Physics Department, Comisión Nacional de Energía Atómica, Avenue Libertador 8250,
1429 Buenos Aires, Argentina

3IFLP, CONICET—Departamento de Física, Facultad de Ciencias Exactas,
Universidad Nacional de La Plata, C.C. 67, 1900 La Plata, Argentina

(Received 6 October 2020; accepted 28 October 2020; published 18 November 2020)

We study the description of nucleons and diquarks in the presence of a uniform strong magnetic field
within the framework of the two-flavor Nambu–Jona-Lasinio model. Diquarks are constructed through the
resummation of quark loop chains using the random phase approximation, while nucleons are treated as
bound quark-diquark states described by a relativistic Fadeev equation, using the static approximation for
quark exchange interactions. For charged particles, analytical calculations are performed using the Ritus
eigenfunction method, which properly takes into account the breakdown of translation invariance that
arises from the presence of Schwinger phases. Within this scheme, for definite model parametrizations we
obtain numerical predictions for diquark and nucleon masses, which are compared with chiral perturbation
theory and lattice QCD results. In addition, numerical estimations for nucleon magnetic moments are
obtained.
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I. INTRODUCTION

In recent years, a significant effort has been devoted to
the study of the properties of strongly interacting matter
under the influence of strong magnetic fields (see, e.g.,
[1–3], and references therein). This is mostly motivated
by the realization that large magnetic fields might play
an important role in the physics of the early Universe [4],
in the analysis of high-energy noncentral heavy ion
collisions [5], and in the description of physical systems
such as magnetars [6]. From the theoretical point of view,
addressing this subject requires one to deal with quantum
chromodynamics (QCD) in nonperturbative regimes.
Therefore, existing analyses are based either in the pre-
dictions of effective models or in the results obtained
through lattice QCD (LQCD) calculations. Most of
these works have been focused on the properties of
light mesons. To deal with low-energy QCD, various
theoretical approaches have been followed, e.g., Nambu–
Jona-Lasinio (NJL)-like models [7–19], quark-meson mod-
els [20,21], chiral perturbation theory (ChPT) [22–24], path
integral Hamiltonians [25,26], effective chiral confinement
Lagrangian approaches [27,28], and QCD sum rules [29].

In addition, results for the light meson spectrum in the
presence of background magnetic fields have been obtained
from LQCD calculations [30–35]. Regarding the study of
other hadrons, in the past few years, some works have
analyzed the effects of a magnetic field on baryon masses.
This problem has been addressed in the context of ChPT
[36,37], nonrelativistic quark models [38], extended linear
sigma model [39], Walecka model [39,40], soliton models
[41], finite energyQCD sum rules [42], and also lattice QCD
[43]. It is worth noticing that these theoretical approaches
lead to various different results for the behavior of nucleon
masses. The main purpose of the present article is to
complement these works by studying the effect of an intense
external magnetic field on scalar diquark and nucleon
properties within the NJL model.
In the framework of the NJL model, mesons and

diquarks are usually described as quantum fluctuations
in the random phase approximation (RPA) [44–46];
i.e., they are introduced via the summation of an infinite
number of quark loops. In the presence of a magnetic field
B⃗, the calculation of these loops requires some care due to
the appearance of Schwinger phases [47] associated with
quark propagators. For neutral mesons, Schwinger phases
cancel out, and, as a consequence, one can take the usual
momentum basis to diagonalize the corresponding polari-
zation functions [7–11]. On the other hand, for charged
pions and diquarks, the Schwinger phases do not cancel,
leading to a breakdown of translational invariance that
prevents proceeding as, e.g., in the π0 case. In this situation,
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some existing calculations [12,15] just neglect Schwinger
phases, considering only the translational invariant part of
the quark propagators. Recently [16,17], we have intro-
duced a method that allows one to fully take into account
the translational-breaking effects introduced by the
Schwinger phases in the calculation of charged meson
masses within the RPA. This method, based on the Ritus
eigenfunction approach [48] to magnetized relativistic
systems, allows one to diagonalize the charged pion
polarization function in order to obtain the corresponding
meson masses. In addition, in Refs. [16,17], we have used a
regularization procedure in which only the vacuum con-
tributions to different quantities at zero external magnetic
field are regularized. This scheme, that goes under the name
of “magnetic-field-independent regularization,” has been
shown to provide more reliable predictions in comparison
with other regularization methods often used in the liter-
ature [49]. One of the aims of the present work is to extend
the Ritus eigenfunction approach to the case of scalar
diquarks. For this purpose, we consider an extended
version of the NJL model that includes color pairing
interactions.
As mentioned above, another aim of this work is to study

the effects of an external magnetic field on nucleon masses.
As shown some years ago [50,51], the quark-level NJL
Lagrangian can be rewritten in terms of mesonic and
baryonic degrees of freedom, using diquarks as effective
states in an intermediate step. As a result of the hadroniza-
tion process, one gets a relativistic Fadeev equation that
explicitly takes into account correlations among the three
quarks. This equation can be solved numerically in order to
determine the nucleon mass [52–55]. In this way, provided
that the diquark channel interaction is strong enough, it is
seen that one can form a three-quark bound state with a
phenomenologically adequate nucleon mass. Using this
framework, other nucleon properties have been studied as
well [56–58]. In the present work, we will follow this
approach, considering the modifications of the aforemen-
tioned Fadeev equation induced by the presence of an
external magnetic field. As expected, this leads to the
existence of two different Fadeev equations, one for the
proton and another one for the neutron. Given the complex-
ity of the problem, we consider the static approximation
introduced in Ref. [52], which has been shown to lead to an
adequate description of nucleon properties in the absence of
external fields [54]. Furthermore, for simplicity, we neglect
axial vector diquark correlations.
This work is organized as follows. In Sec. II, we

introduce the theoretical formalism used to obtain the
different quantities we are interested in. In Sec. III, we
present and discuss our numerical results. Finally, in

Sec. IV, a summary our work, together with our main
conclusions, is given. We also include Appendixes A and B
to quote some technical details of our calculations.

II. THEORETICAL FORMALISM

A. Bosonized NJL model with diquark interactions in
the presence of an external magnetic field

We start by considering the Euclidean Lagrangian density
for the NJL two-flavor model in the presence of an
electromagnetic field and color pairing interactions. One has

L ¼ ψ̄ð−iγμDμ þm0Þψ −G½jðSÞðxÞjðSÞðxÞ
þ jðPÞa ðxÞjðPÞa ðxÞ� −H½jðDÞ

A ðxÞ�†jðDÞ
A ðxÞ; ð1Þ

where ψ ¼ ðψuψdÞT , G and H are coupling constants, and
m0 is the current quarkmass,which is assumed tobe equal for
u and d quarks. The currents in Eq. (1) are given by

jðSÞðxÞ ¼ ψ̄ðxÞψðxÞ; ð2Þ

jðPÞa ðxÞ ¼ ψ̄ðxÞiγ5τaψðxÞ; ð3Þ

jðDÞ
A ðxÞ ¼ ψ̄cðxÞiγ5τ2λAψðxÞ; ð4Þ

where we have defined ψc ¼ γ2γ4ψ̄
T , while τa and λA, with

a ¼ 1, 2, 3 and A ¼ 2, 5, 7, stand for Pauli and Gell-Mann
matrices acting on flavor and color spaces, respectively.
The interaction between the fermions and the electro-

magnetic field Aμ is driven by the covariant derivative

Dμ ¼ ∂μ − iQ̂Aμ; ð5Þ

where Q̂ ¼ diagðQu;QdÞ, with Qu ¼ 2e=3 and Qd ¼
−e=3, e being the proton electric charge. We consider
the particular case of a homogenous stationary magnetic
field B⃗ orientated along the 3-axis. Let us choose the

Landau gauge, in which A4 ¼ 0, A⃗ ¼ ð0; Bx1; 0Þ.
To proceed, it is convenient to bosonize the fermionic

theory, introducing a scalar field σðxÞ, pseudoscalar fields
π⃗aðxÞ, and diquark fields ΔAðxÞ, and integrating out the
fermion fields. The bosonized Euclidean action can be
written as

Sbos ¼ −
1

2
log det Dþ 1

4G

Z
d4x½σðxÞσðxÞ þ πaðxÞπaðxÞ�

þ 1

4H

Z
d4xΔAðxÞ�ΔAðxÞ; ð6Þ

where

Dðx; x0Þ ¼ δð4Þðx − x0Þ
�−iγμDμ þm0 þ ϕðxÞ iγ5τ2λAΔAðxÞ

iγ5τ2λAΔAðxÞ� −iγμD�
μ þm0 þ ϕðxÞT

�
; ð7Þ
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with ϕðxÞ ¼ σðxÞ þ iγ5τaπaðxÞ. As customary, we have
used here the Nambu-Gorkov (NG) formalism. In the
former equations, and in what follows, matrices in the
NG space are denoted in boldface.
We proceed by expanding the bosonized action in

powers of the fluctuations δσðxÞ, δπaðxÞ, and δΔAðxÞ
around the corresponding mean field (MF) values. As
usual, we assume that the field σðxÞ has a nontrivial
translational invariant MF value σ̄, while the vacuum
expectation values of pseudoscalar and diquark fields are
zero. Then, one has

Dðx; x0Þ ¼ D̄ðx; x0Þ þ δDðx; x0Þ; ð8Þ

where the MF piece reads

D̄ðx; x0Þ ¼
�
D̄ðx; x0Þ 0

0 D̄cðx; x0Þ

�

¼ δð4Þðx − x0Þ
�−iγμDμ þM 0

0 −iγμDμ
� þM

�
:

ð9Þ

Here M denotes the quark effective mass, M ¼ m0 þ σ̄.
The fluctuation piece is given by

δDðx;x0Þ ¼ δð4Þðx−x0Þ
�

δϕðxÞ iγ5τ2λAδΔAðxÞ
iγ5τ2λAδΔAðxÞ� δϕðxÞT

�
:

ð10Þ

The MF operators D̄ðx; x0Þ and D̄cðx; x0Þ are flavor
diagonal, and their inverses correspond to quark MF
propagators in the presence of a magnetic field. One has

D̄−1ðx; x0Þ ¼ S̄ðx; x0Þ ¼ diagðS̄uðx; x0Þ; S̄dðx; x0ÞÞ; ð11Þ

D̄−1
c ðx; x0Þ ¼ S̄cðx; x0Þ ¼ diagðS̄−uðx; x0Þ; S̄−dðx; x0ÞÞ;

ð12Þ

where the minus signs in front of the flavor indices f ¼ u
or d indicate that the sign of the corresponding quark
electric charge in the propagator has to be reversed. As is
well known, the explicit form of the quark propagator in the
presence of an external constant magnetic field can be
written in different ways [2,3]. For convenience, we take
the form in which S̄fðx; x0Þ is given by a product of a phase
factor and a translational invariant function, namely,

S̄fðx; x0Þ ¼ eiΦfðx;x0Þ
Z
p⊥pk

eipðx−x0ÞS̃fðp⊥; pkÞ; ð13Þ

where Φfðx; x0Þ ¼ QfBðx1 þ x01Þðx2 − x02Þ=2 is the so-
called Schwinger phase. We have introduced here the

following shorthand notation for the integrals over two-
dimensional momentum vectors:

Z
pq…

≡
Z

d2p
ð2πÞ2

d2q
ð2πÞ2…: ð14Þ

We find it convenient to express S̃fðp⊥; pkÞ in the
Schwinger form [2,3]

S̃fðp⊥;pkÞ¼
Z

∞

0

dτe−τϕfðτ;pÞ
�
ðM−pk ·γkÞ

× ½1þisfγ1γ2 tanhðτBfÞ�−
p⊥ ·γ⊥

cosh2ðτBfÞ
�
; ð15Þ

where we have used the following definitions. The
“perpendicular” and “parallel” gamma matrices are col-
lected in vectors γ⊥ ¼ ðγ1; γ2Þ and γk ¼ ðγ3; γ4Þ, respec-
tively (note that in our convention fγμ; γνg ¼ −2δμν).
Similarly, p⊥ ¼ ðp1; p2Þ and pk ¼ ðp3; p4Þ. We have also
used the notation sf ¼ sgnðQfBÞ and Bf ¼ jQfBj. Finally,
we have defined

ϕfðτ; pÞ ¼ M2 þ p2
k þ

tanhðτBfÞ
τBf

p2⊥: ð16Þ

Notice that the integral in Eq. (15) is divergent and has to be
properly regularized, as we discuss below.
Replacing the previous relations in the bosonized effec-

tive action and expanding in powers of the meson fluctua-
tions around the MF values, one gets

Sbos ¼ SMF
bos þ Squadbos þ � � � : ð17Þ

The expression of SMF
bos, together with those of the mesonic

contributions to Squadbos , is given in Eqs. (10)–(12) of
Ref. [17]. In that paper, both the procedure followed to
obtain the regularized gap equation and the expressions
required to calculate various meson properties are discussed
in detail. In the present case, Squadbos includes an additional
contribution that is quadratic in the diquark fields. This
contribution will be discussed in the next subsection.

B. Diquark mass and propagator

The diquark contribution to Squadbos is given by

Squad;diqbos ¼ Squad;Δbos þ Squad;Δ̄bos

¼ 1

2

X
D¼Δ;Δ̄

Z
d4xd4x0δDAðxÞ�G−1

D ðx; x0ÞδDAðx0Þ;

ð18Þ

where
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G−1
D ðx; x0Þ ¼ 1

4H
δð4Þðx − x0Þ − JDðx; x0Þ: ð19Þ

The polarization functions read

JΔðx; x0Þ ¼ trD½S̄uðx; x0Þγ5S̄−dðx0; xÞγ5
þ S̄dðx; x0Þγ5S̄−uðx0; xÞγ5�; ð20Þ

JΔ̄ðx; x0Þ ¼ trD½S̄−uðx; x0Þγ5S̄dðx0; xÞγ5
þ S̄−dðx; x0Þγ5S̄uðx0; xÞγ5�; ð21Þ

where the trace is taken over Dirac space. As seen from its
quark content, Δ (Δ̄) corresponds to the diquark with
chargeQΔ ¼ e=3 (QΔ̄ ¼−e=3). Since JΔðx;x0Þ¼JΔ̄ðx0;xÞ,
both diquarks have the same mass, and we can proceed by
considering only the positively charged diquark Δ.
Let us start by replacing in Eq. (20) the expression for the

quark propagators in Eq. (13). We get

JΔðx; x0Þ ¼ eiΦΔðx;x0Þ
Z
p⊥pkv⊥vk

eivðx−x0Þ

× trD½S̃uðpþ⊥; pþ
k Þγ5S̃−dðp−⊥; p−

k Þγ5
þ S̃dðpþ⊥; pþ

k Þγ5S̃−uðp−⊥; p−
k Þγ5�; ð22Þ

where we have defined p� ¼ p� v=2. Here the phase ΦΔ
is given by

ΦΔðx; x0Þ ¼ Φuðx; x0Þ þΦ−dðx0; xÞ
¼ Φdðx; x0Þ þΦ−uðx0; xÞ

¼ QΔB
2

ðx1 þ x01Þðx2 − x02Þ; ð23Þ

i.e., there is no cancellation of Schwinger phases.
Consequently, the polarization function is not translational
invariant and will not become diagonal when transformed
to the momentum basis. In this situation, as done in
Ref. [17] for the case of charged pions, it is convenient
to expand the diquark field in terms of Ritus eigenfunc-
tions. We have

δΔAðxÞ ¼
XZ
q̄

FΔ
q̄ ðxÞδΔAðq̄Þ; ð24Þ

where we have used the shorthand notation

q̄≡ ðl; q2; qkÞ;
XZ
q̄

≡ 1

2π

X∞
l¼0

Z
dq2
2π

Z
qk
: ð25Þ

Notice that the expansion includes a sum over discrete
Landau levels. The functions FΔ

q̄ are given by

FΔ
q̄ ðxÞ ¼Nleiðq2x2þq3x3þq4x4ÞDl

� ffiffiffiffiffiffiffiffiffi
2BΔ

p
x1 − sΔ

ffiffiffiffiffiffiffiffiffiffi
2B−1

Δ

q
q2
�
;

ð26Þ

where DlðxÞ are the cylindrical parabolic functions and
Nl ¼ ð4πBΔÞ1=4=

ffiffiffiffiffi
l!

p
. As in Eq. (15), we use the notation

BΔ ¼ jQΔBj and sΔ ¼ sgnðQΔBÞ. Replacing now in
Eq. (18), we have

Squad;Δbos ¼ 1

2

XZ
q̄0;q̄

δΔAðq̄Þ�G−1
Δ ðq̄; q̄0ÞδΔAðq̄0Þ; ð27Þ

where

G−1
Δ ðq̄; q̄0Þ ¼ 1

4H
δ̂q̄q̄0 − JΔðq̄; q̄0Þ; ð28Þ

with

δ̂q̄q̄0 ¼ ð2πÞ4δll0δðq2 − q02Þδðq3 − q03Þδðq4 − q04Þ ð29Þ

and

JΔðq̄; q̄0Þ ¼
Z
p⊥pkv⊥vk

trD½S̃uðpþ⊥; pþ
k Þγ5S̃−dðp−⊥; p−

k Þγ5

þ S̃dðpþ⊥; pþ
k Þγ5S̃−uðp−⊥; p−

k Þγ5�

×
Z

d4xd4x0eiΦΔðx;x0Þeivðx−x0ÞFΔ
q̄ ðxÞ�FΔ

q̄0 ðx0Þ:

ð30Þ

The integrals in Eq. (30) can be worked out following
basically the same steps as those described in Ref. [17] for
the case of charged pions. In this way, after some lengthy
calculation, it can be shown that the polarization function
turns out to be diagonal in the Ritus eigenfunction basis.
One has

JΔðq̄; q̄0Þ ¼ δ̂q̄q̄0JΔðl;Π2Þ; ð31Þ

where

JΔðl;Π2Þ ¼ 1

2π2

Z
∞

0

dz
Z

1

0

dy exp½−zM2

− zyð1 − yÞðΠ2 − ð2lþ 1ÞBΔÞ�

×
αl−
αlþ1
þ

�	
M2 þ 1

z

− yð1 − yÞðΠ2 − ð2lþ 1ÞBΔÞ


ð1þ tutdÞ

þ ð1 − t2uÞð1 − t2dÞ
αþα−

½α− þ ðα− − αþÞl�
�
; ð32Þ
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with Π2 ¼ ð2lþ 1ÞBΔ þ q2k. Here we have introduced the
definitions tu ¼ tanhðBuyzÞ, td ¼ tanh½Bdð1 − yÞz�, and
α� ¼ ðBdtu þ Butd � BΔtutdÞ=ðBuBdÞ. As usual, we have
introduced the changes of variables y ¼ τ=ðτ þ τ0Þ and
z ¼ τ þ τ0, τ and τ0 being the integration parameters
associated with the quark propagators as in Eq. (15).
As in the case of the mesons [16,17], the polarization

function in Eq. (32) turns out to be divergent and can be
regularized within the magnetic-field-independent regulari-
zation scheme. Because of quantization in the 1-2 plane,

this requires some care; viz. the subtraction of the B ¼ 0
contribution to the polarization function has to be carried
out once the latter has been written in terms of the squared
canonical momentum Π2, as in Eq. (32). Thus, the
regularized diquark polarization function can be written as

JðregÞΔ ðl;Π2Þ ¼ JðregÞΔ;B¼0ðΠ2Þ þ JðmagÞ
Δ ðl;Π2Þ; ð33Þ

where

JðmagÞ
Δ ðl;Π2Þ ¼ 1

2π2

Z
∞

0

dz
Z

1

0

dy exp½−zM2 − zyð1 − yÞΠ2�

×

�	
M2 þ 1

z
− yð1 − yÞ½Π2 − ð2lþ 1ÞBΔ�




×

	
αl−
αlþ1
þ

ð1þ tutdÞ exp½zyð1 − yÞð2lþ 1ÞBΔ� −
1

z




þ αl−1−

αlþ2
þ

ð1 − t2uÞð1 − t2dÞ½α− þ ðα− − αþÞl�

× exp½zyð1 − yÞð2lþ 1ÞBΔ� −
1

z

	
1

z
− yð1 − yÞð2lþ 1ÞBΔ


�
: ð34Þ

The integrand in Eq. (34) is well behaved in the limit z → 0.
Hence, this magnetic-field-dependent contribution is finite.
On the other hand, the expression for the subtracted B ¼ 0
piece has to be regularized. This can be done, as usual, by
using a 3D cutoff regularization. We get

JðregÞΔ;B¼0ðΠ2Þ ¼ 2½I1 þ Π2I2ðΠ2Þ�; ð35Þ

where the explicit expressions of I1 and I2 can be found, e.g.,
in Ref. [17] [see Eqs. (20) and (28)]. We obtain in this way

G−1
Δ ðq̄; q̄0Þ ¼ δ̂q̄q̄0

	
1

4H
− JðregÞΔ ðl;Π2Þ



: ð36Þ

Since the two-point function is diagonal in this basis, it can be
trivially inverted to obtain the diquark propagator. We have

GΔðq̄; q̄0Þ ¼ δ̂q̄q̄0G
ðregÞ
Δ ðl; q2kÞ; ð37Þ

where

GðregÞ
Δ ðl; q2kÞ ¼

	
1

4H
− JðregÞΔ ðl;Π2Þ



−1
: ð38Þ

Consequently, in our framework the diquark polemass in the
presence of themagnetic field for each Landau level l can be
obtained by solving the equation

1

4H
− JðregÞΔ ðl;−m2

ΔÞ ¼ 0: ð39Þ

It is clear thatmΔ depends on themagnetic field, although not
explicitly stated.
As in the case of the charged pions, instead of dealing

with mΔ one can define the Δ “magnetic-field-dependent
mass” as the lowest quantum-mechanically allowed energy
of the diquark, EΔ. The latter is given by

E2
Δ ¼ m2

Δ þ ð2lþ 1ÞBΔ þ q23jq3¼0;l¼0 ¼ m2
Δ þ jeBj

3
:

ð40Þ

Notice that this “mass” is magnetic field dependent even for
a pointlike diquark (in which case one would have a pole
mass mΔ independent of B). In fact, owing to zero-point
motion in the 1-2 plane, even for l ¼ 0 a diquark cannot be
at rest in the presence of the magnetic field.
Given the diagonal form of the diquark propagator in

Ritus space [see Eq. (37)], we can transform it back to
coordinate space. One obtains

GΔðx; x0Þ ¼ eiΦΔðx;x0Þ
Z
q⊥qk

eiqðx−x0ÞG̃Δðq⊥; qkÞ; ð41Þ

where
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G̃Δðq⊥; qkÞ ¼ 2e−q
2⊥=BΔ

X∞
l¼0

ð−1ÞlGðregÞ
Δ ðl; q2kÞLlð2q2⊥=BΔÞ;

ð42Þ

LlðxÞ being the Laguerre polynomials.

C. Nucleon masses

The baryon propagator can be obtained consistently with
the bound quark-diquark structure following Ref. [51].
From the infinite sum illustrated by the diagrams in Fig. 1,
one arrives at a relation of the form

SBð½x; y�; ½x0; y0�Þ
¼ SB

0 ð½x; y�; ½x0; y0�Þ

þ
Z

d4td4zSB
0 ð½x; y�; ½t; z�ÞHðz; tÞSB

0 ð½z; t�; ½x0; y0�Þ

þ � � � ; ð43Þ

where, in our case, the kernel H is given by

Hðz; tÞ ¼ iγ5τ2λAS̄cðz; tÞiγ5τ2λA0 : ð44Þ

In Eq. (43), SB stands for the full baryon propagator, while
SB
0 describes the unperturbed propagation of a diquark and

a quark, namely,

SB
0 ð½x; y�; ½t; z�Þ ¼ GΔðx; tÞS̄ðy; zÞ: ð45Þ

Since the nucleon fields are bilocal, we have introduced
the notation of pairs ½x; y�, where the first and second
coordinates correspond to the diquark and the quark,
respectively. The resummation of the diagrams in Fig. 1
leads to a relativistic Fadeev equation that can be written in
the form

SB
0 ð½x; y�; ½x0; y0�Þ ¼

Z
d4td4z½δð4Þðx − zÞδð4Þðy − tÞ

− Lð½x; y�; ½z; t�Þ�SBð½z; t�; ½x0; y0�Þ;
ð46Þ

where

Lð½x; y�; ½z; t�Þ ¼ SB
0 ð½x; y�; ½t; z�ÞHðz; tÞ: ð47Þ

The nucleon masses will be given by the poles of the
baryon propagator in the background of the vacuum
configuration of the meson fields. These poles correspond
to the zeros of the operator in square brackets in Eq. (46).
Acting on the baryon field ψ , one hasZ

d4zd4tLð½x; y�; ½z; t�Þψð½z; t�Þ ¼ ψð½x; y�Þ: ð48Þ

It should be noticed that in our calculation only isoscalar-
scalar diquark interactions have been considered. This
implies that the nucleon isospin is directly given by the
flavor of the unpaired quark. Projecting on color singlet
baryon states, and using the explicit form of the matrices in
flavor space, one gets

2

Z
d4zd4tGΔðx; tÞS̄uðy; zÞγ5S̄−dðz; tÞγ5ψpð½z; t�Þ

¼ ψpð½x; y�Þ; ð49Þ

2

Z
d4zd4tGΔðx; tÞS̄dðy; zÞγ5S̄−uðz; tÞγ5ψnð½z; t�Þ

¼ ψnð½x; y�Þ; ð50Þ

where ψp and ψn stand for the proton and neutron states,
respectively.
It should be noticed that in the absence of an external

magnetic field both equations coincide. Moreover, since in
that case both the quark and diquark fields are translational
invariant, one can perform a Fourier transformation into
momentum space. The resulting Fadeev equation, dis-
cussed, e.g., in Refs. [52,54], turns out to be a nonseparable
integral equation. Given its complexity, in Ref. [52], the so-
called “static approximation,” in which one disregards the
momentum dependence of the exchanged quark, was used.
Then, in Ref. [54], the full equation was solved numeri-
cally, showing that in fact the static approximation can be
taken as a good qualitative approach to the exact results.
Having this in mind, and taking into account the additional

FIG. 1. Diagrams contributing to the full baryon propagator.
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difficulty introduced by the external magnetic field, we find
it appropriate to consider the static approximation to get an
estimation of the behavior of nucleon masses with the
external field. This means to take

S̃−fðp⊥; pkÞ →
1

M
: ð51Þ

Since in this approximation one has S̄−fðx; yÞ ¼ δð4Þðx− yÞ
and Hðx; zÞ ∝ δð4Þðx − zÞ, Eqs. (50) reduce to

2

M

Z
d4zGΔðx; zÞS̄uðx; zÞψpðzÞ ¼ ψpðxÞ;

2

M

Z
d4zGΔðx; zÞS̄dðx; zÞψnðzÞ ¼ ψnðxÞ: ð52Þ

Notice that within this approximation there is no further
need to consider coordinate pairs in the arguments of
nucleon fields, which become local.
Inserting Eqs. (13) and (41) into Eqs. (52), we get

2

M

Z
q⊥qkr⊥rk

eiðqþrÞxG̃Δðq⊥; qkÞS̃uðr⊥; rkÞ
Z

d4zeiΦpðx;zÞe−iðqþrÞzψpðzÞ ¼ ψpðxÞ;

2

M

Z
q⊥qkr⊥rk

eiðqþrÞxG̃Δðq⊥; qkÞS̃dðr⊥; rkÞ
Z

d4ze−iðqþrÞzψnðzÞ ¼ ψnðxÞ; ð53Þ

where the Schwinger phase appearing in the equation for
the proton is given by

Φpðx; x0Þ ¼ ΦΔðx; x0Þ þΦuðx; x0Þ

¼ QpB

2
ðx1 þ x01Þðx2 − x02Þ; ð54Þ

with Qp ¼ e. As expected, in the equation for the neutron,
the Schwinger phase vanishes. In order to change to a
momentum basis, it is convenient to introduce the trans-
formations

ψpðxÞ ¼
XZ
P̄

Ep
P̄ðxÞψpðP̄Þ;

ψnðxÞ ¼
Z

d4P
ð2πÞ4 e

iPxψnðPÞ: ð55Þ

Note that, while in the case of the neutron P denotes the
usual four-momentum, for the proton field we have used a
shorthand notation which resembles the one used for the
diquarks, namely,

P̄≡ ðk; P2; PkÞ;
XZ
P̄

≡ 1

2π

X∞
k¼0

Z
dP2

2π

Z
Pk
: ð56Þ

The functions Ep
P̄ are given by

Ep
P̄ðxÞ ¼

X
λ¼�

Ep
P̄;λðxÞΓλ; ð57Þ

where Γþ ¼ diagð1; 0; 1; 0Þ, Γþ ¼ diagð0; 1; 0; 1Þ, and

Ep
P̄;λðxÞ ¼ Nkλe

iðP2x2þP3x3þP4x4Þ

×Dkλ

� ffiffiffiffiffiffiffiffi
2Bp

p
x1 − sp

ffiffiffiffiffiffiffiffiffiffi
2B−1

p

q
P2

�
: ð58Þ

As in the diquark case, DkλðxÞ are cylindrical parabolic
functions. We have also defined Nkλ ¼ ð4πBpÞ1=4=

ffiffiffiffiffiffi
kλ!

p
,

kλ ¼ k − ð1 − λspÞ=2, Bp ¼ jeBj, and sp ¼ sgnðeBÞ.
Equations (53) can be now transformed to momentum

space using Eqs. (55). One gets

XZ
P̄0

DðpÞ
P̄P̄0ψpðP̄0Þ ¼ 0;

DðnÞ
P ψnðPÞ ¼ 0; ð59Þ

where

DðpÞ
P̄P̄0 ¼ δ̂P̄P̄01 −

2

M

Z
q⊥qkr⊥rk

X
λ;λ0

Iλ;λ
0

P̄P̄0 ðq; rÞG̃Δðq⊥; qkÞ

× ΓλS̃
uðr⊥; rkÞΓλ0 ; ð60Þ

DðnÞ
P ¼ 1 −

2

M

Z
q⊥qk

G̃Δðq⊥; qkÞS̃dðP⊥ − q⊥; Pk − qkÞ;

ð61Þ

with

Iλ;λ
0

P̄P̄0 ðq; rÞ ¼
Z

d4xd4zei½Φpðx;zÞþðqþrÞðx−zÞ�Ep
P̄;λðxÞ�Ep

P̄0;λ0 ðzÞ:

ð62Þ

From Eq. (60), it is not obvious that DðpÞ
P̄P̄0 is diagonal in

Ritus space. However, after a rather long calculation, it can
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be shown thatDðpÞ
P̄P̄0 is indeed proportional to δ̂P̄P̄0 . The main

steps of the calculation are given in Appendix A. Using the
form of the quark propagator given in Eq. (15), one finally
obtains

DðpÞ
P̄P̄0 ¼ δ̂P̄P̄0

X
λ¼�

½XðpÞ
λ þ YðpÞ

λ Pk · γk þ ZðpÞ
λ γ2�Γλ;

DðnÞ
P ¼

X
λ¼�

½XðnÞ
λ þ YðnÞ

λ Pk · γk þ ZðnÞP⊥ · γ⊥�Γλ; ð63Þ

where

XðpÞ
λ ¼ 1 −

8π

Bp
ð−1Þkλ

Z
q⊥qkr⊥

e−ðq⊥þr⊥Þ2=Bp G̃Δðq⊥; qkÞ

× Tu
λðr⊥; Pk − qkÞLkλ

�
2ðr⊥ þ q⊥Þ2

Bp

�
; ð64Þ

YðpÞ
λ ¼ 8π

MBp
ð−1Þkλ

Z
q⊥qkr⊥

e−ðq⊥þr⊥Þ2=Bp G̃Δðq⊥; qkÞ

×

�
1−

qk ·Pk
P2
k

�
Tu
λðr⊥;Pk − qkÞLkλ

�
2ðr⊥ þ q⊥Þ2

Bp

�
;

ð65Þ

ZðpÞ
λ ¼ 8πsp

MBp

ffiffiffiffiffiffiffiffi
2

kBp

s
ð−1Þk

Z
q⊥qkr⊥

e−ðq⊥þr⊥Þ2=Bp G̃Δðq⊥; qkÞ

× r⊥½ðr1 þ q1Þ − iλðr2 þ q2Þ�Vuðr⊥; Pk − qkÞ

× L1
k−1

�
2ðr⊥ þ q⊥Þ2

Bp

�
; ð66Þ

and

XðnÞ
λ ¼ 1 − 2

Z
q⊥qk

G̃Δðq⊥; qkÞTd
λðP⊥ − q⊥; Pk − qkÞ;

ð67Þ

YðnÞ
λ ¼ 2

M

Z
q⊥qk

G̃Δðq⊥; qkÞTd
λðP⊥ − q⊥; Pk − qkÞ

×
�
1 −

qk · Pk
P2
k

�
; ð68Þ

ZðnÞ
λ ¼ 2

M

Z
q⊥qk

G̃Δðq⊥; qkÞVdðP⊥ − q⊥; Pk − qkÞ

×

�
1 −

q⊥ · P⊥
P2⊥

�
; ð69Þ

with

Tf
λ ðr⊥; rkÞ ¼

Z
∞

0

dτ e−τϕfðτ;rÞ½1þ λsf tanhðτBfÞ�;

Vfðr⊥; rkÞ ¼
Z

∞

0

dτe−τϕfðτ;rÞsech2ðτBfÞ: ð70Þ

In what follows, we will concentrate on the determi-
nation of the proton and neutron lowest possible energies.
Since these quantities are usually interpreted as the nucleon
masses, we denote them as MN , with N ¼ p, n. For the
neutron we just take, as usual, P⃗⊥ ¼ 0, P3 ¼ 0, and
P2
4 ¼ −M2

n. In the case of the proton, as done for the
diquarks, we consider the squared canonical momentum
Π2 ¼ 2kBp þ P2

k. The lowest-energy state corresponds to
the lowest Landau level (LLL), k ¼ 0. Then, taking
P3 ¼ 0, one has P2

4 ¼ −M2
p, as for the neutron case.

Since the determinants of the Dirac operators in Eqs. (63)
have to vanish at the pole masses, the corresponding
eigenvalue equations read

X̂ðpÞ
sp

2 −M2
pŶ

ðpÞ
sp

2 ¼ 0; ð71Þ

X̂ðnÞ
λ

2 −M2
nŶ

ðnÞ
λ

2 ¼ 0; ð72Þ

where we have denoted by X̂ðNÞ
� and ŶðNÞ

� the coefficients in
Eqs. (63) evaluated at k ¼ 0, P3 ¼ 0, and P⃗⊥ ¼ 0. Note
that for the lowest-energy states there is no contribution

from the terms with ZðpÞ
λ and ZðnÞ

λ . In addition, in the case of
the proton only the projection λ ¼ sp is nonvanishing for
k ¼ 0. For the neutron, both projections are, in principle,
allowed, and one should take the value of λ that leads to the
lowest value of the mass.

To obtain the explicit form of the coefficients X̂ðNÞ
λ and

ŶðNÞ
λ needed to evaluate—and solve—Eqs. (71) and (72), one

has to replace the diquark propagator, Eq. (42), in Eqs. (64),
(65), (67), and (68). For convenience, we consider first the
form of the coefficients in the absence of the external
magnetic field (in this case, both proton and neutron are
taken at rest). They are given by (see Appendix B)

X̂ ¼ 1 −
1

4π2mN

Z
∞

1

dτ
τ

Z
∞

0

dqq2GðregÞ
Δ;B¼0ðq2Þ

× e−τðM2þq2−m2
NÞ=Λ2

BJ1

�
2τqmN

Λ2
B

�
; ð73Þ

Ŷ ¼ 1

4π2mNM

Z
∞

1

dτ
τ

Z
∞

0

dqq2GðregÞ
Δ;B¼0ðq2Þe−τðM

2þq2−m2
NÞ=Λ2

B

×

	
J1

�
2τqmN

Λ2
B

�
−

q
mN

J2

�
2τqmN

Λ2
B

�

: ð74Þ

Here, and below,mN denotes the nucleonmass atB ¼ 0, and
JkðxÞ are Bessel functions. The B ¼ 0 diquark propagator
[see Eq. (38)] is given by
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GðregÞ
Δ;B¼0ðq2Þ ¼

	
1

4H
− JðregÞΔ;B¼0ðq2Þ



−1
: ð75Þ

Notice that Eqs. (73) and (74) include a cutoff parameterΛB,
which has been introduced in order to regularize the

otherwise divergent quark-diquark loop within the proper
time regularization scheme.
For nonzero magnetic field B, in the case of the proton

we have

X̂ðpÞ
sp ¼ 1 −

BuBΔ

2π2Λ2
B

Z
∞

1

dτ
1þ tu

Bu þ ðBp þ BΔÞtu
X∞
l¼0

	
Bu þ ðBp − BΔÞtu
Bu þ ðBp þ BΔÞtu



l

×
Z

∞

0

dqkqkG
ðregÞ
Δ ðl; q2kÞe−τðM

2þq2k−M
2
pÞ=Λ2

BJ0

�
2τqkMp

Λ2
B

�
; ð76Þ

ŶðpÞ
sp ¼ BuBΔ

2π2MΛ2
B

Z
∞

1

dτ
1þ tu

Bu þ ðBp þ BΔÞtu
X∞
l¼0

	
Bu þ ðBp − BΔÞtu
Bu þ ðBp þ BΔÞtu



l

×
Z

∞

0

dqkqkG
ðregÞ
Δ ðl; q2kÞe−τðM

2þq2k−M
2
pÞ=Λ2

B

	
J0

�
2τqkmp

Λ2
B

�
−

qk
Mp

J1

�
2τqkMp

Λ2
B

�

; ð77Þ

while for the neutron we get

X̂ðnÞ
λ ¼ 1 −

BdBΔ

2π2Λ2
B

Z
∞

1

dτ
1þ λsdtd
Bd þ BΔtd

X∞
l¼0

	
Bd − BΔtd
Bd þ BΔtd



l

×
Z

∞

0

dqkqkG
ðregÞ
Δ ðl; q2kÞe−τðM

2þq2k−M
2
nÞ=Λ2

BJ0

�
2τqkMn

Λ2
B

�
; ð78Þ

ŶðnÞ
λ ¼ BdBΔ

2π2MΛ2
B

Z
∞

1

dτ
1þ λsdtd
BdBΔtd

X∞
l¼0

	
Bd − BΔtd
Bd þ BΔtd



l

×
Z

∞

0

dqkqkG
ðregÞ
Δ ðl; q2kÞe−τðM

2þq2k−M
2
nÞ=Λ2

B

	
J0

�
2τqkMn

Λ2
B

�
−

qk
Mn

J1

�
2τqkMn

Λ2
B

�

: ð79Þ

In these equations, we have used the definition
tf ¼ tanhðτBf=Λ2

BÞ.

D. Nucleon magnetic moments

We finish this section by noting that, given the above

expressions for X̂ðNÞ
λ and ŶðNÞ

λ , they can be expanded
around B ¼ 0 in order to study how nucleon masses get
modified to lowest order in the magnetic field. Let us define
the corresponding slopes αN by

MN ¼ mN þ αN jBj þOðB2Þ: ð80Þ
After a rather long calculation, sketched in Appendix B, we
obtain

αp ¼ −Qu½ðM þmNÞI1 −mNI2� þQpŴ

MŶ þ 2mNŴ
;

αn ¼
Qd½ðM þmNÞI1 −mNI2�

MŶ þ 2mNŴ
; ð81Þ

where we have defined

Ŵ ¼ ðM þmNÞI1 − ð2mN þMÞI2 þmNI3; ð82Þ

and the integrals Ik are given by

Ik ¼
1

4π2Λ2
Bm

k
N

Z
∞

1

dτ
Z

∞

0

dqqkþ1GΔ;B¼0ðq2Þ

× e−τðM2þq2−m2
NÞ=Λ2

BJk

�
2τqmN

Λ2
B

�
: ð83Þ

To find the relation between αN and the nucleon
magnetic moments, we proceed as follows. First, we take
into account that to leading order in the magnetic field the
change in the nucleon energy is given by [36,59]

ΔEN ¼ jQNBj
2mN

− μ⃗N · B⃗þOðB2Þ: ð84Þ

The first term corresponds to orbital motion. While it
vanishes for the neutron, for the proton it provides a
contribution due to zero-point motion in the plane
perpendicular to the magnetic field. The second term
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represents, for both p and n, the spin contribution leading
to the Zeeman effect. Thus, we have

ΔEp ¼ ð1 − μpÞ
ejBj
2mN

þOðB2Þ;

ΔEn ¼ −λμn
eB
2mN

þOðB2Þ; ð85Þ

where, as usual, the nucleonmagnetic moments are expressed
in units of the nuclear magneton μN ¼ e=ð2mNÞ. Note that
for the proton we have taken into account the fact that for the
lowest-energy state one has λ ¼ sp. In this way, identifying
the corresponding slopes at B ¼ 0, the nucleon magnetic
moments are given by

μp ¼ 1 −
2mN

e
αp;

μn ¼ −λsgnðBÞ 2mN

e
αn: ð86Þ

III. NUMERICAL RESULTS

To obtain numerical results for diquark and baryon
properties, one has to fix the model parametrization.
Here, as done in Ref. [16], we take the parameter set
m0 ¼ 5.66 MeV, Λ ¼ 613.4 MeV, and GΛ2 ¼ 2.250,
which (for a vanishing external field) corresponds to a
constituent quark mass M ¼ 350 MeV and a quark-anti-
quark condensate hf̄fi ¼ ð−243.3 MeVÞ3. This paramet-
rization properly reproduces the empirical values of the
pion mass and decay constant in vacuum, mπ ¼ 138 MeV
and fπ ¼ 92.4 MeV. It also provides a very good agree-
ment with the results from lattice QCD quoted in Ref. [30]
for the normalized average f̄f condensate ΔΣ̄ðBÞ up to
jeBj ≃ 1 GeV2 [16]. The effective Lagrangian in Eq. (1)
also includes the scalar quark-quark coupling constant H.
Typical effective approaches for the strong interaction, such
as the one-gluon exchange or the instanton liquid model,
lead to H=G ¼ 0.75 [60]. However, this value is subject to
somewhat large uncertainties from the phenomenological
point of view. In fact, larger values for this ratio seem to be
favored from the determination of baryon properties within
the Fadeev approach [52–55]. Here we choose to takeH=G
within the range 0.75 ≤ H=G ≤ 1.2, typically considered
in the literature. The corresponding values of the diquark
mass and binding energies are shown in Fig. 2. We observe
that, for H=G ≃ 0.75 the scalar diquark is barely bound by
5 MeV, while for H=G ¼ 1.2 one gets binding energies of
about 200 MeV.
Let us consider the magnetic field dependence of the

diquark mass. In the upper panel in Fig. 3, we show the
values ofmΔ for the LLL [defined by Eq. (39), with l ¼ 0]
relative to the values obtained for vanishing magnetic field
mΔ;0 as functions of Be ¼ jeBj. The curves correspond to
some selected values of the ratio H=G within the range

mentioned above. We get mΔ;0 ¼ 0.685, 0.653, 0.609, and
0.555 GeV forH=G ¼ 0.8, 0.9, 1.0, and 1.1, respectively. It
is seen that for all considered values ofH=G the curves start
with a decrease ofmΔ as Be increases, reaching a minimum
at about Be ∼ 0.2 GeV2. Beyond this minimum, the
diquark pole mass steadily increases with the magnetic
field, reaching a ratio mΔ=mΔ;0 ¼ 1 somewhere in the
range Be ∼ 0.4–0.6 GeV2, depending on the precise value
of H=G. In the lower panel in Fig. 3, we show the behavior
of the squared magnetic-field-dependent diquark mass E2

Δ
[defined by Eq. (40)], minus the corresponding value at
B ¼ 0, m2

Δ;0. We recall that in the case of a pointlike
diquark the mass mΔ does not depend on the magnetic
field, and the difference E2

Δ −m2
Δ;0 is simply given by

Be=3. Such a case is indicated by the straight dotted black
line. It can be observed that, as a consequence of the initial
decrease of the pole mass, for small values of Be the
difference E2

Δ −m2
Δ;0 lies below that straight line. At the

point in which mΔ ¼ mΔ;0, the situation reverses, and for
larger values of Be the value of EΔ becomes larger than in
the case of a pointlike diquark. We notice that a similar
behavior was found in the analysis of Ref. [15], where
Schwinger phases were not taken into account. However, in

FIG. 2. Δ mass (top) and binding energy (bottom) at B ¼ 0 as
functions of H=G.

COPPOLA, GOMEZ DUMM, and SCOCCOLA PHYS. REV. D 102, 094020 (2020)

094020-10



that work, the crossing was found to occur at a larger value
of Be, of about 0.9 GeV2 for H=G ¼ 0.75. It is interesting
to note that as H=G increases the behavior of E2

Δ −m2
Δ;0

gets closer to the pointlike case. This might be understood
by realizing that a larger value of H=G implies a more
deeply bound diquark and, consequently, a more local-
ized one.
We turn next to the analysis of nucleon masses. As

mentioned in Sec. III.C, the calculation of these quantities
requires the introductionof an additional cutoff parameterΛB
to regularize the otherwise divergent quark-diquark loop in
the proper time regularization scheme. For a given value of
H=G, we adjust this parameter, demanding the B ¼ 0

eigenvalue equation jX̂j ¼ mN jŶj [see Eqs. (73) and (74)]
to be satisfied for the physical value mN ¼ 0.938 GeV. In
this way, we obtain ΛB ¼ 1.618, 1.380, and 1.104 GeV for
H=G ¼ 0.8, 0.9, and 1.0, respectively. For larger values of
H=G, no value of ΛB is found to be compatible with the
physical nucleon mass at zero magnetic field in this model.
Having determined all input parameters, one can solve the
eigenvalue equations (71) and (72) to obtain proton and
neutron masses for a nonvanishing external magnetic field.

Before reporting the corresponding results, we find it
convenient to make a few comments concerning the
numerical details of the calculation. First, we note that

to evaluate the coefficients X̂ðNÞ
� and ŶðNÞ

� in Eqs. (76)–(79)
one has to perform a sum over Landau levels (LLs). In that
sum, we have taken into account as many LLs as needed in
order to obtain a stable result for the calculated mass. For
low values of Be, this implies the inclusion of a quite large
number of LLs. For example, at Be ¼ 0.04 GeV2, for
H=G ¼ 1 about 300 LLs are needed in order to obtain
an accuracy of about 1 MeV in the nucleon mass. For
H=G ¼ 0.8 the required number of LLs is found to be even
larger, of the order of 600. As expected, for larger values of
the magnetic field the needed number of LLs gets signifi-
cantly reduced. Still, it is found that for Be as large as
0.8 GeV2 about ten LLs are needed to obtain the above
mentioned accuracy in the mass determination. Another
issue that requires some care is the numerical evaluation of
the integrals in Eqs. (76)–(79), due to the highly oscillatory
behavior of the Bessel functions for large values of their
arguments.
Our results for the behavior of nucleon masses as

functions of the external magnetic field are given in
Fig. 4. In the upper (lower) panel, we quote the curves
for the proton (neutron) mass, consideringH=G ¼ 0.8, 0.9,
and 1.0. In all cases, it is seen that the masses initially
decrease when the magnetic field is increased, reaching a
minimum for a value of Be that depends on the parameter
H=G. Beyond that point, the masses show a steady growth.
For both proton and neutron masses, the decrease becomes
less pronounced (and the minimum occurs at smaller Be)
the larger the value of H=G is. It is also seen that the
dependence on H=G is weaker in the case of the neutron.
Let us recall that for a proton in the LLL only the spin
projection λ ¼ sp ¼ sgnðQpBÞ is allowed, while both
values of λ are allowed for the neutron. In Fig. 4, we have
plotted the values corresponding to the lower solution of
Eq. (72), defined as the neutron mass. In our model, for
B > 0 ðB < 0Þ it is found that this lower state corresponds
to λ ¼ −1 ðλ ¼ 1Þ. For the higher state, not shown in the
figure, it is seen that the value ofMn obtained as a solution
of Eq. (72) initially increases with Be. This solution is
found to exist only for Be ≲ 0.1–0.2 GeV2 (the state
becomes unbound for larger values of the external field).
As stated, close to B ¼ 0 both proton and neutron masses

are shown to decrease for an increasing external field; i.e.,
the slopes αp and αn obtained from Eq. (81) are found to be
negative. Taking into account that for the lowest neutron
state one has λsgnðBÞ ¼ −1, from Eqs. (86) one gets
μp > 0 and μn < 0, as expected from phenomenology.
In addition, the fact that the curves show negative slopes at
B ¼ 0 is consistent with the results from ChPT quoted in
Ref. [37]. The latter, which are expected to hold for low
values of the external field, are shown by dotted lines in
Fig. 4. Notice, however, that the slopes obtained within

FIG. 3. Relative values of diquark mass and energy as functions
of jeBj for some representative values ofH=G. The results for the
case of a pointlike diquark are indicated by the dotted lines.
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ChPT are, in general, steeper that those found from our
results. The lower slopes in our model imply, in turn,
relatively low results for the absolute values of proton and
neutron magnetic moments. From the numerical evaluation
of Eqs. (81) and (86), we find the magnetic moments
quoted in Table I, to be compared with the empirical values
μp ¼ 2.79 and μn ¼ −1.91. In this regard, it should be
stressed that in our work we have neglected for simplicity
the axial vector diquark correlations. The latter can be
important to get an enhancement in jμpj and jμnj, as shown
in Ref. [58]. Finally, let us compare our results with those
obtained from LQCD calculations. In Fig. 4, we have
indicated with open dots the results from LQCD quoted in

Ref. [43], corresponding to two different values of the
lattice spacing a. We observe some qualitative agreement
with our results, although LQCD values tend to show a
lower dependence on the external field. In the case of the
proton, a few lattice points seem to show a mass enhance-
ment for Be ≃ 0.2–0.3 GeV2. Presumably, this could be due
to the fact that, as mentioned by the authors of Ref. [43], the
Zeeman splitting cannot be fully resolved. We believe that
our results exhibit a more trustable initial slope, in view of
the results arising from ChPT.

IV. SUMMARY AND CONCLUSIONS

In this work, we have explored the effect of a strong
external uniform magnetic field on diquark and nucleon
masses. This has been done in the framework of a two-
flavor Nambu–Jona-Lasinio effective model for low-energy
QCD dynamics, including scalar quark-quark color pairing
interactions to account for the diquarks. The relative
strength of these interactions is determined by a coupling
constant ratio H=G, where H and G are the coupling
constants driving the scalar quark-quark and pseudoscalar
quark-antiquark interactions, respectively. We have con-
sidered values of this ratio in the usually studied range
0.75 ≤ H=G ≤ 1.2.
As done in the case of pions, diquarks have been treated

as quantum fluctuations in the random phase approxima-
tion. Because of the presence of the external field, trans-
lational invariance turns out to be broken, as signaled by the
presence of nonvanishing Schwinger phases, and the usual
momentum basis cannot be used to diagonalize the corre-
sponding polarization function. A proper basis can be
found following the method introduced in Ref. [16] for
charged pions, based on the Ritus eigenfunction approach
to magnetized relativistic systems. In view of the non-
renormalizability of the NJL model, we have adopted as
regularization procedure the magnetic-field-independent
regularization scheme, as suggested from the scheme
comparison performed in Ref. [49]. From the regularized
diagonal polarization function, we have obtained the lowest
Landau level diquark pole massmΔ and the magnetic-field-
dependent mass EΔ, defined as the lowest quantum-
mechanically allowed diquark energy. The numerical
results for these quantities show that for low values of
jeBj the curves for both mΔ and EΔ lie below those
corresponding to a pointlike diquark. This is reversed for
jeBj larger than ∼0.3–0.5 GeV2, where the growth of EΔ
gets steeper in comparison with the pointlike case. It is also
found that the increase of the magnetic-field-dependent
mass becomes more pronounced for lower values of the
ratio H=G.
Regarding the analysis of baryon states, in our frame-

work nucleons have been built as bound quark-diquark
states following a relativistic Fadeev approach in which
only the formerly discussed scalar diquark channel is
included. Given the complexity of the problem, we have

TABLE I. Predicted values of nucleon magnetic moments for
different values of H=G.

H=G μp μn

0.8 2.63 −1.19
0.9 2.30 −1.05
1.0 1.99 −0.94

FIG. 4. Proton and neutron masses as functions of jeBj for
various values of H=G. Open dots and dotted lines correspond to
lattice QCD results given in Ref. [43] and ChPT results given in
Ref. [37], respectively.
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considered a static approximation in which one disregards
the momentum dependence of the exchanged quark. This
approximation has been shown to lead to an adequate
description of nucleon properties in the absence of external
fields [54]. Once again, owing to the presence of non-
vanishing Schwinger phases for charged particles, in the
theoretical analysis we have made use of the Ritus
eigenfunction method. In addition, we have introduced a
further model parameter ΛB to regularize the otherwise
divergent quark-diquark loops, for which we have chosen
the proper time regularization scheme. We have found that
for values of H=G larger than 1 no value of ΛB is
compatible with a physical value of the nucleon mass at
zero external magnetic field.
We have obtained numerical results for the magnetic

field dependence of the lowest-energy nucleon states,
usually interpreted as the nucleon masses. In general, it
is seen that the masses initially decrease for increasing
magnetic field, whereas they show a steady growth for large
values of jeBj. In the case of the proton, the results are
found to depend strongly on the ratio H=G. It is also seen
that the negative slopes of the mass curves at B ¼ 0 lead
to the phenomenologically correct signs for the nucleon
magnetic moments. Moreover, there is a qualitative agree-
ment with ChPT results, although the slopes in our model
are found to be somewhat lower. This conduces to
numerical absolute values for the proton and neutron
magnetic moments that are relatively small in comparison
with the empirical ones.

The work presented in this article represents a first
approach to relativistic magnetized nucleons as bound
quark-diquark states within the NJL model. An improve-
ment on the predictions for the nucleon magnetic moments
is expected to be obtained by including axial vector diquark
interactions. Moreover, a full calculation would require one
to take into account the momentum dependence of the
exchanged quark. We expect to report on these issues in
future publications.
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APPENDIX A: DIAGONALIZATION OF DðpÞ
P̄P̄0

IN RITUS SPACE

In this Appendix, we briefly sketch how to prove that the

Dirac operator DðpÞ
P̄P̄0 in Eq. (60) is diagonal. Let us start by

taking into account the integral Iλ;λ
0

P̄P̄0 ðq; rÞ in Eq. (62).
Denoting w ¼ x1 − z1 and integrating over the remaining
space variables, it is easy to show that

Iλ;λ
0

P̄P̄0 ðq; rÞ ¼ ð2πÞ6δð2ÞðPk − P0
kÞδðP2 − P0

2Þδð2Þðqk þ rk − PkÞGkλ;k0λ0
ðq⊥ þ r⊥Þ; ðA1Þ

where

Gkλ;k0λ0
ðq⊥ þ r⊥Þ ¼

ð−1Þkλþk0
λ0

Bp

Z
∞

0

dw eiðq1þr1ÞwNkλDkλ

�
sp

ffiffiffiffiffiffiffiffiffiffiffi
2=Bp

q
ðq2 þ r2Þ −

ffiffiffiffiffiffiffiffiffiffiffi
Bp=2

q
w
�

× Nk0
λ0
Dk0

λ0

�
sp

ffiffiffiffiffiffiffiffiffiffiffi
2=Bp

q
ðq2 þ r2Þ þ

ffiffiffiffiffiffiffiffiffiffiffi
Bp=2

q
w
�
: ðA2Þ

The integral over w can be carried out using the following property:

Z
∞

0

dψeiγψDlðη − ψÞDnðηþ ψÞ ¼
8<
: ð−1Þl ffiffiffiffiffiffi

2π
p

l!e−
γ2þη2

2 ðiγ þ ηÞn−lLn−l
l ðη2 þ γ2Þ if n ≥ l;

ð−1Þn ffiffiffiffiffiffi
2π

p
n!e−

γ2þη2

2 ð−iγ þ ηÞl−nLl−n
n ðη2 þ γ2Þ if l ≥ n:

ðA3Þ

Assuming that k0λ0 ≥ kλ (the analysis is similar for the other case), one has

Gkλ;k0λ0
ðq⊥ þ r⊥Þ ¼ ð−Þk0λ0 4π

Bp

ffiffiffiffiffiffiffi
kλ!
k0λ0 !

s
e−

ðq⊥þr⊥Þ2
Bp

	
iðq1 þ r1Þ þ spðq2 þ r2Þffiffiffiffiffiffiffiffiffiffiffi

Bp=2
p 


k0
λ0−kλ

L
k0
λ0−kλ
kλ

�
2ðq⊥ þ r⊥Þ2

Bp

�
: ðA4Þ
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Now let us take this result to carry out the integral over perpendicular momenta in Eq. (60):

I⊥ ¼
Z
q⊥r⊥

X
λ;λ0

Gkλ;k0λ0
ðq⊥ þ r⊥ÞG̃Δðq⊥; qkÞΓλS̃

uðr⊥; Pk − qkÞΓλ0 : ðA5Þ

Using the form of the quark propagator in Eq. (15), it can be seen that the product ΓλS̃
uðr⊥; Pk − qkÞΓλ0 can be written as

ΓλS̃
uðr⊥; Pk − qkÞΓλ0 ¼ Aðr⊥; Pk − qkÞδλλ0Γλ þ Bðr⊥; Pk − qkÞr⊥ · γ⊥δ−λλ0Γ−λ; ðA6Þ

where Aðr⊥; Pk − qkÞ and Bðr⊥; Pk − qkÞ are functions of r2⊥. Then we get

I⊥ ¼
Z
q⊥r⊥

G̃Δðq⊥; qkÞ
X
λ

½Gkλ;k0λ
ðq⊥ þ r⊥ÞAðr⊥; Pk − qkÞΓλ

þ Gkλ;k0−λ
ðq⊥ þ r⊥ÞBðr⊥; Pk − qkÞðr1 − iλr2ÞγλΓ−λ�; ðA7Þ

where γλ ¼ ðγ1 þ iλγ2Þ=2. To carry out the angular integrals in Eq. (A7), it is convenient to use polar coordinates, namely,
q⃗⊥ ¼ ðq̃ cos θ; q̃ sin θÞ, r⃗⊥ ¼ ðr̃ cosφ; r̃ sinφÞ. Noticing that the diquark propagator depends only on the squared momenta
q2k and q2⊥ [see Eq. (42)], from Eq. (A4), we get

I⊥ ¼
Z

∞

0

q̃dq̃
ð2πÞ2

Z
∞

0

r̃dr̃
ð2πÞ2 G̃Δðq̃; qkÞ

X
λ

×

	
Aðr̃; Pk − qkÞΓλ

Z
2π

0

dφe−ispðk
0
λ−kλÞφ

Z
2π

0

dθFkλ;k0λ
ðq̃; r̃; θ − φÞ

þ r̃Bðr̃; Pk − qkÞγλΓ−λ

Z
2π

0

dφe−i½spðk
0
−λ−kλÞþλ�φ

Z
2π

0

dθFkλ;k0−λ
ðq̃; r̃; θ − φÞ



; ðA8Þ

where Fkλ;k0λ0
is a function that depends on θ − φ only

through periodic functions sinðθ − φÞ and cosðθ − φÞ.
Taking into account that

k0λ − kλ ¼ k0 − k; spðk0−λ − kλÞ þ λ ¼ spðk0 − kÞ;
ðA9Þ

and using the periodicity of the function Fkλ;k0λ0
, it is seen

that I⊥ is proportional toZ
2π

0

dφ e−ispðk0−kÞ ¼ 2πδkk0 : ðA10Þ

Together with the result in Eq. (A1), this shows that DðpÞ
P̄P̄0 is

proportional to δ̂P̄P̄0 .

APPENDIX B: EXPANSION AROUND B= 0

In this Appendix, we provide some hints for the

expansions of the coefficients X̂ðNÞ
� and ŶðNÞ

� in Eqs. (71)
and (72) around B ¼ 0. These expansions allow us to
obtain the expressions for X̂ and Ŷ in Eqs. (73) and (74), as
well as the slopes αN in Eqs. (81).

The coefficients X̂ðNÞ
� and ŶðNÞ

� depend on B both
explicitly and implicitly, through MN and M. In fact, it
can be seen that dM=dBjB¼0 ¼ 0; hence, the effective
quark massM can be taken as a constant at the lowest order
in an expansion in powers of jBj. In this way, from
Eqs. (71) and (72), the slopes dMN=djBj at B ¼ 0 are
given by

αN ¼
∂X̂ðNÞ

λ∂jBj jB¼0 −mN
∂ŶðNÞ

λ∂jBj jB¼0

Ŷ − ∂X̂
∂mN

þmN
∂Ŷ
∂mN

; ðB1Þ

where appropriate values of λ should be taken for N ¼ p
and N ¼ n (see the discussion in the main text).
In particular, the partial derivatives in the numerator of

the rhs of Eq. (B1) have to be calculated with some care due
to the sums over Landau levels in Eqs. (76)–(79). As an

example, let us consider the expression for X̂ðpÞ
sp in Eq. (76).

The factors that depend explicitly on the magnetic field can
be expanded as
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Buð1þ tuÞ
Bu þ ðBp þ BΔÞtu

¼ 1þ τ

Λ2
B
ðBu − Bp − BΔÞ þOðB2Þ;

BΔ

	
Bu þ ðBp − BΔÞtu
Bu þ ðBp þ BΔÞtu



l
¼ BΔe−2τlBΔ=Λ2

B

	
1þ 2τ2lBΔBp

Λ4
B

þOðB2;lB3Þ


;

GðregÞ
Δ ðl; q2kÞ ¼ GðregÞ

Δ;B¼0ðq2k þ 2lBΔÞ þ
dGðregÞ

Δ;B¼0ðq2Þ
dq2

����
q2¼q2kþ2lBδ

BΔ þOðB2;lB3Þ: ðB2Þ

For the evaluation of the sum over Landau levels in the limit of a low magnetic field, one can use the relation

B
X∞
l¼0

e−αlBFðlBÞ ¼
Z

∞

0

dx e−αxFðxÞ þ 1

2
Fð0ÞBþOðB2Þ; ðB3Þ

which is valid for α > 0 if the function FðxÞ allows a Taylor expansion around x ¼ 0 and is well behaved at x → ∞. In this
way, after an integration by parts, one arrives at

BΔ
Buð1þ tuÞ

Bu þ ðBp þ BΔÞ
X∞
l¼0

	
Bu þ ðBp − BΔÞtu
Bu þ ðBp þ BΔÞtu



l
GðregÞ
Δ ðl; q2kÞ

¼ 1

2

Z
∞

0

dωe−τω=Λ
2
BGðregÞ

Δ;B¼0ðq2k þ ωÞ
	
1þ τ

Λ2
B
ðBu − BpÞ þ

ωτ2Bp

Λ4
B

þOðB2Þ


: ðB4Þ

The variable ω can be identified with the perpendicular component of the momentum squared, q2⊥, in the B → 0 limit.
In addition, with the aid of some properties of the Bessel functions, one can prove the relationsZ

∞

0

dq2k

Z
∞

0

dq2⊥J0ðαqkÞfðq2k þ q2⊥Þ ¼
4

α

Z
∞

0

dqq2J1ðαqÞfðq2Þ;Z
∞

0

dq2k

Z
∞

0

dq2⊥q2⊥J0ðαqkÞfðq2k þ q2⊥Þ ¼
8

α2

Z
∞

0

dqq3J2ðαqÞfðq2Þ: ðB5Þ

Now, using Eqs. (B4) and (B5), it is easy to see that

X̂ðpÞ
sp jB¼0 ¼ X̂;

∂X̂ðpÞ
sp

∂jBj
����
B¼0

¼ ðQp −QuÞI1 −QpI2; ðB6Þ

where X̂ and Ik are given by Eqs. (73) and (83), respectively.
A similar procedure can be followed in order to obtain the expansions for ŶðpÞ

sp , X̂
ðnÞ
λ , and ŶðnÞ

λ . The evaluation of the
derivatives in the denominator of Eq. (B1) is straightforward, leading to the final expressions of αp and αn in Eqs. (81).
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