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IN2P3/CNRS), 4 rue Alfred Kastler, 44307 Nantes, France

(Received 19 August 2020; accepted 6 October 2020; published 17 November 2020)

The experimental search for the QCD critical point by means of relativistic heavy-ion collisions
necessitates the development of dynamical models of fluctuations. In this work, we study the fluctuations of
the net-baryon density near the critical point. Due to net-baryon number conservation, the correct dynamics
is given by the fluid dynamical diffusion equation, which we extend by a white noise stochastic term to
include intrinsic fluctuations. We quantify finite resolution and finite-size effects by comparing our
numerical results to analytic expectations for the structure factor and the equal-time correlation function.
In small systems, the net-baryon number conservation turns out to be quantitatively and qualitatively
important, as it introduces anticorrelations at larger distances. Including nonlinear coupling terms in the
form of a Ginzburg-Landau free energy functional, we observe non-Gaussian fluctuations quantified by the
excess kurtosis. We study the dynamical properties of the system close to equilibrium, for a sudden quench
in temperature and a Hubble-like temperature evolution. In the real-time dynamical systems, we find the
important dynamical effects of critical slowing down, weakening of the extremal value and retardation of
the fluctuation signal. In this work, we establish a set of general tests, which should be met by any model
propagating fluctuations, including upcoming 3þ 1 dimensional fluctuating fluid dynamics.

DOI: 10.1103/PhysRevD.102.094017

I. INTRODUCTION

Conventional fluid dynamics propagates averages of
conserved thermodynamic quantities, like the energy den-
sity or charge densities, requiring approximate local ther-
mal equilibrium [1]. Small deviations from equilibrium are
described by dissipative corrections, which are quantified
by the shear and bulk viscosities and the charge conduc-
tivities or diffusion coefficients. In linear response theory.
these transport coefficients are related to correlators of the
fluctuations of thermodynamic quantities in the fluid
dynamical limit [2,3]. By the fluctuation-dissipation theo-
rem, it is consistent to not only include the dissipative
corrections into the nonlinear fluid dynamical equations of
motion but also the propagation of the corresponding
intrinsic fluid dynamical fluctuations. These intrinsic fluc-
tuations lead, e.g., to nonanalytic contributions to the time
dependence of correlations [2,4–8]. But most importantly,
they become especially interesting when we study the fluid
dynamical behavior of a system close to a second-order
phase transition [9–11].
Developing models and simulations for the real-time

dynamics of fluctuations at a phase transition has become
increasingly important in the field of relativistic heavy-ion

collisions. These are performed experimentally at the Large
Hadron Collider (LHC) at CERN, the Relativistic Heavy-
Ion Collider (RHIC) at BNL, the Super Proton Synchrotron
at CERN, or the Heavy Ion Synchrotron SIS18 at GSI. In
the heavy-ion collisions, strongly interacting matter at
extreme temperatures T and densities is created [12–14].
The successful description of collective effects by conven-
tional fluid dynamical simulations [15–21] and the modi-
fication of high-energetic probes measured in heavy-ion
collisions compared to proton-proton collisions [22] are
convincing indications for the formation of a new state of
matter, the quark-gluon plasma (QGP). At the highest beam
energies

ffiffiffiffiffiffiffiffi
sNN

p
at the LHC, the QGP is almost baryon free,

i.e., the baryochemical potential μB ≃ 0, and the transition
to hadronic matter is a crossover as demonstrated by lattice
QCD calculations [23]. As the beam energy is lowered, the
phase diagram of QCD can be probed at finite net-baryon
density [24–28]. An especially interesting region in the
phase diagram is associated with the conjectured critical
point beyond which the transition to hadronic matter turns
into a first-order phase transition [29–33]. Near the critical
point fluctuations in conserved charges are expected to
grow large and to imprint on the experimentally observed
particle multiplicities in form of large event-by-event
fluctuations [34–38]. Indeed, first measurements during
the beam energy scan phase I at RHIC and by the HADES
experiment at GSI have shown interesting features in the
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kurtosis, a fluctuation measure associated with the fourth-
order cumulant, of the net-proton distribution [39–41]. In
thermodynamic, i.e., static and infinite, systems, these
higher-order cumulants are known to be in particular
sensitive to the growth of the correlation length of the
associated critical fluctuations [42–44].
Up to this day, it is unknown quantitatively how critical

fluctuations develop in real-time dynamics. Qualitatively,
dynamical fluctuations of the chiral condensate or the net-
baryon density, as two possible order parameters, have been
studied in various works [45–68]. The lack of a more
quantitative description is mainly due to the challenges that
have to be met when including fluctuations in to the
standard models of heavy-ion collisions; see [69] for a
recent review. For the fluid dynamical description, it is
rather straightforward to include criticality on the level of
the equation of state [70–72], but the formulation of
algorithms to treat intrinsic fluctuations in this framework
remains a challenge [73–82]. For the microscopic transport
models, where fluctuations are inherently present, the
inclusion of a critical point remains complicated.
In this work, we study the dynamics of fluctuations in a

simpler fluid dynamical model, the diffusion equation in
one spatial dimension. Our main intent is to report the
development of an algorithm, which treats fluctuations for
the crucial long-wavelength modes reliably, and to present
corresponding benchmark tests that should be met by all
future approaches that deal with fluid dynamical fluctua-
tions. We focus on the net-baryon density, which in the
long-time limit becomes the critical mode associated with
the critical point in QCD. We include the critical physics in
the vicinity of the QCD critical point by a Ginzburg-Landau
free energy functional, motivated by the three-dimensional
Ising universality class. We then test the presented algo-
rithm for the linear Gaussian limits in equilibrium. Here, in
particular, the static structure factor and the equal-time
correlation function are useful quantities for probing the
dynamics of the fluctuations. We then evaluate the dynami-
cal properties of the system by looking at the dynamic
structure factor in equilibrium first. Here, we recover the
expected dynamical universality class of model B [9]. Next,
we investigate the scenario of a sudden temperature quench
and finally a Hubble-like evolution of the temperature. We
observe effects of critical slowing down, a weakening and a
retardation of the maximal signal.

II. DIFFUSIVE DYNAMICS NEAR
THE QCD CRITICAL POINT

The equations of relativistic fluid dynamics describe the
conservation of energy andmomentumandof net-charges via

∂μTμν ¼ 0; ð1Þ

∂μN
μ
i ¼ 0: ð2Þ

For our purpose, we focus on the nonrelativistic evolution of
the net-baryon number current Nμ

B ¼ nBuμ þ jμB, where the
Navier-Stokes expression for the viscous current is given by

jμB ¼ −ΓTΔμν∂ν

�
μB
T

�
; ð3Þ

with Δμν ¼ uμuν − gμν, fluid velocity uμ, and mobility
coefficient Γ. We consider a system that is decoupled from
the fluid velocity field which we assume to be space-time
independent. In this case, we recover the diffusion equation

∂tnB ¼ ΓT∇2

�
μB
T

�
ð4Þ

for the net-baryon density nB. The diffusive dynamics
happens such as to minimize the free energy in the system.
With the thermodynamic relation μB ¼ δF=δnB, one obtains
the diffusion equation generated by the variation of the free
energy functional F for a system of spatially homogeneous
temperature

∂tnB ¼ Γ∇2

�
δF ½nB�
δnB

�
: ð5Þ

Since we are interested in the dynamics of intrinsic
fluctuations near the critical point, we include a stochastic
term to arrive at the stochastic diffusion equation

∂tnB ¼ Γ∇2

�
δF ½nB�
δnB

�
þ ∇⃗ · J⃗; ð6Þ

where J⃗ is a stochastic current given by

J⃗ ¼
ffiffiffiffiffiffiffiffiffi
2TΓ

p
ζ⃗; ð7Þ

and ζ⃗ is a Gaussian spatiotemporal white noise field with
zero mean and unit variance. Fulfilling the fluctuation-
dissipation theorem, the covariance of the stochastic term
guarantees that the long-time equilibrium distribution is
given by

Peq½nB� ¼
1

Z
exp

�
−F ½nB�

T

�
; ð8Þ

normalized by the partition function Z.
We choose the free energy functional near the QCD

critical point to be of the following polynomial form in
ΔnB ¼ nB − nc with critical density nc:

F ½nB�¼T
Z

d3x

�
m2

2n2c
ðΔnBÞ2þ

K
2n2c

ð∇nBÞ2

þ λ3
3n3c

ðΔnBÞ3þ
λ4
4n4c

ðΔnBÞ4þ
λ6
6n6c

ðΔnBÞ6
�
: ð9Þ
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We note that the chosen Ginzburg-Landau form for the
critical part of the free energy F may be augmented by
regular contributions. The coupling coefficients can be
calculated through the mapping of the three-dimensional
Ising spin model onto a universal effective potential
[83,84]. This determines the dependence of these couplings
on the thermodynamic correlation length ξ within the given
universality class as

m2 ¼ 1

ξ0ξ
2
; ð10Þ

K ¼ K̃=ξ0; ð11Þ

λ3 ¼ ncλ̃3ðξ=ξ0Þ−3=2; ð12Þ

λ4 ¼ ncλ̃4ðξ=ξ0Þ−1; ð13Þ

λ6 ¼ ncλ̃6: ð14Þ

In principle, the dimensionless couplings λ̃3, λ̃4, and λ̃6 have
universal values aswell, but the uncertainty in translating the
spin variables to the QCD phase diagram leads to rather
unknown values for these couplings. We will use λ̃3 ¼ 1,
λ̃4 ¼ 10, and λ̃6 ¼ 3 in this work. This implies that the
temperature dependence of the couplings is determined
entirely by the behavior of ξ established through a matching
to the susceptibility of the Ising model scaling equation of
state [85]. In thework [83,84], it turned out to be important to
include the λ6 coupling in order to describe the probability
distribution of the fluctuations in the spin model. We
therefore include this term in our study as well, although
in a perturbative expansion in ξ3=V with volume V this term
is suppressed in the scaling regime [42,86].
As can be seen in Fig. 1, the thermodynamic correlation

length peaks around Tc which we choose as Tc ¼
0.15 GeV, while the couplings λ3 and λ4 have a minimum
at Tc. There is a region around Tc where the nonlinear
couplings λ4 and λ6 are larger than the Gaussian mass
parameterm. We expect nonlinear effects to be largest here.
The critical net-baryon density nc depends on the location
of the critical point and the equation of state. The net-
baryon density at chemical freeze-out as a function offfiffiffiffiffiffiffiffi
sNN

p
was obtained from statistical model fits using the

hadron resonance gas model in [87]. Here, maximal values
of nB ¼ 0.12= fm3 are reached at

ffiffiffiffiffiffiffiffi
sNN

p ∼ 4 GeV. During
the evolution, the system can reach much higher local
values of nB ¼ 5ρ0 with ρ0 ¼ 0.16= fm3 [88]. In this work,
we choose a value of nc ¼ 1=ð3 fm3Þ.
The above described setup is in general designed for

studying the diffusion dynamics of critical fluctuations in
three spatial dimensions. The numerical framework pre-
sented here focusses on the dynamics restricted to one
spatial direction. For this purpose, we scale out the

transverse area A and consider the dynamics only in the
longitudinal direction which resembles the situation met in
a highly anisotropic heavy-ion collision. With this, the
stochastic diffusion equation (6) becomes

∂tnBðx; tÞ
¼ D

nc
ðm2∇2

xnB − K∇4
xnBÞ

þD∇2
x

�
λ3
n2c

ðΔnBÞ2 þ
λ4
n3c

ðΔnBÞ3 þ
λ6
n5c

ðΔnBÞ5
�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dnc=A

p ∇xζxðx; tÞ; ð15Þ

where we have expressed the mobility coefficient Γ ¼
Dnc=T via the diffusion coefficient D and the covariance
reads hζxðx; tÞ; ζxðx0; t0Þi ¼ δðx − x0Þδðt − t0Þ.

III. EQUILIBRIUM FLUCTUATIONS

In this section, we investigate the long-time limit for the
stochastic diffusion of the net-baryon density at various
fixed thermal conditions. For this purpose, we consider a
system in a quasi one-dimensional box of length L with
periodic boundary conditions. Initially, the net-baryon
density is constant and set to nBðxÞ ¼ nc. Both, the
discretization with Δx ¼ L=Nx (Nx is the number of sites)
and the finite size of the box will introduce effects which
make the results differ from the continuum limit (Δx → 0)
and the thermodynamic limit (L → ∞). While the limited

 0
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FIG. 1. Scaled temperature dependence of the parameters in the
Ginzburg-Landau free energy functional F in Eq. (9). We choose
Tc ¼ 0.15 GeV and ξ ¼ ξ0 ¼ 0.479 fm at T ¼ T0 ¼ 0.5 GeV.
Furthermore, the coupling λ6 ¼ 1=fm3 (not shown) is set constant
as a function of T. The temperature dependence of ξ=ξ0, which
serves as input for the parameters in this work, follows from a
matching to the susceptibility of the Ising model scaling equation
of state for constant μB on the crossover side of the QCD phase
diagram; see [89,90] for some details.
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resolution is a technical issue, the finite size reflects the
situation of the fireball created in a heavy-ion collision.
After initialization, we let the system equilibrate during a
long time, which is proportional to L2=D, before evaluating
the physical observables such as the variance and kurtosis
or the equal-time correlation function and structure factor
of the system. These are related to the equilibrium
distribution which is an invariant measure and independent
of D. The latter is exemplarily set to D ¼ 1 fm.
We note that the determination of equilibrium results,

i.e., the long-time behavior, numerically requires a signifi-
cant amount of statistics. For dissipation in form of
diffusion, any memory on initial conditions is eventually
lost and the fluctuation-dissipation balance guarantees
ergodicity of the system. This implies that ensemble
averages can be either obtained by averaging over multiple
samples or equally by averaging over time after performing
a sufficient amount of equilibration steps proportional to
L2=ðDΔtÞ. In this work, the high-statistics equilibrium
results have been obtained by combining both methods.
We solve the stochastic diffusion equation (15) numeri-

cally within a semi-implicit scheme, where the nonlinear
terms in ΔnB are treated explicitly. Charge conservation is
respected with very high precision by imposing periodic
boundary conditions. More details can be found in the
Appendix A.

A. Static structure factor and equal-time correlation
function in Gaussian models

The stochastic diffusion equation Eq. (15) contains
different physics cases. For the Gaussian models, the
nonlinear couplings λi are equal to zero. In this case, exact
analytic continuum expressions for prominent physical
observables are calculable. One of these represents the
dynamic structure factor Sðk;ωÞ for wave vector k⃗ and
frequency ω. It follows directly from the space-time Fourier
transform of the stochastic diffusion equation as

Sðk;ωÞ≡ VhΔn̂Bðk;ωÞΔn̂�Bðk;ωÞi

¼ 2Dnck2

ω2 þ ½Dk2ðm2 þ Kk2Þ=nc�2
ð16Þ

and entails the dynamical space-time spectrum of the
fluctuating net-baryon density. We note that for the spa-
tio-temporal white noise field the dynamic structure factor
is Sζxðk;ωÞ ¼ Lhζ̂xζ̂x�i ¼ 1. From Sðk;ωÞ, the spatial
spectrum at equal time, i.e., the static structure factor
SðkÞ, follows from integration over all ω as

SðkÞ ¼ 1

2π

Z
∞

−∞
Sðk;ωÞdω: ð17Þ

The simplest version of a Gaussian model is obtained
when K̃ ¼ λ̃3 ¼ λ̃4 ¼ λ̃6 ¼ 0 in Eq. (9). In this case, we are

left with the Gaussian mass term which gives rise to the
standard diffusion equation. This model serves as a
reference and was discussed in detail in [64], where the
correct numerical implementation of Eq. (15) for this case
was verified. From Eq. (15), the static structure factor for
K̃ ¼ 0 follows via Eq. (17) as

SðkÞ ¼ n2c
m2

; ð18Þ

which is independent of the wave vector k⃗. Contrary to
simple Euler schemes, the semi-implicit scheme applied in
our framework achieves highest accuracy for all wave
numbers independent of the time step Δt. As we show in
Appendix B, the corresponding structure factor in discre-
tized space-time Sk coincides with Eq. (18) and is therefore
independent of the lattice spacing Δx. In [64], we verified
that this is reproduced in our framework.
The version with a term of nonzero K̃, which describes a

kinetic energy in a Klein-Gordon type action or a surface
tension in diffusion equations, can still be solved analyti-
cally in the continuum. In this case, which we will call
Gaussþ surface model, the static structure factor is
given by

SðkÞ ¼ n2c
m2

1

1þ Kk2=m2
: ð19Þ

Due to the finite surface tension, the amplitude of the
fluctuations becomes suppressed with increasing k.
The numerical results presented in this work have been

obtained for K̃ ¼ 1 in each of the calculations. For our
numerical framework, the static structure factor for the
Gaussþ surface model in discretized space-time reads
(see Appendix B)

Sk ¼
n2c
m2

1

1þ 2K
m2Δx2 ½1 − cosðkΔxÞ� : ð20Þ

With increasing resolution, Δx → 0, this result converges
to Eq. (19). In Fig. 2, we show the numerical results for the
static structure factor Sk as a function of wave number κ for
fixed box length L ¼ 10 fm and different resolutions at two
different temperatures. As the considered box is finite in
size and the resolution limited by Nx, only a finite number
of modes with discrete κ ¼ kL=ð2πÞ is realized. Our
numerical implementation reproduces the analytic expect-
ations for Sk from Eq. (20); thus, resolution effects are well
understood. We note that for a resolution of Δx ¼
ð10=128Þ fm the static structure factor starts to deviate
visibly from the continuum result only for κ ≳ 25 while for
the modes κ ≲ 10, which are important for the critical
physics, the continuum limit is reached. Close to Tc, the
amplitude of fluctuations for modes with small κ is
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increased compared to temperatures further away while Sk
is rather independent of T for larger wave numbers.
Another prominent observable is the equal-time corre-

lation function of density fluctuations in coordinate space.
In the continuum limit, it is defined as the Fourier transform
of the static structure factor SðkÞ in Eq. (17) via

hΔnBðrÞΔnBð0Þi ¼
Z

ddk
ð2πÞd e

ik⃗·r⃗SðkÞ: ð21Þ

For the quasi d ¼ 1 dimensional system studied in our
work, the equal-time correlation function of density fluc-
tuations in the longitudinal direction is given for the
Gaussþ surface model by

hΔnBðrÞΔnBð0Þi ¼
n2c

2Am
ffiffiffiffi
K

p exp

�
−r

mffiffiffiffi
K

p
�
: ð22Þ

For K̃ ¼ 1, we recover the standard relation between the
Gaussian mass parameter and the correlation length given

by Klein-Gordon theory. The truly realized correlation
length in the system depends, however, in general on the
surface tension. The integral of Eq. (22) over distances
much larger than the correlation length yields the full
weight of the fluctuation, n2c=ðAm2Þ. This is the same as for
the pure Gaussian model with vanishing K̃, where Eq. (22)
reduces to hΔnBðrÞΔnBð0Þi ¼ ðn2c=ðAm2ÞÞδðrÞ and the
expected uncorrelated Gaussian limit is recovered.
In [64], the behavior of hΔnBðrÞΔnBð0Þi for the pure

Gaussianmodelwas studied numerically. For thismodel, the
correlation function in discretized space-time is given by
hðΔnBÞjðΔnBÞli ¼ n2c=ðAm2ΔxÞδjl, where j, l can go over
all cells. Accordingly, fluctuations are uncorrelated over
distances larger than the lattice spacing. In our simulations,
exact net-baryon number conservation is realized over the
entire box of finite length L. This leads to corrections which
can analytically be understood by imposing the condition of
charge conservation

P
lhðΔnBÞjðΔnBÞli ¼ 0 for any j; see

AppendixC.Correspondingly, the expectation for the equal-
time correlation function changes to

hðΔnBÞjðΔnBÞli ¼
n2c
Am2

�
δjl
Δx

−
1

L

�
; ð23Þ

which amounts to a constant negative shift that vanisheswith
increasingL for fixed resolution. This behaviorwas found to
be perfectly reproduced in the numerics; see [64].
For the Gaussþ surface model, similar considerations

can be made. Numerical results for the equal-time corre-
lation function hðΔnBÞjðΔnBÞli as a function of scaled
distance r=Δx ¼ jj − lj are shown in Fig. 3 for fixed
resolution Δx and various L at two different temperatures.
We find that the equal-time correlation function is shifted to
negative values at large distances r demonstrating signifi-
cant anticorrelations. With increasing box size L at fixed
resolution, the negative shift becomes less pronounced.
This behavior is a consequence of exact net-baryon number
conservation; see Appendix C. Taking the latter into
account, cf. Eq. (C4), the corresponding analytic expect-
ations agree well with our numerical results; thus, finite-
size effects in connection with exact charge conservation
are well under control.
For temperatures close to Tc, hðΔnBÞjðΔnBÞli becomes

broader and correlations form over larger distances as one
expects from the continuum expression in Eq. (22).
Nonetheless, this depends strongly on the size of the
box and finite-size effects in connection with charge
conservation clearly affect the development of the corre-
lations. We note that for the larger systems the equilibration
times become very long and increasing computer resources
are needed to produce equilibrated systems and build up the
expected long-range correlations. In fact, the tiny deviation
between theoretical expectations and numerical results at
large r seen in Fig. 3 at T ¼ Tc for L ¼ 40 fm is the result

 0.0001

 0.001

 0.01
S

k 
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−
3 ]

Gauss+surface model
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S
k 

[fm
−

3 ]

T = Tc
Nx =   64
Nx = 128
Nx = 256
Nx = 512

FIG. 2. The static structure factor (symbols) as a function of
wave number κ in the Gaussþ surface model (λ3 ¼ λ4 ¼ λ6 ¼ 0)
for different Nx ¼ 64, 128, 256, 512 and fixed L ¼ 10 fm. For
both temperatures, T ¼ 0.5 GeV and T ¼ Tc, the theoretical
expectations (solid curves) for the static structure factor in
discretized space-time Sk, Eq. (20) with k ¼ 2πκ=L, are perfectly
reproduced. Because of the Hermitian symmetry between κ and
Nx − κ, Sk is symmetric about κ ¼ Nx=2. With increasing
resolution, Sk approaches the continuum result SðkÞ in Eq. (19).
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of an insufficient equilibration before evaluating the equal-
time correlation function.

B. Static structure factor and equal-time correlation
function in the Ginzburg-Landau model

Let us now study the impact of the nonlinear coupling
terms in what we call the Ginzburg-Landau model on the
static structure factor and the equal-time correlation func-
tion. This is shown in Fig. 4 in comparison with the
Gaussþ surface model results for a system of L ¼ 20 fm
with Nx ¼ 256 at T ¼ Tc. One observes that the influence
of the nonzero λi is the significant reduction of Sk at small
wave numbers κ while it is less important for larger κ. This
reduction of the amplitude of fluctuations at long wave-
lengths is also reflected in the development of spatial
correlations. With nonzero λi, the equal-time correlation
function is less broad and long-range correlations are
suppressed. In addition, correlations at small distances
are less pronounced which consequently reduces the

quantitative impact of exact charge conservation in the
finite-size system. These effects are found to be less
important for T further away from Tc.
The numerical results of the Gaussþ surface model can

successfully be described by our analytic expectations in
discretized space-time; see Sec. III A. For the Ginzburg-
Landaumodel, instead, no exact analytic expressions can be
derived to compare the numerics with. We note, however,
that the numerical results of the Ginzburg-Landau model on
the level of two-point correlations can formally be described
by the analytic expressions of the Gaussþ surface model
but with a modified Gaussian mass parameter while K is
kept fixed. This effective mass, meff , is larger than m of the
Gaussþ surface model for any T. Near Tc the relative
increase ofmeff with respect tom is stronger. For the systems

−0.002

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012 T=0.5 GeV

Gauss+surface model

 (
n B

) j 
(

n B
) l 

L = 5 fm
L = 10 fm
L = 20 fm
L = 40 fm

−0.02

 0

 0.02

 0.04

 0.06

0 50 100 150 200 250

T=Tc

 (
n B

) j 
(

n B
) l 

r/ x

L = 5 fm
L = 10 fm
L = 20 fm
L = 40 fm

FIG. 3. The equal-time correlation function of density fluctua-
tions (symbols) in the Gaussþ surface model (λ3 ¼ λ4 ¼ λ6 ¼ 0)
for different L=fm ¼ 5, 10, 20, 40, fixed Δx ¼ ð20=256Þ fm, i.e.,
different Nx, and a representative A ¼ 1 fm2. For both temper-
atures, T ¼ 0.5 GeV and T ¼ Tc, the numerical results are found
to perfectly agree with the theoretical expectations (solid curves)
when including the finite-size corrections for exact net-baryon
number conservation, cf. Appendix C. The correlation function is
symmetric in r ¼ jj − ljΔx about r ¼ L=2.
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FIG. 4. Comparison of the static structure factor (upper panel)
and the equal-time correlation function of density fluctuations
(lower panel) between Ginzburg-Landau model (circles) and
Gaussþ surface model (squares) for a system of L ¼ 20 fm,
Nx ¼ 256 and A ¼ 1 fm2 at T ¼ Tc. The theoretical expectations
in the Gaussþ surface model (solid red curves), see Sec. III A,
agree with the numerics. The numerical results of the Ginzburg-
Landau model can formally be described by the same analytic
expressions when replacing m by an effective mass meff that is
fitted to describe Sk (dashed blue curves).
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studied in this work, we find no additional Δx-dependence
in meff within the statistical uncertainty.

C. Temperature and system-size dependence
of the correlation length

The continuum expectation of the equal-time correlation
function in the Gaussþ surface model for an infinite
system is given in Eq. (22). The numerical results in
discretized space resemble this form of an exponential
decay. This is also the case when taking nonzero λi into
account. As we have seen in Figs. 3 and 4, net-baryon
number conservation in the finite-size system results in a
negative offset signaling anticorrelations. Still, an expo-
nential form of the correlation function remains. Therefore,
we may fit the numerical results of the Gaussþ surface and
Ginzburg-Landau models with an ansatz that contains the
exponential behavior and the offset (see Appendix D for
details) in order to determine the correlation length ξ̃. The
latter depends besides T in particular on the system size L
and can be different from the thermodynamic correlation
length ξ.
In Fig. 5, we show the system-size dependence of the fitted

ξ̃ in the Gaussþ surface and Ginzburg-Landau models for
two different T at fixed resolution Δx ¼ ð20=256Þ fm. The
residualΔx-dependence can be estimated to be on the percent
level for all T and L. For the parameters studied in this work,
cf. Fig. 1, the maximally reached thermodynamic correlation
length in an infinite system, ξ, is about 3 fm near Tc and
minimally we have ξ ¼ ξ0 at T ¼ 0.5 GeV. These values are
indicated by the gray dotted lines in Fig. 5. For T ¼ 0.5 GeV
(open squares and circles), a system size of L ¼ 5 fm is
already sufficient for ξ̃ to reach approximately the value of ξ.
This remains unchanged with increasing L. However, for all
other T with a larger ξ, charge conservation turns out to be
important, particularly in the smaller systems. In fact, it can
lead to a sizable reduction of ξ̃ compared to ξ for L ¼ 5 fm.
This effect is pronounced strongest at Tc (solid squares and
circles). For T ¼ Tc, the fitted correlation length increases
strongly toward ξ with increasing L for the Gaussþ surface
model. For L ¼ 40 fm, one finds ξ̃ to be approximately ξ.
In contrast, in the Ginzburg-Landau model, ξ̃ remains
always small compared to ξ and shows within the statistics
a negligible system-size dependence for L ≥ 10 fm. This
reduction is entirely a consequence of the nonlinear
interactions.
In Fig. 6, we compare for L ¼ 20 fm the fitted corre-

lation length as a function of temperature with ξ. One
observes that ξ̃ is approximately ξ in the Gaussþ surface
model for all T except very close to Tc, where finite-size
and charge-conservation effects are strongest, cf. Fig. 5.
From this observation, we conclude that in order to draw
physical conclusions a reasonable compromise between
finite-resolution and finite-size effects on the one hand and
limited computational resources on the other hand is to

study systems of L ¼ 20 fm and Nx ¼ 256 in this work.
The presence of the nonlinear interactions in the Ginzburg-
Landau model impacts the development of long-range
correlations significantly. For all T, we find a ξ̃ which is
smaller in the Ginzburg-Landau model than in the Gaussþ
surface model. While far away from Tc the effect is tiny, the
reduction is visible in the vicinity of Tc. This behavior is in
line with the temperature dependence of the parameters,
see Fig. 1, and with the observation that for describing
the structure factor and the correlation function in the
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FIG. 5. L-dependence of the correlation length ξ̃ in units of ξ0
in the Gaussþ surface (squares) and Ginzburg-Landau (circles)
models at fixed resolution Δx ¼ ð20=256Þ fm for two different
temperatures, T ¼ 0.5 GeV (open symbols) and T ¼ Tc (solid
symbols). The horizontal, gray dotted lines show for comparison
the corresponding scaled thermodynamic correlation length ξ=ξ0
for an infinite system, cf. the input parameters in Fig. 1.
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Ginzburg-Landau model by the analytic expressions of the
Gaussþ surface model one needs meff > m. In fact, we
find thatmeff=m behaves approximately like the ratio of the
fitted correlation lengths in the Gaussþ surface to the
Ginzburg-Landau model. We expect that the fluctuation
observables are similarly affected by this.

D. Temperature and system-size dependence
of Gaussian and non-Gaussian fluctuations

We now turn to the study of fluctuation observables in
the Gaussþ surface and Ginzburg-Landau models. We will
concentrate on the discussion of local quantities, i.e., on the
fluctuations in the net-baryon density contained within one
grid spacing, on an event-by-event basis. The local vari-
ance, σ2, is equivalent to the equal-time correlation function
hðΔnBÞ2i at r ¼ 0. From Eq. (22), we see that σ2 ∼ ξ. Since
the Gaussian mass parameterm ∼ 1=ξ drops rapidly around
Tc with a minimum at Tc, cf. Fig. 1, we expect that the local
variance is largest at Tc in both the Gaussþ surface and the
Ginzburg-Landau models. The local excess kurtosis, κ, is
defined as

κ ¼ μ4
σ4

− 3; ð24Þ

where μ4 ¼ hðΔnBÞ4i at r ¼ 0 is the fourth central moment
of local fluctuations. The excess kurtosis must vanish for
the Gaussian models while in the presence of nonlinear
coupling terms it provides a measure for the non-
Gaussianity of the equilibrium distribution. The local
skewness was found to be subject to large statistical
uncertainties in the studied finite-size systems with charge
conservation and as a consequence will not be discussed in
this work.
In Fig. 7, we show numerical results for the system-

size dependence of σ2 and κ in the Gaussþ surface and
Ginzburg-Landau models for two different T at fixed
resolution Δx ¼ ð20=256Þ fm. In the Gaussþ surface
model, the continuum expectation of σ2 for an infinite
system is given by

σ2 ¼ n2c
2A

ffiffiffiffi
K

p
m
; ð25Þ

which is indicated by the gray dotted lines. In a finite-size
system, the local variance can be significantly smaller due
to charge conservation, cf. Fig. 3, but increases with
increasing L approaching the limit Eq. (25). The observed
reduction of σ2 in the Ginzburg-Landau model is in line
with the behavior seen in meff and ξ̃; see Fig. 5 and the
discussion in Sec. III B. We find a negligible residual Δx-
dependence in σ2 for all T and L similar to ξ̃. This is in
contrast to the behavior noted in [64] for the pure Gaussian
model where the local variance depends explicitly on the
resolution, cf. Eq. (23). This unphysical behavior is cured

by the inclusion of a finite surface tension; see also the
discussion in [68]. The local excess kurtosis vanishes
within the statistical uncertainty in the Gaussþ surface
model. In the Ginzburg-Landau model, instead, κ is non-
zero and found to increase in magnitude with L but also
seems to approach a limiting value with increasing system
size. The residual Δx-dependence is a bit stronger than for
σ2 but still on the few-percent level. Both σ2 and κ are
significantly larger at T ¼ Tc (solid squares and circles)
than at T ¼ 0.5 GeV (open squares and circles), where the
influence of the Gaussian mass parameter is expected to
dominate. Near Tc finite-size effects in both observables
are clearly more pronounced than at T ¼ 0.5 GeV and
appear to be quantitatively stronger in the higher-order
fluctuation observable κ.
In Fig. 8, we compare the temperature dependence of the

local variance and local excess kurtosis in the Gaussþ
surface (squares) and Ginzburg-Landau (circles) models for
L ¼ 20 fm withNx ¼ 256. The reduction seen in σ2 for the
Ginzburg-Landau model compared to the Gaussþ surface
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FIG. 7. Results for the local variance σ2 and local excess
kurtosis κ in the Gaussþ surface (squares) and Ginzburg-Landau
(circles) models for different system sizes L at fixed resolution
Δx ¼ ð20=256Þ fm for two different temperatures, T ¼ 0.5 GeV
(open symbols) and T ¼ Tc (solid symbols). The horizontal, gray
dotted lines in the upper panel show for comparison the
corresponding continuum expectations for σ2 in the Gaussþ
surface model for an infinite system, cf. Eq. (25).
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model is in line with the findings for the temperature
dependence of the fitted correlation length in Fig. 6. In fact,
within the numerics, we find that σ2 scales approximately
as σ2 ∼ ξ̃ for all T as expected from Eq. (25). The numerical
results for the local excess kurtosis highlight an important
difference between the two models: while κ vanishes within
the acquired statistics in the Gaussþ surface model, it is
nonzero and negative for the chosen values of λ̃i in the
Ginzburg-Landau model. One observes a nonmonotonic
temperature dependence with a prominent peak structure in
the vicinity of Tc, where λ̃4 and λ̃6 become the dominant
parameters, cf. Fig. 1.

IV. DYNAMICS OF GAUSSIAN AND NON-
GAUSSIAN FLUCTUATIONS

We now turn to the study of the dynamics of the system,
which we discuss in three steps: first, we investigate the
dynamical properties in equilibrium in form of the dynamic
structure factor, next we study the response of the system to
a sudden quench in temperature, and finally look at a
Hubble-like reduction of the temperature as a function of
time. Note that the dynamical properties depend on the
value and/or the temporal behavior of the diffusion

coefficientD, which as a function of temperature is defined
as D ¼ ΓT=nc, where we fix DðT0Þ ¼ 1 fm at T ¼ T0 ¼
0.5 GeV unless otherwise specified.

A. Dynamic structure factor and relaxation time

The dynamical properties of the system in equilibrium at
a fixed temperature are encoded in the dynamic structure
factor. The time dependence of the spatial spectrum of the
fluctuating net-baryon density is related to the spatial
Fourier transform of the stochastic diffusion equation,
Eq. (15), and can be obtained from Sðk;ωÞ by the
Fourier transformation into the time domain viz

Sðk; tÞ≡ VhΔn̂Bðk; t0ÞΔn̂�Bðk; t0 þ tÞi

¼ 1

2π

Z
∞

−∞
Sðk;ωÞeiωtdω: ð26Þ

For the Gaussian models with Sðk;ωÞ given in Eq. (16), this
amounts to

Sðk; tÞ ¼ SðkÞ exp ð−t=τkÞ ð27Þ
in the continuum limit, where the static structure factor SðkÞ
is given by Eq. (18) or (19) and the inverse relaxation time
reads

τ−1k ¼ Dm2

nc

�
1þ K

m2
k2
�
k2: ð28Þ

By setting K ¼ 0, we find the expression of τk for the pure
Gaussian model.
Numerically, we study the dynamic structure factor Sk;t

in discretized space-time by analyzing the correlator of the
density fluctuations in the mixed representation for modes
with given wave vector k⃗ and wave number κ ¼ kL=ð2πÞ;
see Appendix E. Exemplarily for κ ¼ 2, we contrast Sk;t at
T ¼ Tc for the Gaussþ surface and Ginzburg-Landau
models in Fig. 9. One clearly observes an exponential
decay of the correlator in both models similar to the
expected behavior in the continuum limit. As for the static
observables, the nonlinear interactions in the Ginzburg-
Landau model reduce the dynamic structure factor com-
pared to the Gaussþ surface model and, in addition,
accelerate its exponential decay. We note that in the pure
Gaussian model Sk;t for the same κ is much larger and
relaxes significantly slower than in the other models.
The relaxation time in the Gaussþ surface model for a

specific mode k can be determined by fitting the corre-
sponding Sk;t with an exponential ansatz of the form of the
continuum expression. For T ¼ 0.5 GeV and T ¼ Tc, the
results for not too large κ are shown in Fig. 10 (red squares).
As one would expect, τk is drastically enhanced near Tc and
long-wavelength (small κ) modes relax significantly slower
than short-wave (large κ) fluctuations. The continuum
results based on Eq. (28) are also shown as red solid lines
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FIG. 8. Results for the local variance σ2 and local excess
kurtosis κ as functions of the scaled temperature T=Tc in the
Gaussþ surface (squares) and Ginzburg-Landau (circles) models
for simulations with L ¼ 20 fm and Δx ¼ L=256.
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in Fig. 10. We find that the results of the fits to the data from
simulations with Δx ¼ ð20=256Þ fm are already very close
to the continuum expectations for not too large κ (see the
discussion in Appendix E).

The exponential decay of Sk;t seen in Fig. 9 for the
Ginzburg-Landau model suggests to use a similar ansatz to
determine τk in this case. The results are shown by blue
circles in Fig. 10. The nonlinear interactions are found to
reduce the fitted relaxation time, in particular, for modes
with small κ, and the effect is more prominent in the
vicinity of Tc. For larger κ, fluctuations are less affected by
the nonlinear interactions and τk in the Gaussþ surface and
the Ginzburg-Landau model is comparable. The k-depend-
ence of our numerical results for τk in the Ginzburg-Landau
model can quite accurately be described by the continuum
expression Eq. (28) of the Gaussþ surface model by
replacing m with meff ; see blue dashed lines in Fig. 10.
The values for the modified Gaussian mass parameter
meff > m are those necessary for describing the behavior
of the static structure factor in the Ginzburg-Landau model
discussed in Sec. III B.
The comparison of the fit results with the analytic

expectations in the Gaussþ surface model indicates that
the simulations carried out with Nx ¼ 256 at L ¼ 20 fm
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FIG. 9. The dynamic structure factor Sk;t as a function of time
for κ ¼ 2 in the Gaussþ surface and Ginzburg-Landau models
for L ¼ 20 fm and Nx ¼ 256 at T ¼ Tc.
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FIG. 10. Relaxation time τk (symbols) as a function of κ for
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Tc (lower panel) in the Gaussþ surface and Ginzburg-Landau
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are already sufficiently close to the continuum limit, also
for the dynamic observables. To test further how well
analytic expectations for resolution effects are reproduced
numerically, we decrease the resolution in the simulations
by a factor 4 and consider Nx ¼ 64. From Eqs. (E9)–(E11),
one expects that a decrease in resolution results in an
increase of the fitted relaxation time, in particular for
larger κ. This is precisely observed in the results depicted
in Fig. 11. In fact, the comparison of the fit results for τk
with the expectations for the relaxation time, Eqs. (E9)–
(E11), shows that resolution effects are well controlled.
The determination of the dynamic structure factor and of

the relaxation time allows us to study the correlation length
dependence of τk for modes which are correlated over the
distance ξ̃. For this purpose, we analyze τ�, the relaxation
time of modes with k� ¼ 1=ξ̃ðTÞ, as a function of T, where
ξ̃ðTÞ is the fitted correlation length discussed in Sec. III C.
Results for the Gaussþ surface and Ginzburg-Landau
models are shown in Fig. 12 (symbols). We find τ� to
behave like aξ̃z with proportionality factor a and dynamic
scaling (critical) exponent z. For both models, the best fit
(filled bands in Fig. 12) gives z ¼ 4� 0.1 and
a ≃ 0.08=ðD fmz−2Þ. This proportionality factor confirms
our expectations, a ¼ ncξ0=ðDð1þ K̃ÞÞ, based on the
continuum expression of τk in the Gaussþ surface model.
We also indicate that other scaling exponents, e.g., z ¼ 3
(dashed lines) or z ¼ 5 (dotted lines), fail to describe the
numerically realized scaling with the correlation length.
This shows that our simulations reproduce the dynamic
scaling behavior one would expect for the stochastic
diffusion of a conserved charge which is one of the
models B within the classification scheme [9].

B. Relaxation of fluctuation observables after a
temperature-quench

The relaxation dynamics of fluctuation observables such
as the local variance σ2 and the local excess kurtosis κ
toward equilibrium can be studied through the sudden
quench in temperature from a well-prepared initial con-
dition. For this purpose, we first let the system equilibrate at
T ¼ T0 ¼ 0.5 GeV and then instantaneously reduce the
temperature at time τ ¼ τ0 to three distinct values T�,
namely, T� ¼ Tc, T� ¼ 0.18 GeV, and T� ¼ 0.2 GeV. We
discuss these three quench scenarios only for the Ginzburg-
Landau model. Qualitatively, the same conclusions can be
drawn for σ2 in the Gaussþ surface model.
The results for the relaxation behavior of σ2 and κ are

shown in Fig. 13. One observes that the relaxation
dynamics is quite abrupt initially. We find that with decreas-
ing quench-temperature T� the time it takes σ2 and κ to relax
to the corresponding equilibrium result (horizontal, gray
dotted lines) increases. This is to be expected since for
smaller T� we have a smaller diffusion coefficient D and,
moreover, the difference between the equilibrium values at
T0 and at a T� close to Tc is larger. In addition, higher
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moments appear to approach their equilibrium expectations
slower. By increasing the initial value of the diffusion
coefficient to DðT ¼ T0Þ ¼ 2 fm, the relaxation rate is
overall increased and the fluctuation observables relax
quicker toward equilibrium; see also the discussions in
[64,68]. We note that the determination of the relaxation
time of fluctuation observables within a quench scenario can
allow the identification of structures in the QCD phase
diagram. This was demonstrated in a QCD-assisted transport
approach based on nonequilibrium chiral fluid dynamics and
the effective action of low-energy QCD in [66].

C. Time evolution of fluctuations in a cooling system

Assuming a dynamical evolution of the temperature of
the system allows us to highlight some important non-
equilibrium effects. For this purpose, we consider a simple,
spatially homogeneous time dependence of T in the
Hubble-like form

TðτÞ ¼ T0

�
τ0
τ

�
dc2s

; ð29Þ

with dimension d ¼ 3, speed of sound c2s ¼ 1=3 and T0 ¼
0.5 GeV at initial time τ0 ¼ 1 fm at which the system is in
equilibrium. For this cooling scenario, the critical temper-
ature is reached at τc − τ0 ¼ 2.33 fm. The time-dependent
temperature translates into time-dependent couplings via
Eqs. (10)–(14), which are shown in Fig. 14. Due to the fast
initial decrease of T and the slower decrease at later times in
Eq. (29), the thermodynamic correlation length is more
symmetric between the early and late times than it is in
comparison to the high and low temperatures in Fig. 1. Still,

all couplings except λ6, which is independent of the
correlation length, have a dip at the time when the critical
temperature is reached. This is the region where we expect
nonequilibrium effects to be most prominent.
We first study the impact of the dynamical evolution of T

on the equal-time correlation function and the associated
correlation length ξ̃. The results presented here are obtained
for the Ginzburg-Landau model where we analyzed a
sufficient amount of events. The form of the equal-time
correlation function is clearly affected by the dynamics; see
upper panel in Fig. 15 (squares) for T ¼ Tc. On the
quantitative level, this is also determined by the temporal
evolution of the diffusion coefficient D. For not too large
initial values (such as DðT0Þ ¼ 1 fm), it already signifi-
cantly decreased (to DðTcÞ ¼ 0.3 fm in this case) by the
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FIG. 14. Time dependence of the parameters entering the
Ginzburg-Landau free energy functional F in Eq. (9); see Fig. 1
for comparison. The coupling λ6 ¼ 1=fm3 (not shown) is set
constant. The critical temperature Tc ¼ 0.15 GeV is reached at
τc − τ0 ¼ 2.33 fm.
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time Tc is reached and, thus, local fluctuations cannot
rapidly enough be balanced throughout the entire finite-size
system. As a consequence, correlations at zero distance do
not build up quickly enough from the smaller value at T0

toward the equilibrium value at Tc [see the upper panel in
Fig. 15 (circles) and Fig. 8] and lag behind. Around these
local fluctuations, anticorrelations are present due to charge
conservation. In the dynamical situation, they do not have
sufficient time to diffuse into the entire system. We there-
fore see a dip of the correlation function around r ¼ 40Δx,
while it approaches zero at larger distances. This local
balancing of the fluctuations reduces the correlation length,
as we discuss in the following.
While the form of the equal-time correlation function in

the dynamical scenario is not in one-to-one correspondence
with the equilibrium form, we may still analyze the visible
exponential decrease in the region from small to inter-
mediate distances to deduce a correlation length. By using
the ansatz employed in Sec. III C for different T, i.e., at
different times τ − τ0, we obtain the result for the dynami-
cal ξ̃ shown in the lower panel of Fig. 15 (squares). In
comparison to the equilibrium result (circles, cf. also
Fig. 6), we observe clear deviations highlighting two
distinct nonequilibrium effects: first, the overall magnitude
of ξ̃ is significantly reduced as a consequence of the
dynamics. Second, there are clear indications for a retar-
dation effect due to the rapid cooling in T. The dynamical ξ̃
remains initially smaller than its equilibrium counterpart for
given T but then develops a maximum at a temperature far
below Tc such that at late times it is actually larger than in
the equilibrium situation. The pronounced structure tradi-
tionally associated with the phase transition is shifted to
later times and, thus, different thermal conditions. We
expect similar effects for the fluctuation observables.
In Fig. 16, we show the temporal evolution of the local

variance σ2 (upper panel) and the local excess kurtosis κ
(lower panel) as a function of time in the Gaussþ surface
(red bands) and Ginzburg-Landau (blue bands) models. For
both models, σ2 peaks at a time τ − τ0 shortly after Tc is
reached during the evolution. The retardation shift appears
slightly larger in the Gaussþ surface than in the Ginzburg-
Landau model. As in the equilibrium situation, σ2 in the
Ginzburg-Landau model stays below the Gaussþ surface
model result, but the reduction of its maximal value due to
the dynamics is significantly stronger in the Gaussþ
surface model (by 46% compared to 17% for the
Ginzburg-Landau model).
For the local excess kurtosis, we note that in the absence

of nonlinear coupling terms κ vanishes in the dynamical
scenario as it did in equilibrium (see red band and open
squares in the lower panel of Fig. 16). For the Ginzburg-
Landau model, κ starts at its equilibrium value for T0 and
initially follows the equilibrium behavior for given T (see
blue band and open circles in the lower panel of Fig. 16).
However, within the band of statistical uncertainties, it

quickly lags behind the equilibrium situation as reflected in
the reduced magnitude of κ. We can clearly see that in the
dynamical scenario the minimum in the local excess
kurtosis is shifted to a later time than τc − τ0 and that
the magnitude of this minimum is significantly reduced (by
approximately 30%) compared to the equilibrium result. At
later times, the retardation effect leads to a dynamical κ
slightly larger in magnitude than in equilibrium. As is
evident from Fig. 16, the nonequilibrium effects influence κ
stronger than σ2 in the Ginzburg-Landau model. The
behavior seen in the fluctuation observables resembles
qualitatively the one discussed for ξ̃ above with an
important difference: the shift of the maximum in ξ̃ to
smaller T is larger than in σ2 or κ. In future work, we will
investigate the fluctuation observables over larger subvo-
lumes to see if the relation with the correlation length is
restored. We note that an overall reduction of the dynamical
diffusion coefficient (by lowering its initial value DðT0Þ)
results in a stronger retardation and a stronger reduction of
the magnitude of the fluctuation signal.
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FIG. 16. Dynamical behavior (colored bands) of the local
variance σ2 and the local excess kurtosis κ for the Gaussþ
surface and Ginzburg-Landau models in a cooling system,
cf. Eq. (29), as a function of time. For the local excess kurtosis,
we compare with the equilibrium results (open squares and
circles) at the corresponding T. The shown results are for
L ¼ 20 fm and Nx ¼ 256.
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V. DISCUSSION

In this work, we presented a first rigorous implementation
of the one-dimensional stochastic diffusion equation near
the QCD critical point. First, we benchmarked this imple-
mentation in the linear approximation, including Gaussian
mass and surface tension terms, versus analytic results of the
equal-time correlation function and the static structure
factor. Based on these tests, we chose the resolution of
the spatial discretization as to reproduce the behavior of the
first 50% of the wave numbers in the continuum limit.
Charge conservation is found to play an important role for
the correlation function and limits the growth of long-range
correlations. In the same sense, the growth of the correlation
length near Tc is limited for system sizes up to a few times
the thermodynamic correlation length.
In equilibrium, we investigated the temperature depend-

ence of the local variance and excess kurtosis. The latter
takes nonzero values as soon as the nonlinear coupling
terms in the Ginzburg-Landau free energy functional are
included. The expected nonmonotonic behavior around Tc
is clearly observed. The inclusion of the nonlinear coupling
terms reduces the variance of the system by a factor of 2
near Tc.
From the dynamic structure factor, we obtained the

relaxation time of the critical mode. It is found to scale with
the correlation length according to model B of dynamical
universality. Finally, we investigated the response of the
system to changes of the temperature, first, via a sudden
quench in temperature and, second, via a Hubble-like time
evolution.Weobserve again that the growth of the correlation
length is limited by charge-conservation effects, this time in a
dynamical setup. Here, fluctuations do not have enough time
to diffuse to larger distances and, thus, the correlation length
is limited to a smaller range. Fluctuation observables are
reduced inmagnitude and shifted to smaller temperatures due
to nonequilibrium effects. Higher-order cumulants are
impacted stronger than the variance by the nonequilibrium
situation, i.e., they needmore time to relax, the magnitude of
their extrema is more reduced compared to the equilibrium
values and the retardation effect is stronger.
We emphasize in particular the importance of bench-

marking the approach to the dynamics of fluctuations
against analytic results, like the correlation function,
the static and the dynamic structure factor. This should
be a standard requirement for all models dealing with
the dynamics of fluctuations, including more complex
approaches to fluctuating fluid dynamics.
The presented cumulants are evaluated as local observ-

ables over individual cells of the simulation region, which
serves well the purpose of understanding the basic dynam-
ics of fluctuations in stochastic partial differential equa-
tions. For aiming at a comparison with experimental data
from heavy-ion collisions, integrated observables in finite
kinematic regions are of additional interest. A study of
fluctuations over larger subregions of observation similar

to [65] and of their systematics will address these questions
and be reported elsewhere. In our studies of the time
evolution of the temperature, the considered systems did
not expand. We plan to investigate the expansion of the
system in a next step, see [91], to include regular con-
tributions into the free energy functional and to extend the
treatment of fluctuations to three spatial dimensions.
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APPENDIX A: NUMERICAL IMPLEMENTATION

We study the stochastic diffusion Eq. (15) by discretizing
the diffusive net-baryon density on Nx sites equally
distributed over a system of longitudinal extent L with
resolution (grid spacing) Δx ¼ L=Nx. Over the finiteΔx of
a cell, nB must be understood as being averaged. Time is
discretized in steps of Δt at which nB is considered
pointwise. Details about the extent and discretization in
the transverse direction are not important as we study the
evolution of the system and physical observables only in
the longitudinal direction which is decoupled from the
transverse dynamics. For simplicity, we set the transverse
area A ¼ 1 fm2 but have verified the proper behavior with
A in the numerics. The Gaussian white noise must be
understood as averaged over space Δx and time Δt. It is
independent between different cells and time steps with
zero mean and variance 1=ðΔxΔtÞ.
Equation (15) is solved by means of a semi-implicit

scheme. While the operator associated with the Gaussian
mass and surface tension terms is treated implicitly in time,
the operator associated with the nonlinear coupling terms is
discretized explicitly. The temporal integration is per-
formed with a predictor-corrector method. For the stochas-
tic diffusion equation of the general form

dnB
dt

¼ OlnB þOnlðnBÞ þOξW; ðA1Þ

this amounts to solving in a first step

�
1 −

Δt
2
Ol

�
ñmþ1
B ¼

�
1þ Δt

2
Ol

�
nmB þ ΔtOnlðnmB Þ

þ ΔtOξWm ðA2Þ

for ñmþ1
B as an intermediate update of nmB from time step m,

and then by using nmB and ñmþ1
B in
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�
1 −

Δt
2
Ol

�
nmþ1
B ¼

�
1þ Δt

2
Ol

�
nmB

þ Δt
2
½OnlðñmB Þ þOnlðnmB Þ�

þ ΔtOξWm; ðA3Þ

one finds nmþ1
B as the update at time step mþ 1. The

individual operators in the above equations read (we drop
the index B in the following to improve readability)

Olnm ¼ D
Δx2

m2

nc
ðnmjþ1 − 2nmj þ nmj−1Þ ðA4Þ

−
D
Δx4

K
nc

ðnmjþ2 − 4nmjþ1 þ 6nmj − 4nmj−1 þ nmj−2Þ;

OnlðnmÞ ¼
D
Δx2

X
i¼3;4;6

λi
ni−1c

½ðΔnmjþ1Þi−1

− 2ðΔnmj Þi−1 þ ðΔnmj−1Þi−1�; ðA5Þ

OξWm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dnc
AΔxΔt

r
1

Δx

�
Wm

jþ1
2

−Wm
j−1

2

�
: ðA6Þ

This system of equations is solved for each spatial point j
on the grid. The contributions from the nonlinear coupling
terms are simulated by computing the corresponding power
of Δnmj ¼ nmj − nc at a given site j for each time step m.
Without nonlinear coupling terms, the predictor and cor-
rector steps are identical and yield exactly the same solution
which makes one of the steps redundant. The noise fieldW
in Eq. (A6) has zero mean and variance 1.

APPENDIX B: STATIC STRUCTURE FACTOR
IN DISCRETIZED SPACE-TIME

For the Gauss and Gaussþ surface models, for which
the contributions from the nonlinear operator in Eq. (A5)
vanish, analytic results for the static structure factor Sk in
discretized space-time can be derived. In this limit, the
general form of the stochastic diffusion equation may be
written in mixed Fourier space as

Mð1Þ
k n̂mþ1

k ¼ Mð−1Þ
k n̂mk þ NkŴ

m
k ; ðB1Þ

with

MðaÞ
k ¼ 1 − a

Δt
2

�
D
Δx2

m2

nc
½2 cosðΔkÞ − 2�

−
D
Δx4

K
nc

½2 cosð2ΔkÞ − 8 cosðΔkÞ þ 6�
�
; ðB2Þ

Nk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8DncΔt
AΔx3

r
sinðΔk=2Þ; ðB3Þ

Δk ¼ kΔx and hŴm
k ðŴm

k Þ�i ¼ 1=Nx. We note that based
on Eq. (15) we find that Eq. (B1) holds true also for the
difference Δn̂k instead of n̂k. From the definition

Smk ¼ VhΔn̂mk ðΔn̂mk Þ�i ðB4Þ

and the condition of stationarity Sk ¼ Smk ¼ Smþ1
k in

equilibrium, one finds

Sk ¼
jNkj2AΔx

jMð1Þ
k j2 − jMð−1Þ

k j2
ðB5Þ

¼ n2c
m2

1

1þ 2K
m2Δx2 ½1 − cosðΔkÞ� ðB6Þ

for the static structure factor; see Eq. (20). This result is
independent of the time step Δt. In the limit of the pure
Gaussian model with K ¼ 0, this reduces to Sk ¼ n2c=m2,
which is independent of k andΔx and agrees with the result
in the continuum; see Eq. (18). We note that for k ¼ 0 the
static structure factor reflects charge conservation in the
entire system.

APPENDIX C: NET-BARYON NUMBER
CONSERVATION IN FINITE-SIZE SYSTEMS

The net-baryon number of the entire system is numeri-
cally conserved by imposing periodic boundary conditions
on the net-baryon number density. As a result, charge
conservation must be reflected in the behavior of observ-
ables such as the equal-time correlation function. The latter
is connected with the static structure factor by a Fourier
transformation. In discretized space, one defines

nj ¼
X
k

n̂keijkΔx; ðC1Þ

where k ¼ 2πκ=L is restricted by 0 ≤ κ < Nx for κ ∈ Z.
Accordingly, the equal-time correlation function follows in
discretized space as

hðΔnBÞjðΔnBÞli ¼
1

V

XNx−1

κ¼0

ei2πκjj−lj=NxSk: ðC2Þ

This definition holds for an infinite system. For the pure
Gaussian model with Sk ¼ n2c=m2, one finds

hðΔnBÞjðΔnBÞli ¼
n2c
Am2

δjl
Δx

ðC3Þ

because modes with different κ are orthogonal.
For a finite-size system, however, charge conservation

must be imposed by demanding that local fluctuations
vanish upon summation over the entire system, i.e.,P

lhðΔnBÞjðΔnBÞli ¼ 0 for any j. This is respected if
we impose
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hðΔnBÞjðΔnBÞli ¼
1

V

XNx−1

κ¼0

ei2πκjj−lj=NxSk

−
1

NxV

XNx−1

h¼0

XNx−1

κ¼0

ei2πκh=NxSk: ðC4Þ

Instead of Eq. (C3), one finds

hðΔnBÞjðΔnBÞli ¼
n2c
Am2

�
δjl
Δx

−
1

L

�
ðC5Þ

for the pure Gaussian model. The finite-size correction
vanishes in the thermodynamic limit for any given reso-
lution Δx.
For the Gaussþ surface model with Sk given in Eq. (B5),

the result of the summations in Eq. (C4) can be obtained
numerically. Due to Eq. (C4), one expects a negative shift in
a finite-size system. This shift has to become less pro-
nounced with increasing Nx, i.e., for fixed resolution Δx
with increasing L. Both these features are seen in the
numerics, cf. Fig. 3.

APPENDIX D: DETERMINATION OF THE
CORRELATION LENGTH

The form of the equal-time correlation function found in
the equilibrium simulations is that of an exponential decay
which is modified by a negative shift due to exact charge
conservation. Since in equilibrium the system is homo-
geneous on length scales larger than the noise correlation,
this shift is expected to be a constant. Then, a suitable
ansatz to determine the correlation length ξ̃ is

hðΔnBÞjðΔnBÞli ¼
C1

C2

expð−jj − ljΔx=C2Þ þ C3; ðD1Þ

where C2 is the fit parameter for ξ̃ in dependence of Δx, L,
and T. The quantity C1=C2 þ C3 gives the value of the
correlation function over distances of the grid spacing Δx,
i.e., the value of the local variance. The fit results for ξ̃
shown in Sec. III C are obtained by optimizing the
description of the local variance in the numerics. We
observe that for the Gaussþ surface model simulations
with L ¼ 20 fm the obtained value of C1=C2 is already
quite close to the continuum expectation of n2c=ð2Am

ffiffiffiffi
K

p Þ
for the local variance in an infinite system, cf. Eqs. (22) and
(25), even for T near Tc. We note that for smaller L this is
not necessarily the case, in particular close to Tc. Motivated
by the fact that the equilibrium results of the equal-time
correlation function in the Ginzburg-Landau model can be
described by the theoretical expectation of the Gaussþ
surface model with a modified, effective Gaussian mass
parameter, see Sec. III B, we utilize the same ansatz
Eq. (D1) and strategy in order to fit the numerical results
of the Ginzburg-Landau model and to determine ξ̃.

APPENDIX E: DYNAMIC STRUCTURE FACTOR
IN DISCRETIZED SPACE-TIME

The diffusion equation in discretized space-time dis-
cussed in Appendix A has for the Gauss and Gaussþ
surface models the following representation in full ðω; kÞ
Fourier-space:

Mð1Þ
k eiΔωn̂k;ω ¼ Mð−1Þ

k n̂k;ω þ NkŴk;ω; ðE1Þ

with Δω ¼ ωΔt. This implies for the correlator

hΔn̂k;ωΔn̂�k;ωi

¼ NkhŴk;ωŴ
�
k;ωiN�

k

ðMð1Þ
k − e−iΔωMð−1Þ

k ÞðMð1Þ�
k − eiΔωMð−1Þ�

k Þ
; ðE2Þ

which gives the dynamic structure factor via

Sk;ω ¼ lim
Nt→∞

VðNtΔtÞhΔn̂k;ωΔn̂�k;ωi; ðE3Þ

where Nt is the number of (performed) time steps. From
this definition, it is clear that the dynamic structure factor is
a late-time equilibrium observable. For white noise, we

have hŴk;ωŴ
�
k;ωi ¼ 1=ðNxNtÞ, and with MðaÞ

k and Nk

defined in Appendix B we obtain

Sk;ω ¼ 2n3cχ̃1Dk2

n2cΔt−2ð1 − cosðΔωÞÞ þ χ̃2χ̃
2
1D

2k4
; ðE4Þ

with

χ̃1 ¼ ð1 − cosðΔkÞÞ=Δk2; ðE5Þ

χ̃2 ¼ m4

�
1 −

2K
m2Δx2

ðcosðΔkÞ − 1Þ
�

2

ð1þ cosðΔωÞÞ:

ðE6Þ

The result for the pure Gaussian model is found by setting
K ¼ 0 in Eq. (E6). In the limit of small Δω ≪ 1, we can
expand cosðΔωÞ and find

lim
Δω≪1

Sk;ω

¼ 4ncχ̃1Dk2

ω2 þ 4D2 m4

n2c
k4χ̃21ð1 − 2K

m2Δx2 ðcosðΔkÞ − 1ÞÞ2 : ðE7Þ

Moreover, in the limit of small Δk ≪ 1, we have χ̃1 ≈ 1
2
−

1
24
Δk2 and ð2 cosðΔkÞ − 2Þ=Δx2 ≈ −k2 þ 1

12
k2Δk2 in

Eq. (E7). Thus, for given ω and k, in the limit of Δt → 0
and Δx → 0, the continuum expression Eq. (16) of the
dynamic structure factor Sðk;ωÞ is recovered from Sk;ω. In
the numerics, finite resolution in Δt and Δx implies
deviations from the continuum result. Therefore, only the
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regime of smallwavevectors and low frequencies allowus to
judge the accuracy of the numerical scheme. Even in the
limit Δt → 0, the approach to the continuum is limited to
small values of k depending on the spatial resolution. This
limit can be used to determine an analytic expression for the
dynamic structure factor Sk;t in the mixed representation
from the Fourier transformation into the time-domain. We
find

Sk;t ¼
1

2π

Z
∞

−∞
eiωt lim

Δt→0
Sk;ωdω ¼ Ske−t=τk ; ðE8Þ

where Sk is the static structure factor in Eq. (B5) and τk is the
relaxation time of fluctuations with wave vector k ¼ 2πκ=L
given via

τ−1k ¼ 2
D
nc

m2k2ðAk þ BkÞ; ðE9Þ

with

Ak ¼ ð1 − cosðΔkÞÞ=Δk2; ðE10Þ

Bk ¼
2Kk2ð1 − cosðΔkÞÞ2

m2Δk4
: ðE11Þ

From Eqs. (E9)–(E11) in the limit of small Δx, we see that
finite-resolution effects increase τk compared to the con-
tinuum result Eq. (28), which is approached in the limit
Δx → 0. Moreover, we find that τk is smaller in the Gaussþ
surface model compared to the pure Gaussian model with
K ¼ 0. This effect is less pronounced for small values of κ
and away from the transition temperature Tc.
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