
 

Lepton pair production through two photon process in heavy ion collisions

Spencer Klein ,1 A. H. Mueller,2 Bo-Wen Xiao,3,4 and Feng Yuan1
1Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

2Department of Physics, Columbia University, New York, New York 10027, USA
3Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China

Normal University, Wuhan 430079, China
4School of Science and Engineering, The Chinese University of Hong Kong, 518172, Shenzhen, China

(Received 29 June 2020; accepted 28 October 2020; published 13 November 2020)

This paper investigates the electromagnetic production of lepton pairs with low total transverse momentum
in relativistic heavy-ion collisions. We estimate the initial photons’ transverse momentum contributions by
employingmodelswhere the average transversemomentum squaredof the incoming photon can be calculated
in the equivalent photon approximation. We further derive an all order QED resummation for the soft photon
radiation,which gives an excellent description of theATLASdata in ultraperipheral collisions at the LHC. For
peripheral and central collisions, additionalpT-broadening effects frommultiple interactionswith themedium
and the magnetic field contributions from the quark-gluon plasma are also discussed.
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I. INTRODUCTION

There have been strong interests in the electromagnetic
process of dilepton production in two-photon scattering
in heavy-ion collisions in the last few years [1–5]. These
experiments have made great efforts to select the dilepton
events through the kinematic constraints where they are
produced by the purely electromagnetic two-photon reac-
tion: γγ → lþl−. These experimental results have attracted
quite a lot of attention in the community because they may
provide a potential probe for the electromagnetic property
of the quark-gluon plasma created in heavy-ion collisions.
The medium effects being considered include the medium
induced transverse momentum (pT) broadening from
multiple interaction effects and/or the magnetic field effects
from the medium. The confirmation of either effect would
be an important pathway in future explorations of the
electromagnetic properties of the quark-gluon plasma.
Furthermore, the physics related to the acoplanarity of the

dilepton pair is very similar to that in dijet productions
described inQCD.One popular description of the jet medium
interactions in QCD is the Baier-Dokshitzer-Mueller-Peigne-
Schiff (BDMPS) approach [6–8]. In addition to jet energy
loss, the BDMPS formalism also predicts the pT broadening
effects, since these two effects are physically related. In the
BDMPS formalism, q̂L characterizes the typical transverse

momentum squared that a parton acquires in the medium
of length L. The experimental study of the medium related
pT-broadening effects of the jet is an important step forward
to clarify and understand the underlying mechanism for the
jet energy loss in heavy-ion collisions. In the last few years,
there have been a lot of progresses in the understanding of the
pT-broadening effects in dijet, photon-jet, and hadron-jet
productions in heavy-ion collisions [9–14]. It was found
the vacuum Sudakov effects dominates [9] the transverse
momentum broadening of dijets for the typical dijet kinemat-
ics measured at the LHC [15,16]. On the other hand, in
the RHIC energy regime, the quark-gluon-plasma medium
effect is comparable to the Sudakov effects, and the medium
pT-broadening has been observed in the measurements of
hadron-jet correlation [11,17] by the STAR collaboration.We
expect future measurements at both the LHC and RHIC will
allow us to gain further important and quantitative informa-
tion on the medium transverse momentum broadening effect.
To be able to probe in-medium or magnetic effects in

peripheral collisions, it is important to have a baseline
measurement. Ultraperipheral collisions (UPCs), where the
nuclei do not interact hadronically (roughly, with impact
parameter b > 2RA where RA is the nuclear radius), can
provide this baseline data. UPCs encompass both photo-
production and two-photon interactions [18–22] and have
a long history. Using the so-called equivalent photon
approximation [23], which is also known as the
Weizsäcker Williams method [24,25], the photon distribu-
tion from a relativistically moving charge particle can be
computed from its boosted electromagnetic fields. Photons
can strike the oppositely moving nucleus, or they can
interact with the electromagnetic field of the other nucleus,
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creating a pair of leptons in the two-photon process
γγ → μþμ−. In two-photon fusion processes, the final state
has a small total pT , so the leptons are nearly back-to-back.
The first dedicated study of γγ → eþe− was by the STAR

Collaboration in 2004 [26]. STAR studied final states
consisting of the lepton pair, accompanied by neutrons
in each zero degree calorimeter. The neutrons are assumed
to come from the mutual Coulomb excitations of the two
nuclei by two additional photons, not directly associated
with the pair production [27]. The additional photons
biased the production toward smaller impact parameters
(but still with b > 2RA) [28].
Two-photon fusion production of lepton pairs has been

calculated with both the equivalent-photon approximation
(EPA), where the photons are treated as massless [27], and
via full lowest-order QED calculations, which included
non-zero virtual photon masses [29]. The two calculations
agreed well, except that the EPA calculation predicted more
pairs with pair pT < 20 MeV=c. The data was in good
agreement with the calculations, favoring the QED calcu-
lation at a small pair pT. The STAR paper attributed this to
a breakdown of the EPA approach, but the issue may have
been that the EPA calculation did not account for the
change in single-photon transverse momentum (kT) dis-
tribution due to the biasing toward small impact parameters
[30]. This can be seen as broadening the pair pT spectrum.
Newer UPC studies of dileptons have mostly focused

on J=ψ or heavier vector mesons, with the two-photon
production treated as a background. However, the ATLAS
collaboration has recently made a high-statistics study of
two-photon production of muon pairs in UPCs, finding
mostly good agreement with an EPA calculation, but
accompanied by a tail containing about 1% of the events,
of pairs with relatively high acoplanarity [31]. Acoplanarity
is closely related to the pair pT. ATLAS focused on
acoplanarity to reduce their sensitivity to resolution effects.
At the same time, several experiments have reported on

the two-photon production of lepton pairs in peripheral
collisions, with b < 2RA. The ATLAS collaboration stud-
ied pair production in lead-lead collisions and observed
a significant increase in acoplanarity with decreasing
centrality, consistent with an increase in pair pT [1]. The
STAR Collaboration studied pair production at low pT,
pT < 200 MeV/c in gold-gold and uranium-uranium col-
lisions [2], also found evidence for momentum broadening,
with pT spectra different from calculations without in-
medium effects [32–35]. This broadening could be attrib-
uted to in-medium scattering of the produced leptons,
but first, it is necessary to account for possible changes
to the pT spectrum due to changes in the impact-parameter
distribution, as induced by either additional photon
exchange or hadronic interactions.
To better understand these developments from STAR and

ATLAS, we study the acoplanarity of lepton pairs in heavy-
ion collisions. We extend our previous studies of dijet

azimuthal correlations in heavy-ion collisions to di-lepton
angular correlations. Because the experimentally measured
lepton pairs [1] have very small pair pT, the associated
physics is a bit different than for dijet correlation. We focus
on three important aspects here. The first one is the
transverse momentum distribution of the incoming photons
in the two-photon processes. In particular, these distribu-
tions should depend on the impact parameter of the
collisions. However, as far as we know, there is no first-
principle calculation on the joint transverse momentum and
impact parameter dependent photon distribution within the
original EPA framework. On one hand, we first make some
approximation and estimate the average transverse momen-
tum for the photons, which turns out a mild dependence
on the impact parameter. On the other hand, we try to
generalize the EPA framework by introducing the photon
Wigner distribution which contains both the transverse
momentum and impact parameter information of the
incoming photon, and find that this generalization indicates
the impact parameter dependence of the transverse momen-
tum broadening could be stronger in the central collisions.
We would like to emphasize that further theoretical devel-
opments are needed to address this issue.
The second one is the QED Sudakov effects in the lepton

pair production. Much of this study will be similar to the
previous studies for dijet azimuthal correlations. However,
even beyond the much smaller QED coupling constant, the
QED Sudakov has its own unique features. The formalism is
much simpler, and more importantly, the Sudakov contri-
bution has distinguishable behavior compared to the pri-
mordial kT distribution from the two incoming photon
fluxes. The theory predictions for the UPC events agree
very well with the recent measurement from ATLAS [31],
which, for the first time, clearly demonstrates the importance
of the Sudakov effects in the moderately larger acoplanarity
region. Third, we discuss the QED medium effects on the
pair pT-broadening due to the leptons. This part is similar to
the BDMPS formalism. With this physics included, we
compare our calculation to the experimental data and com-
ment on the implications of the ATLAS measurements.
It is quite interesting to compare the pT-broadening

effects in QED and in QCD, which helps to provide a
new perspective of studying the property of quark-gluon
plasma created in heavy-ion collisions. The medium
pT-broadening effect of lepton pairs is the probe to the
electromagnetic constituents of the quark-gluon plasma,
whereas the QCD jet pT-broadening effect measures the
strong interaction property. The experimental and theoreti-
cal investigations of both phenomena will deepen our
understanding of the hot medium created in these colli-
sions. More importantly, the lepton pT-broadening effects
can be clearly seen in the measurements of ATLAS and
STAR [1,2]. This is in contrast to the jet pT-broadening
effects in the measurement of dijet azimuthal angle corre-
lations, due to strong QCD parton showers [9–13].
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A brief summary of our results has been published
earlier in Ref. [36]. The rest of the paper is organized as
follows. In Sec. II, we discuss the γγ → lþl− process in
heavy-ion collisions. In Sec. III, we derive the Sudakov
resummation and also compare to recent ATLAS meas-
urement on the azimuthal correlation of the lepton pair in
the UPC events and demonstrate the importance of the
Sudakov contribution to the lepton pair production in these
QED processes. In Sec. IV, we derive the medium effects
on the pT-broadening of leptons. In particular, we compare
to the QCD processes in the BDMPS formalism, and
argue that the effects observed by the ATLAS collabora-
tion are consistent with the parametric estimate of the
pT-broadening effects for the QED and QCD processes.
Finally, after discussing possible magnetic effects in Sec. V,
we summarize our paper in Sec. VI.

II. LEADING ORDER PICTURE

As shown in Fig. 1(a), the leading order production of
lepton pairs comes from the photon-photon fusion scatter-
ing, which is the main ingredient in the STARLIGHT
simulation [32,33]. The total cross section for γ þ γ →
μþ þ μ− has a so-called t-channel singularity, and one has
to include the lepton mass to regulate the divergence.
However, we are interested in high mass di-muon produc-
tion with large transverse momentum for each lepton [31],
where the t-channel singularity is absent.
Let us specify the kinematics by setting the momenta

of outgoing leptons to be p1 and p2 with individual
transverse momenta p1T and p2T , and rapidities to y1
and y2, respectively. The leptons are produced dominantly
back-to-back in the transverse plane, with jp⃗T j ¼
jp⃗1T þ p⃗2T j ≪ jp1T j ∼ jp2T j. Then, neglecting the lepton
masses, we find the following longitudinal momenta for the
incoming photon

k1 ¼
PTffiffiffi
s

p ðey1 þ ey2ÞPA; ð1Þ

k2 ¼
PTffiffiffi
s

p ðe−y1 þ e−y2ÞPB; ð2Þ

where PT ¼ 1
2
jp⃗1T − p⃗2T j ∼ jp1T j ∼ jp2T j is much greater

than the total momentum pT , PA and PB are the incident

nucleus momenta (per nucleon), respectively. The leading
order differential cross section can be written as

dσðAB½γγ� → μþμ−Þ
dy1dy2d2p1Td2p2T

¼ σ0½xafγAðxaÞxbfγBðxbÞ�b⊥
× δð2Þðp⃗1T þ p⃗2TÞ; ð3Þ

where xa ¼ k1=PA, xb ¼ k2=PB,Q is the invariant mass for
the produced lepton pair, and Q2 ¼ M2

ll ¼ xaxbs. xa;b
represent the momentum fractions of incoming nucleon
carried by the two incoming photons, and s ¼ ðPA þ PBÞ2
is the total hadronic center of mass energy squared per
incoming nucleon pair. The leading order cross section σ0
is defined as

σ0 ¼
jM̄0j2
16π2Q4

; ð4Þ

with the leading order amplitude squared

jM̄0j2 ¼ ð4πÞ2α2e
2ðt2 þ u2Þ

tu
; ð5Þ

where t and u are usual Mandelstam variables for the
2 → 2 process. To simplify the above expression, we have
introduced an impact parameter b⊥ dependent photon flux,
which is also known as the joint photon distribution
function,

½fγAðxaÞfγBðxbÞ�b⊥ ¼
Z

d2b1⊥d2b2⊥δð2Þðb1⊥ − b2⊥ − b⊥Þ

× fγAðxa; b1⊥ÞfγBðxb; b2⊥Þ; ð6Þ

where fγA;Bðxi; bi⊥Þ are individual photon distributions also
referred as photon flux in the following discussion. These
distributions describe the photon distribution at the trans-
verse position bi⊥ with respect to the center of the colliding
nucleus. The above factorization can be regarded as a
semiclassic picture of heavy-ion collisions, where the
impact parameter b⊥ is related to the centrality of the
collisions. For UPC events, b⊥ is normally larger than 2RA
where RA is the nucleus radius.
Incoming photons also carry non-zero transverse

momenta, which has to be included because we are
interested in the region with a low transverse momentum
imbalance for the lepton pair in the final state. In the
leading order picture, the total transverse momentum
imbalance of the lepton pair equals the total transverse
momentum of two incoming photons. In order to under-
stand the final state interaction effects of the lepton pair
with the hot medium in heavy-ion collisions, such as the
medium pT-broadening, we need to have a precise descrip-
tion for the initial state (of the photons) contributions. In the
following, we will investigate these contributions.

(a) (b) (c)

FIG. 1. The leading order and next-to-leading order QED
Feynman graphs for the lepton pair production in two photon
fusion processes.
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A. Impact parameter dependent photon fluxes

We start with the analysis of the impact parameter
dependent photon flux. In the last few years, there have
been much interest in two-photon processes and photo-
production processes in peripheral (non-UPC) heavy-ion
collisions [1,2,33,34,37]. For these events, we need to
understand the photon flux beyond the simple all impact-
parameter picture. The impact parameter dependent photon
flux can be written as, see, for example Ref. [38]

xfγAðx; b⊥Þ ¼ 4Z2α

����
Z

d2kT
ð2πÞ2 e

ikT ·b⊥ k⃗T
k2

FAðk2Þ
����
2

; ð7Þ

where FAðk2Þ represents the normalized elastic charge form
factor for the nucleus. If both the incoming and outgoing
nucleus are required to be on-shell, the virtuality of the
radiated spacelike photon is then k2 ¼ ðk2T þ x2m2

pÞ=
ð1 − xÞ with mp the nucleon mass. It reduces to k2 ¼
k2T þ x2m2

p when x ≪ 1. For pointlike particles (FA ≡ 1),
the photon flux becomes

xfγðx; b⊥Þ ¼
Z2α

π2
x2m2

pK2
1ðxmpb⊥Þ; ð8Þ

which is the well-known result in classical electrodynam-
ics. The above formula has been applied to understand the
dilepton production in non-UPC events in heavy-ion
collisions [34], where the contributions from small impact
parameter (b⊥ < RA) played an important role.
There are two important features in this impact-parameter

dependent photon flux. First, at large b⊥ ≫ RA, it reduced to
the well-known Jackson result. This is because large b⊥
leads to k → 0 and thence to FA → 1. This can be seen from
Fig. 2, where we plot the photon flux as a function of b⊥ for
the typical kinematics at the LHC and RHIC. For the form
factor, we follow the STARLIGHT [32],

FAðk2Þ ¼
4πρ0

k3A
1

a2k2 þ 1
× ½sinðkRAÞ − kRA cosðkRAÞ�;

ð9Þ

where RA ¼ 7 fm for Pb, and a ¼ 0.7 fm.
Second, as shown in Fig. 2, at small-b⊥, it is proportional

to b3⊥. Here, the photon flux inside the nucleus is generated
by the effective total charge of the nucleons inside the area
denoted by b⊥.

B. Transverse momentum dependence
in the photon fluxes

Except for Ref. [29], most previous studies ignored the
inter-dependence between the impact parameter b⊥ and the
photon’s transverse momentum. A recent attempt to
address this issue was Ref. [30], which extended the
derivation of the total cross section for the two-photon

process in Ref. [38] to the differential cross section relevant
to the STAR and ATLAS dilepton measurements. In the
revised version of Ref. [30] and a recent paper by Li et al.
[39,40], the so-called QED approach [29] has been applied
to compute the dilepton production in two-photon proc-
esses with full dependence on the impact parameter and the
pair pT.
Here, we investigate this from a different point of view,

following the factorization argument and studying the
individual photon flux. This result may also be relevant
when considering the photon pT contribution to the final
state pT in photoproduction, especially imaging studies
[41]. When we integrate out the impact parameter, the
transverse momentum distribution can be evaluated as [42]

xfAγ ðx; kTÞ ¼
Z2α

π2
k2T

ðk2T þ x2m2
pÞ2

F2
Aðk2Þ; ð10Þ

where again k2 ¼ ðk2T þ x2m2
pÞ and FA is the nuclear charge

form factor. This has been widely employed to estimate the
transverse momentum dependence in two-photon processes
in UPCs, see, e.g., the STARLIGHT simulation [32].
It is non-trivial to derive the impact-parameter and

transverse momentum dependent photon flux. The main
difficulty is that the impact parameter b⊥ is a Fourier
conjugate variable associated with the photon’s transverse
momentum kT . There will be model dependence to com-
pute the combined distribution from the classic EM fields.
In the following, we will estimate the average transverse
momentum squared, and comment on the difficulty to
calculate the combined distribution directly.

FIG. 2. Impact parameter dependent photon flux as normalized
to the flux at b⊥ ¼ RA for a typical kinematics at the LHC with
x ¼ 10−3 and RA¼ 7 fm (upper plot) and at RHIC with x ¼ 10−2

(lower plot), respectively.
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Before we get to the details of the models, we would like
to emphasize some important features on the transverse
momentum distribution for the incoming photons in the
nucleus. First, for b⊥ ≪ RA, effective charge contribution is
limited to protons inside b⊥ region, and the average
transverse momentum squared is proportional to 1=b2⊥.
This is an important feature which should be satisfied by all
model calculations. Similarly, at large b⊥ ≫ RA, because of
the uncertainty principle, the average transverse momen-
tum squared is also of order 1=b2⊥. Around b⊥ ∼ RA, on the
other hand, the average transverse momentum may differ
from the above parametric estimates. However, with the
constraints from these generic features (b⊥ ≪ RA and
b⊥ ≫ RA), the model calculations of the average transverse
momentum squared are very much determined.
In Eq. (7) the integral variable kT is the photon’s

transverse momentum. We may compute the average
transverse momentum squared by multiplying the integrand
by the products of kT ,

hk2Ti ¼
4Z2α

xfγðx; b⊥Þ
Z

d2kT
ð2πÞ2

d2k0T
ð2πÞ2 e

iðkT−k0TÞ·b⊥

×
ðkT · k0TÞ2
k2k02

FAðk2ÞFAðk02Þ; ð11Þ

where we manipulate the square of the integral in Eq. (7)
with two separate integrals. The average transverse
momentum squared is computed by weighting the integrals
with the scalar product of kT and k0T . Certainly, there is
some model dependence on how we weigh the integrals.
The above formula reproduces the average transverse
momentum squared for the minimum bias case, which
provides a cross-check for the above estimate.
We can further simplify the above equation by integrat-

ing out the azimuthal angles. For example, Eq. (7) can be
written as,

xfγðx; b⊥Þ ¼ 4Z2α
jc1ðx; b⊥Þj2

b2⊥
; ð12Þ

where c1ðx; b⊥Þ is defined as

c1ðx;b⊥Þ ¼
Z

dk2T
b⊥kTJ1ðkTb⊥Þ

k2
FAðk2Þ; ð13Þ

with J1ðxÞ the J-type generalized Bessel function.
Similarly, we can work out the integrals over the

azimuthal angles in Eq. (11). With that, we arrive at a
very simple result for the average transverse momentum
squared,

hk2Tiðx; b⊥Þ ¼
1

b2⊥

�
1þ

�
1 −

c2ðx; b⊥Þ
c1ðx; b⊥Þ

�
2
�
; ð14Þ

where c2ðx; b⊥Þ is defined as

c2ðx; b⊥Þ ¼
Z

dk2T
b2⊥k2TJ2ðkTb⊥Þ

k2
FAðk2Þ: ð15Þ

The above results have a very nice feature: the explicit
dependence of average transverse momentum squared
hk2Ti on the impact parameter b2⊥. The overall behavior
hk2Ti ∝ 1=b2⊥ is consistent with the above generic discus-
sions. In addition, we also find that the additional factor
only has a mild dependence on b⊥. As an example, in
Fig. 3, we show the typical case for the LHC at x ¼ 10−3

and RHIC at x ¼ 10−2. For the latter case, because xmp is
comparable to 1=b⊥ at large b⊥, the above relation will be
modified accordingly.

C. Photon-photon interaction rate
in heavy ion collisions

With the photon flux for each of the incoming nucleus,
we can calculate the two-photon interaction rate following
Eq. (6),

xaxbfABðb⊥Þ ¼
Z

d2b1⊥d2b2⊥δð2Þðb⊥ − b1⊥ þ b2⊥Þ

× xafAðb1⊥ÞxbfBðb2⊥Þ; ð16Þ

where fA;Bðb⊥Þ represents the individual photon fluxes for
A and B nucleus, following the definition in Eq. (7) and xa;b
are the photon longitudinal momentum fractions. Figure 4
shows the relative interaction rate as a function of the
impact parameter for the typical kinematics at the LHC
and RHIC. The relative interaction rate increases with the
impact parameter and peaks around b⊥ ∼ ð2 − 3ÞRA region
before decreasing as the impact parameter increases further.
This is essentially consistent with the results shown in
Fig. 2, which indicates that the photon distribution is
peaked around the edge of each incoming nucleus.

FIG. 3. Average transverse momentum squared multiplied by
b2⊥ for the photon distributions as function of the impact
parameter b⊥ at x ¼ 10−3 and x ¼ 10−2. Clearly, both cases
predict a generic behavior of hk2Ti ∼ 1=b2⊥, in particular for small
b⊥. At large b⊥ for x ¼ 10−2, the above relation breaks down
because the average transverse momentum is now comparable to
xmp with x ¼ 10−2.
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In minimum bias samples, most of the dileptons are
produced in UPCs.
We can also estimate the average transverse momentum

squared for the collisions, by adding the contributions
from both incoming photons’ average transverse momen-
tum squared. Figure 5 shows the total transverse momen-
tum squared as function of b⊥ for xa ¼ xb ¼ 10−3 and
xa ¼ xb ¼ 10−2, respectively. We see that the average
transverse momentum does not change dramatically
depending on the impact parameter. In particular, from
peripheral to central collisions, it remains nearly constant.
It seems that the average transverse momentum squared
contribution from the incoming photons depends mildly
on the collision centrality. Comparing to the results from
Ref. [30], we find that our above results predict quite
different behavior for the average transverse momentum
squared in the two-photon processes in heavy-ion

collisions. This may be due to different treatments of
the impact parameter dependence. Therefore, in the
following, we try to generalize the EPA approach by
introducing the photon Wigner distribution, which con-
tains both the impact parameter and transverse momentum
information simultaneously.

D. Generalized equivalent photon approximation:
Photon Wigner distribution

In order to study the joint transverse momentum
and impact parameter dependence in the photon flux,
we follow the parton Wigner distribution functions intro-
duced in Ref. [43] to introduce the photon Wigner
distribution,

xfγðx; kT ; b⊥Þ ¼
Z

d2Δ⊥
ð2πÞ2 e

iΔ⊥·b⊥
Z

dξ−d2r⊥
ð2πÞ3 eixP

þξ−−ikT ·r⊥

×

�
A;−

Δ⊥
2

����Fþ⊥
�
0;
r⊥
2

�

× Fþ⊥
�
ξ−;−

r⊥
2

�����A;Δ⊥
2

	
; ð17Þ

where a momentum difference Δ⊥ has been introduced for
the nucleus states to obtain the impact parameter depend-
ence. For convenience and simplicity, we also introduce the
so-called generalized transverse momentum dependent
(GTMD) photon distributions in the momentum space,

Γijðx; kT ;Δ⊥Þ ¼
Z

dξ−d2r⊥
ð2πÞ3 eixP

þξ−−ikT ·r⊥

×

�
A;−

Δ⊥
2

����Fþi

�
0;
r⊥
2

�

× Fþj

�
ξ−;−

r⊥
2

�����A;Δ⊥
2

	
; ð18Þ

where we keep the transverse indices open to construct
various GTMDs. For our purpose, we deduce the following
parametrization,

Γijðx; kT ;Δ⊥Þ ¼
δij

2
xfγðx; kT ;Δ⊥Þ

þ
�

kiþkj−
k⃗þ · k⃗−

−
δij

2

�
xhγðx; kT ;Δ⊥Þ; ð19Þ

where k� ¼ kT � Δ⊥=2, fγ represents the usual photon
distribution, and hγ stands for the so-called linearly
polarized photon distribution. For the convenience of
the following derivations, we choose a particular decom-
position of the above linearly polarized GTMD hγ . We
emphasize that different parametrizations can be applied.
When we integrate the Wigner distribution over the
impact parameter b⊥, the above reproduces the transverse

FIG. 4. Relative collision rate in collisions between nuclei A
and B as function of the collision impact parameter b⊥ assuming
xa ¼ xb ¼ 10−3 for the typical kinematics at the LHC (upper
plot) and xa ¼ xb ¼ 10−2 for RHIC (lower plot). We have
normalized the distributions to that at b⊥ ¼ 2RA.

FIG. 5. Average transverse momentum squared for the two-
photon final state in ion-A on ion-B collisions as function of the
impact parameter b⊥ for heavy-ion collisions.
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momentum dependent (TMD) photon distributions intro-
duced in Refs. [39,40].
In the classical limit and analogous to the QCD case [44],

we can find that the above GTMD photon distribution for a
heavy nucleus with charge Ze can be written as

xfγðx; kT ;Δ⊥Þ ¼ xhγðx; kT ;Δ⊥Þ

¼ 4Z2α

ð2πÞ2
q⊥ · q0⊥
q2q02

FAðq2ÞFAðq02Þ; ð20Þ

where FA is nucleus form factor, q⊥ ¼ k− ¼ kT − Δ⊥=2,
q0⊥ ¼ kþ ¼ kT þ Δ⊥=2 and q2 ¼ q2⊥ þ x2m2

p.
As an example, we can obtain the Wigner distribution for

the usual photon flux as the Fourier transform of the above
GTMD,

xfγðx; kT ; b⊥Þ ¼
Z

d2Δ⊥
ð2πÞ2 e

iΔ⊥·b⊥xfγðx; kT ;Δ⊥Þ: ð21Þ

As expected from the property of the Wigner distribution, it
is straightforward to check that Eq. (21) reduces to the b⊥
distribution in Eq. (7) and the kT distribution in Eq. (10)
after integrating over kT and b⊥, respectively. However, the
above formulas do not have a clear probabilistic interpre-
tation as the impact parameter and transverse momentum
dependent photon distributions in the factorized cross
section calculations. For example, the above formula
predicts an oscillation function of kT depending on differ-
ent values of b⊥, shown in Fig. 6. That means the
distribution function calculated from the above equations
is not guaranteed to be positive definite. However, when
one applies the photon Wigner distribution or the photon
GTMD to the two-photon fusion processes, one can
demonstrate that the corresponding factorized cross section
is positive definite, which will be discussed in the following
subsection.

E. Generalized equivalent photon approximation

In order to take into account the transverse momentum
dependence for the incoming photon fluxes in heavy-ion
collisions, we need to generalize the equivalent photon

approximation (EPA). In previous EPAmodels, such as that
implemented in STARLIGHT, the transverse momentum
dependence was introduced as an average over all impact
parameter. In the following, we extend this approximation
by applying the photon Wigner distribution introduced
above, which we refer to as the generalized EPA (GEPA).
In our consideration, two nuclei collide at a particular

impact parameter b⊥, which represents the transverse
distance between the centers of the two nuclei. To produce
the lepton pair through a short distance process of
γ þ γ → lþl−, we assume the interaction point is at the
transverse place with b1⊥ and b2⊥ with respect to the
nuclei centers. In this configuration, the individual photon
flux will depend on b1⊥ and b2⊥, respectively. Clearly,
the collision impact parameter can be determined by
b⃗⊥ ¼ b⃗1⊥ − b⃗2⊥. Therefore, we can write down a generic
factorization formula for dilepton production in AA colli-
sions through γ þ γ → lþl− as,

dσðAB½γγ� → μþμ−Þ
dy1dy2d2p1Td2p2Td2b⊥

¼
Z

d2k1Td2k2T

Z
d2b1⊥d2b2⊥

× Γijðk1T; b1⊥ÞΓklðk2T; b2⊥Þδð2Þðb⊥ − b1⊥ þ b2⊥Þ
×HijklðPTÞδð2ÞðpT − k1T − k2TÞ; ð22Þ

where ik represent the polarization indices for incoming
two photons in the scattering amplitude and jl for the
complex conjugate of the amplitude, Γij and Γkl stand for
the two photon Wigner distributions. Again, we will focus
on the kinematic region with the correlation limit where the
total transverse momentum of the lepton pair p⃗T is much
smaller than the individual transverse momentum p1T
or p2T. Therefore, we can factorize the cross section into
the hard partHijkl and soft part Γij and Γkl. In particular, the
hard part Hijkl only depends on the hard momentum
scale PT . In this paper, we focus on the azimuthal angular
average cross sections for individual lepton, i.e., integrating
over the azimuthal angle of the lepton (p⃗1T or p⃗2T). In the
end, one can show that the hard part can be written as

Hijkl ¼ σ0½δijδkl − δikδjl þ δilδjk�; ð23Þ

where σ0 ¼ 1
π
dσ
dt ¼ 2α2

ŝ2 ðût̂ þ t̂
ûÞ. Substituting the Wigner dis-

tribution parametrizations in Sec. IIC, we will obtain the
following expression for the differential cross section,

dσ
dΩ

¼ σ0

Z
d2Δ⊥d2k1Td2k2T

eiΔ⊥·b⊥

ð2πÞ2 δð2ÞðpT − k1T − k2TÞ

× ½x1fγðx1; k1T ;Δ⊥Þx2fγðx2; k2T ;Δ⊥Þ
þ x1hγðx1; k1T ;Δ⊥Þx2hγðx2; k2T ;Δ⊥ÞHhh�; ð24ÞFIG. 6. kT distribution calculated from Eq. (21) for different

impact parameters with arbitrary unit.
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where dΩ ¼ dy1dy2d2p1Td2p2Td2b⊥ and Hhh stands for

Hhh ¼
k⃗1þ · k⃗2−k⃗1− · k⃗2þ − k⃗1þ · k⃗2þk⃗1− · k⃗2−

k⃗1þ · k⃗1−k⃗2þ · k⃗2−
; ð25Þ

where k⃗� are defined in the previous subsection.
With the results for fγ and hγ in the previous subsection,

the above reproduces the results in Ref. [40]. As also noted

in Ref. [40], the second term in the differential cross section
vanishes when we integrate over either b⊥ or p⊥.
Therefore, for a particular impact parameter b⊥, it leads
to an oscillation contribution as function of p⊥. In terms of
incoming photon momenta, after averaging over the azi-
muthal orientation of the lepton pair, the cross section for
the production of lepton pair in AA collisions at fixed
impact parameter b⊥ can be cast into

dσ
dy1dy2d2p1Td2p2Td2b⊥

¼
Z

d2k1Td2k01T
1

ð2πÞ2 e
iðk1T−k01TÞ·b⊥

�
Z2α

π

�
2 Fðk21Þ

k21

Fðk021 Þ
k021

Fðk22Þ
k22

Fðk022 Þ
k022

× σ0½ðk1T · k01TÞðk2T · k02TÞ − ðk1T × k01TÞ · ðk2T × k02TÞ�; ð26Þ

where k2i ¼x2i M
2þk2iT , k⃗2T ¼ p⃗T− k⃗1T and k⃗02T ¼ p⃗T− k⃗01T .

It is straightforward to check that the contribution from
the linearly polarized photons Hhh, i.e., the second term
inside the square brackets in Eq. (26) vanishes when one
integrates over the impact parameter b⊥. Similarly, after
integrating over pT with fixed b⊥ and transforming into the
impact parameter space, we find that the second term inside
the square brackets vanishes again, and Eq. (26) reduces to
the b⊥ dependent expression derived in the conventional
EPA. Thus, we can reproduce the previous known integrated
cross section for lepton pair productions. This implies that
the calculation for integrated physical quantities (e.g., the
survival factor [45,46]) will not be affected in GEPA.
Usually the GTMD or its corresponding Wigner distri-

bution is not positive definite. It is quite interesting to note
that the cross section is in fact positive definite, since it can
be written as

dσ
dy1dy2d2p1Td2p2Td2b⊥

¼ σ0GikGjl�½δijδkl − δikδjl þ δilδjk�
¼ σ0½ðG11 − G22ÞðG11� −G22�Þ
þ ðG12 þ G21ÞðG12� þG21�Þ� ð27Þ

where Gik ¼ R d2k1T
ð2πÞ e

ik1T ·b⊥ki1Tk
k
2T

Fðk2
1
Þ

k2
1

Fðk2
2
Þ

k2
2

. It is also worth

mentioning that the above cross section vanishes when
b⊥ ¼ 0 and pT ¼ 0. This can be shown by noting that G11

becomes the same as G22 and G12 ¼ −G21 when one sets
b⊥ ¼ 0 and pT ¼ 0. This essentially explains the existence
of the so-called displaced peaks in the measurement of the
momentum imbalance.

F. Numerical results in the GEPA framework

To perform the numerical evaluation, let us first average
over the azimuthal angle of the impact parameter b⊥, then
the corresponding formula reads

dσ
πdb2⊥dΔϕ

¼ ð2πÞ
Z

dy1dy2

Z
dp1Tp1T

Z
dp2Tp2T

× xWðx; pT; b⊥Þσ0 ð28Þ

where xWðx; pT; b⊥Þ, which encodes the initial momentum
imbalance, is defined as

xWðx; pT; b⊥Þ ¼
Z

d2k1Td2k01T
J0ðjk1T − k01T jb⊥Þ

ð2πÞ2
× x1fijðx1; k1T; k01TÞx2fklðx2; k2T; k02TÞ
× ½δijδkl − δikδjl þ δilδjk�; ð29Þ

where p⃗T ¼ p⃗1⊥ þ p⃗2⊥. Furthermore, for UPC, we can
integrate over b⊥ from 2RA to ∞, and find

dσUPC
dy1dy2d2p1Td2p2T

¼ ð4πR2
AÞxWUPCðx; pT; b⊥Þσ0; ð30Þ

where xWUPCðx; pT; RAÞ can be similarly written as

xWUPCðx; pT; RAÞ

¼ 1

4πR2
A

Z
d2k1Td2k01T

×

�
δð2Þðk1T − k01TÞ −

2RAJ1ð2RAjk1T − k01T jÞ
ð2πÞjk1T − k01T j

�
× x1fijðx1; k1T; k01TÞx2fklðx2; k2T; k02TÞ
× ½δijδkl − δikδjl þ δilδjk�: ð31Þ

Here we normalize xWUPCðx; pT; RAÞ by a factor of 1
4πR2

A
to

make it dimensionless.
The numerical evaluation of the above results are shown

in Figs. 7 and 8. As anticipated, there is a dip or a displaced
peak in the distribution of the momentum imbalance pT in
the low pT region for the central collisions, since the
xWðx; pT; b⊥Þ function vanishes at b⊥ ¼ 0 and pT ¼ 0.
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In terms of the normalized α distribution measured first by
the ATLAS experiment as shown in Fig. 8, the displaced
peak becomes less prominent due to the smearing effect after
averaging over the individual momenta of the produced
leptons. We have also checked that the GEPA calculation
also agrees with the ATLAS data measured in the peripheral
collisions. This indicates that the transverse momentum
broadening effect measured in the peripheral collisions
can be captured by the incoming coherent photon distribu-
tions. In contrast, the transverse momentum broadening
due to the coherent incoming photons is not sufficient to
accurately describe the data in the central collisions, where
additional broadening effects due to the incoherent multiple
scattering and other medium effects as well as Sudakov type
soft photon emissions may become important. We believe
that further theoretical developments as well as additional
measurements [47] and experimental efforts including the

possible unfolding and correction of the data due to detector
responses can help us reach more conclusive phenomeno-
logical findings.

III. SOFT PHOTON RADIATION
AND SUDAKOV RESUMMATION

Higher-order QED corrections as shown in Fig. 1(b,c)
can modify the leading order picture described in the
previous section. In the following, we focus on the soft
photon radiation, which has strong effects on the pT
distributions for the lepton pair, especially at moderately
large acoplanarity.
At one-loop order, soft photon radiations from the

final state leptons dominate the small transverse momen-
tum for the pair. The soft photon radiation from the
lepton propagator is power suppressed for large transverse
momentum lepton production by order of ks⊥=PT , where
ks⊥ is the radiated photon’s transverse momentum and
PT for the individual lepton’s transverse momentum.
Therefore, this type of diagram is discarded in the leading
power approximation.
We apply the Eikonal approximation to calculate the soft

photon radiation contribution, see, e.g., [48],

Mð1Þrjsoft ¼ e

�
pμ
1

p1 · ks
−

pμ
2

p2 · ks

�
Mð0Þ; ð32Þ

whereMð0Þ represents the leading order Born amplitude, μ
is the polarization index for the soft photon with momen-
tum ks, and the minus sign in the bracket comes from the
fact that the contributions from the lepton and anti-lepton
differ by a minus sign for the soft photon radiation.
Therefore, the contribution to the amplitude squared
reads as

jMð1Þrj2soft ¼ e2
2p1 · p2

p1 · ksp2 · ks
jMð0Þj2: ð33Þ

This additional soft photon radiation generates additional
nonzero transverse momentum for the lepton pair, and the
consequence is that the lepton pair will no longer be in the
back-to-back direction in the transverse momentum plane.
In ATLAS, the imbalance between the lepton and antilep-
ton was measured through the azimuthal angular correla-
tion between them. In order to study the azimuthal angular
distribution of the lepton pair, we calculate the total
transverse momentum generated by the radiated photon.
Together with the incoming photons’ contributions as
discussed in the previous section, this leads to the final
total transverse momentum distribution for the lepton pair.
Alternatively, we also find that we can carry out this
calculation by studying the radiated photon contribution to
the “transverse momentum” imbalance in the lepton frame,
which can be translated into azimuthal angular distribution
between the two leptons in the Lab frame. As shown in the

FIG. 7. Transverse momentum imbalance distribution
xWðx; pT; b⊥Þ with different values of impact parameters b⊥.
The Gaussian form factor Fðk2Þ ¼ exp½−k2=Q2

0� with Q0 ¼
80 MeV and the Wood-Saxon type of form factor yield almost
identical numerical results.

FIG. 8. The resulting normalized α≡ 1 − jϕ1−ϕ2j
π distribution.

LEPTON PAIR PRODUCTION THROUGH TWO PHOTON … PHYS. REV. D 102, 094013 (2020)

094013-9



Appendix, these two frames are consistent in generating the
azimuthal angular correlation between the two leptons in
the final state.
We will show the derivation in the lepton frame, and

comment on the lab frame calculations later. In the lepton
frame, the two leptons are moving back-to-back along
ẑ-direction. Soft photon radiation gives the lepton pair a
small additional transverse momentum l⊥. Now including
the lepton mass (assumed to be μ mass here, for conven-
ience), we have p2

1 ¼ p2
2 ¼ m2

μ and the real diagram
contribution to the soft photon radiation can be written as

SðrÞðl⊥Þ ¼
αe
π2

Z
dξ
ξ

l2⊥
ðl2⊥ þ ξ2m2

μÞðl2⊥ þ ξ̄2m2
μÞ
; ð34Þ

in the transverse momentum space, where ξ¼ks ·p2=p1 ·p2

and ξ̄ ¼ ks · p1=p2 · p1. It is clear that lepton mass plays
an important role here—the lighter the lepton, the more
Sudakov radiation. From the kinematics, we know that
ξξ̄ ¼ l2⊥=Q2. Furthermore, ξ integral is limited by l2⊥=Q2 <
ξ < 1. Carrying out ξ integration leads to the following
expression for the soft photon radiation at small transverse
momentum of l⊥,

SðrÞðl⊥Þ ¼
α

π2
1

l2⊥
ln

Q2

l2⊥ þm2
μ
: ð35Þ

When l⊥ ≫ mμ, the above result leads to a double loga-
rithmic behavior as 1=l2⊥ lnðQ2=l2⊥Þ, which is very much
similar to the behavior of the back-to-back hadron produc-
tion in eþe− annihilation, eþe− → h1h2 þ X, first studied in
Refs. [49–51]. This double logarithmic behavior can be
factorized into two fragmentation functions depending on
the transverse momentum l⊥, and the relevant resummation
can be carried out. However, in our current case, because
of the lepton mass mμ, the above distribution scales as
1=l2⊥ lnðQ2=m2

μÞ when l⊥ ≪ mμ. This leads to a totally
different infrared behavior as l⊥ → 0. In the sense, we only
have soft divergence at this limit, which, of course, will be
canceled out by the virtual diagrams. With that cancellation,
we will be able to derive the complete result at one-loop
order. In the following, we will focus on the large logarithms
at this order because they dominate the differential cross
section contributions. These large logarithms arise from the
soft photon radiation in both real and virtual diagrams.
The logarithms become more evident when we Fourier

transform the above real radiation contribution into r⊥
space conjugate to l⊥,

SðrÞu ðr⊥Þ ¼
α

π2

Z
d2l⊥
l2⊥

eil⊥·r⊥ ln
Q2

l2⊥ þm2
μ
: ð36Þ

Compared to the dihadron correlation in eþe− annihilation
studied in [51], in our case, there is additional complexity

because of the lepton mass. The muon mass mμ ≈ 0.1 GeV
is relevant because of the total transverse momentum for the
lepton pair is in the same range as the lepton mass.
Therefore, the large logarithms will depend on the relative
size between μr (μr ≈ 1=r⊥) and the lepton massmμ. When
μr > mμ, it corresponds to the transverse momentum l⊥
larger than the lepton mass, and we will have a similar
double logarithmic term as that in eþe− → h1h2 þ X
studied in Ref. [51]. This can be understood as the
following cancellation between the real and virtual con-
tributions,

SðrÞu ðr⊥Þ þ SðvÞu ðr⊥Þ
���
μr>mμ

¼ −
α

π

Z
Q2

m2
μ

dl2⊥
l2⊥

ln
Q2

l2⊥
þ α

π

Z
μ2r

m2
μ

dl2⊥
l2⊥

ln
Q2

l2⊥

¼ −
α

2π
ln2

Q2

μ2r
; ð37Þ

where μr ¼ c0=r⊥ with c0 ¼ 2e−γE and γE the Euler
constant. In the above calculation, we notice the fact that
the real and virtual contributions completely cancel in the
region l⊥ < mμ.
However, when μr < mμ, we find the virtual contribution

reads

SðvÞu jμr<mμ
¼ −

α

π

Z
Q2

m2
μ

dl2⊥
l2⊥

ln
Q2

l2⊥
−
α

π

Z
m2

μ

μ2
0

dl2⊥
l2⊥

ln
Q2

m2
μ
; ð38Þ

where a lower cutoff μ0 has been introduced to regulate
the infrared divergence. Similarly, for this case, the real
contribution also depends on μ0,

SðrÞu jμr<mμ
¼ α

π

Z
μ2r

μ2
0

dl2⊥
l2⊥

ln
Q2

m2
μ
: ð39Þ

Adding them together, we find that

SðrÞu þ SðvÞu

���
μr<mμ

¼ −
α

2π
ln
Q2

m2
μ

�
ln
Q2

μ2r
þ ln

m2
μ

μ2r

�
: ð40Þ

To summarize the above derivations, we can write the
complete one-loop results in the Fourier transform
r⊥-space,

SuðQ;mμ;r⊥Þ ¼

8>><
>>:

− α
2π ln

2 Q
2r2⊥
c2
0

; mμ < μr;

− α
2π ln

Q2

m2
μ

�
lnQ2r2⊥

c2
0

þ lnm2
μr2⊥
c2
0

�
; mμ > μr:

ð41Þ
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Since soft photon radiation factorizes, all order re-
summation can be written as a simple exponential
of SuðQ;mμ; r⊥Þ.
As discussed above, the derivations can be carried out

for the total transverse momentum distribution from soft
photon radiation in the Lab frame as well. We will obtain a
similar result as that in Eq. (35), where l⊥ is now replaced
by p⃗T ¼ p⃗1T þ p⃗2T in the Lab frame. Again, when Fourier
transformed into the r⊥-space, we will have the same result
as Eq. (41), as r⊥ can be regarded as the Fourier conjugate
variable for pT as well.
To compute the final result for the total transverse

momentum distribution of the lepton pair, we convolute
the above all order Sudakov contribution with the incoming
two photons contributions in the coordinate space to ensure
momentum conservation. The transverse momentum dis-
tribution for the latter can be formulated from the effective
photon approach discussed in the previous section. As an
example to illustrate the soft photon radiation effects, we
assume a simple Gaussian form for the initial two photon
contribution, and the total transverse momentum distribu-
tion can be written as

dN
d2pT

¼
Z

d2r⊥
ð2πÞ2 e

ipT ·r⊥e−
r2⊥Q2

0
4 e−SuðQ;mμ;r⊥Þ; ð42Þ

where the first term represents the initial two photon
contribution as a Gaussian distribution with width
Q0¼ 40 MeV. The last factor represents an all order
resummation of the soft photon radiation contribution.
Although there is no analytic expression for the Fourier
transform of the above result in the transverse momentum
space, we find the following solution is a very good
approximation,

Z
d2r⊥
ð2πÞ2 e

ipT ·r⊥e−SuðQ;mμ;r⊥Þe−
Q2
0
r2⊥
4

≈
Γð1 − βÞeγ0

πQ2
0

�
Q2

0

Q2
e−2γE

�
β

1F1

�
1 − β; 1;−

p2
T

Q2
0

�
; ð43Þ

where 1F1 is a hypergeometric function, γ0 ¼ α
2π ln

2 Q2

m2
μ
,

β ¼ αe
π ln

Q2

p2
Tþm2

μ
, and γE the Euler constant. Numerically, we

have checked that the above expression gives very close
result for the Fourier transform of Eq. (42).
In Fig. 9, we compare the contributions from the incoming

photon fluxes (“primordial”) and the perturbative photon
radiation with the total contribution with Sudakov resum-
mation. First, we notice that the primordial photon flux
contribution dies out rapidly around 70 MeV, where the
perturbative contribution takes over. Second, the Sudakov
resummation result is consistent with the one soft photon
contribution at relatively large transverse momentum. This is
understandable, because the electromagnetic coupling αe is

small, and the resummation result is dominated by the first
order corrections in this region. On the other hand, between
these two regions, the resummation result provides a smooth
match between the primordial distribution and one photon
radiation contribution.
It is interesting to compare the distributions of Fig. 9 to

the Drell-Yan type lepton pair production, where the lepton
pair are produced through quark-antiquark annihilation
process. In the Drell-Yan process, not only the incoming
quark distributions but also the QCD Sudakov effects
contribute to a significantly higher transverse momentum.
The latter can be seen from the invariant mass dependence
of the pT spectrum. In particular, for high mass final states,
like Z-boson production, the low pT spectrum is over-
whelmingly dominated by the Sudakov effects, see, e.g.,
the discussions in Ref. [52]. Numerically, for the same
invariant mass range of lepton pair, the pT distribution is
peaked around a few GeV for Drell-Yan process [52],
which is orders of magnitude higher than the spectrum of
the pure QED process shown in Fig. 9.
As shown in Eqs. (41) and (42), the Sudakov factor

also depends on the mass of the produced lepton (mμ).
Since the mass of the muon is roughly 200 times larger
than the electron mass, one can find that the Sudakov effect
is stronger in the eþe− production than in the μþμ−
production.

A. Comparison with the UPC data from ATLAS

Combining the Sudakov resummation of all order soft
photon radiation with the incoming photon fluxes contri-
bution, we have the following expression for the total
transverse momentum of the lepton pair in heavy-ion
collisions,

dσðAB½γγ� → μþμ−Þ
dy1dy2d2p1Td2p2Td2b⊥

¼ σ0

Z
d2r⊥
ð2πÞ2 e

ipT ·r⊥Wðb⊥; r⊥Þ;

ð44Þ

FIG. 9. Compare the pT distribution contributions for a typical
lepton pair production kinematics: incoming photon flux, per-
turbative [Eq. (35)], and total contribution with the Sudakov
resummation. Leptons are produced at midrapidity with invariant
mass 10 GeV.
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where σ0 is defined in Eq. (4). Wðb⊥; r⊥Þ contains the
incoming photon flux and all order Sudakov resummation,

Wðb⊥; r⊥Þ ¼ N γγðb⊥; r⊥Þe−SuðQ;mμ;r⊥Þ; ð45Þ

where Su is defined in Eq. (41). We have introduced a short
notation N for the incoming photon flux contribution.
As mentioned in the introduction, in the experiments, the

azimuthal angular correlation has been commonly applied
to study the low transverse momentum behavior of two
final state particles. When the total transverse momentum
is relatively small, the two leptons in the final state are
almost back-to-back in the transverse plane with a small
angle ϕ⊥ ¼ π − ϕ12. We are interested in the small ϕ⊥ ≪ π
region. For convenience, we take one of the leptons’
transverse momentum as reference for −x̂ direction, p1T ∼
ð−jPT j; 0Þ, and p2T is parameterized by p2T ¼ðjPT jcosϕ⊥;
jPT jsinϕ⊥Þ. The total transverse momentum is pT . In the
ATLAS experiment, the measurements are presented as
functions of the so-called acoplanarity α, which is defined
as α ¼ jϕ⊥j=π.
In order to compare to the UPC events from ATLAS

experiment [31], we apply the following assumptions to
simplify the numeric calculations. First, we apply the
average photon flux for each nucleus to represent the
relative photon flux as a function of xa and xb, respectively.
Much of the uncertainties introduced by this assumption
will be cancelled out in the normalized distributions when
we compare to the ATLAS data. In particular, we have
compared the invariant mass and rapidity distributions of
the lepton pair to the ATLAS measurements for the UPC
events, and found very good agreements. Second, we
assume a simple Gaussian distribution for the transverse
momentum dependence in the incoming photon flux. The
Gaussian width for each photon flux is computed from
Eq. (10) as function of xa;b. With the above approxima-
tions, we have the following expression for N ,

N γγðb⊥; r⊥Þ ≈ ½xafγAðxaÞxbfγBðxbÞ�b⊥ × e−
ðQ2

0
ðxaÞþQ2

0
ðxbÞÞr2⊥

4 ;

ð46Þ

where the impact parameter b⊥-dependent photon-photon
interaction rate can be derived from the GEPA of the
previous section. As mentioned above, this can be esti-
mated following Eqs. (6) and (16) for a typical value of b⊥
for the UPC events. This is a reasonable assumption when
we compare to the experimental data for the normalized
distributions as functions of the acoplanarity α. In the above
equation, Q0ðxaÞ and Q0ðxbÞ represent the average trans-
verse momentum for the photon fluxes of two incoming
nuclei, respectively. For the typical kinematics of ATLAS
measurements [31], we find that the average Q2

0ðxaÞ þ
Q2

0ðxbÞ ¼ ð40 MeVÞ2 for xa ¼ xb ¼ 10−3. This is consis-
tent with the results shown in Fig. 5 as well.

In Fig. 10, we show this comparison for the typical
kinematics of the ATLAS measurement of UPC
events: lepton transverse momentum PT > 4 GeV, rapidity
jYμμj < 0.8, and invariant mass 10GeV<Mμμ<100GeV.
This figure shows that the theoretical results agree with the
ATLAS measurements very well. This provides an impor-
tant baseline for the central collisions, for which we will
discuss the following section.
There have been suggestions that the so-called nucleus

dissociation contribution may be important at relatively
large transverse momentum, where the individual proton in
one of the nuclei contributes incoherently to the production
process. However, the incoherent photon flux is suppressed
by 1=Z as compared to the coherent one. Numerically, the
incoherent contribution is negligible in the low transverse
momentum region as compared to the coherent contribu-
tion. In the relatively large momentum region, the incoher-
ent photon contribution may become important. On the
other hand, its power behavior from the proton form factor
leads to a much steeper declining function (e.g., ∼1=q8T
considering a dipole form for the proton form factor) as
compared to that from the soft photon and resummation
(∼1=q2T). It will be interesting to investigate and compare
their contributions with more experimental data available
in the future.

IV. MEDIUM INTERACTIONS WITH LEPTONS

In previous sections, we focused on UPCs. In a recent
experiment measurement, the ATLAS collaboration has
extended this idea to central collisions. It was argued that
the two-photon scattering processes produce dilepton
with small total transverse momentum (which is similar
to UPC events), and these processes probe the electromag-
netic property of the quark-gluon plasma when they
traverse through the medium in the central collision events.
In particular, the lepton pair has very small transverse
momentum from two-photon scattering processes (see the

FIG. 10. Acoplanarity distribution for lepton pair production
in UPC events at the LHC [31] for invariant mass from 10 to
100 GeV and rapidity from −0.8 to 0.8. There is a 10%
normalization uncertainty in the comparison, and the unfolding
effects from the experiments are not taken into account either.
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discussions in the last section), the medium effects can be
evidently measured through the so-called acoplanarity.
Before we deal with medium effects in lepton pair

production in central AA collisions, we would like to
comment on the contribution from partonic photon-photon
scattering. This comes from the photon distribution func-
tions from the nucleons in both nuclei. The differential
cross section can be written as those in previous sections,
and the Sudakov resummation can be derived as well. The
only difference is that we have to involve the parton
distributions for the photons from the nucleons [53,54].
Essentially, the photon distribution function is calculated
from the quark distribution. Therefore, the photon PDF
contribution scales with A, whereas the photon flux
contribution scales with Z2. In addition, for the relevant
kinematics of our study, i.e., low transverse momentum
region, we have to apply the nucleon form factor for the
photon PDFs, which is of orderΛQCD. It is much larger than
the typical momentum region of this study, see plots in
Fig. 9. Therefore, we can safely ignore the photon PDF
contributions.

A. Inclusion of medium effects

The approach is very similar to that of the dijet azimuthal
angular correlation in heavy-ion collisions, where the PT
broadening of energetic jets in hot QCD medium can be
investigated. However, in the LHC energy range, the
dominant broadening effect actually comes from the
Sudakov effect [9] for the typical dijet kinematics
[15,16]. From the analysis in the previous section, we find
that this is completely opposite for the lepton pair pro-
duction through the two-photon scattering process. The
QED Sudakov effect is dominated by the incoming photon
transverse momentum in a wide range of kinematics. If the
medium effect is strong enough, we will be able to probe it
by measuring the azimuthal angular correlations between
the lepton pair.
It is important to note that each lepton should be treated

as an independent charged particle in this case, since the
typical distance between the leptons lþ and l− in the QGP
medium is much larger than the coherence length (or the
lifetime in the natural unit) of the lepton pair ∼1=PT.
Intuitively, let us suppose that in the lab frame, which is
also the center of mass (CM) frame for the AA collision, the
pair has a finite rapidity but is not either very far forward or
very far backward moving (the ATLAS collaboration
measures μþμ− pairs within the range jyj < 2.4). Since
the momentum imbalance pT of the lepton pair is small as
compared to PT , one can go to the CM of the μþμ− pair
simply by a boost along the ions’ beam direction. In this
CM frame of the μþμ− pair, the μþ and μ− are moving away
from each other at 180° (back-to-back). The medium
created in high energy AA collisions is approximately
boost invariant, and this is equivalent to say that those
parts of the plasma moving with a given (but not too large)

rapidity are identical (except for their overall motion) to the
part of the plasma at rest. If the boost to the CM frame of
the μþμ− is not too large, the approximate boost invariance
of the plasma means that the μþ and μ− can now be viewed
as separating in a plasma at rest, but of course with the
temperature decreasing with time. Clearly the μþ and μ−

interact with the plasma independently.1

Suppose we view the μþ and μ− in the CM of the ion
beams where the μþμ− pair has a finite, but not overly large
rapidity. In this frame the μþ and μ− very slowly separate
from each other. But in this frame the relevant part of the
plasma, the part which was at rest in the CM frame of
the μþμ−, is comoving with the μþμ−. The μþμ− pair and
the comoving part of the plasma are time dilated and the
plasma has a long lifetime during which the μþ and μ−

separate and become independent. The key here is to
recognize that the QGP produced in an AA collision is
approximately boost invariant (see e.g., [55]) and has a
much longer lifetime than that of the lepton pair dipole.
Therefore, to compute the additional transverse momen-

tum broadening due to the QGP medium effect, we can
now treat the leptons independently and go to a frame
where each lepton carries zero initial transverse momentum
following the BDMPS formalism. Due to the QEDmultiple
scattering, the typical transverse momentum broadening is
then given by the medium saturation momentum Q2

se. In
this picture, when we square amplitude, a dipole can be
formed between the lepton in the amplitude and itself in the
complex conjugate amplitude. In this case, the correspond-
ing dipole has the size r⊥ ∼ 1=q⊥ ∼ 1=Qse. Although the
QGP medium created in the middle rapidity region is
approximately charge neutral, the leptons can still interact
with the quark constituents of the medium and receive the
additional transverse momentum broadening.
Because the lepton only carries an electric charge (we

ignore the weak charge), it only interacts with the electri-
cally charged particles in the medium. As illustrated in
Fig. 11, the lepton suffers multiple interactions with the
medium during this process. We can resum the multiple
photon exchanges between the produced lepton and the
electrically charged particles in the medium, and find that
this results in a QED type time-ordered Wilson line as
follows

UQEDðx⊥Þ ¼ T exp

�
−ie

Z
dz−

Z
d2z⊥Gðx⊥ − z⊥Þ

× ρeðz−; z⊥Þ
�
; ð47Þ

1It is also useful to note that this argument does not apply to the
cold nuclear matter case, where the lepton pair should be
considered coherently. In this case, the time (RA=γ ¼ RA

mpffiffi
s

p ) of
the interaction in the pA collision is actually much shorter than
the lifetime of the lþl− dipole.
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where ρeðz−; z⊥Þ is the random electric charged density of
the target medium, and the photon propagator Gðx⊥Þ is
defined as

Gðx⊥Þ ¼
Z

d2q⊥
ð2πÞ2

1

q2⊥ þ λ2
eiq⊥·x⊥ ¼ 1

2π
K0ðλx⊥Þ; ð48Þ

with λ acting as an infrared (IR) regulator such as the Debye
mass in QED medium. The value of λ can be estimated
according to the range of the electromagnetic interaction in
the medium, which depends on the QED Debye screening
mass mD ∼ eTffiffi

3
p , where T is the temperature. In our case,

simple estimates show that λ ∼mD ∼ 80 MeV which cor-
responds to a Debye length a few times less than the typical
size of the medium created in central heavy-ion collisions.
Similar to the QCD qq̄ dipole calculation, the QED

incoherent multiple scattering amplitude between the
lþl−ðqq̄Þ dipole with size r⊥ and the target medium
can be cast into

�
UQED

�
b⊥ þ 1

2
r⊥

�
U†
QED

�
b⊥ −

1

2
r⊥

�	

¼ exp
�
−
Q2

ser2⊥
4

�
; ð49Þ

where the analog of saturation momentum in QED
Q2

se ≡ e4
4π ln

1
λ2r2⊥

R
dz−μ2eðz−Þ. Here, μ2e is related to the

expectation of the local charge density fluctuations. As
we can see, only a logarithmic dependence on λ is left in the
above dipole amplitude due to cancellation. Normally one
does not have to take into account the multiple scattering
for the QED calculation. On the other hand, the dipole size
r⊥ ∼ 1=q⊥ is sufficiently large in the soft momentum
transfer region where q⊥ is of the order 10 to 100 MeV,
and this gives Q2

ser2⊥ ∼ 1.
Similar to the QCD case, the correlation of two charge

density follows

hρeðz−; z⊥Þρeðz0−; z0⊥Þi ¼ δðz− − z0−Þδð2Þðz⊥ − z0⊥Þμ2eðz−Þ:
ð50Þ

In comparison, we often define the QCD saturation
momentum as follows

Q2
sg ¼

Nc

CF
Q2

sq ≡ Ncg4

4π
ln

1

Λ2r2⊥

Z
dz−μ2cðz−Þ; ð51Þ

where
R
dz−μ2cðz−Þ ¼ A

2πR2 is related to the color charge
density with R being the size of the target medium [56], and
Λ is the QCD Debye mass. The above expression is
equivalent to the saturation momentum expression for cold

nuclear matter Q2
s ¼ 8π2αsNc

N2
c−1

ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − b2

p
xGðx; 1=r2⊥Þ [57],

where xGðx; 1=r2⊥Þ ¼ Nc
αsCF
π ln 1

Λ2r2⊥
.

B. Implication from the ATLAS measurements

If we assume the multiple scattering between the
produced dilepton and the medium similar to the QCD
case, we can modify the above Wðr⊥Þ of Eq. (45) as,

Wðb⊥; r⊥Þ ¼ N γγðb⊥; r⊥Þe−SuðQ;mμ;r⊥Þe−
hq̂QEDLir2⊥

4 ; ð52Þ

where the last factor comes from the medium contribution
to the dilepton pT-broadening effects and q̂QED represents
the electromagnetic transport coefficient of the quark-
gluon plasma. hq̂QEDLi can be identified as the saturation
momentum Q2

se discussed above.
With this additional pT-broadening effects, we can

calculate the azimuthal angular correlation in heavy-ion
collisions. We assume that the initial distributions remain
the same as the UPC case and take into account the
additional broadening effects by parametrizing the q̂L
for the leptons.
In Fig. 12, using the UPC as the baseline and assuming

the mild bperp dependence due to the initial transverse
momentum broadening, we show this effect by imposing
several different values of the q̂L. Comparing these curves
to the ATLAS measurements, we find that the effective
hq̂QEDLi range from ð100 MeVÞ2 in most central collisions
to ð50 MeVÞ2 in noncentral collisions. In the above-
mentioned GEPA model, we expect that the effective
value of hq̂QEDLi becomes smaller. The determination of
hq̂QEDLi requires a more sophisticated and detailed com-
parison with the accurate unfolded data.

FIG. 11. Multiple interactions of the energetic lepton with the
medium, where the symbol ⊗ represents the scattering center
from the charged medium.

FIG. 12. Medium modifications to the acoplanarity distribu-
tion, with different values of the effective q̂L.
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In order to extract the pT-broadening parameter for the
leptons, we need to implement the realistic geometry of the
collisions and the photon sources. From that, we shall
estimate the average length of the leptons traversing through
the medium. Compared to the dijet correlation in heavy-ion
collisions, this is even more important because the photon
source profile is different from the medium profile created in
heavy-ion collisions. In particular, in order to receive the
additional QGP medium pT broadening, the lepton pair
should propagate through the medium. This indicates that
either the pair is produced inside the medium, or one of the
leptons traverses the medium if the pair is produced outside.
This requirement may effectively reduce the overall strength
of the medium broadening effect. We leave the detailed
studies in a future publication.

C. Comparison with the QCD pT-broadening of jets:
Parametric estimate

Assuming that the multiple interactions with the medium
can be applied to describe both QED for the leptons and the
QCD for the quarks and gluons, we can compare the sizes
of the pT-broadening effects from the same formalism, i.e.,
the BDMPS formalism [7,58,59].
Because the leptons have large transverse momenta, their

multiple interactions with the medium can be formulated
following the BDMPS [7,58] formalism. In particular, the
pT-broadening can arise from the multiple interaction with
the charged particles in the medium. This is quite the same
as that for the quark and gluon jets traversing the quark-
gluon plasma medium. The quark and gluon also suffer
pT-broadening because of multiple QCD interactions with
the medium. Of course, the major difference is that the
lepton interacts with the electric charges while the quark/
gluon jets interact with the color charges. Here, we make
some parametric estimates based on this idea.
First, the coupling constant plays an important role. By

definition, the pT-broadening depends on two orders of
coupling constants. Since the couplings in QED and QCD
are dramatically different, thus there is a major difference
for the pT-broadening effects.
Second, the broadening depends on the charge density of

the medium. Therefore, we need to estimate the density
difference for the electromagnetic QED and strong inter-
action QCD densities in the quark-gluon plasma. Since
only quarks carry electric charges, we can determine the
electric charge density from the quark density. For the
strong interaction case, both quarks and gluons contribute.
The parton density is proportional to the degree of freedom
if we assume the thermal distributions of the quarks and
gluons. Therefore, the ratio of quark density vs the gluon
density goes as, see, for example, Ref. [60]: 21

2
Nf∶16,

where Nf is the number of active flavors. There are two
additional differences: one is the color factor in QCD case,
and the other is the charge average between the quarks and
gluons. For electric charge average, we have

X
u;d;s

e2q ¼
2

9
Nf; ð53Þ

where we takeNf ¼ 3with active u, d and s quarks. For the
color factor associated with the quark density, it can be
evaluated as

1

N2
c
Tr½TaTb�Tr½TaTb� ¼ 2

9
; ð54Þ

which is an effective color factor by considering the quark-
quark scattering amplitude, where Nc ¼ 3. For gluon
density case, it is

1

NcðN2
c − 1Þ fabcfabdTr½T

cTd� ¼ 1

2
ð55Þ

from the quark-gluon scattering amplitude. These are for
the quark jet pT-broadening. Therefore, we can estimate the
ratio between the QED and QCD saturation scales as

hq̂QEDLi
hq̂QCDLi

¼ α2e
α2s

21
2
Nf

2
9

21
2
Nf

2
9
þ 16 1

2

¼ α2e
α2s

×
7

15
: ð56Þ

where again Nf ¼ 3. Here hq̂Li represents the amount of
medium broadening, which is known as the saturation scale
in the so-called dipole formalism. The above estimate of
QCD hq̂Li is for QCD quark jets. For gluon jets, a factor of
CA=CF should be multiplied to the denominator.
We would like to add a few comments about these

observations. One is about the thermal density ratio we
applied above. We assume that quark and gluons are
thermalized at the same time, which may not be true.
There has been concern that the quarks may be thermalized
at a later time, see, for example, the discussions in
Ref. [60]. Second, we did not take into account the details
of the medium property, for example, the associated Debye
masses for QED and QCD. This could introduce additional
complexity in the calculations. In addition, for the QCD
case, there are length dependent double logarithms [61].
Last but not least, the medium path length L can differ
for the QED and QCD cases, since the electron pair can
be created outside the medium. If all these effects are
taken into account, Eq. (56) may not apply. Nevertheless,
the above equation can serve as a simple formula for a
rough estimate.

D. Comments on the QED energy loss

In QED medium, the radiative energy loss can be
estimated as [58],

ΔEQED ¼
ffiffiffiffiffiffiffiffiffiffi
hq̂Li

p α

π

2

3

ffiffiffiffiffiffiffiffiffi
L2E
λm

s
ð57Þ

LEPTON PAIR PRODUCTION THROUGH TWO PHOTON … PHYS. REV. D 102, 094013 (2020)

094013-15



in a certain kinematic limit of the induced radiated photon
spectrum, where L represents the average path of the lepton
in the medium, λm stands for the mean free path of the
medium. For the kinematics of our interest, we find that the
total energy loss is a few percent of the pT-broadening size
(100 MeV). It is so small that we will not be able to observe
such effects.
The QED case is totally different from QCD jet

quenching in heavy-ion collisions. First, the energy loss
of the leptons is much smaller than the QCD jet energy loss.
For the leptons going through the medium, there are no
surface bias effects, because the energy loss is completely
negligible. However, we know that the QCD jet energy loss
is important, and surface bias effects are significant in the
realistic simulation of jet physics in heavy-ion collisions.

V. MAGNETIC FIELD EFFECTS

One measurement might indicate that the pT-broadening
effects of the dilepton could come from the magnetic effects
created at the very early time of heavy-ion collisions [2].
The major phenomenological difference between this
mechanism and the multiple scattering mechanism dis-
cussed in this paper is that the magnetic effects are strongly
correlated with the event plane. Therefore, if we can
measure this correlation, we could distinguish these two
mechanisms.
In addition, the contribution from the magnetic effects is

a cross product: B⃗ × V⃗, where B⃗ is the magnetic field
generated in heavy-ion collisions and V⃗ is the lepton
velocity. This introduces two important observational
consequences: (1) impact parameter dependence of the
effects is different from the multiple interactions with the
medium discussed in this paper, which will increase with
decreasing impact parameters. For the magnetic effects, it
increases from UPC to peripheral collisions but will
decrease for more central collisions with decreasing impact
parameter. (2) The magnetic effects for the additional
pT-broadening happens in the direction perpendicular to
both the magnetic field B⃗ and the lepton moving direction.
Therefore, if both the lepton and antilepton have the same
rapidity and they have the almost same size of transverse
momentum as in our case, the magnetic effects will cancel
out between them. That is, the lepton and antilepton will
gain the same amount of additional transverse momentum
kick from the magnetic effects but with opposite signs. On
the other hand, if the lepton and antilepton are back-to-back
in the ẑ-direction, i.e., their rapidities are opposite to each
other, the magnetic fields will have net effects on the
transverse momentum kick and lead to the observed
transverse momentum broadening in the lepton pair.
Therefore, we should be able to distinguish these two

mechanisms by studying the centrality dependence and
rapidity dependence of the pT-broadening effects. In the
following, we will discuss the details of the magnetic

effects. First, we show that the contributions from initial
electromagnetic fields generated by the colliding nuclei
cancel out completely in the leading power of the lepton
pair production through the two-photon process. Then, we
will discuss how to measure the residual magnetic field
(due to the created quark-gluon plasma) effects.

A. Initial electromagnetic fields contributions:
The classical electrodynamics perspective

To estimate the electromagnetic fields of a fast-moving
nucleus, let us first follow the approach in classical
electrodynamics [62]. Then we provide some discussion
and interpretation in terms of quantum field theory calcu-
lations. We can write the electromagnetic fields of a moving
charge propagating along the z direction in the lab frame as

Ex ¼
γqb

ðb2 þ γ2v2t2Þ3=2 ; By ¼ βEx; ð58Þ

where γ ¼ 1ffiffiffiffiffiffiffiffi
1−β2

p , β ¼ v=c and we put the impact param-

eter b in the x direction. Let us compute the electromagnetic
field effect for one particular nucleus and choose such a
frame that the velocities of the back-to-back μþ and μ− can
be written as vþ ¼ ðvx; vy; vzÞ and v− ¼ ð−vx;−vy;−vzÞ,
respectively. In the eikonal approximation, we can find the
force in the y-direction is zero, and the Lorentz forces in the
x-direction for μþ and μ− can be written as

dpþx

dt
¼ eExð1 − βzβÞ; ð59Þ

dp−x

dt
¼ −eExð1þ βzβÞ; ð60Þ

respectively. Also, we need to include the effect of time
dilation since μþ and μ− are moving along the z direction
with finite velocities. The relative velocities are

βþ ¼ βz − β

1 − βzβ
; β− ¼ −

βz þ β

1þ βzβ
: ð61Þ

Therefore, we find the times that μþ and μ− experience the
electromagnetic shockwave are different and their ratio is

Δtþ
Δt−

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2þ
1 − β2−

s
: ð62Þ

It is then straightforward to check that

Δpþx ¼ eExΔtð1 − βzβÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2þ

q
¼ eExΔt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2β2z − β2 − β2z

q
¼ −Δp−x: ð63Þ
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This demonstrates that the momentum broadening exactly
cancel for exact back-to-back lepton pairs due to charge
neutrality. To get a nonzero transverse momentum broad-
ening, we need to take the charge dipole moment into
account. In coordinate space, the separation of the lepton
pair is proportional to 1=Q, where Q is the invariant mass
of the produced lepton pair. Therefore, the total transverse
momentum broadening square must be proportional to
hP2

mi 1
Q2R2

A
, where hP2

mi∼e2E2
xR2

A∼Z2e4

R2
A
∼ð30MeVÞ2, where

RA ≈ 7 fm is the radius of the nucleus.
Here we have used a quantum-classical mixed picture to

illustrate the broadening of the produced lepton pair due to
the coherent electromagnetic fields of fast-moving nuclei
by assuming that the lepton pair is created before the pair
passes over the high energy nuclei. This intuitive picture
helps to estimate and understand the final state broadening
of the lepton pair, while a fully quantum treatment of this
process is presented in the next subsection.

B. Initial electromagnetic fields contributions:
The quantum field theory perspective

Quantitatively, we can also study the pT-broadening
effect in terms of Wilson lines from the quantum field
theory perspective. Let us derive the QEDWilson by using
the so-called Lienard-Wiechert potential for a moving point
charge particle with charge q ¼ Ze. Again, we can first
follow the discussion and the convention in Ref. [62],
which gives the following four-vector potential

AαðxÞ ¼ qVαðτÞ
V · ½x − rðτÞ�

����
τ¼τ0

: ð64Þ

Here Vα ¼ ðγc; γcβÞ is the four vector velocity of the
moving charge. Putting in the light-cone constraint τ ¼ τ0,
and using Eq. (14.16) together with the fact dxα ¼ Vαdτ ¼
Vαγdt, we can writeZ

AαðxÞdxα ¼ q
Z

∞

−∞

γdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2⊥ þ γ2v2t2

p : ð65Þ

The above integration is divergent, but it becomes finite if
we consider the difference of two opposite charges which
are separated by a distance r⊥. Therefore, the result for a
lepton pair lepton is

e
Z

AαðxÞdxα − e
Z

Aαðxþ r⊥Þdxα

¼ eq
Z

∞

−∞
γdt ×

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2⊥ þ γ2v2t2
p

−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðb⊥ þ r⊥Þ2 þ γ2v2t2
p �

: ð66Þ

Eventually, if we set v ¼ c ¼ 1, we can obtain

e
Z

AαðxÞdxα − e
Z

Aαðxþ r⊥Þdxα ¼ eq ln
ðb⊥ þ r⊥Þ2

b2⊥
:

ð67Þ

By taking into account the fact that q ¼ Ze for a relativistic
heavy-ion, and the 1

4π difference due to different conven-
tions, we can see that the above result agrees with the
Wilson line formalism used below.
Next, in terms of the final state QED type scattering and

Wilson lines approaches [63–65], we can compute the cross
section σγA→μþμ−A as follows. It is straightforward to resum
the multiple photon exchanges between a muon line and
target nuclei, and find that this results in a QED type
Wilson line

UQEDðx⊥Þ ¼ exp ½iZe2Gðx⊥Þ�; ð68Þ

with the photon propagator Gðx⊥Þ defined as

Gðx⊥Þ ¼
1

2π
K0ðλx⊥Þ: ð69Þ

Here we use λ as the IR cut off for the moment. When we
study the muon pair production, the λ dependence will
cancel. In this simple model, we assume that the nuclei is a
point particle with charge Ze in order to study the coherent
final state effect. The QED multiple scatterings contribute a
phase to the QED type μþμ− dipole with size r⊥ as follows

UQED

�
b⊥ þ 1

2
r⊥

�
U†
QED

�
b⊥ −

1

2
r⊥

�

¼ exp

�
2iZα ln

jb⊥ þ 1
2
r⊥j

jb⊥ − 1
2
r⊥j

�
: ð70Þ

Furthermore, let us use σγA→μþμ−A as an example to estimate
the order of magnitude of the electromagnetic corrections
in the final state between the produced muon pair and the
target nucleus with charge number Z. The cross section can
be written as

dσγA→μþμ−A

d2pTd2PT
¼ N

Z
d2b⊥
ð2πÞ2

d2b0⊥
ð2πÞ2

d2r⊥
ð2πÞ2

d2r0⊥
ð2πÞ2

× ψðr⊥Þψ�ðr0⊥Þe−ipT ·ðb⊥−b0⊥Þ−iPT ·ðr⊥−r0⊥Þ

×

�
1 − exp

�
2iZα ln

jb⊥ þ 1
2
r⊥j

jb⊥ − 1
2
r⊥j

��

×

�
1 − exp

�
−2iZα ln

jb0⊥ þ 1
2
r0⊥j

jb0⊥ − 1
2
r0⊥j

��
; ð71Þ

where the splitting function ψðr⊥Þ ∼ ϵ·r⊥
r2⊥

represents the

contribution from the γ → μþμ− splitting. Also if we

expand the expression ½1 − exp ð2iZα ln jb⊥þ1
2
r⊥j

jb⊥−1
2
r⊥jÞ� to the
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lowest order, we should be able to recover the lowest order
γγ → μþμ− cross section together with the proper normali-
zation N. In the back-to-back limit, it follows that
P2
T ≫ p2

T . In the case of interest, PT is around several
GeV while pT is of the order of Λm ¼ 1

RA
∼ 30 MeV.

Let us comment on the above result. First of all, we can
compute the Born contribution by expanding the above
Wilson line contribution to the lowest order. In the back-to-
back limit, we can approximately write

1 − exp

�
2iZα ln

jb⊥ þ 1
2
r⊥j

jb⊥ − 1
2
r⊥j

�
≃ −i2Zα

b⊥ · r⊥
b2⊥

: ð72Þ

It is then straightforward to estimate that the Born con-
tribution is of the order of N Z2α2

p2
TP

4
T
.

Second, we can estimate the contribution with one more
photon exchange in the amplitude level, which means the
expansion of the Wilson line to the second order. Using the
fact that the lower bound of the b⊥ integral is roughly RA,
we can find that the first final state interaction correction is
of the order

N
Z2α2

p2
TP

4
T

Z2α2

P2
TR

2
A
∼ N

Z2α2

p2
TP

4
T

Z2α2Λ2
m

P2
T

: ð73Þ

Therefore, the final state interaction is power suppressed by

the factor of Z
2α2Λ2

m
P2
T

∼ 10−4 for PT ¼ 1 GeV. Also, since the

transverse momentum square average hp2
Ti ∼ Λ2

m ∼ 1
R2
A
at

lowest order, we can see that the change due to final state

interaction is roughly Δhp2
Ti ∼ Λ2

m
Z2α2Λ2

m
P2
T

, which is in

agreement with our estimate in previous subsection from
the perspective of classical electrodynamics.
In summary, the contributions from the initial electro-

magnetic fields generated by the colliding nuclei cancel out
completely in the leading power of pT=PT , while the finite
contribution to the transverse momentum broadening is
power suppressed. This cancellation is also consistent with
a factorization argument that the final state interaction
effect vanishes in this process due to the opposite charges
of the lepton pair. In the case of collisions between two
overlapping nuclei, QGP can be formed in the overlapping
region due to hadronic collisions. Since QGP is mostly
created by gluons and sea quarks, while the high energy
valance quarks remain largely unaffected and move along
the beam pipe as remnants. Therefore, the electric charge
of the nuclear remnants after hadronic collisions roughly
remains unchanged. In addition, the incoming photons are
almost real, and they are typically emitted long before
the production of the lepton pair and the hadronic collision
take place. Assuming that the incoherent broadening effect
due to the presence of the QGP can be taken into account
separately, we believe that our above discussion about the

cancellation of the coherent final state effect is still valid
even with the formation of QGP.

C. Residual magnetic field effects
in the quark-gluon plasma

In the meantime, as argued in some recent papers
[66–68], there could be a residual and strong magnetic field
in the quark-gluon plasma after the heavy-ion collisions. Due
to the collision symmetry, the magnetic field only contains
the perpendicular component B⃗⊥. As mentioned at the
beginning of this section, since the Lorentz force vanishes
along the direction of the magnetic field, the amount of the
pT-broadening from the magnetic effects will have a non-
trivial correlation with the event plane, which is correlated
with the direction of the magnetic field [66–68].
A number of further observations regarding the effects

of the residual magnetic fields are as follows. First, the
transverse momentum kick comes from the longitudinal
motion vz of the leptons. Therefore, the magnetic effects
crucially depend on the rapidity of the leptons. In particular,
if the lepton and the antilepton move in the same direction,
the magnetic effects will cancel out in the total transverse
momentum for the pair. Only if they are moving in opposite
ẑ direction, there will be net effects. In more detail, the net
transverse momentum kick for the pair is proportional to

jΔpm
y jμþμ− ¼ Pm½tanhðyþÞ − tanhðy−Þ�; ð74Þ

where Pm represents the average transverse momentum
kick depending on the geometry of the collisions, yþ and
y− are rapidities for the lepton and the antilepton, respec-
tively. Therefore, the total pT-broadening effects for the
pair can be formulated as

hΔp2
TiBμþμ− ¼ hP2

mðb⊥Þi½tanhðyþÞ − tanhðy−Þ�2; ð75Þ

where hP2
mðb⊥Þi stands for the average pT-broadening with

a centrality dependence. Assuming that a flat distribution
for the rapidity dependence for the two leptons in the range
of jyμj < 2, and the net magnetic effects can be calculated
as function of rapidity difference between the lepton pair
ΔY ¼ jyμþ − yμ− j,

hΔp2
TiBμþμ−ðΔYÞ

¼ hP2
mðb⊥Þi

R
ΔY dy1dy2½tanhðy1Þ − tanhðy2Þ�2dσðy1; y2ÞR

ΔY dy1dy2dσðy1; y2Þ
;

ð76Þ

where the rapidity integrals are constrained with
ΔY ¼ jy1 − y2j. In Fig. 13, we plot the normalized dis-
tribution as functionΔY for a typical transverse momentum
for the lepton PT ¼ 6 GeV. From this plot, we can clearly
see that the magnetic effects on the pT-broadening
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increases with rapidity difference, and approach to the
maximum values around ΔY ¼ 3. On the other hand, the
multiple interaction effects with the medium remain a
relative constant because the medium density does not
change in this rapidity range. Therefore, the difference
between the amount of the pT-broadening effects at differ-
ent ΔY can serve as an effective measure for the magnetic
effects:

½hΔp2
TiΔY¼3 − hΔp2

TiΔY¼0�b⊥ ∝ hB⃗2⊥ib⊥ ; ð77Þ

which depend on the centrality of heavy-ion collisions.
This rapidity dependence can also help to study other
magnetic effects in heavy-ion collisions, such as the chiral
magnetic effects [66,68].
Second, the effects, of course, depend on the magnitude

of the magnetic field. More detailed calculations need to
formulate the impact dependence of the magnetic fields.
In general, as mentioned above, the magnetic field
increases from ultra-peripheral to peripheral collisions,
but starts to decrease toward more central collisions.
Third, the direction of the transverse momentum kick

is correlated to the direction of the magnetic field.
Therefore, if this correlation can be measured, we can
further distinguish its contribution from other sources for
the pT-broadening effects.
It is interesting to note that a recent measurement by

the ATLAS collaboration [4] shows that there is no strong
rapidity dependence on the medium modification of the
dilepton transverse momentum distribution, which will
impose a strong constraint on the strength of the magnetic
effects discussed above.

VI. SUMMARY AND DISCUSSIONS

In this paper, we have investigated the electromagnetic
productions of dileptons with very small total transverse
momentum in heavy-ion collisions, which can provide us a
new channel to probe the electromagnetic property of the
quark-gluon plasma created in these collisions. In the
above theoretical calculations, besides the initial contribu-
tions due to the incoming photons, three other important

pT-broadening contributions to the acoplanarity of dilep-
tons measured in the final state are discussed. First, soft
photon radiations are taken into account through the
Sudakov resummation; Second, the electromagnetic
multiple interactions between the lepton pairs and the
electric charges inside the quark-gluon plasma medium
are resummed incoherently, since these multiple inter-
actions are in general random; Lastly, possible external
magnetic fields can be created in heavy-ion collisions and
these fields may also bring additional transverse momen-
tum broadening.
As an important baseline, we compare the Sudakov

effect to the azimuthal angular correlation of the lepton pair
in ultra-peripheral collisions measured by the ATLAS
collaboration at the LHC. The comparison indicates that
this effect is crucial to explain the experimental data in the
region with moderately larger acoplanarity.
It appears to us that the pT-broadening effects observed

by the ATLAS collaboration in the central PbPb collisions
may suggest the need for additional medium induced
transverse momentum broadening coming from the multi-
ple scattering of the leptons in the medium or other sources.
The acoplanarity of dilepton pairs can provide us another
interesting window to study the properties of quark-gluon
plasma.
The pT-broadening effects due to the possible magnetic

fields are considered as well. Through the study on the
centrality and rapidity dependence, as well as the correla-
tion with the orientation of the magnetic field, it is possible
to distinguish the transverse momentum broadening effects
due to the magnetic fields from the multiple scattering
effect. We stressed that the broadening coming from the
magnetic fields depends on the rapidity difference between
the lepton and the antilepton. This rapidity dependence can
be used to determine the strength of the magnetic field.
Last but not least, to interpret the pT-broadening

phenomena of dilepton productions observed by STAR
and ATLAS collaborations as a result of QED interaction
of the lepton pair with the medium crucially depend on
how precisely we know that the initial state contributions
from the incoming photon fluxes of the colliding nuclei.
We emphasize that more theoretical developments and
experimental measurements are needed to understand this
physics. Only with this being resolved, can we reliably
apply this process to study the electromagnetic property of
the quark-gluon plasma created in heavy-ion collisions.
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FIG. 13. Normalized magnetic effects on the pT-broadening
for the lepton pair as function of their rapidity difference
ΔY ¼ jyμþ − yμ− j with jyμj < 2.4.
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APPENDIX: AZIMUTHAL ANGULAR
DECORRELATION FROM IN THE LAB

AND LEPTON FRAMES

In experiments, the azimuthal angular correlation
between the final state particles has been applied to study
the low total transverse momentum behavior. The two
leptons in the final state will be back-to-back in the
transverse plane with a small angle ϕ⊥ ¼ π − ϕ12. We
are working at the small angle of ϕ⊥ ≪ π region. For
convenience, we take one of the leptons’ transverse
momentum as reference for −x̂ direction, p1T ∼
ð−jPT j;0Þ, and p2T is parametrized by p2T ¼ ðjPT j cosϕ⊥;
jPT j sinϕ⊥Þ. In the following, we will show that we can
compute the azimuthal angular distribution by taking into
account additional transverse momentum contributions in
the Lab frame or the lepton frame.

1. Lab frame calculations

In the lab frame, we calculate the azimuthal angular
distribution from the total transverse momentum pT for
the lepton pair. This total transverse momentum can come
from initial photons’ contributions or from the final state
medium interaction (pT-broadening).
We can write down the differential cross section depend-

ing on pT ,

dN
d2pT

¼ 1

σ

dσ
d2pT

¼ fðpTÞ; ðA1Þ

where fðpTÞ represents a general form of transverse
momentum dependence coming from both incoming
photon contribution, soft photon radiation, and the
pT-broadening effects in the medium. Working out the
kinematics, we have

sinðϕ⊥Þ ¼
pT sinðϕ0Þ

PT
; ðA2Þ

where ϕ0 is the relative azimuthal angle of p⃗T respect to x̂
direction. The differential cross section can be rewritten as

dN
dϕ⊥

¼
Z

pTdpT

����PT cosðϕ⊥Þ
pT cosðϕ0Þ

����fðpTÞ

¼
Z
vq>sinϕ⊥

vqdvq
cosϕ⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2q − sin2ϕ⊥
q P2

TfðpTÞ; ðA3Þ

where vq ¼ pT=PT . We can further simplify the above
expression by making approximations in the correlation
limit, i.e., vq ≪ 1 and ϕ⊥ ≪ 1,

dN
dϕ⊥

¼ 1

2

Z
dv2qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2q − ϕ2⊥

q P2
TfðpTÞ: ðA4Þ

In the ATLAS experiment, the measurements are presented
as functions of the so-called acoplanarity α, which is
defined as α ¼ jϕ⊥j=π. For the α distribution, we have

dN
dα

����
α>0

¼ 2π

Z
dv2qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2q − ϕ2⊥

q P2
TfðpTÞ: ðA5Þ

Let us first assume a simple Gaussian distribution for fðpTÞ
to check the intuitive α distribution: fðpTÞ ¼ e−p

2
T=Q

2
0=Q2

0π.
With that, we find that

dN
dα

����
α>0

¼ 2π

Z
dv2qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2q − ϕ2⊥

q P2
T

πQ2
0

e
−
P2
T

Q2
0

v2q

¼ 2bαffiffiffi
π

p e−b
2
αα

2

; ðA6Þ

where bα ¼ PTπ
Q0

. We can also calculate the average of α2 as

hα2i ¼ 1

2

Q2
0

P2
Tπ

2
; ðA7Þ

and in terms of ϕ⊥, we have

hϕ2⊥i ¼
1

2

Q2
0

P2
T
: ðA8Þ

We have a number of observations. First, it shows that the
average angular broadening is, actually, half of naively
expected as the average pT-broadening divided by the
lepton’s transverse momentum. This will have a significant
impact on the interpretation of the experimental measure-
ments on the jet pT-broadening effects from the azimuthal
angular correlations in heavy-ion collisions. Physically,
the jet pT-broadening spreads toward the perpendicular
direction with respect to the jet direction. However, half of
that spreading happens in beam direction in the lab frame
and will not have observable effects on the azimuthal
angular correlations. Second, the average of hα2i involves
an average of 1=P2

T , not the average of PT .
In addition, the broadening in azimuthal angular dis-

tribution can be model independently related to the addi-
tional pT-broadening in the transverse momentum
distribution,

Δhϕ2⊥i ¼
1

2

Δhl2⊥i
P2
T

¼ 1

2

Δhp2
Ti

P2
T

: ðA9Þ

The pT-broadening can be either formulated in the lab
frame as pT or in the lepton frame as l⊥, see, the
discussions below.
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2. Lepton frame formulation

It is more convenient to formulate the above results in the
lepton frame. It is straightforward to include the medium
effects (next section) in this frame, where the leptons are
moving along the ẑ-direction and additional transverse
momentum broadening can be directly formulated.
If the two leptons are moving in the ẑ direction, we

can parametrize the leading lepton (or reference lepton)
as p1 ¼ ðE; 0; 0; EÞ and the away-side lepton as p2 ¼
ðE;l⊥ cosϕT;l⊥ sinϕT; E cos θTÞ in the limit of l⊥ ≪ E,
where l⊥ ¼ E sin θT represents the imbalance between the
two leptons in the final state. Here, we neglect the masses
for the leptons since they do not affect the following
discussions. The differential cross section can be written as

dN
d2l⊥

¼ dN
E2 sin θTd sin θTdϕT

¼ fðl⊥Þ; ðA10Þ

where ϕT runs from 0 to 2π. However, θT is not directly
related to the azimuthal angle between the leptons in the lab
frame. To link to the experimental observables in the lab
frame, we need to work out the details. In the lab frame, the
leptons have non-zero transverse momentum PT which is
same order of E, we will parametrize their momenta as
p1 ¼ ðE; p1T; 0; E cos θ0Þ and p2¼ðE;p2T cosðπ−ϕ⊥Þ;
p2T sinðπ−ϕ⊥Þ;p2zÞ, where p1T ¼Esinθ0∼p2T and
ϕ⊥ ∼ 0. In the correlation limit, p⃗1T and p⃗2T are

back-to-back with small angular difference ϕ⊥ ≪ 1.
From the above kinematics, we will find that

sinðϕ⊥Þ ¼
l⊥ sinðϕTÞ

PT

¼ E sinðθTÞ sinðϕTÞ
E sin θ0

¼ sinðθTÞ sinðϕTÞ
sin θ0

: ðA11Þ

The differential cross section can be rewritten as

dN
dϕ⊥

¼
Z

l⊥dl⊥
���� sinðθ0Þ cosðϕ⊥Þ
sinðθTÞ cosðϕTÞ

����fðl⊥Þ: ðA12Þ

In the following, we take the approximations in the
correlation limit, i.e., θT ≪ 1 and ϕ⊥ ≪ 1, and find that
the α distribution can be written as

dN
dα

����
α>0

¼ 4π

Z
θTdθT

sinðθ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ2T − sin2ðθ0Þϕ2⊥

p E2fðl⊥Þ;

ðA13Þ

where l⊥ ¼ E � θT and α is define above as α ¼ jϕ⊥j=π.
With a simple variable change θT → θT= sinðθ0Þ → vq, we
can find out that the above equation is identical to that of
Eq. (A5). All discussions above shall also follow.
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