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The physical masses of the lowest scalar mesons strongly disagree with the calculated qq̄ pole values.
It is the purpose of this paper to explain theoretically the unusual spectrum of scalar mesons for both the
ground and excited states, using the known spectra of the corresponding qq̄ states and their connection to
the meson resonances. The well-known Cornell coupled-channel mechanism is exploited for this
connection together with the quark-chiral Lagrangian without fitting parameters. In addition to the scalars
previously obtained using this method, f0ð500Þ, f0ð980Þ, a0ð980Þ, we predict all ground and first excited
scalar states, f0ð500Þ, f0ð980Þ, a0ð980Þ, a0ð1450Þ, K�

0ð700Þ, K�
0ð1430Þ, f0ð1370Þ, f0ð1710Þ, which are in

reasonably good agreement with experimental data.

DOI: 10.1103/PhysRevD.102.094012

I. INTRODUCTION

The QCD theory of hadrons has been a highly developed
resource for treating hadron properties and has explained
a majority of observed hadrons thus far [1]. Nevertheless,
there exist hadronic objects, considered nonstandard or
extra states, with the properties (e.g., the masses and
widths) strongly differing from theoretical predictions
(see [2] for exotic XYZ states in cc̄ systems), and similar
questions [1] occur in the realm of light scalar mesons, such
as f0ð500Þ, f0ð980Þ, a0ð980Þ,K�

0ð700Þ. They can hardly be
associated with the lowest conventional qq̄ scalars, for
several reasons: (a) their masses are strongly displaced
relative to expected qq̄ masses, and (b) in some cases two
observed scalar resonances can be identified with a single
qq̄ state with the same quantum numbers.
This situation (unusual compared to thevectormeson case)

waswell described in 1995 [3]. Now, 25 years later, we have a
much better understanding of this topic. Indeed, continuous
efforts of the physical community have resulted in a large
amount of information about the properties of the scalars and
their decays and production (see [4–10] for reviews and
analysis, and [11–13] for the most recent reviews).
Theoretical approaches to the scalar spectrum include the
tetraquark model [14], the chiral model [15], the molecular
model [16], the QCD sum rules [17], and lattice calculations
[18]. Our approach is based on several premises:

(1) The primary poles are due to qq̄ bound states,
which are subject to interaction with meson-meson
(m −m systems).

(2) This interaction can be deduced from the quark-
chiral Lagrangian without free parameters.

(3) The coupled-channel interaction inside the m −m
systems can connect more than one resonance to one
original qq̄ pole.

Similar ideas are not new and have been investigated
largely since 1995 in [19–25] with the proper formalism
created in this field. As an example, in [19] Beveren et al.
used the coupled-channel model for the meson-meson
and quark-antiquark channels, interacting via a suggested
potential form with oscillator-type confinement for qq̄, and
obtained a good agreement with experimental data for the
scalar mesons, including f0ð500Þ. It required, however, the
introduction of fitting parameters, defined by comparison
with the data. A similar idea was used in [21], where the
channel coupling was fitted separately for each scalar
meson to obtain agreement with experimental data. As
will be seen below, we construct the formalism for the
qq̄-meson-meson interaction, which allows us to calculate
all parameters without a fitting procedure.
The additional poles due to m −m interaction have been

also introduced in the unitarized chiral perturbation theory
(CPTh) [26–32], see also [11]. In principle these results
can be obtained without using CPTh, while, exploiting
dispersive methods and data, one obtains a reasonable
picture of f0ð500Þ and other scalar resonances [33–35].
From these studies it has become evident that the

phenomenon of low-lying scalar mesons like f0ð500Þ is
not a casual accident but rather a systematic result of
the unitarized CPTh (see, e.g., [27] and the informative
review [11]). However, one of the main problems was
not fully resolved. Indeed, quark-antiquark theory with
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confinement, gluon exchange, and spin-dependent forces
included [36–41] has given reasonable values for many
mesons, e.g., for vector mesons, and the question arises as
to why in the lowest scalar states the discrepancies amount
to around 500–600 MeV. Moreover, if we believe that
chiral theory alone can produce lowest scalars, then the
following question arises: what can be done with the qq̄
poles in the amplitude? Are they extra states or are they
strongly displaced by some mechanism?
As one can see the main point is the relation between the

accurate quark-gluon predictions for ideal scalar objects
and realistic chiral-induced resonances observed in nature.
One way is to start with scalar states in standard chiral
theory and to connect it to the qq̄ states in the large Nc limit
and beyond. A reasonable assumption was realized in the
framework of the unitarized chiral model [11] and analyzed
with the help of the 1

Nc
expansion methods, where the

intrinsic qq̄ and chiral expanded meson-meson states
display different behaviors. We shall discuss this topic
below with an example of the present formalism and shall
draw our conclusions in Sec. V.
Despite all of the effort and a large amount of informa-

tion, the main problems underlined above have not yet
been fully resolved, and in Table II of [1] the lowest scalar
resonances are identified with f0ð1370Þ for I ¼ 0 and
a0ð1450Þ for I ¼ 1, implying that the lowest 3P0qq̄ pole is
around (1.4–1.5) GeV, which contradicts numerous calcu-
lations in relativistic models [36–39].
We should stress that the relativistic Feynman-

Schwinger formalism, taking into account both perturbative
and nonperturbative qq̄ interactions [37,39–41], as well as
the methods of [36,38], treating the full Regge trajectories,
provide accurate predictions within 50–80 MeV of the
resonance masses in most nonchiral I, JP states and around
20–30 MeV for the ρmeson [39] and heavy quarkonia [40]
without open channels. At the same time, for the scalars
these methods [36–39] provide discrepancies with data up
to 500 MeV and one may have two scalar resonances
f0ð500Þ and f0ð980Þ for one qq̄ pole at around 1 GeV.
In this paper our main purpose is to formulate an explicit

formalism for theoretical calculations of the scalar ground
and excited states, taking into account accurate values
of the qq̄ poles and explicit (without free parameters)
qq̄-meson-meson connection.
This paper is the development of a formalism con-

structed in [42] aimed at the treatment of all lowest scalar
states, including all first excited scalars.
In [42] the basic formalism was combined to explain the

possible connection of the basic qq̄ poles to the scalar
resonances f0ð500Þ, f0ð980Þ, a0ð980Þ via the quark-chiral
coefficients and the qq̄-meson-meson channel-coupling
interaction. In these calculations [42] one fitting parameter
in all cases was used—the channel radius λ in the
qq̄-meson-meson transition. In this paper we formulate
the approach in more detail, finding the stationary point

value for λ (see Table IV). In this way we are calculating all
masses and coefficients without fitting parameters, using
for that purpose the explicit form of the qq̄ wave functions
to calculate all coefficients. As a result, as will be shown
below, we succeed in calculating both the ground and first
excited states of all scalar mesons, made of u, d, s quarks.
In this paper, as well as in [42], for theoretical formu-

lation of the scalar meson problem use is made of the
relativistic method, which is similar to the nonrelativistic
Cornell coupled-channel mechanism [43], developed for
heavy quarkonia, where the charmonium states cc̄ trans-
form into the DD̄ states and back many times, leading to a
displacement of the resulting combined resonances. This
displacement occurs via creation of a pair of light quarks
and numerically is of the order or less than 50 MeV. Later
Eichten et al. studied quantitatively displaced resonances in
charmonium [44], and Simonov and colleagues used the
Cornell formalism to study both charmonium and botto-
monium systems [45].
The general theory of channel-coupled (CC) resonances

was developed in [46] in a general form, not assuming pole
structures in any channel, while the CC resonance can
occur, as in the case of the ϒðnSÞπ system coupled to BB�
or B�B� (see the final reference in [45]). Below we shall
be specifically interested in the qq̄ poles found in the
relativistic path-integral formalism coupled to a pair of
chiral mesons.
One of the basic points of this method is derivation of the

transition elements between the qq̄ and the meson-meson
systems, and below we use, as in [42], the chiral confining
Lagrangian (CCL) [47–51]. In this Lagrangian both qq̄ and
the chiral degrees of freedom (d.o.f.) are connected with
known coefficients and one can immediately find the
coupling coefficient, which defines the decay or trans-
formation probability of several mesons ð1; 2; 3;…Þ into
qq̄ or vice versa. This is the fact which we shall use below
and which shall enable us to find strong displacements of
ππ and πη resonances and much smaller values for KK̄.
The formalism of CCL allows one to obtain standard

relations like Gell-Mann–Oakes–Renner (GMOR) [52]
and also to extend the possibilities of the standard chiral
formalism; e.g., it allows one to calculate all coupling
constants between qq̄ and two or more chiral mesons and,
in particular, to numerically calculate the decay constants
fπ , fK, etc. [53].
In this paper our purpose is to exploit the exact positions

of the qq̄ poles, defined in relativistic theory (see [37,39]
and the references therein), and establish explicit relations
between the known 3P0 qq̄ state characteristics and result-
ing new resonance pole parameters, which we shall call the
pole projection mechanism (PPM).
In the framework of PPM, as shown in [42], a single

qq̄ pole can create one projected resonance, one for a
given ϕϕ (meson-meson) channel, coupled to the
qq̄ channel. Including the ϕϕ channel coupling (e.g.,
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in ππ − KK̄ channels), one obtains two resonances con-
nected with one qq̄ pole. This mechanism was applied in
the case of the f0ð500Þ and f0ð980Þ resonances [42],
when from the original qq̄ pole with the mass M1 ¼
1.05 GeV two resonances, f0ð500Þ and f0ð980Þ, are
created. In this way both properties mentioned above
were demonstrated, since f0ð500Þ occurs due to the ππ
channel coupling to the qq̄ initial state with the mass M1,
while f0ð980Þ appears due to the KK̄ − qq̄ channel
coupling. Simultaneously, in the case with isospin
I ¼ 1 and the initial mass M1, the qq̄ pole is coupled
to both channels, πη and KK̄, and produces two reso-
nances near 1 GeV, which can be associated with a0ð980Þ.
As shown in [42], in the PPM exists the only variable

parameter—the spatial radius λ of the quark-meson tran-
sition amplitude, denoted as kðIÞðqq̄;φφÞ, which varies in
the range (0.2–0.3) fm. In this paper the parameter is fixed
in the following way. The spatial radius λ enters the quark-
chiral Lagrangian [47–50] in the mass parameter
MðλÞ ¼ σλ, and in the case of π, K mesons it is fixed
by the calculation of the decay constants fπ , fK [53], which
yields λ ¼ 0.83 GeV−1. In the qq̄ − φφ transition case we
calculate for the first time dependence of the coefficient
kðIÞðqq̄;φφÞ on λ and find a stable maximum at λ ¼ λ0 in
the region ð1 ≤ λ0 ≤ 1.5Þ GeV−1 (see Table IV). This is
taken as a basic point of our method, yielding the fixed
value of kðIÞðλ0Þ and the fixed λ ¼ λ0. Since the string
tension σ is known to be equal to 0.18 GeV2, the meson
and quark masses are fixed, λ at the stationary point is equal
1.5 GeV−1 ¼ 0.30 fm, and in this way all parameters of
our formalism are fixed and known.
In this paper we further extend PPM theory to include the

radial excitations of the qq̄ states and find the resulting
scalar resonances. To this end we consider the nn̄, ns̄, ss̄
states with nr ¼ 0, 1 and I ¼ 0; 1=2; 1 and show that the
inclusion of the radial excited qq̄ pole makes the PPM even
more pronounced, when the lower pole, coupled with the
meson-meson channels, has large shift down, while the
second highest pole has a much smaller shift. In this way
we demonstrate the important visible feature of the scalar
resonances: the lowest nr ¼ 0 poles are much more
strongly shifted than the nr ¼ 1 poles.
To calculate the resulting shifted poles we need (1) the

transition coefficients kðIÞðλ0Þ, discussed above; (2) the qq̄
pole masses M1, M2, computed in the framework of
relativistic path-integral Green’s functions [54]; and (3) the
free φφ Green’s functions GφφðE; λ0Þ, defined as the spatial
distance λ0 between the in and out φφ states. As a result, we
find the complex energy poles, corresponding to observed
resonances f0ð500Þ, f0ð980Þ, f0ð1370Þ, f0ð1500Þ, a0ð980Þ,
a0ð1450Þ, K�

0ð700Þ, K�
0ð1430Þ, f0ð1710Þ.

The plan of the paper is as follows. In Sec. II we present
the details of the PPM formalism of [42] in the case of the
I ¼ 0; 1=2; 1; JP ¼ 0þ channels, and in Sec. III we analyze

the dynamics of our theory and calculate the resulting
positions of the resonances. The inclusion of radial excited
qq̄ states and calculation of the resulting scalar resonances
are done in Sec. IV. Section V is devoted to a discussion
of the results and possible future developments of our
approach.

II. THE QUARK-CHIRAL DYNAMICS IN
THE ðqq̄Þ-(MESON-MESON) CHANNEL

The main element of the Cornell formalism [43] is the
expression for the total quark-meson Green’s function
(resolvent) GðEÞ via the qq̄ resolvent Gqq̄ and the
meson-meson resolvent Gφφ,

GðEÞ ¼ A
1 − VqφGφφðEÞVφqGqq̄ðEÞ

; ð1Þ

so the resonance energies are to be found by using the
equation

VGφφðEÞVGqq̄ðEÞ ¼ 1; ð2Þ

where the main point is the transition element Vqφ ¼ Vþ
φq.

In [43,44] it was shown how the channel coupling affects
the charmonium poles. Later on this formalism has
acquired the specific features necessary for explaining
the poles in the heavy-quark systems, e.g., in Xð3872Þ
[45], where the original 23P1 pole of the cc̄ system is
strongly shifted due to transitions of cc̄ð23P1Þ into theDD̄�
meson-meson state and back, which finally provides a pole
at theDD̄� threshold. Actually the equation for the position
of the new quark-meson pole has similar forms: non-
relativistic [43–45] and relativistic in the new formulations
for the scalars [42].
GφφðEÞΓGqq̄ðEÞΓ ¼ 1, where Γ is the qq̄ − φφ transi-

tion vertex, and in [42] it was found that for the chiral φφ
mesons the value Γ is large in the case of ππ and πη
systems.
Note that one could call Xð3872Þ as the DD̄� resonance,

but at the same time it can be considered as the shifted cc̄
resonance, implying that it is the combined cc̄ −DD̄�

phenomenon, or the cc̄ pole projected on theDD̄� channel.
At this point one realizes that a single cc̄ pole can

interact with one of the ðDD̄;DD̄�; D�D̄�Þ states and can be
strongly connected with one resonance. In the heavy-
quarkonia case the resulting pole shifts are of the order
of ∼50 MeV if the meson-meson thresholds are near the
originalQQ̄ poles, whereas in the general case the situation
they can be different and, as shown in [42], in light mesons
the pole shifts can reach 500 MeV. At this point it is
important to stress the general features of the PPM method
when the original ðqq̄Þ pole is projected onto the meson-
meson pole due to the interaction between the qq̄ and
chiral meson-meson channels, implying a strong but
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meson-dependent coupling. As a result, one qq̄ pole can be
projected originally into one meson-meson resonance,
associated with the corresponding meson-meson threshold,
and later, taking into account the meson-meson channel
coupling, can be connected with two or more resonances.
As shown in [42], this happens in the case of the f0ð500Þ
(the ππ channel) and the f0ð980Þ (the KK̄ plus coupled
ππÞ, which are both connected to the nn̄ð13P0Þ pole at
around 1.1 GeV.
These features create a completely new picture of

possible “extra poles,” generated by the regular qq̄ poles
in QCD, not connected to any molecular or tetraquark
mechanisms. Note that the PPM can easily be extended to
the three-meson decays ðm1; m2; m3Þ, coupled to the
qq̄ pole, as it occurs in the cases with the isospin I ¼ 1,
J ¼ 1, 2, namely, the a1ð1PÞ; a2ð1PÞ cases, which will be
discussed elsewhere.
Below we shall present the PPM, which can explain the

appearance of a new pole for each new meson-meson
combination, starting with one original qq̄ pole, as was
done in the f0ð500Þ, f0ð980Þ case. We start with the
basic element of the PPM formalism in the case of chiral
mesons—the CCL, introduced in [47–49] and extended
recently in [50]. This Lagrangian is a generalization of the
standard chiral theory, which takes into account not only
chiral meson but also the quark-antiquark d.o.f. The latter
are necessary to calculate the meson coupling constants
ðfπ; fK;…Þ [53], to write the correct Green’s functions for
chiral mesons, and also to calculate the higher Oðp4; p6Þ
terms of CPTh (see [50]).
The CCL has the form

LCCL ¼ −Nctr logð∂̂ þ m̂þ s0 þ ŝþMÛÞ; ð3Þ

where Û is the standard chiral operator,

Û ¼ expðiγ5φ̂Þ; φ̂ ¼ φaλa
fa

; ð4Þ

φ̂ ¼
ffiffiffi
2

p
0
BBB@

1
fπ

�
ηffiffi
6

p þ π0ffiffi
2

p
�
; πþ

fπ
; Kþ

fK

π−

fπ

�
ηffiffi
6

p − π0ffiffi
2

p
�

1
fπ
; K0

fK0

K−

fK
; K̄0

fK0
; − 2ηffiffi

6
p

fπ

1
CCCA: ð5Þ

Note that the CCL plays the role of the generating
functional, which can produce several interesting expan-
sions. Indeed, exploiting the trace logarithmic structure of
it, which allows one to separate a common factor, the CCL
can be transformed into the following expression [50],

LCCL ¼ −Nctr logð1 − ηÞ; ð6Þ

where

η ¼ ÛþS−1ð∂̂ þ m̂ÞðÛ − 1Þ; ð7Þ

and form ¼ 0 it gives an expansion in quark loops with the
quark propagators S, which yields OðpnÞ terms, while the
expansion in m̂ to the second order yields the GMOR
relations. In what follows we shall not use this type of
expansion but instead exploit Eq. (5) as it is, expanding Û
in powers of φ, keeping the second order for the meson-
meson amplitude.
In Eq. (5) M is the qq̄ interaction term, M ¼ σr, which

gives confinement interaction between q and q̄ everywhere
in the qq̄ loop; however, in the vertex, where chiral mesons
of Û are emitted, M is multiplied by the operators φ. In this
case, i.e., in the one-π, or the one-K, emission vertex, the
value ofM, as shown in [53], is equal toMðλÞ ¼ 0.15 GeV,
which corresponds to λ ≅ 0.166 fm ¼ 0.83 GeV−1. In our
case, when two mesons are emitted, below we shall find λ as
the stationary point of the transition coefficient, which is
equal 0.2 fm ¼ 1 GeV−1. It is interesting that this value
coincides with the fundamental length of the QCD vacuum,
known from using the field correlator method [55].
In the case of the one-meson emission vertex the value of

M ¼ 0.15 GeV is exactly that, which correctly gives the
pion and kaon decay constants, calculated in the framework
of the CCL. From [53] one has

ffiffiffi
2

p
fπ ¼ 138 MeV;

ffiffiffi
2

p
fK ¼ 165 MeV;

which are in good agreement with experimental values [1],ffiffiffiffiffi
fπ

p ¼ ð130.7� 0.1� 0.36Þ MeV,
ffiffiffiffiffiffi
fK

p ¼ð159.8�1.4�
0.44ÞMeV.
The main idea of the quark-chiral approach [47–50] is

that the scalar confining operator MðλÞ, violating chiral
symmetry, is augmented by the chiral operatorUðφ̂Þ, which
can emit any number of chiral mesons at the vertex of the
qq̄ operator.
Correspondingly, one can introduce the chiral-free qq̄

Green’s function from Eq. (3) with U ¼ 1, which we call
Gqq̄ (see Fig. 1), the free meson-meson Green’s function
Gφφ (see Fig. 2), and the transition element from qq̄ to the

FIG. 1. The scalar qq̄ Green’s function Gqq̄.

FIG. 2. The scalar φφ Green’s function Gφφ.
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φφ system, which is obtained from the CCL, Eq. (3), as
shown in [42] (see Fig. 3):

ΔL ¼ −NctrΛsΛMðλÞ φ̂
2

2
: ð8Þ

Here s is the external current, e.g., in the f0ð500Þ,
f0ð980Þ cases (I ¼ 0) it is equal to 1, while Λ is the quark
propagator, Λ ¼ ð∂̂ þmq þMÞ−1.
At this point we can find the form of the qq̄ Green’s

function augmented by the transition to the ϕϕ system,
which is needed to start the chain of transformations
discussed here. This structure is presented in the next
figure shown in Fig. 4.
As seen in Eq. (8) and following [42], one can find

the numerical coefficient CðIÞ
φφ in the transition factor

kðIÞðqq̄jφφÞ, which defines how many φφ are produced
by the one qq̄ state. In [42] this was done for isospin
I ¼ 0, 1. Here we shall also consider the case of the Kπ
channel ðI ¼ 1=2Þ.
We conclude this section with the explicit form of the

I ¼ 1=2 isotopic current, producing Kπ in the case of the
K�

0ð700Þ resonance:

tr

�
jðus̄Þ φ̂

2

2

�
¼ Kþ π0ffiffiffi

2
p þ K0πþ; ð9Þ

tr

�
jðds̄Þ φ̂

2

2

�
¼ Kþπ0 −

π0ffiffiffi
2

p K0: ð10Þ

III. DYNAMICS OF THE qq̄ AND
THE MESON-MESON SYSTEMS

The structure of the transition operator M φ̂2

2
[Eq. (8)]

requires a detailed investigation. In [42] it was understood
that the free meson-meson Green’s function, created and
annihilated at local points, diverges logarithmically and
should be replaced by the physically motivated meson-
meson Green’s function, where the initial and final dis-
tances between mesons are defined dynamically, i.e.,
given by the effective distance λ, determined by using
the stationary point of the transition coefficient (see
Table IV). In this paper we shall follow the same line of
reasoning and define the meson-meson Green’s function
with fixed spatial distance λ between the mesons at the
initial and final points.

One can start with the local φφ Green’s function
Gφφðx; yÞ, created using φ̂2ðxÞ in Eq. (8), and GφφðPÞ
with the total momentum P ¼ ðE; 0Þ,

GφφðPÞ ¼
1

ð2πÞ4
Z

d4p
ðp2 −m2

1ÞððP − pÞ2 −m2
2Þ
: ð11Þ

To take into account nonlocality in the initial or final
vertex we shall examine the structure of this nonlocal
vertex in more detail, assuming its structure as shown in
Fig. 4. As seen, for the distance λ between q and q̄
(and effectively between φ and φ) one should have the
corresponding Green’s functions Gqq̄ and Gφφ of the

form GðλÞ
qq̄ ðx; x0jy; y0Þ; GðλÞ

φφðy; y0ju; u0Þ with the distance
λ ¼ jx − x0j ≅ jy − y0j. The effective value of λ in this

vertex ðqq̄jφφÞ is defined by the productGðλÞ
qq̄σλG

ðλÞ
φφ, which

amounts to the λ dependence of the transition coefficient
and will be found in the following sections.

The Green’s function GðλÞ
φφðy; y0ju; u0Þ can be written

as a product
R d4p

ð2πÞ4 fðpÞ expðipðy − uÞÞ R d4p0
ð2πÞ4 fðp0Þ

expðip0ðy0 − u0ÞÞ. Now writing expðiðpyþ p0y0ÞÞ ¼
expðiðpþ p0Þðyþ y0Þ=2þ iðp − p0Þðy − y0Þ=2Þ with
P ¼ ðpþ p0Þ, one can make the Fourier transformation
in ðyþ y0Þ=2 while integrating over angles of the spatial
vector ðy − y0Þ. The same arrangement can be done for u, u0
vectors. Denoting p − p0 ¼ q, one ends up with the same
integral [Eq. (11)], multiplied by the square of the angular
integral of expðiqpλÞ.
As it is, we need the explicit form of the meson-meson

GðλÞ
φφðyy0juu0Þ and the qq̄ Green’s function GðλÞ

qq̄ ðxx0jyy0Þ,
defined with the initial and final spatial distances λ between

φ and φ or q and q̄. Since GðλÞ
qq̄ is convergent at λ ¼ 0, we

shall consider this effect later in this section and now start

with the effect of spatial distance λ in GðλÞ
φφ. As shown

above, the latter amounts to the angular integration of the
factors expðipðu − u0ÞÞ and expðipðy − y0ÞÞ, where we
denote q ¼ p.

FIG. 3. The scalar qq̄ Green’s function with the emission of the
chiral mesons.

FIG. 4. The transition region ðqq̄jφφÞ with the spatial distance
λ between the constituents.
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The result can be written in the form of the additional

factor FðλpÞ ¼
�
sinðλpÞ
λp

�
2
, p ¼ jpj, appearing in Eq. (11),

namely,

GðλÞ
φφðPÞ ¼ 1

ð2πÞ4
Z

d4pFðλpÞ
ðp2 −m2

1ÞððP − pÞ2 −m2
2Þ
; ð12Þ

where FðλpÞ ¼
�
sinðλpÞ
λp

�
2
, p ¼ jpj, appears to be due to

averaging over directions of Δy ¼ y − y0, Δu ¼ u − u0,
with jΔyj ¼ jΔuj ¼ λ.
The explicit form of Eq. (12) can be written in the

c.m. frame,

ReGðλÞ
φφðEÞ ¼

Z
∞

0

p2dp
4π2

FðλpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

2

p
(

Eð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

2

p
Þ þm2

1 −m2
2h� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

2

p �
2
− E2

ih
Eþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

1

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

2

p i
)

ð13Þ

ImGðλÞ
φφðEÞ ¼ Fðλp0Þ

16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½E2 − ðm1 þm2Þ2�½E2 − ðm1 −m2Þ2�

p
E2

; ð14Þ

where p0 is found from the relation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 þm2

1

p
þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
0 þm2

2

p
¼ E ≥ m1 þm.

Another way of the renormalization of ReGφφðEÞ was
accepted in [42], with FðλpÞ → 1 and the fixed upper limit
of the p integration, p ≤ N ¼ 1=λ. In what follows we shall
compare both ways and find that they produce similar
results. It is clear that the factor FðλpÞ is not introduced
by hand but results from the S-wave angular integration
of the product of the two-meson Green’s functions at
the spatial distance λ from each other, which does not
give rise to additional singularities. Note that FðλpÞ is
actually a function of λ2p2 and therefore does not contrib-

ute to the difference GðλÞ
φφðEþ iδÞ −GðλÞ

φφðE − iδÞ on the cut
E ≥ m1 þm2, and hence does not violate the unitarity
condition.
In the case of the Kπ Green’s function one has m1 ¼ mK

(493 MeV for K�) and m2 ¼ mπ ≅ 140 MeV. The result-

ing form [Eq. (13)] of the ReGðλÞ
πKðEÞ was computed

numerically in the range 640 MeV ≤ E ≤ 1200 MeV for
λ ¼ ð0.5; 1; 2; 3Þ GeV−1. The results of calculations show

that ReGðλÞ
πKðEÞ is almost constant in the range ½0.64 ÷ 0; 9�.

For the following we shall need the values of ReGðλÞ
πK at the

point E ¼ 0.64 and 0.8 GeV given in Table I.

In the right column of Table I the values of ReGðλÞ
πKðE ¼

640 MeV) are obtained with the cutoff of the integral over
dp in Eq. (13) at N ¼ 1=λ. One can see their close values,
within (10–15)% accuracy, in columns 1 and 3.
Now we turn to the qq̄ Green’s function and shall use the

same formalism for the ðns̄Þ system as in [42] for the ðnn̄Þ
system; for that, one can exploit the calculated positions
of the ðnn̄Þ pole (see Table II) and, analogously, the ðss̄Þ
and ns̄ poles. To calculate the qq̄ Green’s function and the
qq̄ eigenvalues we use, as in [42], the exact relativistic

formalism (see [54] for a review and references based on
the field correlator method [55]). This yields the relativistic
Hamiltonian in the c.m. frame, containing the quark and
antiquark kinetic energies ω1, ω2,

Hðω1;ω2; pÞ ¼
X
i¼1;2

pþ ω2
i þm2

i

2ωi
þ V0ðrÞ þ Vs0ðrÞ þ Vt:

ð15Þ

Now one has two options for defining ωi: (1) minimize
Hðω1;ω2; pÞ in the values of ω1, ω2, which leads to the
so-called spinless Salpeter equation (SSE), which is widely
used (see, e.g., [36]), or (2) calculate the eigenvalue of
Eq. (14) Eðω1;ω2Þ and then to find its minimum (the so-
called einbein approximation (EA); see [37,39,54] for
details). The comparison of these approximations for the
cases of nn̄ scalar meson masses is given in Table II.
The interaction terms V0, Vso, Vt are the instantaneous

potential with the scalar confinement V0, perturbative and
nonperturbative spin-orbit interactions Vso, and tensor
interaction Vt, which define the center-of-gravity eigen-
value McogðnPÞ, the spin-orbit correction asoðnPÞ, and the

TABLE I. The real part of the Kπ Green’s function as a
function of the spacial distance λ for two values of the energy,
E ¼ 640 and 800 MeV.

λ
ðGeV−1Þ

ReGðλÞ
πK

(640 MeV)
ReGðλÞ

πK
(800 MeV)

ReGðλÞ
πK

(640 MeV, cutoff)

0.5 0.033 0.028 0.03
1 0.025 0.02 0.022
1.5 0.02 0.0165 0.017
2 0.017 0.013 0.013
3 0.013 0.007
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tensor correction ctðnPÞ. For the masses of the n3P0 states
one has [37,39]

Mðn3P0Þ ¼ Mcogðn3P0Þ − 2aso − ct: ð16Þ

The resulting masses of the nn̄, ns̄, ss̄ states are given
in Table II.
As shown in [54,55], the qq̄ Green’s function can be

written as a sum over the pole terms. As in [42], the lowest
pole contribution to the ðqq̄Þ Green’s function Gqq̄ðEÞ can
be written as

Gqq̄ðEÞ ¼
X∞
n¼1

ðfðnÞs Þ2M2
n

M2
n − E2

¼ ðfð1Þs Þ2M2
1

M2
1 − E2

þ…; ð17Þ

where fð1Þs is as calculated in the ðnn̄Þ case in [42], while
for all qq̄ states it is as given in the Appendix A, and

within 10% accuracy it has the value fð1Þs ≅ 100 MeV,
whereas the mass M1ðns̄Þ is obtained to be
M1 ¼ ð1210 ÷ 1240Þ MeV, and M1ðss̄Þ ≅ 1400 MeV;
see Table III.
Now we can write the final equation for the position

of the pole, resulting from the infinite series of the
ðqq̄Þ → ðφφÞ → ðqq̄Þ → … transformations, in the same
way as in [42].

E2 ¼ M2
1f1 − kðIÞðqq̄jφφÞðReGðλÞ

φφðEÞ þ iImGðλÞ
φφðEÞÞg;

ð18Þ

where

kðIÞðqq̄jφ1φ2Þ ¼
C2
i M

2ðλÞðfð1Þs Þ2
f2φ1

f2φ2

: ð19Þ

As seen below, coefficient kðIÞ plays the most important
role in calculations of the resulting masses of scalar
mesons. Moreover, its role is decisive in the definition
of the nature of the resulting resonance, using the 1

Nc

arguments (see Chaps. 4.1, 4.2, and 4.3 in [11,27]). As
shown in [53], the meson decay constants fs, fφ are
proportional to

ffiffiffiffiffiffi
Nc

p
, and therefore kðIÞ is Oð 1

Nc
Þ. Then in

our approach at large Nc one is left with the bare qq̄ poles
and no other poles are present, and no connection to other
objects. Moreover, the meson-meson interaction is not
taken into account at this stage, while this is considered
as the higher 1

Nc
corrections, taken into account in the last

stage of the method. The role of the ππ interaction can be
seen, comparing the solid and broken lines in Fig. 5 of [42],
where the latter takes this interaction into account in the
framework of the dispersive method. One can notice that
they are close at higher E values but differ at smaller E
values, which implies that one needs the ππ interaction to
comply with experiment, and, indeed, properly modifying
the ππ Green’s function one can reproduce the data based
curve. This approach is different from the unitarized CPTh
(see [11,27], where the chiral-loop produced scalar mesons
appear from the very beginning. We shall compare the two
approaches in Sec. V.
At this point it is interesting to discuss the position of the

poles, which are the self-consistent solutions of Eq. (18).
First we consider the simplest case with equal masses of
two mesons, m1 ¼ m2 and E2 ¼ p2 þ 4m2, and start by
solving Eq. (18) in terms of the variable p, taking into
account the fact that ReG is a constant and ImG is
proportional to p, ImG ¼ pfðp2Þ. As a result, one obtains
the equation for the position of the resonance in terms of p:

p2 þ ipfðp2Þ − p2
0 ¼ 0: ð20Þ

As a first approximation one can take fðp2Þ ¼ fðp2
0Þ ¼

f0 and, solving the quadratic equation, one obtains

p ¼ −if0=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf0Þ2=4þ p2

0

q
; ð21Þ

which explicitly shows that the pole is on the second
sheet with respect to the 2m threshold. In next approx-
imations one takes into account, step by step, the p
dependence of fðp2Þ, observing the motion of the pole
on the second sheet.
In Eq. (19) C2

i can be found for the ππ, KK̄, πη cases as
in [42], and from Eqs. (9) and (10), and for the πK system it
is equal to

TABLE II. The masses (in MeV) of the 13P0 and 23P0 nn̄
states, obtained in the SSE, EA, and RT (the Regge trajectory
formalism) by Badalian and Bakker [37,39], Ebert et al. [38], and
Godfrey and Isgur [36].

BB [37,39]

State SSE EA RT EFG [38] GI [36]

nn̄13P0 1050 1093 1038 1176 1090
23P0 1461 1594 1435 1679 1780

TABLE III. The masses (in MeV) of the n3P0 qq̄ scalars,
obtained using the method of [37,39], and their experimental
values in the ππ, KK̄, πη, πK systems.

nr nn̄ðI ¼ 1Þ nn̄ðI ¼ 0Þ ns̄ðI ¼ 1
2
Þ ss̄ðI ¼ 0Þ

0 M1 1.050 1050 1240 1400
exp a0ð980Þ f0ð980Þ, f0ð500Þ K�

0ð700Þ f̃0ð1370Þ
1 M2 1500 1500 1550 1740

exp a0ð1450Þ f0ð1500Þ K�
0ð1430Þ f̃0ð1710Þ
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C2
i ¼

�
1þ 1ffiffiffi

2
p

�
2

¼ 3

2
þ

ffiffiffi
2

p
¼ 2.91 ≈ 3; ð22Þ

while the pseudoscalar decay constants fi are known from
[53] and experimental and lattice data,

fK ¼ 111 MeV; fπ ¼ 93 MeV; fη ¼ 120 MeV:

ð23Þ

The quark decay constants of the scalar mesons fðiÞs are
calculated via the radial derivative of the qq̄wave function,
as shown in Appendix A, with the values given in

Table VIII. In Appendix B we show that fiÞs are strongly
dependent on the value of λ and that the effective region of λ
is inside the range 0 ≤ λ ≤ 1.5 GeV−1. At the same time
another factor in Eq. (19) M2ðλÞ grows with λ, so the
optimal values of λ can be obtained from the ratio
kðIÞðqq̄jφφÞ
kðIÞmaxðqq̄jφφÞ

≡ XðλÞ given in Table IV.

Then, taking into account that MðλÞ ¼ σλ ¼
0.18 GeV2 · λ, one has the following values of the

transition factors kðIÞðqq̄jφφÞ at λ ¼ 1 GeV−1 and λ ¼
1.5 GeV−1 (see Table V).
Using these values of kðIÞðq̄ q̄ jφφÞ in Eq. (18) and the

values of M1 from Table III, one obtains the parameters of
the resonances in the channels ππ, KK, πηπK given in
Table VI.
In Table VI one can see that the suggested PPM yields a

reasonable picture of the resulting resonances in all φφ
channels, and the differences between the calculated and
observed resonance characteristics ðR;ΓÞ are of the order of
indeterminacy intervals. A possible sign of disagreement
seems to be in the f0ð500Þ resonance, where PPM gives a
resonance position some 150–200 MeV above the exper-
imental value. As discussed in [42], this fact implies
that the ππ interaction in the ππ Green’s function,
GππðEÞ, has to be used to account for the low energy
region, E≲ 500 MeV. Indeed, accurate analysis based
on the dispersive method in [56] confirms the f0ð500Þ
pole position at E ¼ ð457 − i279Þ MeV, which is close
to Eexp, and for f0ð980Þ it was obtained at E ¼
ð996� 7 − i25pm8Þ MeV, which is close to the exper-
imental data. In the unitary chiral approach [26] for
a0ð980Þ the pole position was obtained at E ¼
ð937 − i85Þ MeV, while in [25] the two-pole method
yields E ¼ 970 − i45 MeV. In a similar approach in
[24] it was not possible to find the position of
K �0 ð700Þ. We would like to stress here that our results
for the poles of the scalar nonet in Table VI are obtained in
a two-step process without a meson-meson interaction,
which shifts the f0ð500Þ pole down. As a result, one can
see in Table VI for λ ¼ ð1; 1.5Þ GeV−1

EðGeVÞ ¼ ð0.85 ÷ 0.64Þ − ið0.17 ÷ 0.54Þ; ð24Þ

which differs from Eexp by 200–400 MeV, while for the
f0ð980Þ our results are comparable to the data.

TABLE IV. The dependence of the ratio of the transition factor
kIðqq̄jφφÞ=kðIÞmax on the spatial contact distance λ.

λ ðGeV−1Þ 0.5 1 1.5 2

XðλÞ 0.29 0.816 1 0.04

TABLE V. The transition factor kðIÞðqq̄jφφÞ at λ ¼ 1 GeV−1

and λ ¼ 1.5 GeV−1 for different channels.

kðqq̄jφφÞ ðnn̄jππÞ ðnn̄jKKÞ ðnn̄jπηÞ ðns̄jπKÞ ðss̄jKKÞ
λ ¼ 1 GeV−1 18.44 4.02 3.0 14.2 3.0
λ ¼ 1.5 GeV−1 41.51 9.05 6.72 31.2 6.75

TABLE VI. The resonances in the channels ππ, KK̄, πη, πK, coupled at the distance 1 GeV−1 and λ ¼ 1.5 GeV−1 to the qq̄ poles
ðnn̄; ns̄; ss̄Þ, in comparison with experimental PDG data.

ðqq̄jφφÞ ðnn̄jππÞ ðnn̄jKK̄Þ ðnn̄jπηÞ ðns̄jπKÞ ðss̄jKK̄Þ
λ ¼ 1 kðqq̄jφφÞ 18.44 4.02 3.0 14.2 3.0

ReGφφ 0.02 0.011 0.02 0.025 0.011
ImGφφ 0.015 0.02 0.015 0.015 0.02

Re a, Im a 0.38;0.276 0.045þ i0.08 0.06þ i0.045 0.36þ i0.213 0.033þ i0.06
E 0.85 − i0.17 1.025 − i0.044 1.02 − i0.025 0.714 − i0.078 1.37 − i0.041

λ ¼ 1.5 kðqq̄jφφÞ 41.51 9.05 6.75 31.2 6.75
ReGφφ 0.015 0.018 0.018 0.0165 0.018
ImGφφ 0.0155 0.015 0.015 0.015 0.015

Re a, Im a 0.645;0.645 0.162þ i0.136 0.1215þ i0.10 0.52þ i0.468 0.12þ i0.10
E 0.64 − i0.54 0.966 − i0.08 0.98 − i0.056 0.75 − i0.21 1.31 − i0.074

EPDG 0.400 − 0.550 0.990 0.980 0.630 − 0.730 1.200 − 1.500
ΓPDG 0.400 − 0.700 0.010 − 0.100 0.050 − 0.100 0.478(50) 0.200 − 0.500
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IV. THE CASE OF TWO qq̄ POLES

Thus far we have studied the lowest 3P0 quark-antiquark
poles, which due to the PPM are shifted down from the
original position of around (1000–1400) MeV to the final
position in the range (700–1300) MeV, which can be
associated with the lowest exotic resonances. However,
in the ðnn̄Þ channel there is the radially excited pole 0þþ,
I ¼ 0 at the initial position M1 ¼ ð1490–1500Þ MeV,
which can also be shifted down and have a position at
around 1400 MeV, known as f0ð1500Þ. Also in the K�

0

channel (JPC ¼ 0þþ, I ¼ 1
2
) there exists a higher resonance,

coupled to the same Kπ decay channel, K�
0ð1430Þ, which

can originate from the radial excited ðns̄Þ pole at
M2 ¼ 1550 MeV. Below we shall show a remarkable
property of the PPM, where the shift down of the lowest
ðqq̄Þ pole changes a little if the radial excitations are taken
into account, while the mass shift of the higher ðqq̄Þ pole is
strongly suppressed compared to the ground state. This
property of the level repulsion follows from the structure of
the PPM equations themselves.
Indeed, writing the one-channel, one-pole PPM

[Eq. (35)] in the same form as in [42], one has

GφφðEÞkðIÞðqq̄jφφÞ
M2

1

M2
1 − E2

¼ 1; ð25Þ

with

kðIÞðqq̄jφφÞ ¼ ðCðIÞ
φφÞ2M2ðλÞðfð1Þs Þ2

f4φ
; fφ ¼ fπ; fK; fη:

ð26Þ

This equation can be generalized while including the
radially excited pole M2 as follows:

GφφðEÞ
�
kðIÞ1 ðqq̄jφφÞ M2

1

M2
1−E2

þkðIÞ2 ðqq̄jφφÞ M2
2

M2
2−E2

�
¼1:

ð27Þ

To better understand the situation with two projected

poles we consider Eq. (27) and approximate kðIÞ1 ≈ kðIÞ2

(which holds in most cases according to Table VIII in
Appendix A). From Eq. (27) one has the equation

0.0 0.5 1.0 1.5 2.0

-5

0

5

FIG. 5. The function fðEÞ is shown with thick gray lines, with
two poles at E ¼ M1, M2 (shown with thin vertical lines). The
intersection of fðEÞ with the horizontal line at a−1 ¼ 1=0.36
yields the two resulting poles E ¼ E1, E2, marked by vertical
dashed lines.

TABLE VII. The scalar resonance positions and the widths in the two-pole formalism.

ðqq̄jφφÞ connection ðnn̄jππÞ ðnn̄jKK̄Þ ðnn̄jπηÞ ðns̄jπKÞ ðss̄jKK̄Þ
nr ¼ 0 1.05 1.05 1.05 1.24 1.4
qq̄ mass (GeV)
nr ¼ 1 1.50 1.5 1.5 1.55 1.74
Transition coefficient kðIÞðqq̄jφφÞ 18.44 4.02 3.0 14.2 3.0
aðEÞ ¼ kðIÞGφφðEÞ 0.38þ i0.28 0.045þ i0.08 0.06þ i0.045 0.36þ i0.213 0.033þ i0.06
E1ðnr ¼ 0Þ ðGeVÞ, 0.8 1.04 1.02 0.85 1.36
Γ1 (MeV) 980 32 40 640 72

f0ð500Þ f0ð980Þ a0ð980Þ K�
0ð700Þ f0ð1370Þ

Eð1Þ
PDG (GeV) 0.40–0.55 0.99 0.98 0.63–0.73 1.2 ÷ 1.5

ΓPDG (MeV) 400–700 0.10–100 0.50–100 480 200 ÷ 500
E2ðnr ¼ 1Þ (GeV) 1.28 1.45 1.45 1.4 1.72
Γ (MeV) 100 84 52 40 76

f0ð1370Þ f0ð1500Þ a0ð1450Þ K�
0ð1430Þ f0ð1710Þ

Eð2Þ
PDG 1200–1500 1.50 1.48 1.425 1.72

Γ (MeV) 200 ÷ 500 Γ ¼ 109 Γ ¼ 265 Γ ¼ 270 Γ ¼ 120
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fðEÞ ¼ M2
1

M2
1 − E2

þ M2
2

M2
2 − E2

¼ 1

kðIÞGφφðEÞ
¼ a−1: ð28Þ

Then, taking case ðns̄jπKÞ as an example and neglecting
ImGφφ, from Table VI one obtains a¼kð1=2ÞReGπK¼0.36,
and the resulting fðEÞ, as a function of E, has two poles
defined by the intersection of the straight line fðEÞ ¼ 1

0.36
(see Fig. 5). In Fig. 5 one can easily see how the resulting
poles E1, E2 are shifted relative to M1, M2, in the
approximation of zero ImGπK .
To proceed with the case of K�

0ð700Þ, K�
0ð1430Þ, we

solve the quadratic in E2 [Eq. (28)] with M1 ¼ 1.24 GeV,
M2 ¼ 1.55 GeV and obtain two approximate solutions for
λ ¼ 1 GeV−1

E1 ¼ ð0.78− i0.33Þ GeV; E2 ¼ ð1.40− i0.035Þ GeV:
ð29Þ

These solutions correspond to the intersection points in
Fig. 5 and were obtained by treating the imaginary part of
GπKðEÞ as a perturbation. To take it fully into account one
can write the solution of Eq. (28) as

E2 ¼ 1

2
ðM2

1 þM2
2Þð1 − aÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
ðM2

1 þM2
2Þ2ð1 − aÞ2 −M2

1M
2
2ð1 − 2aÞ

r
ð30Þ

and use

a ¼ Reaþ iIma ¼ kðIÞðqq̄jφφÞðReGφφ þ iImGφφÞ

from Table VI in the case ðns̄jπKÞ, calculated, e.g.,
for λ ¼ 1 GeV−1.
In a similar way one can consider all the cases: ðnn̄jππÞ,

ðnn̄jKK̄Þ, ðnn̄jπηÞ, ðns̄jKπÞ, and ðss̄jKK̄Þ. The resulting
pole positions for λ ¼ 1 GeV−1, generated by ground and
radially excited scalar qq̄ poles, are given in Table VII.
From Table VII one can see a reasonable agreement

between the predicted and observed resonance character-
istics, but with a few exclusions. The first one refers to the
higher position of the predicted mass f0ð500Þ with
E1 ¼ 800 MeV, with, however, a large width, which
implies significant uncertainty in the resonance position
and, as we discussed above, calls for the account of the ππ
interaction in Gππ at small energies. The second discrep-
ancy might be more significant. Namely, the first ðss̄jKK̄Þ
resonance occurs exactly at 1.37 GeV (see Table VII)
and could be associated with f0ð1370Þ; however, the
latter prefers to decay into ππ, 4π and the KK̄ ratio is
less than 10% [1].
At the same time the second ðnn̄jππÞ resonance is

predicted to be at around 1.3 GeV with the width

Γππ ≈ 100 MeV, and the ðnn̄jKK̄Þ resonance to be at
1.45 GeV with the width ΓKK̄ ≈ 100 MeV; the latter has
to be associated with f0ð1500Þ. Unfortunately f0ð1500Þ
decays mostly into ππ, 4π. Thus one faces three incon-
sistencies in the theory: ππ resonance at 1300 MeVand two
KK̄ resonances at 1450 and 1360MeV, while in experiment
one has two resonances f0ð1370Þ and f0ð1500Þ, decaying
mostly into ππ and 4π.
Evidently, here appears a strong mixing pattern of three

(or more) resonances, which can additionally be enlarged
by the code mechanism ðKK̄jnn̄Þ M2

M�
2
−E2 ðnn̄jππÞ near the nn̄

pole at M2 ¼ 1.5 GeV. As an additional argument for this
mixing and the resulting damping of the KK̄ decay mode,
one can use the small value of the KK̄ decay width of
70 MeV for the ðss̄jKK̄Þ resonance at 1.36 GeV, while the
corresponding experimental resonance f0ð1370Þ has a
large ππ, 4π width, Γ ¼ ð200 ÷ 500Þ MeV. This interesting
topic requires substantial analysis and a separate paper.

V. CONCLUSIONS AND AN OUTLOOK

In our paper we presented the simplest version of the CC
mechanism with the code ðqq̄jφφÞ, which is the relativistic
and chiral extension of the original Cornell code used for
charmonium resonances [43]. This is the realization of
the CC mechanism [46], where due to an infinite set of
transformations of one system into another one can provide
a pole (the bound state) in this set, even if both systems are
free. Here the basic role is played by the magnitude of the
transition amplitude. A concrete example of the resulting
Zb resonances was given in the last references of [45].
It was also demonstrated that in the case of the scalar

mesons the role of transition coefficient kðIÞðqq̄jφφÞ is
extremely important since it can be a very large number,
kð0Þðnn̄jππÞ ∼ 30� 10, in the ðnn̄jππÞ and ðns̄jKπÞ cases
(see Table VI), and small number, k ∼ 1.0, in the other
cases. In Tables VI and VII one can see that this large range
of changes helps us to understand the situation with the
scalars, where the shifts of the resonances are so different in
different φφ systems, and the maximal one is in the
ðnn̄jππÞ case.
At this point one can see the main difference of the

present approach from other existing formalisms. As
explained in the paper, the connection between qq̄ and
the meson-meson channels plays the basic role, and starting
from the single qq̄ pole, one can define roughly the
parameters of all lowest scalar resonances (this does not
mean that other mechanisms are ruled out). However, here
one must find the transition coefficients explicitly, without
fitting parameters, which we could do with the use of the
CCL and the stationary point in the function kðIÞðλÞ. An
approximate way of adjusting this connection was already
used in the unitarized meson model [19–21], where one
needs to introduce different parameters for each channel to
describe the transitions. Another approach is the dispersive
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method [56], where the integral equations together with
experimental data are used to fully define the meson-meson
amplitudes and the positions of resonances. These results of
[56] are very useful for performing the final adjustment of
the positions of the lowest scalar resonances, obtained in
our formalism without fitting parameters, as demonstrated
in Fig. 5 of [42]. This is clearly seen by comparing our
(solid line) curves of the real and imaginary parts of the ππ
scattering amplitude with those (broken lines) curves
obtained using the dispersive methods in [56]. Looking
at the solid and broken lines in Fig. 5 of [42], one can notice
that they are close together at higher E but divergent at
smaller E values. This implies that one needs to include the
ππ interaction to comply with experiment and, indeed,
properly modifying the ππ Green’s function, one can
reproduce the data curve.
This can be compared to the unitarized chiral model

approach [27,28], where the 1
Nc

analysis shows that the qq̄
component is all important at large Nc and can be
considered the “seed” of the state. As Nc is lowered, this
state has an increased coupling to the ππ channel, and it is
this channel that dominates its existence when Nc ¼ 300
[28]. Therefore both approaches yield similar resulting
pictures with intrinsically connected qq̄ and experimentally
found scalar resonances.
Another important feature of the PPM is the appearance

of a new φφ resonance, created using a single qq̄ pole—this
φφ resonance can appear, in principle, in each φφ system
connected with this qq̄ pole. To have more resonances
connected with the same qq̄ pole, one needs an additional
direct ϕ1ϕ1 − ϕ2ϕ2 interaction. This happens for ππ and
KK̄ systems, where two resonances f0ð500Þ and f0ð980Þ
are created in this way by the qq̄ pole at E ¼ 1050 MeV.
Note that these resonances finally become connected due to
the ππ − KK̄ channel coupling, and in some cases two
nearby resonance poles can be located on different sheets,
as observed in lattice analysis by Dudek et al. [18].
We have already stressed the important role of the φφ

interaction in obtaining the correct position of lowest
resonances f0ð500Þ and K�

0ð700Þ. Actually our approach
provides an alternative way to describe φφ scattering
amplitudes when the qq̄ dynamics is included at the first
stage and the qq̄ − φφ transition is taken into account as a
second step, and the final stage should include a detailed
account of the φφ interaction. The comparison of the
resulting ππ amplitude, using only the two first steps, with
the realistic ππ data done in [42], shows exactly that the
two-step amplitude roughly describes the main features—
the extrema and zeros of the amplitude—but strongly
distorts the amplitude at small energies, where the φφ
interaction is important. To solve the scalar meson problem,
as demonstrated above, the simplified two-step procedure
was sufficient. On the other hand, the full three-step
procedure provides the exact φφ amplitude with the correct
qq̄ input, as shown in [42].

At this point it is important to discuss in more detail the
problem with the internal structure of resonances and its
connections (and assignments) to different quark and
meson channels. In the literature this topic is widely
discussed in connection with 1

Nc
expansion estimates;

see, e.g., [57]. Here we start at another point and first
discuss “elementary” one-channel bound states and reso-
nances. It is clear that one-channel states represent the
majority of the known states (qq̄, qqq, atoms, atomic
nuclei, etc.) and that they have necessarily admixed states
in their Fock columns, appearing from the rescattering
series, but these new states do not necessarily appear in the
form of additional poles. Those general properties are not
connected directly to the 1

Nc
expansion.

Now we get closer to the nature of the lowest scalar
mesons. In our method one starts with the basic qq̄ states,
which produce poles around (1-1,1) GeV, and the next story
is the motion of this pole down, due to interaction with the
φφ components, or up in connection with, say, glueball
states. To follow this line let us rewrite our basic equa-
tion (18) in a simpler form, assuming that the meson-meson
Green’s function GφφðEÞ ¼ GðEÞ also has a pole term

E2¼M2ð1−kðIÞGðEÞÞ; GðEÞ¼ c
E2−m2

þd: ð31Þ

Solving for the quadratic equation in E2, one obtains two
roots which are attracting or repulsing each other depend-
ing on the signs of c, d. One can envisage different
situations with the final positions of these poles, but it is
clear that both poles survive somewhere on the next sheets
of the E plane. In our case the coefficient kðIÞ is large for f0
and the original pole at 1 GeV is strongly shifted down. The
questions as to what happens with the pole of GðEÞ and
whether it exists at all are of secondary importance: if the
data display only one pole below 1 GeV, one is inclined to
associate it with the original qq̄ pole. Note that in this
approach the major role is played by the magnitude and the
energy dependence of the channel coupling, which is
assumed to be exactly given by theory. Summarizing,
one can say that one can always associate the observable
resonance with the initial elementary channel; however, the
strong coupling to the meson-meson channel for Nc ¼ 3
makes this resonance a common property. Following this
approach in our Table VII we have associated the resulting
resonances with the qq̄ components; however, their
positions could be strongly displaced from the original
masses, leaving the possibility of large non-qq̄ admixtures
in these states but keeping the role of the seed components
in these states.
Another feature of the PPM found in this paper is the

relatively small shifts of all radial excited resonances
compared with the ground states, especially in the
ðnn̄jππÞ and ðns̄jπKÞ cases. As a whole, we have explained
the general features of the scalar meson spectrum, leaving
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the details of the KK̄ − ππ coupling to future works. The
methods of this paper have a quite general applicability. In
particular they can be used to calculate the positions of a1,
a2 and other resonances containing 3π, ρ − π constituents.
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APPENDIX A: DECAY CONSTANTS
OF THE nn̄, ns̄, AND ss̄ STATES

As explained in [42], the qq̄ Green’s function is
computed in the Fock-Schwinger formalism, based on
the relativistic path-integral method. In this formalism
the qq̄ Green’s function in the c.m. frame ðP ¼ 0Þ has
the form

Gqq̄ðEÞ¼
X
n

ðfðnÞs Þ2M2
n

M2
n−E2

→
ðfð1Þs Þ2M2

1

M2
1−E2

þðfð2Þs Þ2M2
2

M2
2−E2

; ðA1Þ

where Mn, n ¼ 1, 2, are the energy eigenvalues, while fðnÞs

are the P-wave decay constants, which are discussed and
calculated in Appendix A of [42].

Here we only detail the explicit form of fð1Þ3 and its
dependence on the quark masses and the radial quantum
number n.

The explicit form of fðnÞs can be written as [42]

ðfðnÞs Þ2 ¼ 2NcðR0
nPð0ÞÞ2

4πωnω̄nMn
; ðA2Þ

where ωn; ω̄n are the average energies of the quark and the
antiquark in the relativistic qq̄ system obeyed by the
confinement, the color Coulomb, and spin-dependent
interactions [39]. Concrete calculations, done in this
framework as in [42], bring the following results presented
in Table VIII.

APPENDIX B

As shown in Eq. (A2), the decay constant fðnÞs (where s is
the scalar) is defined via the derivative R0

nPð0Þ, while other
factors in Eq. (A2) do not depend on r.
For the decay constant, defined at the spatial distance

r ¼ λ between q and q̄ (see Fig. 4), the decay constant

fðnÞs ðλÞ is determined via the derivative R0
nPðλÞ, i.e., gen-

eralizing Eq. (A2),

ðfðnÞs ðλÞÞ2 ¼ 2NcðR0
nPðλÞÞ2

4πωnω̄nMn
: ðB1Þ

The values of R0
nPðλÞ have been computed numerically in

the relativistic formalism of [37,39] and corresponding
values of R0

1PðλÞ; ðR0
1PðλÞÞ2 are given in Table IX together

with the ratios of the decay constants ηðλÞ ¼
			 fsðλÞfsð0Þ

			2.
TABLE VIII. The quark kinetic energy ωi (in GeV), the derivative of the radial wave function at the origin R0

iPð0Þ (GeV5=2), the mass
Mi (in GeV), and the decay constant fðiÞs for the ground state (i ¼ 1) and the first excited state (i ¼ 2).

qq̄ ω1;ω2 R0
1Pð0Þ R0

2Pð0Þ M1 M2 ðfð1Þs Þ2 (GeV2) ðfð2Þs Þ2 (GeV2)

nn̄ 0.48; 0.50 0.0845 0.0906 1.05 1.5 0.0142 0.0103
ns̄ 0.53; 0.56 0.091 0.106 1.24 1.55 ÷ 1.61 0.010 0.0108
ss̄ 0.54; 0.57 0.099 0.116 1.4 1.74 0.0112 0.0101

TABLE IX. The space distances λ, the derivative of the wave function R0
1PðλÞ and ðR0

1PðλÞÞ2, and the parameter ηðλÞ for the ground nn̄
state.

λ (GeV−1) 0.25 0.50 0.75 1.0 1.25 1.50 1.75 2.0
R0
nPðλÞ (GeV5=2) 0.0852 0.082 0.0764 0.0684 0.06 0.0504 0.0101 0.0077

ðR0
nPðλÞÞ2 GeV5 0.00726 0.00672 0.00583 0.00468 0.0036 0.0025 0.0001 5.9 × 10−5

ηðλÞ ¼
			 fð1Þs ðλÞ
fð1Þs ð0Þ

			2 0.98 0.91 0.79 0.63 0.486 0.343 0.0138 0.008
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