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We consider the transverse single-spin asymmetry (SSA) for J=ψ production in p↑p → J=ψ þ X within a
phenomenological transverse momentum dependent scheme in nonrelativistic QCD. Extending a previous
study [U. D’Alesio et al., Eur. Phys. J. C 79, 1029 (2019)], we employ here the color-gauge invariant
generalized partonmodel (CGI-GPM), inwhich spin and intrinsic transversemomentumeffects are taken into
account, together with leading-order initial- and final-state interactions (ISIs and FSIs). We find that, even
when the heavy-quark pair is produced in a color-octet state, ISIs and FSIs lead to a nonvanishing SSA,
allowing us, in principle, to test the process dependence of the gluon Sivers function (GSF). We show that of
the two independent contributions, due to the so-called f- and d-type GSFs, appearing in the CGI-GPM, the
d-type one turns out to be dynamically suppressed. Therefore, as already found adopting the Color-Singlet
Model approach for the J=ψ formation [U. D’Alesio et al., Phys. Rev. D 96, 036011 (2017)], only the f-type
GSF could play a role in phenomenology. A comparison with the corresponding results obtained in the
generalized parton model, without the inclusion of ISIs and FSIs, is also carried out.
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I. INTRODUCTION

The study of the three-dimensional structure of hadrons is
of fundamental importance for our comprehension of their
properties. It has certainly reached a substantial level of
accuracy, thanks to many efforts, carried out in the last two
decades both theoretically and experimentally. Its under-
standing in terms of transverse momentum dependent parton
distributions (TMDs) represents themain achievement in this
context [1,2]. These functions, nonperturbative in nature,
have been extracted from several fits to experimental data,
coming from semi-inclusive deep inelastic scattering (SIDIS)
andDrell-Yan (DY)processes.As amatter of fact,most of the
information collected so far is mainly restricted to the quark
sector, while gluon TMDs are still very poorly known.
Among the eight leading-twist nucleon TMDs, the Sivers

function [3,4] plays a seminal role. It describes the asym-
metric azimuthal distribution of unpolarized partons (quarks
and gluons) in a fast-moving transversely polarized nucleon

and is related to the orbital motion of partons. It could be
responsible for azimuthal and single-spin asymmetries
(SSAs) in processes where one of the initial nucleons is
transversely polarized with respect to its direction of motion.
Another important feature is its expected process depend-
ence. This can be understood in terms of initial- and final-
state interactions (ISIs and FSIs), encoded in Wilson lines
(gauge links), essential to preserve gauge invariance. One of
the most striking consequences is the expectation of a sign
change between the Sivers function probed in SIDIS with
respect to the one probed in DY processes [5]. This is usually
referred to as modified universality of the Sivers function.
For SIDIS and DY processes, TMD factorization has

been proven [6–8], and their analyses are well consolidated,
in contrast to more inclusive processes like pp → hþ X,
where a TMD scheme, referred to as the generalized parton
model (GPM) [9], is adopted as a phenomenological
ansatz. On the other hand, its success in describing many
polarization observables and its role in looking for potential
factorization breaking effects make it an important tool.
For these processes, the color-gauge invariant extension

of the GPM, known as the CGI-GPM, has been developed
in Refs. [10,11] and further extended in Ref. [12]. In this
approach, ISIs and FSIs are taken into account assuming a
single eikonal gluon exchange between the struck parton
and the remnants of the transversely polarized proton. This
approximation is basically the leading-order contribution,
in a perturbative expansion of the Wilson line, in the
definition of the Sivers function.
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As in the quark case, the process dependence of the
gluon Sivers function (GSF) can be absorbed into the cor-
responding partonic hard functions entering the factorized
expression of the cross sections. However, two universal,
completely independent, Sivers distributions have to be
introduced [12,13]. The reason is that, for three colored
gluons, there are two different ways of forming a color-
singlet state: the totally antisymmetric color combination,
even under charge conjugation, commonly referred to as an
f-type state, and the symmetric combination, odd under
C-parity, referred to as a d-type state.
It is worth mentioning that, for single-scale processes,

like pp → hþ X, an alternative formalism, based on
collinear factorization at next-to-leading twist (twist-3),
has been developed and successfully applied [14–16].
In this framework, SSAs are given by convolutions of
hard scattering amplitudes with universal quark-gluon-
quark and three-gluon correlation functions.
Due mainly to the lack of experimental data, information

on the GSF is very limited [17]. Some initial attempts,
within the GPM, have been made to constrain it from
midrapidity data for inclusive pion production at the
Relativistic Heavy Ion Collider (RHIC) [18–20]. A similar
analysis has been also performed in Ref. [21].
In order to probe the unknown GSF, other processes have

been considered, both in ep andpp collisions.Among them,
the production of quarkonium states, like the J=ψ meson,
has been shown to have a great potential [12,20,22–29].
We notice here that the study of J=ψ production is

important by itself, and various models have been formu-
lated to describe its formation mechanism. Among them,
we recall here the Color-Singlet Model (CSM) [30,31],
where the heavy-quark pair is directly produced with the
same quantum numbers as the observed quarkonium state.
A more rigorous theory was then developed, referred to as
nonrelativistic QCD (NRQCD), where the heavy-quark
pair can be produced also in a color-octet state with
different quantum numbers. This, subsequently, evolves
into the physical quarkonium state by the nonperturbative
emission of soft gluons. This framework implies a sepa-
ration of short-distance coefficients, which can be calcu-
lated perturbatively as expansions in the strong-coupling
constant αs, from long-distance matrix elements (LDMEs),
to be extracted from experiment [32]. These are predicted to
scale with a definite power of the heavy-quark relative
velocity v in the limit v ≪ 1. In this way, the theoretical
predictions are organized as double expansions in αs and v.
For a detailed overview, see Ref. [33] and references
therein.
A soft collinear effective field theory approach to factori-

zation for quarkonium production and decay, relevant for
TMD extractions, has also appeared [34,35]. Quite recently,
it has been also shown how one can obtain the proper
matching between the high and low transverse momentum
regimes for J=ψ production in SIDIS [36].

As mentioned above, SSAs for quarkonium production
in pp collisions have been extensively studied in a series of
papers by some of us, employing both the GPM and the
CGI-GPM within the Color-Singlet Model [12], and quite
recently adopting the GPM within NRQCD [22]. Here, we
extend and complete these analyses, by adding an impor-
tant piece of information and focusing on the role of ISIs
and FSIs, i.e., adopting the CGI-GPM approach, within
NRQCD. We will discuss the interplay of ISIs and FSIs
with the formation mechanism, carrying out a detailed
study of their net effect when the quarkonium is produced
in a color-singlet (CS) or in a color-octet (CO) state. A
comparison with the results found in the simpler GPM
approach, still within NRQCD, is also carried out.
It is worth noticing that we are mainly interested in SSAs

in the region of small to moderate PT values for the J=ψ (in
the pp center of mass frame), the TMD approach regime,
while NRQCD is usually applied to moderate to large PT
values. Special attention, following what discussed in detail
in Ref. [22], will be paid in this respect.
The paper is organized as follows. In Sec. II, we sum-

marize the formalism for the computation of single-spin
asymmetries in pp → J=ψ þ X, adopting the CGI-GPM
framework within NRQCD, which was presented in
details in Refs. [12,22], while results are shown and
discussed in Sec. III. Conclusions and final remarks are
gathered in Sec. IV. All the expressions for the hard
scattering amplitudes squared, computed within the CGI-
GPM, are collected in the Appendix.

II. SINGLE-SPIN ASYMMETRIES
IN THE CGI-GPM APPROACH

The SSA for the p↑p → J=ψ þ X process is defined as
follows,

AN ≡ dσ↑ − dσ↓

dσ↑ þ dσ↓
≡ dΔσ

2dσ
; ð1Þ

where dσ↑ð↓Þ is the differential cross section,
Ehd3σ↑ð↓Þ=d3Ph, with one of the initial protons polarized
along the transverse direction ↑ð↓Þ with respect to the
production plane. We consider the proton-proton collision
along the z axis in the center of mass frame, with the
polarized proton moving along þẑ, wherein the J=ψ is
produced in the x − z plane, and the ↑ transverse polari-
zation is along þŷ. The numerator of the asymmetry
receives a sizeable contribution only from the Sivers
function [12], which is defined as [37]

Δf̂a=p↑ðxa; k⊥aÞ≡ f̂a=p↑ðxa; k⊥aÞ − f̂a=p↓ðxa; k⊥aÞ
¼ ΔNfa=p↑ðxa; k⊥aÞ cosϕa

¼ −2
k⊥a

Mp
f⊥a
1T ðxa; k⊥aÞ cosϕa: ð2Þ
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This TMD describes the azimuthal distribution of an
unpolarized parton a with light-cone momentum fraction
xa and intrinsic transverse momentum k⊥a ¼ k⊥aðcosϕa;
sinϕa; 0Þ in a high-energy, transversely polarized nucleon
with mass Mp, moving along the z direction.
In order to proceed with the calculation of the asymmetry

within the CGI-GPM framework, we take into account the
proper insertion of the leading-order contribution, in the
strong-coupling constant power expansion, of the gauge
links, for all diagrams relevant for J=ψ production in
NRQCD (see, as an example, Fig. 1 for the gluon-gluon
2 → 2 channel). We note that we did not consider the FSIs
of the unobserved particle (gluon) because they are known
to vanish after summing the different cut diagrams; see, for
example, the discussion in Ref. [10].
One has to include the 2 → 1 partonic subprocesses,

namely, gþ g → J=ψ and qþ q̄ → J=ψ , as well as the
2 → 2 ones, that is gþ g → J=ψ þ g, gþ qðq̄Þ → J=ψ þ
qðq̄Þ and qþ q̄ → J=ψ þ g, and exploit the contributions

from the 3Sð1;8Þ1 , 1Sð8Þ0 and 3Pð8Þ
J states, respectively. Here, we

refer to the standard notation for a heavy-quark pair state
2Sþ1LðcÞ

J , where S is the spin of the pair, L and J are the
orbital and total angular momentum, and c is the color
configuration, with c ¼ 1, 8. Notice that, since in the 2 → 1
channels, at leading order, the J=ψ gets its transverse
momentum only from the intrinsic ones of the two initial
partons, these contributions can be relevant only in the
low-PT region.
As one can see, in the framework of NRQCD, we have to

take into account contributions to the SSA coming also
from the quark Sivers function, not present in the CSM,
where only the gluon-gluon fusion channel is at work.
Moreover, as already pointed out previously, in the CGI-
GPM formalism, we have to consider two possible inde-
pendent sources for the GSF.
Following Refs. [12,22], to which we refer the reader for

more details, the numerator of the asymmetry for 2 → 1
channels, aþ b → J=ψ , i.e., gþ g → J=ψ and qþ q̄ →
J=ψ , within the CGI-GPM approach is given by

dΔσCGI−GPM2→1 ¼ 2π

xaxbs2

Z
d2k⊥ad2k⊥bδ

2ðk⊥a þ k⊥b − PTÞ

×
�
−
k⊥a

Mp

�
cosϕa

�X
q

½f⊥q
1T ðxa; k⊥aÞfq̄=pðxb; k⊥bÞjMInc

qq̄→J=ψ j2�

þ
X
m¼f;d

f⊥gðmÞ
1T ðxa; k⊥aÞfg=pðxb; k⊥bÞjMIncðmÞ

gg→J=ψ j2
�
; ð3Þ

where q ¼ u; d; s; ū; d̄; s̄, andMinc are the hard scattering amplitudes modified by ISIs and FSIs, as detailed in the sequel.
Moreover, at order Oðk⊥=

ffiffiffi
s

p Þ,

xa ¼
MTffiffiffi
s

p ey; xb ¼
MTffiffiffi
s

p e−y; ð4Þ

with MT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
T þM2

p
, M and PT being the mass of the J=ψ and its transverse momentum, respectively, and y being its

rapidity.
Similarly for 2 → 2 channels, aþ b → J=ψ þ c [i.e., gþ g → J=ψ þ g, gþ qðq̄Þ → J=ψ þ qðq̄Þ and qþ q̄ →

J=ψ þ g], the numerator in Eq. (1) is given by

(a) (b) (c) (d)

FIG. 1. Diagrams for the dominant gluon fusion contribution to the process p↑p → J=ψ þ X in the GPM (a) and in the CGI-GPM
approaches with inclusion, at leading order, of additional effects from initial-state (b) and final-state [(c) and (d)] interactions. FSIs are
effective only when the J=ψ is produced in a color-octet state. Notice that there are analogous diagrams for other 2 → 2 subprocesses as
well as for the 2 → 1 channels, like gþ g → J=ψ . The scattering amplitudes for the underlying partonic reaction, gþ g → J=ψ þ g, are
represented by the central blobs, while the upper and lower ones describe the soft proton → gluon transitions.
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dΔσCGI−GPM2→2 ¼ 1

ð2πÞ2
1

2s

Z
dxa
xa

dxb
xb

d2k⊥ad2k⊥bδðŝþ t̂þ û −M2Þ
�
−
k⊥a

Mp

�
cosϕa

×

�X
q

½f⊥q
1T ðxa; k⊥aÞðfq̄=pðxb; k⊥bÞjMInc

qq̄→J=ψþgj2 þ fg=pðxb; k⊥bÞjMInc
qg→J=ψþqj2Þ�

þ
X
m¼f;d

f⊥gðmÞ
1T ðxa; k⊥aÞ

�X
q

fq=pðxb; k⊥bÞjMIncðmÞ
gq→J=ψþqj2 þ fg=pðxb; k⊥bÞjMIncðmÞ

gg→J=ψþgj2
��

: ð5Þ

The denominator in Eq. (1) is just twice the unpolarized cross section, discussed in detail within a TMD scheme in Ref. [22].
For completeness, we give the expressions separately for the 2 → 1 and the 2 → 2 channels:

Eh
d3σ2→1

d3Ph
¼

X
a;b

π

xaxbs2

Z
d2k⊥ad2k⊥bfa=pðxa; k⊥aÞfb=pðxb; k⊥bÞδ2ðk⊥a þ k⊥b − PTÞjMU

ab→J=ψ j2; ð6Þ

Eh
d3σ2→2

d3Ph
¼ 1

2ð2πÞ2
1

2s

X
a;b;c

Z
dxa
xa

dxb
xb

d2k⊥ad2k⊥bfa=pðxa; k⊥aÞfb=pðxb; k⊥bÞδðŝþ t̂þ û −M2ÞjMU
ab→J=ψþcj2: ð7Þ

All the hard scattering amplitudes squared jMIncj2,
where we have omitted the final-state quantum numbers,
are calculated perturbatively by incorporating, at leading
order, the ISIs and FSIs within the CGI-GPM approach,
and are listed in Appendix, for all color-octet states. The
expressions for the color-singlet contributions can be
directly found in Ref. [12], where SSAs within the
Color-Singlet Model were discussed.
Here, we only point out that, for the 2 → 1 processes,

due to cancellations between the ISIs and FSIs,
jMIncðf;dÞj2 ¼ 0 for the gþ g → J=ψ subprocess inde-

pendently of the 2Sþ1LðcÞ
J state, leaving active only the

qq̄ channel [second line in Eq. (3)]. Moreover, for the
gþ g → J=ψ þ g subprocess, the hard parts corresponding

to f⊥gðdÞ
1T , jMIncðdÞj2, turn out to be zero for all states (see

also Ref. [38]). This means that, as already found in the
study of SSAs for J=ψ production within the CSM [12],
only the f-type GSF enters the dominant gg channel. As we
will see, this has important consequences in the phenom-
enological study.

III. NUMERICAL RESULTS

We proceed now with the phenomenological analysis of
SSAs for J=ψ production within the CGI-GPM approach.
To this aim, following Refs. [19,20], we adopt for the
unpolarized TMDs a Gaussian factorized form,

fa=pðxa; k⊥aÞ ¼
e−k

2⊥a=hk2⊥ai

πhk2⊥ai
fa=pðxaÞ; ð8Þ

where fa=pðxaÞ is the collinear parton distribution. The
Sivers function is parametrized as

ΔNfa=p↑ðxa; k⊥aÞ ¼
�
−2

k⊥a

Mp

�
f⊥a
1T ðxa; k⊥aÞ

¼ 2N aðxaÞfa=pðxaÞhðk⊥aÞ
e−k

2⊥a=hk2⊥ai

πhk2⊥ai
;

ð9Þ

with

N aðxaÞ ¼ Naxαað1 − xaÞβa
ðαa þ βaÞðαaþβaÞ

ααaa ββaa
; ð10Þ

where jNaj ≤ 1 and

hðk⊥aÞ ¼
ffiffiffiffiffi
2e

p k⊥a

M0 e
−k2⊥a=M

02
: ð11Þ

Equation (9) can be rewritten as

ΔNfa=p↑ðxa; k⊥aÞ

¼
ffiffiffiffiffi
2e

p

π
2N aðxaÞfa=pðxaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρa
ρa

s
k⊥a

e−k
2⊥a=ρahk2⊥ai

hk2⊥ai3=2
;

ð12Þ

where ρa ¼ M02
hk2⊥aiþM02 and 0 < ρa < 1. With these choices,

the Sivers function satisfies the model independent pos-
itivity bound for all values of xa and k⊥a:
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jΔNfa=p↑ðxa; k⊥aÞj ≤ 2fa=pðxa; k⊥aÞ; or

k⊥a

Mp
jf⊥a

1T ðxa; k⊥aÞj ≤ fa=pðxa; k⊥aÞ: ð13Þ

For the collinear unpolarized parton distributions, we
will adopt the CTEQL1 set [39], at the factorization scale
equal to MT , adopting the DGLAP evolution equations.
Some comments on this aspect could be useful: as already
pointed out, the present scheme is based on a phenom-
enological extension of the parton model with the inclusion
of spin and intrinsic transverse momentum effects and of
initial- and final-state interactions. For inclusive processes,

like the one under study, still no TMD factorization has
been proven, and, as a consequence, no TMD evolution can
be consistently computed. On the other hand, unambiguous
phenomenological signals for scale evolution effects in
SSAs (our main interest), even for processes for which
TMD evolution is valid, have not been found yet. For all
these arguments, we believe that even such a simplified
TMD scheme could be very useful in exploiting the role of
ISIs and FSIs in the SSAs under study.
These parametrizations allow us to integrate analytically

the expressions entering the numerator and the denomi-
nator of AN for the 2 → 1 channels, as follows,

2dσ2→1 ¼ 1

s2
X
a;b

1

xaxb

1

hk2⊥ai þ hk2⊥bi
exp

�
−

P2
T

hk2⊥ai þ hk2⊥bi
�
2fa=pðxaÞfb=pðxbÞjMU

ab→J=ψ j2; ð14Þ

dΔσ2→1 ¼
ffiffiffiffiffi
2e

p

s2
X
a;b

1

xaxb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ3að1 − ρaÞhk2⊥ai

p
ðρahk2⊥ai þ hk2⊥biÞ2

PT exp

�
−

P2
T

ρahk2⊥ai þ hk2⊥bi
�
2N aðxaÞfa=pðxaÞfb=pðxbÞjMInc

ab→J=ψ j2; ð15Þ

where, while in Eq. (14) ða; bÞ ¼ ðq; q̄Þ; ðg; gÞ, in Eq. (15)
only the qq̄ channel is active. For the 2 → 2 channels, we
will have to proceed by a numerical integration.
At this point, we have to fix all parameters entering our

expressions. In order to carry out a direct and easier
comparison with the corresponding analysis performed
in the GPM framework and study the impact of ISIs
and FSIs, we adopt the same choices made in Ref. [22].
More precisely, for the quark unpolarized Gaussian width,
we use hk2⊥qi ¼ 0.25 GeV2, as extracted in Ref. [40], while
for the gluon TMD, we use hk2⊥gi ¼ 1 GeV2, which allows
for a reasonably good description of the unpolarized
cross section data in the low-PT region relevant for our
study [12,22].
Moving to the LDMEs, we consider the BK11 [41] and

the SYY13 [42] sets, whose values are given in the
Appendix. As extensively discussed in Ref. [22] (in which
all details and physics motivations can be found), these sets
are suitable enough for a study, within a TMD framework,
of the low-PT region, where also SSA data are available;
see, for instance, Figs. 1 and 2, left panels, in Ref. [22], for
a comparison with unpolarized cross section data.
We will start by focusing on the relevance of ISIs and

FSIs, and their interplay with the production mechanism,
by a detailed comparison with the corresponding estimates
in the GPM approach. To properly study the role of the
partonic dynamics, we compute the contributions to AN by
maximizing, separately, the Sivers effect both for quarks
and gluons. This can be obtained by using ρq;g ¼ 2=3,

N qðxÞ ¼ þ1 and N ðf;dÞ
g ðxÞ ¼ þ1 in Eq. (12). Notice that

the chosen positive normalization allows for a better

understanding of the relative signs coming from the hard
dynamics. Recalling that in NRQCD the heavy-quark pair
can be produced in a CS or a CO state, and the latter with
different angular momentum quantum numbers, we will
also discuss separately each contribution. In the following,
we will adopt the kinematics of the PHENIX experiment, atffiffiffi
s

p ¼ 200 GeV, for which SSA data are available.
As we will show below, and as it happens in the GPM,

also in the CGI-GPM, the quark-initiated contributions are
negligible. Similarly, the contribution from the d-type GSF
is extremely small, due to the absence of the gg channel in
the numerator of the SSA (see the comment at the end of
the previous section). This means that, within the CGI-
GPM and NRQCD frameworks, one can still concentrate
on the f-type gluon Sivers function.
In Fig. 2 we show our maximized estimates for AN

coming from the dominant gluon contribution (red solid
lines) in the CGI-GPM, f-type (left panel) and the GPM
(right panel) approaches at

ffiffiffi
s

p ¼ 200 GeV and xF ¼ 0.1,
as a function of PT , together with a full wave decom-
position (see the legend). Note the 1 order of magnitude
difference in the vertical scale between the two panels. We
also observe that some GPM contributions are larger than 1
since the denominator of the SSA includes all terms
(entering with relative signs), while in the numerator, we
consider, term by term, only a specific wave state. The
overall result (red solid lines) is, as it has to be, smaller
than 1.
We can further observe that, while the CGI-GPM

estimates show clear oscillations, with a change of sign
around PT ≃ 1 GeV for CO states, the corresponding ones
within the GPM have all a definite sign. This oscillating
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behavior is specifically due to the 2 → 2 channels and plays
a role also in the GPM.
On the other hand, in the GPM, the 2 → 1 channels, at

least in the small-PT region where they are relevant,
compensate for this effect, leading to an overall definite
sign. In contrast, as already pointed out in the previous
section, in the CGI-GPM, the gluon contributions from the
2 → 1 channels are identically zero. Notice that this oscil-
lation in sign for the 2 → 2 channels has nothing to do with
the role of ISIs and FSIs (as it is clear from the fact that also
the GPM estimates present this feature) and comes directly
from the parton dynamics, as weighted by the Sivers
azimuthal phase. This can be easily understood recalling
that, within the GPM, the hard parts in the numerator are
identical to those in the denominator, which does not
manifest any oscillation in sign. We also observe (Fig. 2)
that this oscillating behavior does not affect CS states, whose
amplitudes squared present a much simpler structure in
terms of their Mandelstam invariant dependence.
Another interesting feature in Fig. 2 is that, among the CO

contributions, two of them, the 1S0 and 3P½J� (where the
symbol [J] stands for a sum over J ¼ 0, 1, 2) wave terms, are
very large, almost comparable in size but opposite in sign (this
is due to the sign of the corresponding LDMEs), while one,
the 3S1 wave, is extremely small. This happens in both
approaches. Moreover, the CS contribution, which as already
said has a definite sign, shifts the zero in the CGI-GPM
estimates to largerPT values, as comparedwith theCO terms.
Coming back to the size of each contribution, the smaller

values in the CGI-GPM approach with respect to the
corresponding ones in the GPM are directly due to the
cancellations between different hard partonic parts, enter-
ing with proper color factors and having in some cases
opposite signs.
In Fig. 3, we show the corresponding maximized

estimates at
ffiffiffi
s

p ¼ 200 GeV, within the CGI-GPM, at

xF ¼ −0.1 as a function of PT (left panel) and at fixed
PT ¼ 1.65 GeV as a function of xF (right panel), as in the
PHENIX analysis (see below). Concerning the backward
region, the main aspect is the suppression of all contribu-
tions as compared to those at xF ¼ 0.1 (Fig. 2, left panel),
which leads to much smaller results. In fact, besides the
effects already discussed, the dependence on the Sivers
azimuthal phase, cosϕa (through the Mandelstam invari-
ants; see Appendix), is less relevant in the hard parts, and
therefore the integration over it [see Eq. (5)] is more
effective in reducing the effect. Moreover, at such fixed
PT value (right panel), as it is evident from Fig. 2, the
cancellation among the various contributions in the CGI-
GPM is much more effective for all xF values, leading to
very small maximized SSAs. The use of the other LDME
set (SYY13) gives very similar results.
Having analyzed in Figs. 2 and 3 the maximized

contribution of the f-type GSF, to have a more complete
view, in Fig. 4, we show for the BK11 (left panel) and
the SYY13 (right panel) LDME sets a collection of results
for maximized AN at

ffiffiffi
s

p ¼ 200 GeV and xF ¼ 0.1 as a
function of PT , adopting different models and approaches.
PHENIX data [43] are also shown. More precisely, we
present the maximized estimates obtained within NRQCD,
employing both the CGI-GPM (this work) and the GPM
[22], and those within the CSM in both approaches [12].
For the CGI-GPM, all contributions are shown, and as
already pointed out above, those from the quark (with the
exception of the very small PT region for the SYY13 set)
and the d-type gluon Sivers functions are negligible. We
also recall that the SYY13 LDME set includes only color-
octet states. This implies, still within the CGI-GPM, larger
values of AN at large PT , due to the missing of the relative
cancellation between the CO and the CS contributions, at
work for the BK11 set. Notice that the estimates obtained
within the CSM do not depend on the LDME set and,

FIG. 2. Maximized contributions from the GSF to AN as a function of PT for the process p↑p → J=ψ þ X at
ffiffiffi
s

p ¼ 200 GeV and
xF ¼ 0.1 within the CGI-GPM, f-type GSF, (left panel) and the GPM (right panel) approaches by taking N gðxÞ ¼ þ1, ρg ¼ 2=3, and
adopting the BK11 LDME set. The full result (red solid lines) together with its wave decomposition (see legend) are shown.
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in this respect, they could appear identical also in the right
panel. From these plots, we see that, even if to a much
lesser extent as compared to the GPM, also within
CGI-GPM, one can potentially put some constraints on
the size of the f-type GSF already with the few data points
available.
A comment concerning the significance of these esti-

mates, as well as of the following ones, is in order: all of
them are certainly affected by uncertainties, both intrinsic
in the model and coming from the nonperturbative param-
eters used. These uncertainties, that can be sizeable, are at
present difficult to estimate in a fully reliable way. On the
other hand, in this study, we consider maximized contri-
butions to the asymmetry rather than specific extractions of
the TMD involved. Moreover, the relative size of these
contributions, coming from the different terms and models
considered in our analysis, is surely under better control,

and our ultimate goal is to show the impact of ISIs and FSIs
in the computation of such SSAs in full NRQCD.
As expected from previous considerations, the corre-

sponding results at xF ¼ −0.1 show a quite different
situation; see Fig. 5. In this configuration, the maximized
SSAs within the CGI-GPM approach are strongly sup-
pressed. For the SYY13 LDME set, the situation looks only
slightly different since the absence of the CS contribution
prevents a further relative cancellation. On the other hand,
even maximizing the GSF, the estimates also in this case are
already very close to the data. In this respect, within the
CGI-GPM approach, data at negative xF appear not very
useful to constrain the GSF. This is in contrast to what
happens in the GPM framework where, both in CSM and in
NRQCD, only a strongly suppressed GSF with respect to
its positivity bound could give estimates compatible with
PHENIX data.

FIG. 3. Maximized contributions from the f-type GSF to AN for the process p↑p → J=ψ þ X at
ffiffiffi
s

p ¼ 200 GeV as a function of PT at
xF ¼ −0.1 (left panel) and as a function of xF at PT ¼ 1.65 GeV (right panel) within the CGI-GPM approach by taking N gðxÞ ¼ þ1

and ρg ¼ 2=3 and adopting the BK11 LDME set. The full result (red solid lines) together with its wave decomposition (see the legend)
are shown.

FIG. 4. Maximized AN estimates as a function of PT for the process p↑p → J=ψ þ X at
ffiffiffi
s

p ¼ 200 GeV and xF ¼ 0.1 adopting the
CGI-GPM and GPM approaches, within the CS model and NRQCD for the BK11 (left panel) and the SYY13 (right panel) LDME sets.
Data are taken from Ref. [43].
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Complementary information can be also obtained by
looking at the same quantities at fixed PT (chosen here to
be 1.65 GeVas in PHENIX data) as a function of xF. This is
shown in Fig. 6, where, adopting the same choices as in
Figs. 4 and 5, we see that for such PT values, one cannot put
any constraint on the f-type GSF. A better configuration, in
this respect, would be exploring larger PT values (around
2–3 GeV) and, with some care, very low-PT values (below
1 GeV), in the positive xF region (see Fig. 4). In such cases,
the maximized AN would be sizeable enough, and any data
could help in constraining the GSF within a CGI-GPM
approach.
Before concluding this comparison, we have to mention

that the use of the available extraction of the f-type (and
a fortiori the d-type) GSF, from midrapidity pion and D
meson SSA data [20], would give results 0.05 (0.15) times
smaller than the corresponding maximized estimates, that is
almost compatible with zero, and in reasonable agreement
with J=ψ data.
For its relevance, we also present estimates for the

corresponding AN in J=ψ production for the kinematics
reachable at the LHC in the fixed target mode with a

transversely polarized target (see the AFTER [44,45] and
LHCSpin [46,47] proposals at CERN). In such a configu-
ration, one could probe even larger light-cone momentum
fractions in the polarized proton, accessing the gluon
TMDs in a very interesting and complementary region.
In Fig. 7, we present our maximized estimates for AN for

pp↑ → J=ψ þ X at
ffiffiffi
s

p ¼ 115 GeV, at fixed PT ¼ 3 GeV,
as a function of xF (left panel), and at fixed rapidityy ¼ −2, as
a function of PT (right panel), adopting the BK11 set. Notice
that, in such a configuration, the backward rapidity region
refers to the forward region for the polarized proton target. As
one can see, at PT ¼ 3 GeV (left panel), the maximized
contribution from the f-type GSF at backward rapidity is
around 5% and, in principle, could be accessed/constrained
experimentally. The same is true at very small (less than
1 GeV) or large (greater than or equal to 3 GeV) PT values at
y ¼ −2 (right panel). We notice that the corresponding
estimates, from the f-type GSF, at PT around 2 GeV would
be almost negligible at all rapidities. As already discussed in
our previous studies, adopting the GPM or the CGI-GPM
together with the CSM, the maximized AN would be much
larger and, potentially, easier to constrain.

FIG. 5. Same as in Fig. 4 but for xF ¼ −0.1.

FIG. 6. Same as in Fig. 4 but at fixed PT ¼ 1.65 GeV as a function of xF.
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IV. CONCLUSIONS

In this paper, we have extended, and somehow com-
pleted, a detailed analysis of SSAs for J=ψ production in
pp collisions within a phenomenological TMD scheme.
This study started in a previous paper, where, employing
the Color-Singlet Model for quarkonium formation, we
compared the Generalized Parton Model and the Color-
Gauge-Invariant GPM. It was then continued quite recently
in a second work, adopting the NRQCD framework
within the GPM. Here, we have eventually considered
its extension within the CGI-GPM. The main interest of this
analysis is to see whether and to what extent one can extract
information on the poorly known gluon Sivers function,
focusing only on this specific process.
We have considered all relevant subprocesses inNRQCD,

both for the 2 → 1 and the 2 → 2 channels, including effects
of initial- and final-state interactions, in the one-gluon-
exchange approximation. This leads to the introduction of
new color factors, diagram by diagram, and the computation
of modified hard scattering amplitudes. In such a way, one
can move the process dependence, coming from ISIs and
FSIs, into the hard parts, factorizing the corresponding
TMDs. One, well-known, outcome of this approach is the
appearance of two independent gluon Sivers functions,
referred to as the d-type and the f-type distributions.
We then calculated the maximized contributions to AN ,

separately for the gluon and the quark Sivers effects,
adopting the kinematics of the PHENIX experiment, for
which data are available. The main findings are that the
quark as well as the d-type gluon Sivers functions, even if
maximized, give almost negligible contributions to the SSA
that, as in the CSM, gets a sizeable contribution only from
the f-type GSF. On the other hand, within NRQCD, this
contribution is also generally quite small and could be
relatively sizeable only at forward rapidities and PT around
2–3 GeV, at least for the two LDME sets considered.

Therefore, while within the GPM, the GSF could be
easily constrained by PHENIX SSA data for J=ψ produc-
tion alone, the situation in the CGI-GPM is quite different.
Indeed, if one adopts the CSM, the f-type GSF (the only
one active) gives still a potentially sizeable contribution; on
the contrary, in full NRQCD, it could be hardly con-
strained, and definitely not in the backward region.
We have also presented some maximized estimates of

AN , for the kinematics reachable at LHC in a fixed target
mode, showing similar features as those discussed for the
PHENIX setup.
More data, with higher statistics, could certainly help in

shedding light on the role of the gluon Sivers function, as
well as on its process dependence.
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APPENDIX: COLOR FACTORS AND
AMPLITUDES SQUARED IN p↑p → J=ψ +X FOR

COLOR-OCTET STATES WITHIN THE
CGI-GPM APPROACH

Here, we collect all color factors as well as the
amplitudes squared for the relevant subprocesses in p↑p →
J=ψ þ X within the CGI-GPM approach (for color-octet
states). The color factors and the corresponding amplitudes
squared for the color-singlet states can be found in
Ref. [12].
The modified amplitudes squared in the CGI-GPM or,

more precisely, each contribution to the MM� product

FIG. 7. Maximized values for AN for the process pp↑ → J=ψ þ X at
ffiffiffi
s

p ¼ 115 GeV and PT ¼ 3 GeV as a function of xF (left panel)
and at y ¼ −2 as a function of PT (right panel), obtained adopting the CGI-GPM and GPM approaches, within the CS model and
NRQCD (BK11 set). Notice that here negative rapidities correspond to the forward region for the polarized proton.
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between any two of the Feynman diagrams for the specific
subprocess, can be written as

jMIncj2 ¼ CInc

CU
jMUj2 ¼ CI þ CF

CU
jMUj2; ðA1Þ

where MU are the scattering amplitudes for the unpolar-
ized partonic processes. Here and in what follows, CU are

the color factors when including diagrams entering the
unpolarized cross section, as well as the numerator of the
SSA in the GPM [see Fig. 1(a), for the gþ g → J=ψ þ g
channel], while CI and CF are the new color factors for ISIs
and FSIs, respectively [corresponding, still for the gþ g →
J=ψ þ g channel, to Fig. 1(b) and Figs. 1(c) and 1(d)). They

FIG. 8. Feynman diagrams for the gþ g → J=ψ þ g process.

TABLE I. Color factors corresponding to the 1Sð8Þ0 and 3Pð8Þ
J

states for gþ g → J=ψ þ g channel. See the text for further
details.

Diagram CU CðfÞ
I CðfÞ

F
CIncðfÞ

Ⓐ × Ⓐ N2−4
4ðN2−1Þ − N2−4

8ðN2−1Þ
N2−4

8ðN2−1Þ 0

Ⓐ × Ⓓ N2−4
4ðN2−1Þ − N2−4

8ðN2−1Þ
N2−4

8ðN2−1Þ 0

Ⓐ × Ⓕ N2−4
4ðN2−1Þ − N2−4

8ðN2−1Þ
N2−4

8ðN2−1Þ 0

Ⓑ × Ⓑ N2−4
4ðN2−1Þ − N2−4

8ðN2−1Þ 0 − N2−4
8ðN2−1Þ

Ⓑ × Ⓔ N2−4
4ðN2−1Þ − N2−4

8ðN2−1Þ 0 − N2−4
8ðN2−1Þ

Ⓑ × Ⓕ N2−4
4ðN2−1Þ − N2−4

8ðN2−1Þ 0 − N2−4
8ðN2−1Þ

Ⓒ × Ⓒ N2−4
4ðN2−1Þ 0 N2−4

8ðN2−1Þ
N2−4

8ðN2−1Þ
Ⓒ × Ⓓ − N2−4

4ðN2−1Þ 0 − N2−4
8ðN2−1Þ − N2−4

8ðN2−1Þ
Ⓒ × Ⓔ − N2−4

4ðN2−1Þ 0 − N2−4
8ðN2−1Þ − N2−4

8ðN2−1Þ
Ⓓ × Ⓓ N2−4

2ðN2−1Þ − N2−4
8ðN2−1Þ

N2−4
4ðN2−1Þ

N2−4
8ðN2−1Þ

Ⓓ × Ⓔ N2−4
4ðN2−1Þ 0 N2−4

8ðN2−1Þ
N2−4

8ðN2−1Þ
Ⓓ × Ⓕ N2−4

4ðN2−1Þ − N2−4
8ðN2−1Þ

N2−4
8ðN2−1Þ 0

Ⓔ × Ⓔ N2−4
2ðN2−1Þ − N2−4

8ðN2−1Þ
N2−4

8ðN2−1Þ 0

Ⓔ × Ⓕ N2−4
4ðN2−1Þ − N2−4

8ðN2−1Þ 0 − N2−4
8ðN2−1Þ

Ⓕ × Ⓕ N2−4
2ðN2−1Þ − N2−4

4ðN2−1Þ
N2−4

8ðN2−1Þ − N2−4
8ðN2−1Þ

TABLE II. Color factors corresponding to the 3Sð8Þ1 state for the
gþ g → J=ψ þ g channel. See the text for further details.

Diagram CU CðfÞ
I CðfÞ

F
CIncðfÞ

Ⓐ × Ⓐ N4−2N2þ6
4N2ðN2−1Þ − N4þ4

8N2ðN2−1Þ
N4þ4

8N2ðN2−1Þ 0

Ⓐ × Ⓑ − N2−3
2N2ðN2−1Þ − 1

2N2ðN2−1Þ − N2−2
4N2ðN2−1Þ − 1

4ðN2−1Þ
Ⓐ × Ⓒ − N2−3

2N2ðN2−1Þ
N2−2

4N2ðN2−1Þ
1

2N2ðN2−1Þ
1

4ðN2−1Þ
Ⓐ × Ⓓ N2

4ðN2−1Þ − N2þ2
8ðN2−1Þ

N2

8ðN2−1Þ − 1
4ðN2−1Þ

Ⓐ × Ⓕ − N2

4ðN2−1Þ
N2

8ðN2−1Þ − N2þ2
8ðN2−1Þ − 1

4ðN2−1Þ
Ⓑ × Ⓑ N4−2N2þ6

4N2ðN2−1Þ − N4þ4
8N2ðN2−1Þ − 1

2N2 − N2þ4
8ðN2−1Þ

Ⓑ × Ⓒ − N2−3
2N2ðN2−1Þ

N2−2
4N2ðN2−1Þ − N2−2

4N2ðN2−1Þ 0

Ⓑ × Ⓔ N2

4ðN2−1Þ − N2þ2
8ðN2−1Þ − 1

4ðN2−1Þ − N2þ4
8ðN2−1Þ

Ⓑ × Ⓕ N2

4ðN2−1Þ − N2

8ðN2−1Þ − 1
4ðN2−1Þ − N2þ2

8ðN2−1Þ
Ⓒ × Ⓒ N4−2N2þ6

4N2ðN2−1Þ
1

2N2
N4þ4

8N2ðN2−1Þ
N2þ4

8ðN2−1Þ
Ⓒ × Ⓓ − N2

4ðN2−1Þ − 1
4ðN2−1Þ − N2

8ðN2−1Þ − N2þ2
8ðN2−1Þ

Ⓒ × Ⓔ − N2

4ðN2−1Þ − 1
4ðN2−1Þ − N2þ2

8ðN2−1Þ − N2þ4
8ðN2−1Þ

Ⓓ × Ⓓ N2

2ðN2−1Þ − N2

8ðN2−1Þ
N2

4ðN2−1Þ
N2

8ðN2−1Þ
Ⓓ × Ⓔ N2

4ðN2−1Þ 0 N2

8ðN2−1Þ
N2

8ðN2−1Þ
Ⓓ × Ⓕ − N2

4ðN2−1Þ
N2

8ðN2−1Þ − N2

8ðN2−1Þ 0

Ⓔ × Ⓔ N2

2ðN2−1Þ − N2

8ðN2−1Þ
N2

8ðN2−1Þ 0

Ⓔ × Ⓕ N2

4ðN2−1Þ − N2

8ðN2−1Þ 0 − N2

8ðN2−1Þ
Ⓕ × Ⓕ N2

2ðN2−1Þ − N2

4ðN2−1Þ
N2

8ðN2−1Þ − N2

8ðN2−1Þ
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can be calculated following the procedure described in
Ref. [12]. Notice that, for subprocesses initiated by a gluon
in the polarized proton, the color factors are further

distinguished in Cðf=dÞ
I;F , and correspondingly, we will have

CIncðf=dÞ ¼ Cðf=dÞ
I þ Cðf=dÞ

F .
The partonic Mandelstam invariants used below for the

2→2 channels, aþ b → J=ψ þ c, and the 2 → 1 channels,
aþ b → J=ψ , are so defined:

ŝ ¼ ðpa þ pbÞ2 ¼ 2pa · pb;

t̂ ¼ ðpa − PhÞ2 ¼ M2 − 2pa · Ph;

û ¼ ðpb − PhÞ2 ¼ M2 − 2pb · Ph: ðA2Þ

1. g+ g → J=ψ + g channel

The set of Feynman diagrams contributing to the gþ
g → J=ψ þ g channel is shown in Fig. 8. All corresponding

color factors are collected in Table I for the 1Sð8Þ0 and 3Pð8Þ
J

states (notice that they are equal) and in Table II for the 3Sð8Þ1

state. The notation in Tables I and II is the following: in
both tables, referring always to Fig. 8, Ⓐ represents the
grouping of the first and seventh Feynman diagrams, Ⓑ
represents that of the second and eighth, and Ⓒ represents

that of the third and ninth. In Table I, Ⓓ implies the
grouping of the 4th and 10th diagrams, Ⓔ implies that of the
5th and 11th, and Ⓕ implies that of the 6th and 12th. Notice

that, for the 1Sð8Þ0 and 3Pð8Þ
J states, diagrams 13 through 16

do not contribute. In Table II, Ⓓ implies the grouping of the
4th, 10th, 13th, and 16th diagrams, Ⓔ implies that of the
5th, 11th, 14th, and 16th, and Ⓕ implies that of the 6th,
12th, 15th, and 16th, respectively. As a matter of fact, the
16th diagram, which contains the four-gluon vertex, can be
split into three parts and then grouped with the diagrams
based on the same color factor (Ⓓ, Ⓔ, and Ⓕ). By the
symbol “×” we mean, here and in the following, the
product of the corresponding amplitudes. All products
obtained by crossing, not shown, give the same result.
Moreover, all products of group of diagrams for which
CU ¼ CI ¼ CF ¼ 0 are omitted (the same is true for all the
following tables). Finally, the second columns in Tables I
and II give the unpolarized color factor, CU, while the color

factors CðfÞ
I , CðfÞ

F , and CIncðfÞ are given in the third, fourth,
and fifth columns, respectively. The color factors CðdÞ, not
shown, are identically zero.
Collecting together all contributions of Fig. 8, with the

appropriate color factors from Tables I and II, we find the
following expressions for the amplitudes squared:

jMIncðfÞ½1Sð8Þ0 �j2 ¼ ð4παsÞ3h0jOJ=ψ
8 ð1S0Þj0i

64ŝ t̂ðŝþ ûÞ2ðŝþ t̂Þ2ðûþ t̂Þ2M f5ðŝ − t̂Þðŝðûþ 2t̂Þ þ û t̂Þðŝ4

þ 2ŝ3ðûþ t̂Þ þ 3ŝ2ðûþ t̂Þ2 þ 2ŝðûþ t̂Þ3 þ ðû2 þ û t̂þt̂2Þ2Þg; ðA3Þ

jMIncðfÞ½3Sð8Þ1 �j2 ¼ −
ð4παsÞ3h0jOJ=ψ

8 ð3S1Þj0i
96ðŝþ ûÞ2ðŝþ t̂Þ2ðûþ t̂Þ2M3

fðŝ − t̂Þð17ŝ3ðt̂2 þ û t̂þû2Þ þ ŝ2ð26û3

þ 66û2 t̂þ 54ût̂2 þ 17t̂3Þ þ ŝ û t̂ð38û2 þ 66û t̂þ17t̂2Þ þ û2 t̂2ð26ûþ 17t̂ÞÞg; ðA4Þ

FIG. 9. Feynman diagrams for the gþ q → J=ψ þ q process.
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jMIncðfÞ½3P0ð8Þ�j2 ¼
ð4παsÞ3h0jOJ=ψ

8 ð3P0Þj0i
48ŝ t̂ðŝþ ûÞ4ðŝþ t̂Þ4ðûþ t̂Þ4M3

f5ðŝ − t̂Þð9ŝ9ðûþ t̂Þ2ðûþ 2t̂Þ þ 3ŝ8ðûþ t̂Þ2ð12û2

þ 39û t̂þ22t̂2Þ þ 2ŝ7ð36û5 þ 237û4t̂þ 556û3 t̂2 þ 607û2t̂3 þ 310ût̂4 þ 60t̂5Þ
þ 2ŝ6ð45û6 þ 369û5 t̂þ 1108û4t̂2 þ 1638û3t̂3 þ 1257û2 t̂4 þ 477ût̂5 þ 72t̂6Þ
þ 2ŝ5ð36û7 þ 366û6 t̂þ 1384û5t̂2 þ 2658û4t̂3 þ 2795û3 t̂4 þ 1604û2 t̂5 þ 477ût̂6 þ 60t̂7Þ
þ ŝ4ð36û8 þ 456û7t̂þ 2140û6 t̂2 þ 5174û5t̂3 þ 7092û4t̂4 þ 5590û3t̂5 þ 2514û2t̂6

þ 620ût̂7 þ 66t̂8Þ þ ŝ3ð9û9 þ 168û8t̂þ 1008û7 t̂2 þ 3004û6 t̂3 þ 5174û5 t̂4 þ 5316û4t̂5

þ 3276û3t̂6 þ 1214û2t̂7 þ 249ût̂8 þ 18t̂9Þ þ ŝ2û t̂ð27û8 þ 264û7t̂þ 1008û6 t̂2

þ 2140û5t̂3 þ 2768û4t̂4 þ 2216û3t̂5 þ 1112û2t̂6 þ 336ût̂7 þ 45t̂8Þ þ 3ŝû2t̂2ðû
þ t̂Þð9û6 þ 47û5t̂þ 105û4t̂2 þ 139û3t̂3 þ 107û2 t̂4 þ 51ût̂5 þ 12t̂6Þ
þ 9û3 t̂3ðûþ t̂Þ2ðû2 þ û t̂þt̂2Þ2Þg; ðA5Þ

jMIncðfÞ½3Pð8Þ
1 �j2 ¼ 5ð4παsÞ3h0jOJ=ψ

8 ð3P1Þj0i
24ðŝþ ûÞ4ðŝþ t̂Þ4ðûþ t̂Þ4M3

f2ŝ4û6ðŝþ ûÞ þ ŝt̂7ð2ŝþ ûÞðŝ2 þ ŝ ûþû2Þ − ŝ3û2t̂2ð3ŝ2

þ 3ŝ û−2û2Þðŝ2 þ 4ŝ ûþ2û2Þ þ ŝt̂6ð2ŝ4 þ 12ŝ3ûþ 19ŝ2û2 þ 15ŝû3 þ 4û4Þ þ ŝ3û3t̂ð−ŝ4
− 4ŝ3ûþ 2ŝ2û2 þ 8ŝû3 þ 2û4Þ − ŝ û t̂3ð3ŝ6 þ 19ŝ5ûþ 33ŝ4û2 þ 16ŝ3û3 þ 4ŝû5 þ 2û6Þ
þ t̂5ð−2ŝ6 þ 18ŝ4û2 þ 33ŝ3û3 þ 16ŝ2û4 − 2ŝû5 − 2û6Þ − 2t̂4ðŝ7 þ 6ŝ6ûþ 9ŝ5û2 − 8ŝ3û4

þ ŝ2û5 þ 4ŝû6 þ û7Þg; ðA6Þ

jMIncðfÞ½3Pð8Þ
2 �j2 ¼ ð4παsÞ3h0jOJ=ψ

8 ð3P2Þj0i
24ŝ t̂ðŝþ ûÞ4ðŝþ t̂Þ4ðûþ t̂Þ4M3

fðŝ − t̂Þð6ŝ9ðûþ t̂Þ2ðûþ 2t̂Þ þ 6ŝ8ðûþ t̂Þð4û3

þ 17û2t̂þ 20ût̂2 þ 9t̂3Þ þ ŝ7ð48û5 þ 288û4t̂þ 617û3 t̂2 þ 695û2t̂3 þ 431ût̂4 þ 114t̂5Þ
þ ŝ6ð60û6 þ 402û5t̂þ 968û4t̂2 þ 1326û3 t̂3 þ 1194û2 t̂4 þ 639ût̂5 þ 144t̂6Þ þ ŝ5ð48û7
þ 384û6 t̂þ 1052û5t̂2 þ 1602û4t̂3 þ 1759û3t̂4 þ 1396û2t̂5 þ 639ût̂6 þ 114t̂7Þ þ ŝ4ð24û8
þ 252û7 t̂þ 856û6 t̂2 þ 1484û5 t̂3 þ 1800û4 t̂4 þ 1759û3t̂5 þ 1194û2t̂6 þ 431ût̂7 þ 54t̂8Þ
þ ŝ3ð6û9 þ 102û8 t̂þ 486û7t̂2 þ 1066û6t̂3 þ 1484û5t̂4 þ 1602û4t̂5 þ 1326û3t̂6 þ 695û2t̂7

þ 174ût̂8 þ 12t̂9Þ þ ŝ2û t̂ð18û8 þ 156û7t̂þ 486û6t̂2 þ 856û5 t̂3 þ 1052û4t̂4 þ 968û3 t̂5

þ 617û2 t̂6 þ 222ût̂7 þ 30t̂8Þ þ 6ŝû2t̂2ðûþ t̂Þð3û6 þ 14û5 t̂þ 28û4 t̂2 þ 36û3t̂3 þ 31û2t̂4

þ 17ût̂5 þ 4t̂6Þ þ 6û3t̂3ðûþ t̂Þ2ðû2 þ û t̂þt̂2Þ2Þg: ðA7Þ

Assuming the validity of the common heavy-quark spin symmetry relations [32]

h0jOJ=ψ
8 ð3PJÞj0i ¼ ð2J þ 1Þh0jOJ=ψ

8 ð3P0Þj0i; ðA8Þ

the sum of the last three contributions simplifies a lot:

jMIncðfÞ½3Pð8Þ
½J� �j2 ¼

ð4παsÞ3h0jOJ=ψ
8 ð3P0Þj0i

16ŝ t̂ðŝþ ûÞ3ðŝþ t̂Þ3ðûþ t̂Þ3M3
f5ðŝ − t̂Þð7ŝ7ðûþ t̂Þðûþ 2t̂Þ þ ŝ6ð21û3 þ 91û2t̂þ 106ût̂2 þ 44û3Þ

þ ŝ5ð35û4 þ 175û3t̂þ 268û2t̂2 þ 212ût̂3 þ 68t̂4Þ þ ŝ4ð35û5 þ 213û4 t̂þ 398û3t̂2 þ 426û2 t̂3 þ 254ût̂4

þ 68t̂5Þ þ ŝ3ð21û6 þ 165û5t̂þ 394û4t̂2 þ 528û3t̂3 þ 426û2 t̂4 þ 212ût̂5 þ 44t̂6Þ þ ŝ2ð7û7 þ 75û6t̂

þ 236û5 t̂2 þ 394û4t̂3 þ 398û3 t̂4 þ 268û2 t̂5 þ 106ût̂6 þ 14t̂7Þ þ ŝ û t̂ð14û6 þ 75û5 t̂þ 165û4t̂2

þ 213û3 t̂3 þ 175û2t̂4 þ 91ût̂5 þ 21t̂6Þ þ 7û2 t̂2ðûþ t̂Þðû2 þ û t̂þt̂2Þ2Þg; ðA9Þ
where the symbol [J] means a sum over J ¼ 0, 1, 2.
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2. g+ q → J=ψ + q channel

The Feynman diagrams contributing to the gþ q →
J=ψ þ q channel are shown in Fig. 9, while the correspond-
ing color factors are collected in Table III (upper signs).
Here, as well as in Table IV, the label Ⓐ refers to the first

Feynman diagram,Ⓑ refers to the second,whileⒸ represents

the grouping of the third, fourth, and fifth diagrams in Fig. 9.

For the 1Sð8Þ0 and 3Pð8Þ
J states, the first, second, and third

Feynman diagrams in Fig. 9 do not contribute.
Collecting together all contributions of Fig. 9 with the

appropriate color factors from Table III, we find the
following expressions for the amplitudes squared:

jMIncðfÞ½1Sð8Þ0 �j2 ¼ −
5ð4παsÞ3
288M

h0jOJ=ψ
8 ð1S0Þj0i

ŝ2 þ û2

t̂ðt̂ −M2Þ2 ; ðA10Þ

jMIncðdÞ½1Sð8Þ0 �j2 ¼ −
3

5
jMIncðfÞ½1Sð8Þ0 �j2; ðA11Þ

jMIncðfÞ½3Sð8Þ1 �j2 ¼ −
ð4παsÞ3
432M3

h0jOJ=ψ
8 ð3S1Þj0i

ð10ŝ2 þ 2ŝ ûþû2Þðŝ2 þ 2ŝ t̂þû2 þ 2t̂ðûþ t̂ÞÞ
ŝ ûðŝþ ûÞ2 ; ðA12Þ

jMIncðdÞ½3Sð8Þ1 �j2 ¼ ð4παsÞ3
432M3

h0jOJ=ψ
8 ð3S1Þj0i

ð10ŝ2 þ 2ŝ û−17û2Þðŝ2 þ 2ŝ t̂þû2 þ 2t̂ðûþ t̂ÞÞ
ŝ ûðŝþ ûÞ2 ; ðA13Þ

jMIncðfÞ½3Pð8Þ
0 �j2 ¼ −

5ð4παsÞ3
216M3

h0jOJ=ψ
8 ð3P0Þj0i

ðt̂ − 3M2Þ2ðŝ2 þ û2Þ
t̂ðt̂ −M2Þ4 ; ðA14Þ

jMIncðdÞ½3Pð8Þ
0 �j2 ¼ −

3

5
jMIncðfÞ½3Pð8Þ

0 �j2; ðA15Þ

TABLE III. Color factors corresponding to the 3Sð8Þ1 , 1Sð8Þ0 , and 3Pð8Þ
J states for the gþ q → J=ψ þ q (upper signs)

and gþ q̄ → J=ψ þ q̄ (lower signs) channels.

State Diagram CU CðfÞ
I CðdÞ

I CðfÞ
F CðdÞ

F
CIncðfÞ CIncðdÞ

3Sð8Þ1
Ⓐ × Ⓐ N2−1

8N2 − N2−1
16N2 � N2−1

16N2

1
16

� 1
16

1
16N2 � 2N2−1

16N2

Ⓐ × Ⓑ − 1
8N2

1
16N2 ∓ 1

16N2 0 0 1
16N2 ∓ 1

16N2

Ⓐ × Ⓒ � 1
8

∓ 1
16

1
16

� 1
16

1
16

0 1
8

Ⓑ × Ⓑ N2−1
8N2

1
16N2 ∓ 1

16N2
1
16

∓ 1
16

N2þ1
16N2 ∓ N2þ1

16N2

Ⓑ × Ⓒ ∓ 1
8

0 0 ∓ 1
16

1
16

∓ 1
16

1
16

Ⓒ × Ⓒ 1
4

− 1
16

� 1
16

1
8

0 1
16

� 1
16

1Sð8Þ0 & 3Pð8Þ
J

Ⓒ × Ⓒ N2−4
4N2 − N2−4

16N2 � N2−12
16N2

N2−4
8N2

0 N2−4
16N2 � N2−12

16N2

TABLE IV. Color factors of 3Sð8Þ1 , 1Sð8Þ0 , and 3Pð8Þ
J states for the qþ g → J=ψ þ q (upper signs) and q̄þ g →

J=ψ þ q̄ (lower signs) channels.

State Diagram CU CI CF CInc

3Sð8Þ1
Ⓐ × Ⓐ N2−1

8N2
∓ 1

8
∓ 1

8ðN2−1Þ ∓ N2

8ðN2−1Þ
Ⓐ × Ⓑ − 1

8N2 � 1
8ðN2−1Þ ∓ 1

8ðN2−1Þ 0

Ⓐ × Ⓒ � 1
8 − N2

8ðN2−1Þ 0 − N2

8ðN2−1Þ
Ⓑ × Ⓑ N2−1

8N2
� 1

8ðN2−1Þ � 1
8 � N2

8ðN2−1Þ
Ⓑ × Ⓒ ∓ 1

8
0 − N2

8ðN2−1Þ − N2

8ðN2−1Þ
Ⓒ × Ⓒ 1

4 ∓ N2

8ðN2−1Þ � N2

8ðN2−1Þ 0

1Sð8Þ0 & 3Pð8Þ
J

Ⓒ × Ⓒ N2−4
4N2 ∓ N2−4

8ðN2−1Þ � N2−4
8ðN2−1Þ 0
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jMIncðfÞ½3Pð8Þ
1 �j2 ¼ −

5ð4παsÞ3
108M3

h0jOJ=ψ
8 ð3P1Þj0i

t̂ðŝ2 þ 4ŝ ûþû2Þ þ 4ŝ ûðŝþ ûÞ
ðŝþ ûÞ4 ; ðA16Þ

jMIncðdÞ½3Pð8Þ
1 �j2 ¼ −

3

5
jMIncðfÞ½3Pð8Þ

1 �j2; ðA17Þ

jMIncðfÞ½3Pð8Þ
2 �j2 ¼ −

ð4παsÞ3
108M3

h0jOJ=ψ
8 ð3P2Þj0i

×
t̂2ð7ŝ2 þ 12ŝ ûþ7û2Þ þ 12ûðŝ2 þ ŝ ûþû2Þðŝþ ûÞ þ 6ðŝ2 þ û2Þðŝþ ûÞ2

t̂ðŝþ ûÞ4 ; ðA18Þ

jMIncðdÞ½3Pð8Þ
2 �j2 ¼ −

3

5
jMIncðfÞ½3Pð8Þ

2 �j2: ðA19Þ

Once again, by applying the relation in Eq. (A8), we have

jMIncðfÞ½3Pð8Þ
½J� �j2 ¼

5ð4παsÞ3
72M3t̂ðŝþ ûÞ3 h0jO

J=ψ
8 ð3P0Þj0if−4t̂ð3ŝ2 þ 4ŝ ûþ3û2Þ − 7ðŝþ ûÞðŝ2 þ û2Þ − 8t̂2ðŝþ ûÞg; ðA20Þ

jMIncðdÞ½3Pð8Þ
½J� �j2 ¼ −

3

5

X
J

jMIncðfÞ½3Pð8Þ
½J� �j2: ðA21Þ

FIG. 10. Feynman diagrams for the qþ q̄ → J=ψ þ g process.

TABLE V. Color factors corresponding to the 3Sð8Þ1 , 1Sð8Þ0 , and 3Pð8Þ
J states for the qþ q̄ → J=ψ þ g (column qq̄,

upper signs) and q̄þ q → J=ψ þ g (column q̄q, lower signs) channels.

State qq̄ Diagram q̄q Diagram CU CI CF CInc

3Sð8Þ1
Ⓐ × Ⓐ Ⓐ × Ⓐ N2−1

4N
� 1

4N � N
8 � N2þ2

8N
Ⓐ × Ⓑ Ⓐ × Ⓒ ∓ N2−1

8N
− 1

8N
0 − 1

8N

Ⓐ × Ⓒ Ⓐ × Ⓑ � N2−1
8N

1
8N

N
8

N2þ1
8N

Ⓑ × Ⓑ Ⓒ × Ⓒ ðN2−1Þ2
8N3

∓ 1
8N3 ∓ 1

8N ∓ N2þ1
8N3

Ⓑ × Ⓒ Ⓑ × Ⓒ − N2−1
8N3 ∓ N2þ1

8N3
∓ 1

8N ∓ 2N2þ1
8N3

Ⓒ × Ⓒ Ⓑ × Ⓑ ðN2−1Þ2
8N3

∓ 1
8N3 � N2−1

8N � N2ðN2−1Þ−1
8N3

1Sð8Þ0 & 3Pð8Þ
J

Ⓐ × Ⓐ Ⓐ × Ⓐ ðN2−4ÞðN2−1Þ
4N3

� N2−4
4N3 � N2−4

8N � ðN2−4ÞðN2þ2Þ
8N3
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3. g+ q̄ → J=ψ + q̄ channel

The Feynman diagrams contributing to the gþ q̄ →
J=ψ þ q̄ channel can be obtained from those shown in
Fig. 9 just reversing the quark line, while the corresponding
color factors are collected in Table III (lower signs).
The resulting amplitudes squared are the following:

jMIncðfÞ½1Sð8Þ0 ; 3Sð8Þ1 ; 3Pð8Þ
J �j2gq̄

¼ MIncðfÞ½1Sð8Þ0 ; 3Sð8Þ1 ; 3Pð8Þ
J �j2gq;

jMIncðdÞ½1Sð8Þ0 ; 3Sð8Þ1 ; 3Pð8Þ
J �j2gq̄

¼ −MIncðdÞ½1Sð8Þ0 ; 3Sð8Þ1 ; 3Pð8Þ
J �j2gq: ðA22Þ

4. q+ g → J=ψ + q channel

The color factors for the qþ g → J=ψ þ q channel are
listed in Table IV (upper signs), and the corresponding
amplitudes squared are

jMInc½1Sð8Þ0 �j2 ¼ jMInc½3Pð8Þ
J �j2 ¼ 0; ðA23Þ

jMInc½3Sð8Þ1 �j2 ¼ −
3ð4παsÞ3
64M3

h0jOJ=ψ
8 ð3S1Þj0i

×
ðŝ − t̂Þðŝ2 þ 2ŝ ûþ2û2 þ 2û t̂þt̂2Þ

ŝ t̂ðŝþ t̂Þ :

ðA24Þ
5. q̄+ g → J=ψ + q̄ channel

The color factors for the q̄þ g → J=ψ þ q̄ channel are
listed in Table IV (lower signs), and the corresponding
amplitudes squared are:

jMInc½1Sð8Þ0 �j2 ¼ jMInc½3Pð8Þ
J �j2 ¼ 0; ðA25Þ

jMInc½3Sð8Þ1 �j2q̄g ¼ −jMInc½3Sð8Þ1 �j2qg: ðA26Þ

6. q+ q̄ → J=ψ + g channel

The Feynman diagrams contributing to the qþ q̄ →
J=ψ þ g channel are shown in Fig. 10, while the corre-
sponding color factors are collected in Table V (column qq̄
and upper signs). Here, the label Ⓐ represents the grouping
of the first, second, and third Feynman diagrams; Ⓑ refers
to the fourth diagram, while Ⓒ refers to the fifth diagram in

Fig. 10. For 1Sð8Þ0 and 3Pð8Þ
J states, the third, fourth, and fifth

diagrams in Fig. 10 do not contribute.
The resulting amplitudes squared are

jMInc½1Sð8Þ0 �j2qq̄ ¼
55ð4παsÞ3
432M

h0jOJ=ψ
8 ð1S0Þj0i

û2 þ t̂2

ŝðŝ −M2Þ2 ;

ðA27Þ

jMInc½3Sð8Þ1 �j2qq̄
¼ ð4παsÞ3

648M3
h0jOJ=ψ

8 ð3S1Þj0i

×
ð71û2 − 38û t̂−10t̂2Þð2ŝ2 þ 2ŝðûþ t̂Þ þ û2 þ t̂2Þ

û t̂ðûþ t̂Þ2 ;

ðA28Þ

jMInc½3Pð8Þ
0 �j2qq̄ ¼

55ð4παsÞ3
324M3

h0jOJ=ψ
8 ð3P0Þj0i

×
ðŝ − 3M2Þ2ðû2 þ t̂2Þ

ŝðŝ −M2Þ4 ; ðA29Þ

FIG. 11. Feynman diagrams for the gþ g → J=ψ process.

TABLE VI. Color factors of 1Sð8Þ0 and 3Pð8Þ
J states for the gþ

g → J=ψ channel.

CU CðfÞ
I CðfÞ

F
CIncðfÞ

N2−4
2NðN2−1Þ − N2−4

4NðN2−1Þ
N2−4

4NðN2−1Þ 0
FIG. 12. Feynman diagram for the qþ q̄ → J=ψ process.
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jMInc½3Pð8Þ
1 �j2qq̄ ¼

55ð4παsÞ3
162M3

h0jOJ=ψ
8 ð3P1Þj0i

×
4û t̂ M2 þ ŝðû2 þ t̂2Þ

ðŝ −M2Þ4 ; ðA30Þ

jMInc½3Pð8Þ
2 �j2qq̄ ¼

11ð4παsÞ3
162M3

h0jOJ=ψ
8 ð3P2Þj0i

×
ð6M4 þ ŝ2Þðû2 þ t̂2Þ þ 12M2ŝ û t̂

ŝðM2 − ŝÞ4 :

ðA31Þ

By using Eq. (A8), we can sum the last three terms as

jMInc½3Pð8Þ
½J� �j2qq̄

¼ 55ð4παsÞ3
108M3

h0jOJ=ψ
8 ð3P0Þj0i

×
ð7M4 þ 3ŝ2Þðû2 þ t̂2Þ − 2M2ŝðû2 − 8û t̂þt̂2Þ

ŝðM2 − ŝÞ4 :

ðA32Þ
7. q̄+ q → J=ψ + g channel

The color factors for the q̄þ q → J=ψ þ g channel are
listed in Table V (column q̄q and lower signs), and the
corresponding amplitudes squared are

jMInc½1Sð8Þ0 ; 3Sð8Þ1 ; 3Pð8Þ
J �j2q̄q ¼ −jMInc½1Sð8Þ0 ; 3Sð8Þ1 ; 3Pð8Þ

J �j2qq̄:
ðA33Þ

8. g+ g → J=ψ channel

The Feynman diagrams for the gþ g → J=ψ process are
shown in Fig. 11, while in Table VI we give the color

factors for the sum of them. The amplitude for the 3Sð8Þ1 state
is identically zero.
The other amplitudes squared, adopting the correspond-

ing color factors, are

jMIncðf;dÞ½1Sð8Þ0 �j2 ¼ jMIncðf;dÞ½3Sð1;8Þ1 �j2

¼ jMIncðf;dÞ½3Pð8Þ
J �j2 ¼ 0: ðA34Þ

9. q+ q̄ → J=ψ and q̄+ q → J=ψ channels

The Feynman diagram for the qðq̄Þ þ q̄ðqÞ → J=ψ
channel is shown in Fig. 12, while in Table VII we give
the corresponding color factors: qq̄ (upper signs) and q̄q

(lower signs). Here, only the 3Sð8Þ1 state contributes.
The amplitudes squared are

jMInc½3Sð8Þ1 �j2qq̄ ¼
5ð4παsÞ2
108M

h0jOJ=ψ
8 ð3S1Þj0i; ðA35Þ

jMInc½3Sð8Þ1 �j2q̄q ¼ −jMInc½3Sð8Þ1 �j2qq̄: ðA36Þ

10. Long Distance Matrix Elements

In Table VIII, we collect the values of the LDMEs
adopted in the present study:
where we have used mc ¼ M=2.
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