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We present two-loop results for the quark condensate in an external magnetic field within chiral
perturbation theory using coordinate-space techniques. At finite temperature, we explore the impact of the
magnetic field on the pion-pion interaction in the quark condensate for arbitrary pion masses and derive the
correct weak magnetic field expansion in the chiral limit. At zero temperature, we provide the complete
two-loop representation for the vacuum energy density and the quark condensate.
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I. INTRODUCTION

The quark condensate—order parameter of spontaneous
chiral symmetry breaking—is a crucial quantity in particle
physics. It comes with no surprise that the relevant
literature is extensive. Here we focus on the properties
of the quark condensate in an external constant magnetic
field. Our calculation within the framework of chiral
perturbation theory (CHPT) goes up to two-loop order,
but in contrast to the available CHPT studies—see
Refs. [1–10]—we use a novel representation for the
kinematical functions that we established in Ref. [11].
Other references, also dealing with the quark condensate in
a magnetic field, are based upon lattice QCD [12–21],
feature analytical studies relying on the Nambu-Jona-
Lasinio model [22–29], or comprise yet other models
and methods [30–37].
In a recent article [11], the present author has pointed

out that—in the chiral limit—the two published one-loop
series for the finite-temperature quark condensate in
a weak magnetic field, independently derived by different
authors, are erroneous. The proper series at one-loop order
has been established in Ref. [11]—one of our goals in
the actual study is to review the situation at two-loop
order. Indeed, errors also occur here. We clarify the
situation by providing the correct weak magnetic field
expansion of the finite-temperature quark condensate
in the chiral limit. One of the advantages of our coordi-
nate-space approach is that it allows for a transparent

derivation of the various limits that have to be taken in the
calculation: chiral limit (Mπ → 0) and weak magnetic field
limit (jqHj ≪ T2).1

Apart from straightening these issues, we also investigate
the impact of the magnetic field on the pion-pion inter-
action in the quark condensate for arbitrary pion masses. At
finite temperature, the interaction constitutes up to 10% as
compared to the leading noninteracting pion gas contribu-
tion and is most pronounced in the chiral limit. When the
magnetic field increases, the finite-temperature quark con-
densate (sum of one- and two-loop contributions at fixed
temperature and pion mass) grows monotonically. The
effect is again most pronounced in the chiral limit.
Using the dressed pions as pertinent degrees of freedom,

the low-temperature series of the quark condensate is
characterized by a T2 contribution that refers to the dressed
but noninteracting pions, while interaction effects emerge at
order T4. In the chiral limit and in weak magnetic fields, the
series at order T2—organized by the expansion parameter
ϵ ¼ jqHj=T2 (q is the electric charge of the pion)—involves
a leading square-root term∝

ffiffiffi
ϵ

p
, a term linear in ϵ, followed

by a half-integer power ϵ3=2 and a logarithmic contribution
ϵ2 ln ϵ. The remaining contributions involve even powers of
ϵ. At order T4 the series exhibits the same structure, with the
exception that a term linear in ϵ is absent—in contrast to
what has been reported in the literature.
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1It should be noted that there are three different scales in play:
pion mass, magnetic field strength and temperature. The chiral
limit corresponds to taking the limitMπ → 0 at fixed temperature.
Accordingly, the theory in the chiral limit is then characterized by
only two scales: magnetic field strength ðjqHjÞ and T. In this
situation we can then take another limit—jqHj ≪ T2—that we
call “weak magnetic field limit,” where “weak” means magnetic
field strength small with respect to temperature. This latter limit
thus always refers to the situation where the chiral limit at fixed
temperature has been taken first.
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Finally, we provide the two-loop representation for the
QCDvacuum energy density and the zero-temperature quark
condensate. The representation involves nonanalytic contri-
butions in the form of logarithms, as well as Gamma and
polygamma functions that depend nontrivially on the ratio
betweenmagnetic field and pionmass. In contrast to previous
studies we provide the full two-loop representation—not
merely the terms that are induced by the nonzero magnetic
field.
The article is organized as follows. The two-loop CHPT

evaluation is briefly reviewed in Sec. II to set the basis for
the subsequent analysis. In Sec. III we explore the quark
condensate at finite and zero temperature for arbitrary pion
masses—in particular also for the physical pion masses—in
the presence of a magnetic field. In the same section we
furthermore compare our findings with the literature and
point out errors in the published results. Finally, Sec. IV
contains our conclusions. More technical issues are pre-
sented in three Appendixes. In Appendix A we discuss in
detail the two-loop CHPT evaluation at zero temperature.
While Appendix B is devoted to the chiral limit in nonzero
magnetic fields at T ¼ 0, in Appendix C we consider the
same situation at finite temperature which boils down to an
analysis of the various kinematical functions required.

II. CHIRAL PERTURBATION
THEORY EVALUATION

The relevant low-energy excitations in two-flavor chiral
perturbation theory2 are the three pions that are incorpo-
rated in the SU(2) matrix UðxÞ as

UðxÞ ¼ expðiτiπiðxÞ=FÞ; i ¼ 1; 2; 3: ð2:1Þ
Here τi are the Pauli matrices and F stands for the tree-level
pion decay constant. While π0 describes the neutral pion,3

the charged pions correspond to the linear combinations

π� ¼ 1ffiffiffi
2

p ðπ1 � iπ2Þ: ð2:2Þ

The Euclidean leading-order (orderp2) effective Lagrangian
is given by

L2
eff ¼

1

4
F2Tr½ðDμUÞ†ðDμUÞ −M2ðU þ U†Þ�; ð2:3Þ

whereM is the tree-level pionmass. The covariant derivative
is defined as [see Eq. (4.58) in Ref. [39] ]4

DμU ¼ ∂μU − irμU þ iUlμ: ð2:4Þ
In two-flavorQCD the external electromagnetic field appears
in the left- and right-handed currents as [see Eq. (2.111) in
Ref. [39] ]

rμ ¼ lμ ¼ −
e
2
τ3AEM

μ : ð2:5Þ

The quantity e is the electric charge, while themagnetic field
H enters via the gauge field

AEM
μ ¼ ð0; 0; Hx1; 0Þ: ð2:6Þ

As illustrated in Fig. 1, a two-loop calculation of the free
energydensity in addition involves the subleadingpiecesL4

eff
and L6

eff of the effective Lagrangian.
The set of terms proportional to four pion fields

generated by the leading piece L2
eff—as required for the

evaluation of the two-loop diagram 6A—are

L2
f4g ¼

1

3F2
π0∂μπ

0ð∂μπ
þπ−þ∂μπ

−πþÞ

−
1

3F2
∂μπ

0∂μπ
0πþπ− −

1

3F2
π0π0∂μπ

þ∂μπ
−

−
1

3F2
πþπ−∂μπ

þ∂μπ
−

þ 1

6F2
ð∂μπ

þπ−∂μπ
þπ−þ∂μπ

−πþ∂μπ
−πþÞ: ð2:7Þ

Other pieces from L2
eff needed for our calculation are terms

with two (diagram 4A) or zero (diagram 2) pion fields,

L2
f2g ¼

1

2
∂μπ

0∂μπ
0 þ ∂μπ

þ∂μπ
− þ 1

2
M2π0π0 þM2πþπ−;

L2
f0g ¼ −F2M2: ð2:8Þ

As for the subleading piece L4
eff , we use the representa-

tion given in Eq. (D.2) of Ref. [39]. The relevant terms for
our calculation are those that contain two (diagram 6B) or
zero (diagram 4B) pion fields:

L4
f2g ¼ l3

M4

F2
π0π0þ2l3

M4

F2
πþπ−þð4l5−2l6Þ

jqHj2
F2

πþπ−;

L4
f0g ¼−ðl3þh1ÞM4þ4h2jqHj2: ð2:9Þ

The quantities l3, l5, l6, h1, and h2 are next-to-leading-order
(NLO) low-energy effective constants.
Finally, following Ref. [41], the terms from L6

eff con-
tributing to the tree-level diagram 6C read

L6
f0g ¼ −16ðc10 þ 2c11ÞM6 − 8c34M2jqHj2; ð2:10Þ

where c10, c11, and c34 are next-to-next-to-leading-order
(NNLO) low-energy effective constants.

2For reviewsof chiral perturbation theory see, e.g., Refs. [38,39].
3Although the Paulimatrix associatedwith the neutral pion is τ3,

wewill denote the neutral pion field as π0 in view of its zero charge.
4In Refs. [11,40] the covariant derivative was not displayed

correctly. The error concerns Eq. (3.4) in Ref. [11] and Eq. (2.3) in
Ref. [40].We emphasize that all derivations involving the covariant
derivative in Refs. [11,40] were based on the correct expression
Eq. (2.4) displayedhere—no further corrections ormodifications in
any previous articles of the present author are necessary.
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As we show in Appendix A 1, all effective low-energy
constants become singular in the physical limit d → 4, and
the divergence is contained in the parameter λ:

λ ¼ 1

2
ð4πÞ−d=2Γ

�
1 −

1

2
d

�
μd−4

¼ μd−4

16π2

�
1

d − 4
−
1

2
fln 4π þ Γ0ð1Þ þ 1g þOðd − 4Þ

�
;

ð2:11Þ

where μ is the scale of dimensional regularization. While
the NLO effective constants l3, l5, l6, h1, and h2 and the
NNLO effective constant c34 are linear in λ [see Eqs. (A3)
and (A11)], the NNLO effective constants c10 and c11 in
addition involve divergences quadratic in λ [see Eq. (A18)].
These ultraviolet divergences exactly cancel the λ diver-
gences that also emerge in the zero-temperature propaga-
tors Δ�ð0Þ and Δ0ð0Þ—Eq. (A27)—which constitute the
T ¼ 0 piece in the thermal propagators according to
Eq. (A26). As a consequence, the sum of all contributions
in the two-loop free energy density is finite. While the
renormalization procedure for the T ¼ 0 case is outlined in
detail in Appendix A 2, the renormalization of the finite-
temperature piece in the free energy density is discussed at
length in Appendix A of Ref. [40].
It is convenient to divide the free energy density into two

pieces as

z ¼ z0 þ zT; ð2:12Þ

where z0 contains all T ¼ 0 contributions (vacuum energy
density) and zT involves the finite-temperature part—both
terms depend on the magnetic field. Before addressing the
T ¼ 0 case, we quote the result for the finite-temperature
piece which has been derived within the CHPT coordinate-
space approach up to two-loop order in Ref. [40]:

zT ¼ −g0ðM�
π ;T;0Þ−

1

2
g0ðM0

π;T;0Þ− g̃0ðM�
π ;T;HÞ

þ M2
π

2F2
g1ðM�

π ;T;0Þg1ðM0
π;T;0Þ−

M2
π

8F2
fg1ðM0

π;T;0Þg2

þ M2
π

2F2
g1ðM0

π;T;0Þg̃1ðM�
π ;T;HÞþOðp8Þ: ð2:13Þ

The kinematical Bose functions are defined as5

g0ðM;T;0Þ¼T4

Z
∞

0

dρρ−3 exp

�
−

M2

4πT2
ρ

��
S

�
1

ρ

�
−1

�
;

g1ðM;T;0Þ¼T2

4π

Z
∞

0

dρρ−2 exp

�
−

M2

4πT2
ρ

��
S

�
1

ρ

�
−1

�
;

g̃0ðM�
π ;T;HÞ¼T2

4π
jqHj

Z
∞

0

dρρ−2

×

�
1

sinhðjqHjρ=4πT2Þ−
4πT2

jqHjρ
�

×exp

�
−
ðM�

π Þ2
4πT2

ρ

��
S

�
1

ρ

�
−1

�
;

g̃1ðM�
π ;T;HÞ¼ 1

16π2
jqHj

Z
∞

0

dρρ−1

×

�
1

sinhðjqHjρ=4πT2Þ−
4πT2

jqHjρ
�

×exp

�
−
ðM�

π Þ2
4πT2

ρ

��
S

�
1

ρ

�
−1

�
; ð2:14Þ

and SðzÞ stands for the Jacobi theta function:

SðzÞ ¼
X∞
n¼−∞

expð−πn2zÞ: ð2:15Þ

Note that g̃0 and g̃1 explicitly depend on the magnetic field
through the hyperbolic sine and that they involve the mass
M�

π , i.e., the masses of the charged pions in a magnetic field
given by

ðM�
π Þ2 ¼ M2

π þ
l̄6 − l̄5
48π2

jqHj2
F2

: ð2:16Þ

The mass M in g0 and g1, according to Eq. (2.13), can
either represent M�

π or M0
π, where the latter is the mass of

the neutral pion in a magnetic field,

FIG. 1. Chiral perturbation theory diagrams for the QCD free energy density up to order p6. Vertices from L2
eff (filled circles), as well

as vertices from L4
eff and L

6
eff (denoted by the numbers 4 and 6, respectively) contribute. The lines refer to the thermal pion propagators.

5The advantage of the novel kinematical functions g̃0 and g̃1 is
that in the chiral limit they allow for a clear-cut expansion in
terms of the parameter jqHj=T2; i.e., they provide the basis for a
transparent analysis of the quark condensate in the weak magnetic
field limit, where other authors have failed (see Refs. [3–5,9,10]).
The explicit construction of these functions can be found in
Ref. [11]—see Eqs. (3.14)–(3.19).
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ðM0
πÞ2 ¼ M2

π þ
M2

F2
K1; ð2:17Þ

and K1 denotes the integral

K1 ¼
jqHj
16π2

Z
∞

0

dρρ−1 exp

�
−

M2
π

jqHj ρ
��

1

sinhðρÞ −
1

ρ

�
:

ð2:18Þ

The kinematical functions g0 and g1 hence implicitly
depend on the magnetic field through the neutral and
charged pion masses. Finally, the mass Mπ is the renor-
malized NLO pion mass in zero magnetic field:

M2
π ¼ M2 −

l̄3
32π2

M4

F2
þOðM6Þ: ð2:19Þ

The quantities l̄3, l̄5, and l̄6 are renormalized NLO
low-energy effective constants—details are provided in
Appendix A 1.
We now address the zero-temperature part in the free

energy density.6 Apart from the temperature-independent
tree-level graphs 2, 4B and 6C, we also have T ¼ 0
contributions from the loop graphs. This is because the
thermal propagators for the pions,

G�ðxÞ ¼
X∞
n¼−∞

Δ�ðx⃗; x4 þ nβÞ;

G0ðxÞ ¼
X∞
n¼−∞

Δ0ðx⃗; x4 þ nβÞ; β ¼ 1

T
; ð2:20Þ

contain a zero-temperature piece associated with n ¼ 0.
In Appendix A 2 we process these T ¼ 0 contributions and
show that all UV divergences cancel. The final result for the
renormalized vacuum energy density at order p6 then
amounts to

z½6�0 ¼ 3l̄3ðc̄10 þ 2c̄11Þ
1024π4

M6

F2
−
ðl̄6 − l̄5Þc̄34

768π4
jqHj2M2

F2

−
l̄3

32π2
M4

F2
K1 þ

ðl̄6 − l̄5Þ
48π2

jqHj2
F2

K1: ð2:21Þ

The quantities l̄i and c̄i are the renormalized NLO
and NNLO effective constants, respectively, defined in
Appendix A 1.
The full vacuum energy density also includes the zero-

temperature pieces of order p4 and p2:

z0 ¼ z½6�0 þ z½4�0 þ z½2�0 ; ð2:22Þ

which are (see Ref. [11] for z½4�0 )

z½4�0 ¼ M4

64π2

�
l̄3−4h̄1−

3

2

�
þjqHj2

96π2
ðh̄2−1Þ

−
jqHj2
16π2

Z
∞

0

dρρ−2
�

1

sinhðρÞ−
1

ρ
þρ

6

�
exp

�
−

M2

jqHjρ
�
;

z½2�0 ¼−F2M2: ð2:23Þ

The subleading contributions z½4�0 and z½6�0 as displayed
above, i.e., the renormalized expressions, are independent
of the renormalization scale μ. This is a nontrivial con-
sistency check of our calculation. We now turn to the
quark condensate which is the main subject of the present
investigation.

III. QUARK CONDENSATE IN
A MAGNETIC FIELD

The quark condensate is given by the derivative of the
free energy density with respect to the quark mass7

hq̄qi ¼ dz
dmq

: ð3:1Þ

At zero temperature it corresponds to the vacuum expect-
ation value

h0jq̄qj0i ¼ dz0
dmq

¼ −
h0jq̄qj0i0

F2

dz0
dM2

: ð3:2Þ

Note that we have used the leading-order Gell-Mann–
Oakes–Renner relation

M2 ¼ −
mq

F2
h0jq̄qj0i0; ð3:3Þ

where the quantity h0jq̄qj0i0 is the quark condensate atT¼0
(and zero magnetic field) in the chiral limit—as indicated by
the lower index “0.” The purely finite-temperature part in the
quark condensate amounts to

hq̄qiT ¼ −
dP
dmq

¼ h0jq̄qj0i0
F2

dP
dM2

: ð3:4Þ

Up to the sign, the pressure is nothing but the finite-
temperature piece in the free energy density,

P ¼ −zT: ð3:5Þ
6To the best of our knowledge, the complete CHPT two-loop

representation for the QCD vacuum energy density—containing
magnetic-field-dependent as well as H-independent terms—is
not available in the literature.

7Throughout the study we work in the isospin limit mq ¼
mu ¼ md.
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In the representation of zT [Eq. (2.13)], we have used the
NLO renormalized pion mass Mπ instead of M. The
connection between the two quantities is given by Eq. (2.19):

M2
π ¼ M2 −

l̄3
32π2

M4

F2
þOðM6Þ:

For the quark condensate we then obtain

hq̄qi¼h0jq̄qj0i0
F2

�
−

dz0
dM2

π
þ dP
dM2

π

��
1−

M2
π

32π2F2
ð2l̄3−1Þ

�
:

ð3:6Þ

Note that the large parenthesis corresponds to the correction
dM2

π=dM2. In particular, the “1” in the small parenthesis
(2l̄3 − 1) appears because the NLO constant l̄3 depends on
the pion mass as (see Ref. [42])

dl̄i
dM2

¼ −
1

M2
: ð3:7Þ

After these manipulations, in the large parenthesis we can
then replaceM2 byM2

π which is legitimate at the orderwe are
operating.
It should be pointed out that the zero-temperature quark

condensate at order p4, according to Eq. (2.23), involves
the NLO effective constant h̄1 which depends on the
renormalization convention (see Ref. [42]). No such

ambiguities due to NLO effective constants h̄i are intro-
duced in the zero-temperature quark condensate at
order p6, according to Eq. (2.21). Likewise, the finite-
temperature part of the quark condensate is also free of such
renormalization ambiguities.

A. Finite-temperature quark condensate

In order to make powers of temperature in the quark
condensate manifest, instead of operating with the Bose
functions gr and g̃r, we now work with the dimensionless
functions hr and h̃r defined as

h0 ¼
g0
T4

; h̃0 ¼
g̃0
T4

; h1 ¼
g1
T2

;

h̃1 ¼
g̃1
T2

; h2 ¼ g2; h̃2 ¼ g̃2: ð3:8Þ

With the expression for zT [Eq. (2.13)], the finite-temper-
ature part of the quark condensate takes the form

hq̄qiT
h0jq̄qj0i0

�
1 −

M2
π

32π2F2
ð2l̄3 − 1Þ

�−1

¼ −
�
q1
F2

T2 þ q2
F4

T4 þOðT6Þ
�
: ð3:9Þ

The respective coefficients

q1 ¼ h1ðM�
π ; T; 0Þ þ

1

2
a0h1ðM0

π; T; 0Þ þ h̃1ðM�
π ; T;HÞ;

q2 ¼ þ 1

2
h1ðM�

π ; T; 0Þh1ðM0
π; T; 0Þ þ

1

2
h1ðM0

π; T; 0Þh̃1ðM�
π ; T;HÞ

−
1

8
h1ðM0

π; T; 0Þh1ðM0
π; T; 0Þ −

1

2

m2

t2
h1ðM0

π; T; 0Þh2ðM�
π ; T; 0Þ

−
1

2
a0

m2

t2
h1ðM�

π ; T; 0Þh2ðM0
π; T; 0Þ −

1

2
a0

m2

t2
h̃1ðM�

π ; T;HÞh2ðM0
π; T; 0Þ

þ 1

4
a0

m2

t2
h1ðM0

π; T; 0Þh2ðM0
π; T; 0Þ −

1

2

m2

t2
h1ðM0

π; T; 0Þh̃2ðM�
π ; T;HÞ ð3:10Þ

depend in a nontrivial way on the ratios between temper-
ature, pion masses and magnetic field. Instead of the
three dimensionful quantities T, Mπ and jqHj, we now
use the dimensionless parameters t, m, and mH defined,
respectively, as

t ¼ T
4πF

; m ¼ Mπ

4πF
; mH ¼

ffiffiffiffiffiffiffiffiffiffijqHjp
4πF

: ð3:11Þ

The NLO mass correction a0 in the coefficient q2 of
Eq. (3.10) is

a0 ¼
dðM0

πÞ2
dM2

π
¼ 1þ K1

F2
þM2

π

F2

dK1

dM2
π
; ð3:12Þ

with the integral dK1=dM2
π given by

dK1

dM2
π
¼ −

1

16π2

Z
∞

0

dρ exp

�
−

M2
π

jqHj ρ
��

1

sinhðρÞ −
1

ρ

�
:

ð3:13Þ

The coefficient q1 refers to the free pion gas contribution of
order T2, while the coefficient q2 captures the pion-pion
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interaction that emerges at order T4 in the finite-
temperature quark condensate.
To assess the magnitude of the interaction, in Fig. 2, we

plot the dimensionless ratio

ξqðt; m;mHÞ ¼
q2T2

q1F2
ð3:14Þ

that measures the effect of the pion-pion interaction in the
quark condensate relative to the free pion gas contribution.
The dimensionless quantities t, m, and mH—defined in
Eq. (3.11)—capture, respectively, the temperature, pion
mass, and strength of the magnetic field relative to the
chiral symmetry-breaking scale Λχ ≈ 4πF ≈ 1 GeV. The
quantities t, m, and mH must be small since chiral
perturbation theory is a low-energy effective theory.
In Fig. 2 we have chosen T ¼ 108 MeV and T ¼

215 MeV (or t ¼ f0.1; 0.2g) as well as m;mH ≤ 0.4.
One observes that the interaction is largest in the chiral
limit (m → 0). At lower temperatures, such as T ¼
108 MeV, the interaction correction may be positive (when
the magnetic field is weak) or negative (when the magnetic
field is stronger). At more elevated temperatures, such as
T ¼ 215 MeV, the interaction correction in the parameter
domain m;mH ≤ 0.4 is strictly positive and largest when
the magnetic field is turned off. Notice that the effect of the
interaction is not tiny—rather it may constitute up to about
13% relative to the leading free pion gas contribution.
In Fig. 3, we depict the sum of one- and two-loop

contributions, i.e., the dimensionless quantity

−
�
q1 þ q2

T2

F2

�
; ð3:15Þ

for the same two temperatures T ¼ f108 MeV; 215 MeVg,
or t ¼ f0.1; 0.2g. As the plots indicate—at fixed Mπ

and temperature—the finite-temperature quark condensate

increases when the magnetic field grows. The effect is most
pronounced in the chiral limit (m → 0).
Let us examine the real world, where the pion

masses are fixed at their physical values Mπ ¼ 140 MeV
(m ¼ 0.130).8 In Fig. 4, on the lhs, we plot the ratio ξq as a
function of temperature and magnetic field strength. The
effect of the pion-pion interaction is less than 10%
in the parameter range t; mH ≤ 0.25 (T ≤ 269 MeV,ffiffiffiffiffiffiffiffiffiffijqHjp

≤ 269 MeV) we are considering. Finally, on the
rhs of Fig. 4, we depict the sum of one- and two-loop
contributions in the quark condensate for the same para-
meter domain. One observes that the finite-temperature
quark condensate slightly increases when the strength of
the magnetic field grows while temperature is held con-
stant. This effect however is small.
In the chiral limit, the finite-temperature quark conden-

sate reduces to

hq̄qiT
h0jq̄qj0i0

¼ −
T2

F2

�
1

24
þ h1ðMH;T; 0Þ

−
�jqHj ln2
32π2F2

�
h1ð0; T;0Þ þ h̃1ðMH;T;HÞ

�

þ T4

24F4

�
1

48
− h1ðMH;T; 0Þ− h̃1ðMH;T;HÞ

�

þOðT6Þ: ð3:16Þ

The mass MH depends on the magnetic field,

M2
H ¼ l̄6 − l̄5

48π2
jqHj2
F2

; ð3:17Þ

FIG. 2. Magnitude and sign of the pion-pion interaction in the finite-temperature quark condensate measured by ξqðt; m;mHÞ—
Eq. (3.14)—referring to the temperatures T ¼ 108 MeV (left) and T ¼ 215 MeV (right).

8For the tree-level pion decay constant we use the value
F ¼ 85.6 MeV reported in Ref. [43]. Note that in the isospin
limit—and in zero magnetic field—the masses of the neutral and
the charged pions are identical.
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and corresponds to the charged pion mass in the chiral
limit. The mass of the neutral pion, on the other hand, tends
to zero in the chiral limit.9

We now address the question of how the quark
condensate in the chiral limit behaves in weak magnetic
fields. In this limit—implemented by jqHj ≪ T2—we
have to expand the kinematical functions h1ðMH; T; 0Þ
and h̃1ðMH; T;HÞ in Eq. (3.16) in the magnetic-field-
dependent mass MH, which leads to

h1ðMH; T; 0Þ ¼ h1ð0; T; 0Þ − αϵ2h2ð0; T; 0Þ

þ α2ϵ4

2!
h3ð0; T; 0Þ þOðϵ2Þ;

h̃1ðMH; T;HÞ ¼ h̃1ð0; T;HÞ − αϵ2h̃2ð0; T;HÞ

þ α2ϵ4

2!
h̃3ð0; T;HÞ þOðϵ2Þ; ð3:18Þ

with

α ¼ l̄6 − l̄5
3

t2; t ¼ T
4πF

: ð3:19Þ

FIG. 4. Left: Magnitude and sign of the pion-pion interaction in the finite-temperature QCD quark condensate measured by
ξqðt; m;mHÞ at the physical value Mπ ¼ 140 MeV. Right: Sum of one- and two-loop contributions of the finite-temperature quark
condensate at the physical value Mπ .

FIG. 3. Finite-temperature quark condensate: Sum of one- and two-loop contributions at T ¼ 108 MeV (left) and T ¼ 215 MeV
(right).

9See Eqs. (2.16) and (2.17).
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The structure of this infinite series of kinematical functions
is analyzed in Appendix C. While the functions h1ð0; T; 0Þ
and h̃1ð0; T;HÞ are well defined, it should be pointed out
that for r ¼ 2; 3; 4;…, the functions hrð0; T; 0Þ and
h̃rð0; T;HÞ generate various types of divergences in the
weak magnetic field expansion parameter ϵ. The notation
h2ð0; T; 0Þ, h̃2ð0; T;HÞ, h3ð0; T; 0Þ, h̃3ð0; T;HÞ;… is
therefore symbolic: it is understood that these functions
contain inverse powers of ϵ as well as logarithms ln ϵ.
These pieces—according to Eq. (3.18)—are then multi-
plied by even powers of ϵ, in such a way that all
divergences ultimately disappear in the quark condensate,
as we show in Appendix C. In the expansion Eq. (3.18) we
then keep all terms up to order ϵ2 ln ϵ but drop higher-order
contributions as we indicate by Oðϵ2Þ.
The outcome is the following series for the finite-

temperature two-loop quark condensate in the chiral limit
and in weak magnetic fields:

hq̄qiT
h0jq̄qj0i0

¼ −
1

8F2
T2 þ 1

F2

�jI1=2j
8π3=2

ffiffiffi
ϵ

p
−

ln2
16π2

ϵ

−
ffiffiffi
2

p
− 4

8
γζ

�
3

2

�
ϵ3=2 þ γ

4π
ϵ2 ln ϵþOðϵ2Þ

�
T2

−
1

384F4
T4 þ 1

F4

� jI1=2j
192π3=2

ffiffiffi
ϵ

p

−
ffiffiffi
2

p
− 4

192
γζ

�
3

2

�
ϵ3=2 þ γ

96π
ϵ2 ln ϵþOðϵ2Þ

�
T4

þOðT6Þ: ð3:20Þ

Recall that ϵ,

ϵ ¼ jqHj
T2

; ð3:21Þ

is the relevant expansion parameter, while the other
quantities are

I1=2 ¼
Z

∞

0

dρρ−1=2
�

1

sinhðρÞ −
1

ρ

�
≈ −1.516256;

γ ¼ l̄6 − l̄5
12π

t2; t ¼ T
4πF

: ð3:22Þ

The first two lines of Eq. (3.20) refer to one-loop order
(∝T2), while the remaining two lines represent two-loop
corrections (∝T4). In the chiral limit, the series for the
finite-temperature quark condensate in weak magnetic
fields is thus characterized by square-root terms ∝

ffiffiffi
ϵ

p
, a

term linear in ϵ, followed by half-integer powers ϵ3=2 and
logarithmic contributions of the form ϵ2 ln ϵ. The remaining
contributions involve even powers of ϵ. Notice that the
leading corrections—proportional to

ffiffiffi
ϵ

p
—come with a

positive sign: in the chiral limit, as already illustrated by

Fig. 3, the finite-temperature quark condensate grows if the
magnetic field is switched on.
The published results in Refs. [3–5,8–10] do not quite

agree with the above representation. The correct series at
one-loop order has been derived and discussed in Ref. [11].
The two-loop contribution in nonzero magnetic fields,
displayed in the second brace of Eq. (3.20), again differs
from the published two-loop result, Eq. (5.8) of Ref. [10]:
the term

5
ffiffiffiffiffiffiffiffiffiffijqHjp

T3

1536πF4
ð3:23Þ

in Eq. (5.8) of Ref. [10] should rather read

ffiffiffiffiffiffiffiffiffiffijqHjp
T3

192π3=2F4
jI1=2j: ð3:24Þ

The numerical discrepancy is

5

1536π
≈ 0.00103616;

jI1=2j
192π3=2

≈ 0.00141823: ð3:25Þ

Moreover, a term linear in ϵ in the second brace
of Eq. (3.20) does not emerge in our expansion—
contradicting the result announced in Ref. [10]. It should
be emphasized that the series provided in the literature is
restricted to linear order in ϵ, while we have analyzed the
full structure of the weak magnetic field expansion of the
finite-temperature quark condensate in the chiral limit up to
two loops.

B. Zero-temperature quark condensate

We now turn to the quark condensate at zero temperature:

h0jq̄qj0i ¼ −
h0jq̄qj0i0

F2

dz0
dM2

: ð3:26Þ

Recall that h0jq̄qj0i0 is the quark condensate at T ¼ 0,
H ¼ 0 and M ¼ 0. On the basis of the representations
Eqs. (2.21) and (2.23) for the vacuum energy density, we
derive

h0jq̄qj0i
h0jq̄qj0i0

¼ 1 −
l̄3 − 4h̄1
32π2

M2

F2
−
K1

F2
þ 3l̄3
1024π4

M4

F4

−
9l̄3ðc̄10 þ 2c̄11Þ

1024π4
M4

F4
−
l̄6 − l̄5
768π4

jqHj2
F4

þ ðl̄6 − l̄5Þc̄34
768π4

jqHj2
F4

−
1

32π2
M2

F4
K1

þ l̄3
16π2

M2

F4
K1 þ

l̄3
32π2

M4

F4

dK1

dM2

−
ðl̄6 − l̄5Þ
48π2

jqHj2
F4

dK1

dM2
: ð3:27Þ
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The explicit expressions for K1 and dK1=dM2,

K1 ¼
M2

16π2
−

M2

16π2
ln

M2

2jqHj þ
jqHj
8π2

lnΓ
�

M2

2jqHj þ
1

2

�

−
jqHj
16π2

ln 2π;

dK1

dM2
¼ 1

16π2
ln
jqHj
M2

þ 1

16π2
Ψ
�

M2

2jqHj þ
1

2

�
þ ln 2
16π2

;

ð3:28Þ

are derived in Appendix B. The series for the quark
condensate is organized according to ascending powers
of M2 and jqHj—both quantities count as order p2. The
respective coefficients depend in a nontrivial manner on the
ratio M2=jqHj and involve renormalized NLO and NNLO
effective constants. Let us compare our result with the
literature.
The focus of the two-loop CHPT calculation presented in

Ref. [7] was to determine the shift in the zero-temperature
quark condensate caused by an external (electro)magnetic
field. Our expression, Eq. (3.27), is consistent with the two-
loop vacuum energy density derived in Eq. (21) of this
reference but goes beyond it, since we have derived the
whole two-loop representation for the quark condensate—
not just the terms induced by the magnetic field.
To analyze the chiral limit of the zero-temperature quark

condensate in finite magnetic fields, we invoke the behav-
ior of the NLO and NNLO effective constants. According
to Appendix A we have

l̄3; l̄5; l̄6 ∝ lnM2;

c̄34 ∝ lnM2;

c̄10 þ 2c̄11 ∝ lnM2; ð3:29Þ

i.e., the renormalized NLO and NNLO effective constants
explode in the limit M → 0. But note that in the quark
condensate these constants are multiplied by powers of M2

such that the chiral limit is in fact unproblematic. While
some terms in Eq. (3.27) hence disappear in the chiral limit,
only the following two terms:

ðl̄6 − l̄5Þ
768π4

c̄34
jqHj2
F4

−
ðl̄6 − l̄5Þ
768π4

jqHj2
F4

ln

�jqHj
M2

�
ð3:30Þ

need special consideration, as they both explode in the
chiral limit. However, writing the NNLO effective constant
c̄34 as

c̄34 ¼ ln

�
Λ2
34

M2
π

�
; ð3:31Þ

where Λ34 is the renormalization group invariant scale
associated with c̄34, the two terms can be merged such

that the zero-temperature quark condensate in nonzero
magnetic fields is well defined in the chiral limit, taking
the form

h0jq̄qj0i
h0jq̄qj0i0

¼ 1þ ln2
16π2

jqHj
F2

−
ðl̄6− l̄5Þ
768π4

jqHj2
F4

ln

�jqHj
Λ2
34

�

−
ðl̄6− l̄5Þ
768π4

jqHj2
F4

−
ðl̄6− l̄5Þ
768π4

jqHj2
F4

�
Γ0ð1

2
Þ

Γð1
2
Þ þ ln2

�
:

ð3:32Þ

Notice that the lnM2 dependence in the combination l̄6 − l̄5
cancels, and we can write

l̄6 − l̄5 ¼ ln

�
Λ2
6

Λ2
5

�
; ð3:33Þ

where Λ5 and Λ6 are the respective renormalization group
invariant scales associated with the NLO effective constants
l̄5 and l̄6.

IV. CONCLUSIONS

We have explored the behavior of the quark condensate
subjected to an external magnetic field within the frame-
work of chiral perturbation theory. Unlike previous
two-loop evaluations by other authors, we have used a
coordinate-space representation.
Regarding the finite-temperature quark condensate in the

chiral limit and in weak magnetic fields, we have pointed
out various errors that have occurred in the literature and
have provided the correct series. At order T2—and in terms
of the expansion parameter ϵ ¼ jqHj=T2—the leading
contribution is proportional to

ffiffiffi
ϵ

p
, followed by a term

linear in ϵ, a half-integer power ϵ3=2 and a logarithmic
contribution ϵ2 ln ϵ. The remaining contributions involve
even powers of ϵ. At order T4 the pattern repeats itself with
the exception that a term linear in ϵ does not occur.
Leaving the weak magnetic field limit, we have inves-

tigated the impact of the magnetic field on the quark
condensate at finite temperature. Emphasis was put on the
effect of the pion-pion interaction which constitutes up to
about 10% for arbitrary pion masses but also in the real
world where Mπ ¼ 140 MeV. The interaction is largest in
the chiral limit. The finite-temperature quark condensate
(sum of one- and two-loop contributions) at fixed temper-
ature and fixed pion mass grows monotonically when the
magnetic field strength increases. Again, the effect is most
pronounced in the chiral limit.
Finally we have derived the two-loop representation for

the QCD vacuum energy density and the quark condensate
at zero temperature. We have complemented earlier studies
by other authors, by providing the full two-loop represen-
tation, i.e., not just the terms that emerge on account of the
nonzero magnetic field.
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A natural—but highly nontrivial—step is to extend
the present analysis to the three-loop level, in analogy to
the three-loop analysis in zero magnetic field given in the
pioneering article [44], based on a coordinate-space repre-
sentation of CHPT. Corresponding work is in progress.
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APPENDIX A: ORDER-p6 FREE ENERGY
DENSITY AT T = 0

1. Low-energy effective constants
at NLO and NNLO

The aim of the present Appendix is to discuss the
renormalization group running of the NLO and NNLO
effective constants lri and cri in some detail and then to
provide a definition of the renormalized NNLO effective
constants c̄i—in analogy to the definition of the renormal-
ized NLO quantities l̄i.
The NNLO effective constants ci that appear in L6

eff are
defined in Ref. [41] as

ci ¼
ðcμÞ2ðd−4Þ

F2
fcri − γð2Þi Λ2 − γð1Þi Λ − γðLÞi Λg; ðA1Þ

with

Λ¼ 1

16π2
1

d− 4
; lnc¼−

1

2
½ln4πþΓ0ð1Þþ 1�: ðA2Þ

The quantities γð1Þi and γð2Þi are pure numbers and the cri are
the renormalized running NNLO effective constants.
For the definition of the NLO effective constants li and
hi that appear in L4

eff , on the other hand, we adopt the
definition given in the original Ref. [42]:

li ¼ lri þ γiλ;

hi ¼ hri þ δiλ; ðA3Þ

where

λ¼1

2
ð4πÞ−d=2Γ

�
1−

1

2
d

�
μd−4

¼ μd−4

16π2

�
1

d−4
−
1

2
fln4πþΓ0ð1Þþ1gþOðd−4Þ

�
: ðA4Þ

The γi are pure numbers and the lri are the renormalized
running NLO effective constants. The definition [Eq. (A3)]
can be rewritten as

li ¼ lri þ ðcμÞd−4γiΛ: ðA5Þ

Note that the γi also show up in γðLÞi [Eq. (A1)] in the
form of

γðLÞi ¼
X
j

γðLÞij ðcμÞ−ðd−4Þlrj; ðA6Þ

where the coefficients γðLÞij are again pure numbers.
Since the ci do not depend on the renormalization scale

μ, one concludes that the renormalization group running of
the NNLO effective constants cri is

μ
dcri
dμ

¼ −2ðd − 4Þcri þ
γð1Þi

8π2
þ γðLÞi

16π2
: ðA7Þ

In the above derivation we have used the fact that the NLO
effective constants lri themselves obey the running

μ
dlri
dμ

¼ −
γi

16π2
ðcμÞd−4; ðA8Þ

which follows from the fact that the li do not depend on μ.
Furthermore, with the Weinberg consistency condition [45]

−2γð2Þi þ
X
j

γðLÞij γj ¼ 0; ðA9Þ

a divergence linear in Λ has been eliminated in Eq. (A7).
Instead of the NLO quantities lri that depend on the

renormalization scale, alternatively one often uses the NLO
effective constants l̄i that are μ independent. The connec-
tion between the two is [42]

lri ¼
γi

32π2

�
l̄i þ ln

M2

μ2

�
: ðA10Þ

Let us transfer this connection to NNLO. The specific
NNLO effective constants that appear in the vacuum energy
density are c10, c11 and c34, where the last one only matters
when a magnetic field is present. Following Ref. [41]—but
using the convention (A3)—it reads

c34 ¼
ðcμÞ2ðd−4Þ

F2
cr34 þ

lr5 −
1
2
lr6

F2
λ: ðA11Þ

Explicitly, the running of cr34 is given by

dcr34
dμ2

¼ −
lr5 −

1
2
lr6

32π2μ2
: ðA12Þ

In analogy to the above definition for the NLO constants l̄i
[Eq. (A10)] that is based on the running (A8), we define the
renormalized NNLO effective constant c̄34 as
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cr34 ¼
l̄6 − l̄5
6144π4

c̄34 þ
l̄6 − l̄5
6144π4

ln
M2

μ2
: ðA13Þ

Note that we have used

γ5 ¼ −
1

6
; γ6 ¼ −

1

3
: ðA14Þ

Since cr34 does not depend on M, we conclude

dc̄34
dM2

¼ −
1

M2
: ðA15Þ

The NNLO constant c̄34 hence obeys the same simple
relation as the NLO constants l̄i:

dl̄i
dM2

¼ −
1

M2
: ðA16Þ

Next we consider the NNLO effective constants c10 and
c11 that arise in the tree-level contribution z6C in the
absence of the magnetic field. They are defined as (see
Ref. [41])

c10 ¼
ðcμÞ2ðd−4Þ

F2
cr10 þ

3

64F2
λ2 −

1

F2

�
3

16
lr3 þ

1

16
lr7

�
λ;

c11 ¼
ðcμÞ2ðd−4Þ

F2
cr11 −

9

128F2
λ2 þ 1

F2

�
9

32
lr3 þ

1

32
lr7

�
λ:

ðA17Þ

Note that in the linear combination c10 þ 2c11—as it
appears in the vacuum energy density at order p6—the
dependence on lr7 cancels and we are left with

c10 þ 2c11 ¼
ðcμÞ2ðd−4Þ

F2
ðcr10 þ 2cr11Þ −

3

32F2
λ2 þ 3

8F2
lr3λ:

ðA18Þ

Since the ci do not depend on the renormalization scale μ,
we conclude

dðcr10 þ 2cr11Þ
dμ2

¼ −
3lr3

256π2
1

μ2
: ðA19Þ

Equivalently, by making the replacement lr3 → l̄3,

lr3 ¼
γ3

32π2

�
l̄3 þ ln

M2

μ2

�
; γ3 ¼ −

1

2
; ðA20Þ

we can write

dðcr10 þ 2cr11Þ
dμ2

¼ 3l̄3
16384π4

1

μ2
þ 3

16384π4
1

μ2
ln
M2

μ2
: ðA21Þ

This leads us to the definition of the renormalized combi-
nation c̄10 þ 2c̄11 as

cr10 þ 2cr11 ¼ −
3l̄3

16384π4
ðc̄10 þ 2c̄11Þ −

3l̄3
16384π4

ln
M2

μ2

−
3

32768π4

�
ln
M2

μ2

�
2

: ðA22Þ

By construction, the linear combination c̄10 þ 2c̄11 is
independent of μ, much like c̄34 and the l̄i. Because the
expression cr10 þ 2cr11 does not depend on M, we also
conclude

dðc̄10 þ 2c̄11Þ
dM2

¼ −
1

M2
þ 1

M2

c̄10 þ 2c̄11
l̄3

: ðA23Þ

2. Isolating UV divergences

Here we focus on the zero-temperature contributions in
the free energy density that emerge at order p6 due to the
three diagrams 6A–C displayed Fig. 1. The unrenormalized
expressions that contain both T ¼ 0 and finite-temperature
pieces are

z6A ¼ M2

2F2
G�

1 G
0
1 −

M2

8F2
G0

1G
0
1;

z6B ¼ ð4l5 − 2l6Þ
jqHj2
F2

G�
1 þ 2l3

M4

F2
G�

1 þ l3
M4

F2
G0

1;

z6C ¼ −16ðc10 þ 2c11ÞM6 − 8c34jqHj2M2; ðA24Þ

where G�
1 and G0

1 are the thermal pion propagators
evaluated at the coordinate origin x ¼ 0:

G�
1 ¼ G�ð0Þ; G0

1 ¼ G0ð0Þ: ðA25Þ

Inserting the decomposition of thermal propagators into
zero-temperature and finite-temperature pieces [defined in
Eq. (2.14)]

G�
1 ¼ Δ�ð0Þ þ g̃1ðM;T;HÞ þ g1ðM;T; 0Þ;

G0
1 ¼ Δ0ð0Þ þ g1ðM;T; 0Þ; ðA26Þ

and using the representations of the zero-temperature
propagators Δ�ð0Þ and Δ0ð0Þ,

Δ�ð0Þ ¼ 2M2λþ K1; Δ0ð0Þ ¼ 2M2λ; ðA27Þ

with K1 and λ as
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K1 ¼
jqHjðd=2Þ−1
ð4πÞd=2

Z
∞

0

dρρ−ðd=2Þþ1

× exp

�
−

M2

jqHjρ
��

1

sinhðρÞ−
1

ρ

�
;

λ ¼ 1

2
ð4πÞ−d=2Γ

�
1−

1

2
d
�
Md−4

¼Md−4

16π2

�
1

d− 4
−
1

2
fln4πþ Γ0ð1Þ þ 1gþOðd− 4Þ

�
;

ðA28Þ

we obtain

z06A ¼ 3M6

2F2
λ2 þM4

F2
K1λ;

z06B ¼ 6l3
M6

F2
λþ 2l3

M4

F2
K1 þ ð8l5 − 4l6Þ

M2jqHj2
F2

λ

þ ð4l5 − 2l6Þ
jqHj2
F2

K1;

z06C ¼ −16ðc10 þ 2c11ÞM6 − 8c34jqHj2M2: ðA29Þ

The upper index “0” signals that we are considering the
T ¼ 0 part only.10 To isolate the UV divergences in this
unrenormalized expression, we use the conventions for the
NLO and NNLO effective constants li and ci, respectively,
that we have provided in Appendix A 1. One finds that
in the sum of the three diagrams, all UV divergences
disappear and the renormalized order-p6 vacuum energy
density takes the form

z½6�0 ¼ z06A þ z06B þ z06C

¼ 3l̄3ðc̄10 þ 2c̄11Þ
1024π4

M6

F2
−
ðl̄6 − l̄5Þc̄34

768π4
jqHj2M2

F2

−
l̄3

32π2
M4

F2
K1 þ

ðl̄6 − l̄5Þ
48π2

jqHj2
F2

K1: ðA30Þ

The above representation is renormalization-scale indepen-
dent. This constitutes a nontrivial check of our calculation.
The cancellation of divergences demonstrates that the

renormalization of NLO and NNLO effective constants also
perfectly works in presence of a homogeneous external
magnetic field and that the effective field theory method is
fully consistent.
In particular, charge renormalization is not an issue in the

present calculation of the vacuum energy density where
photons are described in terms of an external classical field.
Quantum fluctuations of the photon field are not relevant
here; only fluctuations of the pion field are important. The
quantization of the electromagnetic field would indeed lead
to corrections proportional to the fine structure constant,

but the respective diagrams would contain internal photon
lines which are not relevant to the free energy density.

APPENDIX B: ANALYSIS OF THE
INTEGRAL K1

To analyze the free energy density and the quark
condensate in the chiral limit, we must have a closer look
at the dimensionally regularized integral K1:

K1 ¼
jqHjðd=2Þ−1
ð4πÞd=2

Z
∞

0

dρρ−ðd=2Þþ1

× exp

�
−

M2

jqHj ρ
��

1

sinhðρÞ −
1

ρ

�
: ðB1Þ

To this end we first consider the integral I2, defined in (A1)
of Ref. [11] as

I2 ¼ −
jqHjd=2
ð4πÞd=2

Z
∞

0

dρρ−d=2
�

1

sinhðρÞ−
1

ρ

�
exp

�
−

M2

jqHjρ
�
:

ðB2Þ

Comparing these representations, one concludes

K1 ¼
dI2
dM2

;

dK1

dM2
¼ d2I2

ðdM2Þ2 : ðB3Þ

Using the property of the Riemann zeta function

lim
s→1

ζðs; qÞ ¼ 1

s − 1
−
Γ0ðqÞ
ΓðqÞ ; ðB4Þ

where

ζðs; qÞ ¼
X∞
n¼0

1

ðqþ nÞs ; ðB5Þ

the second relation in Eq. (B3) yields11

dK1

dM2
¼ 1

16π2
ln
jqHj
M2

þ 1

16π2
Ψ
�

M2

2jqHj þ
1

2

�
þ ln 2
16π2

;

ðB6Þ

where ΨðxÞ is the polygamma function

ΨðxÞ ¼ Γ0ðxÞ
ΓðxÞ : ðB7Þ

10The finite-temperature contribution zT is given by Eq. (2.13).

11The physical limit d → 4 is straightforward and does not
pose any problems.
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The expression for K1 is obtained by integration:

K1 ¼
M2

16π2
−

M2

16π2
ln

M2

2jqHj þ
jqHj
8π2

lnΓ
�

M2

2jqHj þ
1

2

�

þ CðjqHjÞ: ðB8Þ
The integration constant CðjqHjÞ can be determined by
setting M ¼ 0 in the equation above and in the original
representation, Eq. (B1). One identifies

CðjqHjÞ ¼ −
jqHj
16π2

ln 2π: ðB9Þ
While K1 appears in the free energy density, the derivative
dK1=dM2 is relevant in the quark condensate.

APPENDIX C: BOSE FUNCTIONS IN THE
CHIRAL LIMIT

The finite-temperature representation of the quark con-
densate in the chiral limit [Eq. (3.16)] features an infinite
series of kinematical Bose functions gr and g̃r that has to be
resummed because of the weak magnetic field expansion
Eq. (3.18). This is the main focus of the present Appendix.
The aim is to provide explicit expressions up to order ϵ2 ln ϵ
in the finite-temperature quark condensate.
We first consider the second type of functions12

g̃rðM�
π ; T;HÞ ¼ ϵ

ð4πÞrþ1
Td−2r

Z
∞

0

dρρ−ðd=2Þþr

× exp

�
−ðM�

π Þ2
4πT2

ρ

��
1

sinhðϵρ=4πÞ −
4π

ϵρ

�

×

�
S

�
1

ρ

�
− 1

�
: ðC1Þ

The crucial point is that—in the chiral limit—the massM�
π

of the charged pions does not tend to zero. Rather,
according to Eq. (2.16), a magnetic-field-dependent mass
term survives the chiral limit:

M2
H ¼ l̄6 − l̄5

48π2
jqHj2
F2

¼ 16π2

3
ðl̄6 − l̄5Þt4F2ϵ2; ðC2Þ

with

t ¼ T
4πF

: ðC3Þ

The pertinent expansion parameter in the weak magnetic
field limit jqHj ≪ T2 is

ϵ ¼ jqHj
T2

: ðC4Þ

To isolate divergences in the kinematical functions g̃r (where
r ¼ 0; 1; 2;…) that arise in the limit ϵ → 0 (T held fixed
whileH → 0), we decompose g̃rðMH; T;HÞ into two pieces:

g̃rðMH; T;HÞ ¼ ϵTd−2r

ð4πÞrþ1

Z
1

0

dρρ−ðd=2Þþre−γϵ
2ρ

×

�
1

sinhðϵρ=4πÞ −
4π

ϵρ

��
S

�
1

ρ

�
− 1

�

þ ϵTd−2r

ð4πÞrþ1

Z
∞

1

dρρ−ðd=2Þþre−γϵ
2ρ

×

�
1

sinhðϵρ=4πÞ −
4π

ϵρ

��
S

�
1

ρ

�
− 1

�

¼ Ia þ Ib; ðC5Þ

where

γ ¼ l̄6 − l̄5
12π

t2: ðC6Þ

The first integral Ia exists for integer r ¼ 0; 1; 2;…. Taylor
expanding the integrand in the parameter ϵ, we obtain a series
with ascending even powers of ϵ for r ¼ 0; 1; 2;…:

α1ϵ
2 þ α2ϵ

4 þ α3ϵ
6 þOðϵ8Þ: ðC7Þ

The explicit coefficients are irrelevant for our purposes
because the respective terms do not contribute to the quark
condensate at the accuracy we are interested in (up to ϵ2 ln ϵ
in the finite-temperature quark condensate). In particular, no
ϵ divergences come from here.
We thus examine the second integral Ib in Eq. (C5) that

we process by using the Jacobi identity

S

�
1

z

�
¼ ffiffiffi

z
p

SðzÞ: ðC8Þ

We then obtain the three integrals

Ib ¼
ϵTd−2r

ð4πÞrþ1

Z
∞

1

dρρr−ðd=2Þþð1=2Þe−γϵ2ρ
�

1

sinhðϵρ=4πÞ −
4π

ϵρ

�
½SðρÞ − 1�

þ ϵTd−2r

ð4πÞrþ1

Z
∞

1

dρρr−ðd=2Þþð1=2Þe−γϵ2ρ
�

1

sinhðϵρ=4πÞ −
4π

ϵρ

�
−

ϵTd−2r

ð4πÞrþ1

Z
∞

1

dρρr−ðd=2Þe−γϵ2ρ
�

1

sinhðϵρ=4πÞ −
4π

ϵρ

�

¼ Ib1 þ Ib2 þ Ib3: ðC9Þ

12It should be noted that the functions g̃r and gr—up to temperature powers—coincide with the functions h̃r and hr. The conversion is
given by Eq. (3.8).
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The first one—Ib1—exists for integer r ¼ 0; 1; 2;….
Taylor expanding the integrand and then integrating term
by term we get a series of the form

β1ϵ
2 þ β2ϵ

4 þ β3ϵ
6 þOðϵ8Þ: ðC10Þ

Again, the coefficients are irrelevant at the accuracy we are
interested in. To isolate potential ϵ divergences in Ib2, we
write the integration limits as

Ib2 ¼
ϵTd−2r

ð4πÞrþ1

Z
∞

0

dρρr−ðd=2Þþð1=2Þe−γϵ2ρ

×

�
1

sinhðϵρ=4πÞ −
4π

ϵρ

�

−
ϵTd−2r

ð4πÞrþ1

Z
1

0

dρρr−ðd=2Þþð1=2Þe−γϵ2ρ

×

�
1

sinhðϵρ=4πÞ −
4π

ϵρ

�
: ðC11Þ

The first expression can be integrated analytically:

I½1�b2 ¼ Td−2rΓ
�
r−

3

2

��
−
γð3=2Þ−r

ð4πÞr ϵ3−2r

þ 2−r−ð5=2Þπ−3=2ð2r− 3Þζ
�
r−

1

2
;
1

2
þ 2πγϵ

�
ϵð3=2Þ−r

�
;

ðC12Þ

where the generalized Riemann zeta function is defined as

ζðs; aÞ ¼
X∞
k¼0

1

ðkþ aÞs : ðC13Þ

One notices that the integral I½1�b2 (for integer r ≥ 2) leads to
ϵ divergences in the functions g̃r, namely

g̃r ∝
1

ϵ2r−3
;

1

ϵr−ð3=2Þ
: ðC14Þ

As it turns out, these are indeed the leading divergences in

the Bose functions g̃r. With the second expression—I½2�b2—
in Eq. (C11) we proceed as before: Taylor expanding the
integrand again gives rise to a series displaying even ϵ
powers whose respective coefficients are of no concern
to us.
Finally, we analyze the remaining third integral Ib3 in

Eq. (C9). Regularizing it with N ≫ 1,

Ib3 ¼ lim
N→∞

−
ϵTd−2r

ð4πÞrþ1

Z
N

1

dρρr−ðd=2Þe−γϵ2ρ

×

�
1

sinhðϵρ=4πÞ −
4π

ϵρ

�
; ðC15Þ

the substitution z ¼ lnðϵuÞ—for the specific case r ¼ 2
(and d ¼ 4)—leads to

Ib3ðr ¼ 2Þ ¼ lim
N→∞

−
ϵ−4πγϵ

16π2

Z
uN

u0

duu−1−4πγϵ

×

�
1

sinhðln ϵuÞ −
1

ln ϵu

�
; ðC16Þ

with

u0 ¼
eϵ=4π

ϵ
; uN ¼ eN=4π

ϵ
: ðC17Þ

The integral can be performed analytically:

Ib3ðr ¼ 2Þ ¼ 1

16π2

�
B
�
e−N=2π;

1

2
þ 2πγϵ; 0

�

− B
�
e−ϵ=2π;

1

2
þ 2πγϵ; 0

�
− Eð−γϵ2Þ

þ Eð−γNϵÞ
�
; ðC18Þ

where the incomplete beta function and the exponential
integral function, respectively, are defined as

Bðz; a; bÞ ¼
Z

z

0

dxxa−1ð1 − xÞb−1;

EðzÞ ¼ −
Z

∞

−z
dx

e−x

x
: ðC19Þ

Expanding Ib3 in ϵ, one notices that only the second
and third expressions in Eq. (C18) lead to ϵ divergences.
Concretely, we obtain a logarithmic divergence:

Ib3ðr ¼ 2Þ ¼ −
1

16π2
ln ϵþOðϵ0Þ: ðC20Þ

Collecting results, the divergences in the function g̃2 in the
weak magnetic field limit are

g̃2 ¼ −
1

16π3=2
ffiffiffi
γ

p 1

ϵ
−

ffiffiffi
2

p
− 4

32π
ζ

�
3

2

�
1ffiffiffi
ϵ

p −
1

16π2
ln ϵ

þOðϵ0Þ: ðC21Þ

The quark condensate in the chiral limit, according to
Eqs. (3.16) and (3.18), features the series

S½g̃� ¼ −ĉϵ2g̃2 þ
ĉ2ϵ4

2!
g̃3 −

ĉ3ϵ6

3!
g̃4 þOðg̃5Þ; ðC22Þ

where

ĉ ¼ 4πT2γ; γ ¼ l̄6 − l̄5
12π

t2: ðC23Þ
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According to Eq. (C14), the leading divergence in the
functions g̃r is proportional to ϵ3−2r. Therefore each term in
the above series gives rise to a contribution linear in ϵ. All
these terms have to be taken into account at the order we are
operating. The series can be resummed with the result

S½g̃� ¼
ffiffiffi
2

p
− 1

2
ffiffiffi
π

p ffiffiffi
γ

p
ϵT2: ðC24Þ

The quark condensate in the chiral limit—see Eqs. (3.16)
and (3.18)—furthermore involves the other type of Bose
functions grðM;T; 0Þ. The structure of the expansion in the
mass parameterM for the specific function g0ðM;T; 0Þ has
been analyzed in Refs. [44,46] with the outcome

g0ðM;T; 0Þ ¼ T4

�
π2

45
−

1

12

M2

T2
þ 1

6π

M3

T3

þ ð2γE − 3
2
Þ

32π2
M4

T4
þ 1

32π2
M4

T4
ln

M2

16π2T2

þ 2π3=2
X∞
n¼3

ð−1Þn
n!

�
M
2πT

�
2n

× Γ
�
n −

3

2

�
ζð2n − 3Þ

�
ðT ≫ MÞ: ðC25Þ

With the recursion relation

grþ1 ¼ −
dgr
dM2

; ðC26Þ

the series for any other gr with r ¼ 1; 2; 3;… can be
derived.
In our case of interest, the relevant mass in these

functions is MH:

M2
H ¼ l̄6 − l̄5

48π2
jqHj2
F2

¼ 16π2

3
ðl̄6 − l̄5Þt4F2ϵ2; ðC27Þ

i.e., the mass of the charged pion that survives the chiral
limit. We then find that the leading ϵ divergences in these
functions are

gr ¼
ð2r − 5Þ!!γ3=2−r
23r−2πr−1=2

ϵ3−2rT4−2r; r ¼ 2; 3;…: ðC28Þ

The series of kinematical functions gr, as it occurs in the
quark condensate,

S½g� ¼ −ĉϵ2g2 þ
ĉ2ϵ4

2!
g3 −

ĉ3ϵ6

3!
g4 þOðg5Þ; ðC29Þ

hence yields an infinite number of terms that are all linear
in ϵ. Resumming, we obtain

S½g� ¼ 1 −
ffiffiffi
2

p

2
ffiffiffi
π

p ffiffiffi
γ

p
ϵT2: ðC30Þ

This just cancels the contribution from S½g̃� [Eq. (C24)]
such that there are no terms linear in ϵ in the quark
condensate coming from here. The logarithmic contribu-
tions, however, that are present both in g2 and g̃2 do not
cancel: in the sum we have

g2 þ g̃2 ¼
1

16π2
ln ϵþOðϵ−1=2Þ; ðC31Þ

giving rise to a contribution ϵ2 ln ϵ in the quark condensate.
Finally, the ϵ expansion for the functions g1ð0; T; 0Þ

and g̃1ð0; T;HÞ that also appear in the quark condensate
[Eqs. (3.16) and (3.18)] has been provided in Refs. [11,44].
For completeness we quote the result:

g1ð0; T; 0Þ ¼
1

12
T2;

g̃1ð0; T;HÞ ¼ −
�jI1=2j
8π3=2

ffiffiffi
ϵ

p
−

ln 2
16π2

ϵþ ζð3Þ
384π4

ϵ2

−
7ζð7Þ

98304π8
ϵ4 þOðϵ6Þ

�
T2; ðC32Þ

with

I1=2 ¼
Z

∞

0

dρρ−1=2
�

1

sinhðρÞ −
1

ρ

�
≈ −1.516256: ðC33Þ
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