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A new set of the next-to-leading order (NLO) and the next-to-next-to-leading order (NNLO) low-energy
constants Lr

i and Cr
i in chiral perturbation theory is obtained. These values are computed using the new

experimental data with a new calculation method. This method combines the traditional global fit and
Monte Carlo method together. The higher order contributions are estimated with this method. The
theoretical values of the observables provide good convergence at each chiral dimension, except for the

NNLO values of the πK scattering lengths a3=20 and a1=20 . The fitted values for Lr
i at NLO are close to their

results with the new method at NNLO; i.e., these Lr
i are nearly order-independent in this method. The

estimated ranges for Cr
i are consistent with those in the literature, and their possible upper or/and lower

boundaries are given. The values of some linear combinations of Cr
i are also given, and they are more

reliable. If one knows a more exact value of Cr
i , another C

r
i can be obtained by these values.

DOI: 10.1103/PhysRevD.102.094009

I. INTRODUCTION

Chiral perturbation theory (ChPT) is an important tool to
study the low-energy pseudoscalar mesonic interactions.
The main idea of ChPT comes from the fact that QCD
possesses an SUð3ÞL × SUð3ÞR flavor symmetry in the
chiral limit in which the light quark are considered
massless. This symmetry is spontaneously broken into
the subgroup SUð3ÞV , and eight massless pseudoscalar
Goldstone bosons arise. These pseudoscalar Goldstone
bosons are considered to be the lightest eight pseudoscalar
mesons (π, K and η). The small masses of these pseudo-
scalar mesons come from the small light-quark masses. On
the other hand, the fundamental interaction between the
pseudoscalar mesons in ChPT can be considered as an
effective interaction in the low energy; i.e., ChPT is only an
effective theory. The only restriction is symmetry, such as
chiral symmetry, parity symmetry, charge conjugation
symmetry, and so on. There exist an infinite number of
terms satisfying these symmetries and an infinite number of
unknown parameters called low-energy constants (LECs)

that correspond to these terms. The details of the strong
interaction are hidden in these LECs. The Weinberg power-
counting scheme organizes the most important terms to be
considered first, the second important ones to be calculated
secondly, and so on [1]. Generally, physical quantities in
ChPTare calculated order by order (chiral dimension). One
order provides about a p=Λχ factor, where p is the typical
scale of the momentum and Λχ ∼ 1 GeV is the scale related
to chiral symmetry breaking. For the three-flavor ChPT,
there exist 2, 10þ 2, 90þ 4, and 1233þ 21 LECs in the
Oðp2Þ,Oðp4Þ,Oðp6Þ, andOðp8Þ order, respectively [2–5].
The numbers after the plus signs are related to the contact
terms. It shows that the numbers increase rapidly with the
growth of the chiral dimension. Nevertheless, ChPT can not
determine these LECs by itself. Without LECs, most
physical quantities would not be calculated numerically,
and ChPT would lose most of its predictions. Hence,
numerical values of LECs play an important role in
ChPT. There are a lot of methods to obtain LECs, such
as global fit [6–9], lattice QCD [10–14], chiral quark model
[15,16], resonance chiral theory [17,18], sum rules [19],
holographic QCD [20], dispersion relations [21–23], and so
on. Each method has its advantage and application domain.
However, at present, most of them only obtain a part of
LECs at/to a given order, and the higher-order contributions
are neglected. Most numerical results satisfy the power-
counting scheme, but there also exist some exceptions (see
the discussion below). However, the calculation at/to a
given order sometimes may not give a very good predic-
tion. It leads to numerical values of some LECs that may
have large errors. This is one possibility why some LECs
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have large errors in some references. One motivation for
this paper is to obtain some LECs with the higher-order
contributions in order to narrow the errors of some
NLO LECs.
In this paper, some three-flavor LECs will be obtained

with a new method, which is similar to the traditional
global fit method but with some improvements. The
traditional global fit method seems simpler than the pure
calculation by the background theory. This method is also
much closer to the experiment, because it fits the exper-
imental data directly. The theoretical values and errors can
be obtained simultaneously without the background theory
or any other physical model. Usually, χ2 in the fit is as small
as possible, and the corresponding LECs are the result.
However, the global fit method needs sufficient theoretical
calculations in ChPT, some of which may be in the high
order with tedious loop-diagram calculations. Its precision
is limited by the number and the accuracy of experimental
data. So far, a lot of research arises and some LECs have
been fitted. Lr

1, L
r
2 and Lr

3 are obtained by fitting Kl4 form
factors and ππ scattering lengths [6]. Lr

i (i ¼ 1, 2, 3, 5, 7, 8)
are obtained by fitting the quark-mass ratio ms=m̂, the
decay constant ratio FK=Fπ , and Kl4 form factors [7].
About ten years later, Ref. [8] added ππ scattering lengths
(a00 and a20), πK scattering lengths (a1=20 and a1=30 ), and the
threshold parameters of the scalar form factor (hr2iπS and cπS)
in the fit. Recently, Ref. [9] added two-flavor LECs in the
fit. The last two references not only obtain the next-to-
leading order [NLO, Oðp4Þ] LECs Lr

i but also estimate a
part of LECs Cr

i in the next-to-next-to-leading order
[NNLO, Oðp6Þ]. Nevertheless, their results only make
use of the theoretical expansion to a finite order (NNLO).
The higher-order contributions are ignored. There also exist
some other problems in Ref. [9]:

(i) Some NLO fitted values of Lr
i are quite different

from those obtained at NNLO. For example, Lr
1 ¼

0.53ð06Þ × 10−3 at a NNLO fit, which is about half
of its NLO fitted value Lr

1 ¼ 1.0ð1Þ × 10−3. Never-
theless, Lr

1 is a constant. Its true value is order
independent. Its fitted value should not depend on
the order as far as possible.

(ii) The higher-order effects are not taken into account. If
the higher-order corrections are considered, some
physical quantities may change largely, such as a1=20

and a3=20 . Reference [9] tells us that the numerical

values of a1=20 and a3=20 at NNLO are larger than the
NLO results. Hence, the higher-order effects should
have a big impact on the low-order LECs. In addition,
one can determine whether a set of LECs have
reliable values, if the higher-order effects are known.
If the possible higher-order effects are smaller than
the low-order ones, the set of LECs should be
considered more reliable. Hence, the higher-order
effects should play an important role in the fit.

(iii) The fitted χ2=d:o:f: is approximately equal to 1.0=10
at NNLO fit. There seems to be an overfitting
problem. A larger χ2 could give a wider range of
Cr
i . Some Cr

i in this wider range may solve the two
problems discussed above.

(iv) The πK scattering lengths a1=20 and a3=20 have a poor
convergence. Compared with the NLO results, their
NNLO values are too large.

(v) Some original data about Cr
i [24] are very close to

the final results [9]. The differences are less than
10−12. We guess these LECs might be dependent on
the boundaries.

In this paper, we attempt to solve the first three problems
and try to find out why the other two problems arise. With
some reasonable hypotheses, a new method for fitting
LECs is introduced, and a set of Lr

i and Cr
i are obtained.

Because the number of constraint conditions is not large
enough, only the ranges of Cr

i are obtained, but the values
of Lr

i are more precise.
This paper is organized as follows: in Sec. II, some

hypothesises are introduced, and the following calculations
are based on these hypothesises. In Sec. III, all the
experimental data involved are given. Section IV introduces
a modified global fit method with the higher-order esti-
mation. In Sec. V, some rough values of Lr

i are given, and
the convergences of some observables are also presented.
In Sec. VI, a new method is introduced, which can compute
more reasonable values of Lr

i and estimate the values of Cr
i .

Section VII gives the results of Lr
i and Cr

i with this new
method. A short summary is given in Sec. VIII.

II. THE LOW-ENERGY CONSTANTS
AND THEIR HYPOTHESES

In ChPT, without the contact terms, for the three-flavor
case, there are 10 LECs Li at NLO and 90 LECs Ci at
NNLO; for the two-flavor case, 7 LECs li exist at NLO and
52 LECs ci exist at NNLO. Their renormalized values Lr

i ,
Cr
i , l

r
i , and c

r
i are defined in Refs. [2,3,9,25–27]. Some scale

independent l̄i [3] are used frequently. This paper will
determine the values of 8 Lr

i ði ¼ 1;…; 8Þ and 38 Cr
i (the

values of i can be found in Table V) at the renormalization
scale μ ¼ 0.77 GeV. Four l̄i (i ¼ 1, 2, 3, 4) will be used in
the estimation as observables, and none of the ci will be
used. The following notations are the same as those
in Ref. [9].
Due to the experimental condition and the theoretical

calculation, the experimental data and the relevant NNLO
analytical results are lacking. Until now, only 17 observ-
ables have been used in the NNLO global fit [9].
Theoretically, it is impossible to obtain all LECs very
accurately with only these 17 observables. Hence, we have
different requirements for these NLO and NNLO LECs.
For Lr

i , their values need to be as precise as possible,
because their number (8) is much less than 17. On the other
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hand, although 17 is less than 38, it does not seem too small
to estimate Cr

i . With the help of some reasonable hypoth-
eses, the intervals of Cr

i can be limited to some reliable
ranges at least. To achieve these goals, the following
hypotheses are introduced to limit the feasible ranges of
the LECs:

(i) Chiral expansion for most observables is assumed to
have good convergence. Observables are expanded
by the momentum and the quark masses in ChPT.
Any observable is calculated (chiral) order by order.
The high-order value should be small enough
compared with the low-order one. This is a theo-
retical assumption in the effective theory. For most
observables, the LO values give the greatest con-
tributions. The NLO and the NNLO values are
smaller and smaller. The sum of the unknown
higher-order contributions, which is also called
truncation error, should be smaller than the NNLO
values. There should exist some exceptions. These
exceptions will be considered separately.

(ii) All Lr
i are assumed to be stable. In other words, the

values of Lr
i obtained at both NLO and NNLO

should be almost unchanged. This is because that
all LECs are constants, and they are independent of
the different computational methods. According to
hypothesis i, the contributions at NNLO and the
truncation error would be small enough. These small
contributions only lead to a small variation of Lr

i .
However, this does not always work. In Ref. [9],
some NNLO fitted Lr

i have large differences from
the NLO fitted ones. For example, the NNLO fitted
value of Lr

1 ¼ 0.53ð04Þ × 10−3 is half of its NLO
fitted value 1.0ð1Þ × 10−3. The deviation from the
NLO value is about 5σ. The reason is that these
values are only fitted at a given order, and the
truncation errors are neglected. For some Lr

i , this
effect is not very obvious, but for the other ones, it
may have a large impact on their values. This
hypothesis will be used for constraining the ranges
of Lr

i at NNLO calculation, which are assumed to be
close to the NLO fitted values. We choose the
difference between the NLO and the NNLO fitted
values to be less than 20% in this paper.

(iii) AllCr
i should be consistent with those obtained from

the other references; i.e., their values can not deviate
too much from those in the other references.
Because these Cr

i are derived by different approx-
imations, their results should be close to the real
values. We consider all of their results reasonable.
Hence, we have no reason to deny any of their
results. These Cr

i are treated as boundary conditions
to constrain the ranges of Cr

i . Compared with Lr
i , the

number of Cr
i is very large, and Cr

i are hard to be
determined. Their values appear less than Lr

i in the
literature. Appendix B presents all relevant Cr

i that

we can find. The distributions of most Cr
i are wide.

The true values of Cr
i are assumed to be in or close to

these wide ranges.

III. OBSERVABLES, INPUTS, AND χ 2

This paper is based on Refs. [8,9], which adopt a global
fit method to obtain Lr

i and use a random walk algorithm to
estimate Cr

i . For the NLO fit, the following 12 observables
are used. The mass ratio ms=m̂ can be calculated according
to pion and kaon masses (ms=m̂j1) or pion and eta masses
(ms=m̂j2) [7,8,17,24], where ms is the strange quark mass
and m̂ ¼ ðmu þmdÞ=2 is the isospin doublet quark mass.
The ratio of the kaon decay constant FK to the pion decay
constant Fπ (FK=Fπ) is also used in the fit [8,9,17,24],
which eliminates the unknown constant F0. There exist two
form factors F and G in the Kl4 decay; their values and
slops at threshold (fs, gp, f0s and g0s) [7] are also considered
in the fit. The ππ scattering lengths a00 and a20 [24,28], the

πK scattering lengths a1=20 and a3=20 , and the pion scalar
radius hr2iπS in the form factor Fπ

SðtÞ [29] are also included.
With these 12 observables, eight Lr

i ði ¼ 1;…; 8Þ will be
fitted. The other five observables are added at the NNLO
fit; they are the pion scalar curvature cπS [29] and four two-
flavor LECs l̄iði ¼ 1;…; 4Þ [30]. In this paper, we also
adopt the same observables in the fit and only update some
experimental or theoretical data. All the calculations are in
three flavor ChPT. The analytical results can be found in the
above references. In the calculation, these observables are
treated as independent ones. The calculations are related to
8 Lr

i and 38 Cr
i . The total number 46 is larger than the

number of observables. We will use a different method to
obtain them. The renormalization scale μ is chosen to be
0.77 GeV in this paper.
The values of the meson masses and the pion decay

constant are

m�
π ¼ 139.57061ð24Þ MeV; m0

π ¼ 134.9770ð5Þ MeV;

mη ¼ 547.862ð17Þ MeV; m�
K ¼ 493.677ð16Þ MeV;

m0
K ¼ 497.611ð13Þ MeV; Fπ ¼ 92.3� 0.1 MeV:

ð1Þ
The average kaon mass is

mKav ¼ 494.50 MeV; ð2Þ
which is used in the calculation for the pion and kaon decay
constants and the pseudoscalar meson masses [31].
The values of ms=m̂ and FK=Fπ are [32]

ms

m̂
¼ 27.3þ0.7

−1.3 ;
FK

Fπ
¼ 1.199� 0.003: ð3Þ

For Kl4 form factors F and G, their slope and value at
threshold are [32]

NEW METHOD FOR FITTING THE LOW-ENERGY CONSTANTS … PHYS. REV. D 102, 094009 (2020)

094009-3



fs ¼ 5.712� 0.032; f0s ¼ 0.868� 0.049;

gp ¼ 4.958� 0.085; g0p ¼ 0.508� 0.122: ð4Þ

The latest results for ππ scattering lengths are given in
Ref. [33], which are based on the analysis of Ke4 data.
Their values are

a00 ¼ 0.2196�0.0034; a20¼−0.0444�0.0012: ð5Þ

For πK scattering lengths, Ref. [34] gives the most recent
experimental value for the S-wave isospin-odd πK scatter-
ing length a−0 ¼ ja1=20 − a3=20 j=3, but we have not found any
update of a1=20 or a3=20 separately. Hence, we still use the
same data as those in Refs. [9,35],

a1=20 mπ ¼ 0.224�0.022; a3=20 mπ ¼−0.0448�0.0077:

ð6Þ

Since no update has been found, the scalar radius hr2iπS
and the scaler curvature cπS of the pion scalar form factor are
the same as those in Ref. [9]. Their values are based on the
dispersion analysis [36,37],

hr2iπS ¼ 0.61� 0.04 fm2; cπS ¼ 11� 1 GeV−4: ð7Þ

For two-flavor LECs l̄iði ¼ 1;…; 4Þ, the values of l̄1 and
l̄2 are chosen [38],

l̄1 ¼ −0.4� 0.6; l̄2 ¼ 4.3� 0.1; ð8Þ

which are the same as those in Ref. [9]. For l̄3 and l̄4,
Ref. [9] uses the average of the lattice results [39,40] and
the continuum results [3,38]. At this time, the lattice results
in Ref. [40] are not included in Flavour Lattice Averaging
Group (FLAG) average [39]. The most recent FLAG data
[41] provide the following averages:

l̄3jNf¼2 ¼ 3.41ð82Þ; l̄3jNf¼2þ1 ¼ 3.07ð64Þ;
l̄3jNf¼2þ1þ1 ¼ 3.53ð26Þ;

l̄4jNf¼2 ¼ 4.40ð28Þ; l̄4jNf¼2þ1 ¼ 4.02ð45Þ;
l̄4jNf¼2þ1þ1 ¼ 4.73ð10Þ: ð9Þ

The values in Eq. (9) have included the results in Ref. [40].
A new estimate according to Eq. (9) and Refs. [3,38] is

l̄3 ¼ 3.2� 0.7; l̄4 ¼ 4.4� 0.2: ð10Þ

The l̄i values in Eqs. (8) and (10) are adopted in our fit.
Equations (1)–(8) and (10) are all physical quantities

used in our calculation.
The objective function in the estimation, χ2, is the same

as those in Refs. [7–9],

χ2 ¼
X
i

χ2i ¼
X
i

�
XiðthÞ − XiðexpÞ

ΔXi

�
2

; ð11Þ

where XiðexpÞ are the experimental values, XiðthÞ are the
theoretical estimates, and ΔXi are the experimental errors.
Generally, χ2 is as small as possible. This function is a
criterion to judge whether the LECs are reasonable or not.
The errors of Lr

i give Δχ2 ¼ 1, assuming the quadratic
approximation is near the minimum.
The above χ2 contains both l̄i and the ππ scattering

lengths a00 and a
2
0. However, in the two-flavor ChPT, a

0
0 and

a20 can be calculated by l̄i to NLO. The higher-order
contributions are small. Hence, l̄i are statistically correlated
to a00 and a20. Strictly speaking, the inverse covariance
matrix of l̄i needs to be considered in Eq. (11), but it is hard
to be determined. We have not found it in the literature.
Hence, the covariance matrix is ignored in Eq. (11), and
Eq. (11) does not lead to a normal χ2 distribution.
Equation (11) is only a modified χ2 fitting. The contribu-
tions from l̄i should be regarded as extra constraints of Lr

i
and Cr

i in χ2 but not independent influence. The contribu-
tions from l̄i are about 15% of the total χ2. Their influence
is not very large and has little impact on the final results.

IV. METHOD I: A MODIFIED GLOBAL
FIT FOR OBTAINING Lr

i

In this section, a modified global fit method is intro-
duced, which contained the higher-order estimates in the
fit. This method is only for estimating the values of Lr

i .
The calculating process is similar to that in Refs. [8,9].
Only the differences are explained.

A. Chiral expansions

In ChPT, physical quantities are calculated order by
order, but some quantities described above are mixed by
different orders. In order to pick out the exact contributions
from different orders, they need to be expanded order
by order.
The expansion for the ratio FK=Fπ to the NNLO is [9]

FK

Fπ
≈ 1|{z}

LO

þ
�
FK

F0

�
4

−
�
Fπ

F0

�
4|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

NLO

þ
�
FK

F0

�
6

−
�
Fπ

F0

�
6

−
�
Fπ

F0

�
4

��
FK

F0

�
4

−
�
Fπ

F0

�
4

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

NNLO

:

ð12Þ

Hereafter, the subscript 2, 4, 6, and 8 are represented
the contribution at LO, NLO, NNLO, and NNNLO,
respectively.
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The quark-mass ratio ms=m̂ can be calculated according to the LO pion and kaon masses or the LO pion and eta masses,

ms

m̂

����
1

¼ 2m2
K2 −m2

π2

m2
π2

;
ms

m̂

����
2

¼ 3m2
η2 −m2

π2

2m2
π2

: ð13Þ

Their expansions are

ms

m̂

����
1

≈
2½m2

K − ðm2
KÞ4 − ðm2

KÞ6� − ½m2
π − ðm2

πÞ4 − ðm2
πÞ6�

½m2
π − ðm2

πÞ4 − ðm2
πÞ6�

≈
2m2

K −m2
π

m2
π|fflfflfflfflfflffl{zfflfflfflfflfflffl}

LO

þ 2m2
Kðm2

πÞ4
m4

π
−
2ðm2

KÞ4
m2

π|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
NLO

þ 2m2
Kðm2

πÞ24
m6

π
−
2ðm2

KÞ4ðm2
πÞ4

m4
π

þ 2m2
Kðm2

πÞ6
m4

π
−
2ðm2

KÞ6
m2

π|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
NNLO

; ð14Þ

ms

m̂

����
2

≈
3½m2

η − ðm2
ηÞ4 − ðm2

ηÞ6� − ½m2
π − ðm2

πÞ4 − ðm2
πÞ6�

2½m2
π − ðm2

πÞ4 − ðm2
πÞ6�

≈
3m2

η −m2
π

2m2
π|fflfflfflfflfflffl{zfflfflfflfflfflffl}

LO

þ 3m2
ηðm2

πÞ4
2m4

π
−
3ðm2

ηÞ4
2m2

π|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
NLO

þ 3m2
ηðm2

πÞ24
2m6

π
−
3ðm2

ηÞ4ðm2
πÞ4

2m4
π

þ 3m2
ηðm2

πÞ6
2m4

π
−
3ðm2

ηÞ6
2m2

π|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
NNLO

: ð15Þ

hr2iπS and cπS are related to the differential of form factors Fπ
SðtÞ. Their expansions are

hr2iπS ¼
6

Fπ
Sð0Þ

d
dt

Fπ
SðtÞ

����
t¼0

≈ 0|{z}
LO

þ 6

�
Fπ
S

2B0

�0

4|fflfflfflfflfflffl{zfflfflfflfflfflffl}
NLO

þ 6

��
Fπ
S

2B0

�0

6

−
�
Fπ
S

2B0

�0

4

�
Fπ
S

2B0

�
4

�
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; ð16Þ
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dt2
Fπ
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|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

NNNLO

����
t¼0

: ð17Þ

The first terms in Eqs. (16) and (17) are both equal to zero;
it is due to the fact that the scalar form factor at LO is
independent of t.

B. The estimation at the higher order

In the previous fitting methods [7–9], the influences from
the higher orders have not been taken into account.
Although the truncation errors should be very small
according to hypothesis i, it is also worth to evaluate the
influences from the higher orders according to hypothesis

ii. Higher-order contributions may have a big impact on
some values of Lr

i . However, the contributions of the order
beyond NNLO are absolutely unknown, and they need to
be estimated in other ways. References [42,43] provide a
method for the quantitative estimation of the truncation
errors, which is based on Bayesian method. They assume
that the expansion coefficients of the observables in the
effective field theory are of natural size, and their distri-
butions are symmetric about the origin. The distribution
of the truncation errors is also symmetric about the origin.
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The confidence intervals can be obtained in several ways.
This assumption leads to a zero center value and a nonzero
uncertainty band. In practice, contributions from the higher
orders may not be equal to zero. Some nonzero estimates
need to be obtained, but we do not find an effective way to
use the nonzero uncertainty band by the computer. In this
section, a method for estimating higher-order contributions
is introduced. The idea is similar to that in Ref. [44], but we
do some simplifications for saving computation time.
In ChPT, physical quantities are calculated order by

order. Each order provides a small factor ϵ ¼ p=Λχ. For
example, a physical quantity X can be written as

X ¼ Xref

X∞
n¼1

cnQn; ð18Þ

where the dimensionless parameter Q ¼ ϵ2, cn are dimen-
sionless coefficients and Xref is the natural size of X. We
take Xref equal to the LO value of X.
In practice, strict calculations in the higher orders

are very complex because of a lot of unknown LECs
and loop diagrams. Hence, the expansion of X is truncated
at a certain order and only the first few terms can be
obtained. If X is truncated at the order k, the theoretical
prediction for X is

X0 ¼ Xref

Xk
n¼1

cnQn; ð19Þ

where k ¼ 1, 2, and 3 represent the LO, NLO, and NNLO,
respectively. The truncation error is

Δk ¼ Xref

X∞
n¼kþ1

cnQn ¼ X − X0: ð20Þ

Before fitting the LECs, a nonzero and valid value of Δk
needs be estimated first. For convenience, we estimate X
directly, but not Δk.
According to hypothesis i, the sequence fcnQng is

naively assumed to be a geometric sequence fa0qng.
Whether this assumption is reasonable or not depends
on the final fitted results. This will be mentioned later. In
this case, one can get the approximation,

X ¼ Xref

X∞
n¼1

cnQn ≈ Xref

X∞
n¼0

a0qn ¼ Xref
a0

1 − q
; ð21Þ

and the truncated error Δk is

Δk ≈ Xref
a0

1 − q
− X0: ð22Þ

In order to determine the parameters a0 and q in the
geometric sequence, we define two cumulative sums
sequences fSkg and fS�kg,

Sk ¼
Xk
n¼1

cnQn; S�k ¼
Xk
n¼0

a0qn; ð23Þ

where the sequence fSkg can be regarded as a set of
discrete data, and they can be calculated if a set of LECs
related to X is known. The cumulative sum S�k of the
geometric series is

S�ðkÞ ¼ a0ð1 − qkþ1Þ
1 − q

: ð24Þ

The parameters a0 and q can be fitted by the least squares
method.
For the NLO fit, only the LO and the NLO contributions

of Fπ
SðtÞ can be calculated. Then, only the NLO contribu-

tions of hr2iπS and cπS can be obtained according to Eqs. (16)
and (17). To fit a0 and q in Eq. (24), one needs to know at
least two terms of S�ðkÞ. However, for hr2iπS or cπS, the LO
value is zero. We only know the NLO contribution at the
NLO calculation. a0 and q can not be fitted at NLO. Hence,
we only estimate Fπ

SðtÞ in Eqs. (16) or (17). Kl4 form
factors f0s and g0p have a similar property. We estimate them
the same as hr2iπS and cπS.

C. Convergence

Because the number of the observables is not large
enough, the constraints on LECs are not very strong. In
order to give more constraints on LECs, besides the
observables FK=Fπ , ms=m̂j1, and ms=m̂j2, some other
physical observables, i.e., Fπ , FK , mπ , mK and mη, are
also introduced separately. We find that not all of them have
good convergence simultaneously. Sometimes, the two-
flavor LECs lri (i ¼ 2, 3) also have bad convergences. The
NNLO values of these observables may be larger than the
NLO ones. In other words, some of them may conflict with
hypothesis I in Sec. II. Hence, we add the following new
constraints to χ2 as Ref. [9]:

fχððm2
αÞ6=m2

α=ΔÞðα ¼ π; K; ηÞ; ð25Þ

fχ
��

Fα

F0

�
6

=Δ
�
ðα ¼ π; KÞ; ð26Þ

fχððlri Þ6=ðlri Þ4=0.3Þði ¼ 2; 3Þ; ð27Þ

where the denominator Δ ¼ 0.1, and fχðxÞ¼ 2x4=ð1þx2Þ.
If fχðxÞ ¼ x2, it would be a normal χ2 distribution. When
x < 1, the chosen fχðxÞ is less than a normal χ2 distribu-
tion. When x > 1, the chosen fχðxÞ is larger than a normal
χ2 distribution. A smaller x has a smaller influence on χ2 in
Eq. (11). Reference [9] only adopts the first equation.
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V. THE RESULTS BY METHOD I

A. NLO fitted Lr
i

Table I presents the NLO fitted Lr
i . The results in the

second column (fit 1) assume Lr
4 ≡ 0, and the other Lr

i are
left free in the fit. The results in the third column (fit 2) are
obtained by a free fit. To compare with our results, the
fourth (fifth) column lists the results in Ref. [9], which are
fitted at NLO (NNLO). The NLO fit averages three sets of
results when L4 ¼ 0;�0.3. Both fit 1 and fit 2 are very
close to the NNLO fit in Ref. [9], but some of them are very
different from its NLO fit. It indicates that the geometric
series can give a good estimate for higher-order contribu-
tions. The estimation in Sec. IV B is valid. For fit 2, Lr

4 is
small enough, and it is satisfied by the large-Nc limit. This
is an assumption in Ref. [9]. Moreover, 2Lr

1 − Lr
2 and Lr

6

are also satisfied by the large-Nc limit. They are also better
than those in column 4. It means that the estimates from the
higher order can not be ignored. They have a great
influence on Lr

i (especially Lr
1, L

r
3, L

r
4, and Lr

6), and the
large-Nc limit is satisfied automatically. Hence, we have a
good reason to believe that contributions beyond the NNLO

also have a great influence on Cr
i . When we calculate the

NNLO LECs, the truncation errors need to be estimated
too. Since fit 2 has no assumption about Lr

4 and its values
are not very different from fit 1, we use it as the NLO results
in this section.
The second to the fourth column in Table II shows

the LO, the NLO and the higher-order contributions of the
observables with fit 2 in Table I. The fifth column is the
theoretical estimates. In order to see the convergence of
these quantities obviously, the percentage of each order is
defined,

Pctorder ¼
����Xorder

Xth

���� × 100%; ð28Þ

where Xth is the theoretical estimate and the subscript
“order” represents LO, NLO, and the higher order (HO).
These percentages are shown in the parentheses from the
second to the fourth columns in Table II. The experimental
values are listed in the sixth column. It shows that all
observables have good convergence. The χ2i ¼ 2.1 from πK

scattering lengths (a1=20 and a3=20 ) give a dominant con-
tribution to the total χ2 ¼ 4.2. The main reason is that the
LO contributions of these scattering lengths can not give
good predictions. In other words, the LO contributions of
a1=20 and a3=20 are very different from their experimental
values. The contributions beyond the LO need to be large
values, but the NLO contributions are not large enough.
Hence, these two observables give about half of the total χ2.
It seems that ChPT can not give a good prediction for these
πK scattering lengths. The convergences of a1=20 and a3=20

are bad and in conflict with hypothesis I in Sec. II.
However, if they are not included in the fit, Lr

4 increases
to 0.54 × 10−3. This value conflicts with the large-Nc limit.
Hence, they are considered a necessity and will be included
in the following calculations. The higher-order estimates of
fs, gp, a00, and a1=20 are not very small. This is the reason

TABLE II. The convergences of the observables with fit 2 Lr
i in Table I. The percentage PctLO;NLO;HO is defined in Eq. (28). The last

two columns are the theoretical estimates and experimental values, respectively.

Observables LOjPctLOð%Þ NLOjPctNLOð%Þ HOjPctHOð%Þ Theory Experiment

ms=m̂j1 25.8(94.0) 1.6(5.7) 0.1(0.4) 27.5 27.3þ0.7
−1.3

ms=m̂j2 24.2(88.7) 2.7(10.0) 0.3(1.3) 27.3 27.3þ0.7
−1.3

FK=Fπ 1.000(83.4) 0.166(13.8) 0.033(2.8) 1.199 1.199� 0.003
fs 3.782(66.2) 1.278(22.4) 0.652(11.4) 5.711 5.712� 0.032
gp 3.782(76.7) 0.881(17.9) 0.268(5.4) 4.931 4.958� 0.085
a00 0.1592(71.8) 0.0449(20.2) 0.0176(7.9) 0.2217 0.2196� 0.0034
10a20 −0.455ð104.8Þ 0.022(5.0) −0.001ð0.2Þ −0.434 −0.444� 0.012

a1=20 mπ
0.142(76.7) 0.033(17.8) 0.010(5.4) 0.185 0.224� 0.022

10a3=20 mπ
−0.709ð113.1Þ 0.093(14.8) −0.011ð1.7Þ −0.627 −0.448� 0.077

Fπ
Sð0Þ=2B0 1.000(94.2) 0.058(5.4) 0.004(0.3) 1.061 � � �

TABLE I. The NLO fitted Lr
i . The second and the third

columns are our fitting results. The fourth and the fifth columns
are the results in Ref. [9], which is fitted at NLO and NNLO,
respectively. The last line is χ2 and the degrees of freedom
(d.o.f.). Fit 1: Lr

4 ≡ 0. Fit 2: No assumption about Lr
4.

LECs Fit 1 Fit 2 NLO fit [9] NNLO fit [9]

103Lr
1

0.42(05) 0.44(05) 1.0(1) 0.53(06)
103Lr

2
0.93(05) 0.84(10) 1.6(2) 0.81(04)

103Lr
3

−2.84ð16Þ −2.84ð16Þ −3.8ð3Þ −3.07ð20Þ
103Lr

4
≡0 0.30(33) 0.0(3) ≡0.3

103Lr
5

0.93(02) 0.92(02) 1.2(1) 1.01(06)
103Lr

6
0.18(05) 0.22(08) 0.0(4) 0.14(05)

103Lr
7

−0.22ð12Þ −0.23ð12Þ −0.3ð2Þ −0.34ð09Þ
103Lr

8
0.44(10) 0.44(10) 0.5(5) 0.47(10)

χ2ðd:o:f:Þ 5.0(5) 4.2(4) –(5) 1.0(9)
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why there are large deviations between the fourth column
and the fifth column in Table I, such as Lr

1, L
r
3, L

r
4, and L

r
6.

The convergences of ms=m̂j1, ms=m̂j2, and FK=Fπ are
already presented in Table II. If ChPT has good conver-
gence, their numerators and denominators also need to be
convergent separately. The NLO contributions of them are

ðm2
πÞ4 ¼ 1.31 × 10−3 GeV2ð7.2%Þ;

ðm2
KÞ4 ¼ 3.4 × 10−3 GeV2ð1.4%Þ;

ðm2
ηÞ4 ¼ −1.16 × 10−2 GeV2ð3.9%Þ;�
Fπ

F0

�
2

þ
�
Fπ

F0

�
4

¼ 1þ 0.206;

�
FK

F0

�
2

þ
�
FK

F0

�
4

¼ 1þ 0.372; ð29Þ

where the values in the parentheses in the first row are
ðm2

αÞ4=m2
αðα ¼ π; K; ηÞ. These observables also have sat-

isfactory convergences.

B. NNLO fitted Lr
i

In theNNLO fit, the greatest difficulty is that 38 unknown
LECsCr

i are involved. At present, we only find twomethods
that can obtain all of their values. The latest results are in
Refs. [9,16], respectively. This subsection adopts these two
sets of values first. We will estimate them in Sec. VI.
There is a little difference from the NLO fit. Section VA

has mentioned that πK scattering lengths a1=20 and a3=20 can
not give good predictions, and their NLO values are not
large enough. Hence, the contributions beyond the NLO
need large values. We assume that the truncation error
should be small and the NNLO contribution should be
large, because it is unnatural that the NNLO contribution is
smaller than or approximately equal to the truncation error.
It is difficult to estimate the values of a1=20 and a3=20 with the
method in Sec. IV B. For example, the LO contribution of
a3=20 mπ is −0.0709 in Table II, but the experimental value is
−0.0448� 0.0077. If the NLO contribution has a small
positive value, the NNLO contribution needs a larger
positive value. Nevertheless, we have assumed the values
at each order as a geometric sequence in Eq. (21). The first
and the third term (a0 and a0q2) in a geometric sequence
have the same sign. The NNLO contribution should be
negative too. To avoid this contradiction, we assume that
a1=20 and a3=20 have good convergence except for the NNLO
case. In this case, the truncation errors can be estimated
according to only the LO and the NLO values, such as

Δa1=2
0

¼ ða1=20 Þ2
q31

1 − q1
; q1 ¼

ða1=20 Þ4
ða1=20 Þ2

: ð30Þ

In this case, Δa1=2
0

is small if q1 is small. The estimation of

Δa3=2
0

is the similar to Δa1=2
0

. For two-flavor LECs, Ref. [30]

gives the relation betweens lri , L
r
i , and Cr

i up to the NNLO.
In the NNLO fit, lri ði ¼ 1;…; 4Þ are estimated first, which
depend on the renormalized scale μ. Then, l̄i are calculated
by the estimates of lri .
The NNLO fitted Lr

i are shown in Table III. Columns 2
and 4 use the Cr

i in Refs. [9,16], respectively. Column 3
and 5 are the relative deviations of Lr

i ,

PctLr
i
¼
����L

r
i;NNLO − Lr

i;NLO

Lr
i;NNLO

���� × 100%: ð31Þ

To compare with our results, the results in the last column
are the NNLO fit in Ref. [9].
For fit 3, χ2=d:o:f: ¼ 14.7=9 seems a little large. The

main problem is that some PctLr
i
in column 3 are larger than

20%, such as PctLr
1
, PctLr

6
, and PctLr

7
. We consider these

deviations are a little large. The value less than 20% is
acceptable. The results for the fit 4 are even worse.
χ2=d:o:f: ¼ 79.8=9 is very large, and most of PctLr

i
are

larger than 20%. Especially, the values of Lr
2 and Lr

7 are
very different from their NLO fitted results. It indicates that
these two sets of Cr

i in the references can not fit the data
well at NNLO. A new set of Cr

i needs to be found. It needs
to satisfy all the hypotheses in Sec. II.

VI. METHOD II

This section gives a new method to obtain a better set of
Lr
i and Cr

i simultaneously. A part of processes in this
method is similar to those in method I.
References [8,9] estimate Cr

i first, with a random-walk
method in the parameter space of Cr

i , then they fit Lr
i with

the values of Cr
i . Although this method attempts to restrict

the fitted values of Lr
i , some NNLO fitted values of Lr

i
deviate too much from their NLO fitted values (see Table I).

TABLE III. The NNLO fitted Lr
i . The results in the second and

the fourth column use the Cr
i in Refs. [9,16], respectively. The

third and the fifth column are the relative deviations of Lr
i

[defined in Eq. (31)]. The results in the last column are the NNLO
fit in Ref. [9].

LECs Fit 3 Fit 4 NNLO fit[9]

Lr
i PctLr

i
ð%Þ Lr

i PctLr
i
ð%Þ

103Lr
1

0.37(05) 20.5 0.44(05) 0.4 0.53(06)
103Lr

2
0.74(04) 13.4 0.35(04) 140.5 0.81(04)

103Lr
3

−2.92ð17Þ 2.7 −2.16ð16Þ 31.8 −3.07ð20Þ
103Lr

4
0.31(08) 3.7 0.55(06) 46.3 ≡0.3

103Lr
5

1.01(03) 8.1 1.03(02) 10.4 1.01(06)
103Lr

6
0.29(04) 21.8 0.14(05) 55.6 0.14(05)

103Lr
7

−0.30ð08Þ 23.1 −0.05ð06Þ 322.8 −0.34ð09Þ
103Lr

8
0.44(09) 0.3 0.25(07) 77.7 0.47(10)

χ2ðd:o:f.Þ 14.7(9) 80.3(9) 1.0(10)
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For example, Lr
1 ¼ 0.53ð06Þ × 10−3 and Lr

2 ¼ 0.81ð04Þ ×
10−3 at the NNLO fit, which are about half of their values at
the NLO fit Lr

1 ¼ 1.0ð1Þ × 10−3 and Lr
2 ¼ 1.6ð2Þ × 10−3.

We have attempted to determine Cr
i by scattering points

randomly in some possible parameter spaces, but we do not
find a better set of Cr

i . In addition, we find that Cr
i may not

satisfy the large-Nc limit. If we choose the nonzero Cr
i in

Ref. [16], but the zeroCr
i are replaced by those in Ref. [9], a

much smaller χ2 can be found. Hence, we do not assumeCr
i

satisfies the large-Nc limit. Any Cr
i could have a not very

small value.
Fit 2 in Table I gives a set of reasonable predictions in

Table II. Its values are also close to the NNLO fit in
Ref. [9]. Hence, we assume this set of Lr

i is also close to the
true values of Lr

i , and we take them as reference values.
According to hypothesis ii in Sec. II, The difference
between the true value of Lr

i and Lr
i;NLO is assumed to

be less than 20%, i.e.,

Lr
i ∈ ½Lr

i;NLO × 80%; Lr
i;NLO × 120%�: ð32Þ

The value 20% is a personal choice. We consider 20% is
large enough. If fit 2 in Table I is close enough to the true
values of Lr

i , 20% is even a little large for some Lr
i . We

choose these wide ranges to cover the true values of Cr
i as

far as possible. These wide ranges will also lead to wide
distributions of Cr

i . One can see how Cr
i is clearly

dependent on Lr
i .

The total number of Lr
i and Cr

i is 8þ 38 ¼ 46, which is
much larger than the number of the observables 17. There
are 29 redundant parameters. Theoretically, they can not be
obtained exactly simultaneously. Hence, we expect that all
Lr
i are as precise as possible, but some Cr

i could have large
errors. We adopt the following steps to obtain all of them:

(i) All Lr
i are generated randomly according to a uni-

form distribution in the ranges in Eq. (32), because
we do not know which values of Lr

i are more
possible. At this step, none of the Cr

i are known,
the calculation at NNLO does not start, and we also
can not give the NNLO predictions for the observ-
ables. Theoretically, for any set of Lr

i , one could
adjust the values of Cr

i to give a good fit. In other
words, before further calculations, we can not judge
which Lr

i in which range is more possible or not. A
nonuniform distribution of Lr

i may cause the final
results of Lr

i to be close to the peak of the
distribution. However, at this step, we do not know
where the peak is; hence, we choose uniform
distribution. If the future study considers that the
values of Lr

i favor a particular distribution, one could
modify uniform distribution to the new one.
It will show that if some calculations are done, a

part of the generatedLr
i could not lead to a reasonable

set of Cr
i . Some sets of Lr

i would conflict with the
hypotheses in Sec. II. They will be removed. The

initial uniform distribution of a Lr
i will change to a

nonuniform one. We will use this new distribution
to talk about Cr

i in the following steps. In this step,
6.8 × 105 sets of Lr

i are generated. This number is
large enough to keep enough sets of Lr

i at last.
(ii) To avoid some unnecessary calculations, some sets

of Lr
i could be removed first by some simple

constraints. We find that most sets of Lr
i can not

give a good prediction of lri ; i.e., the NLO theoretical
values ðlri Þ4 deviate too far away from their exper-
imental values ðlri Þexp. These sets of Lr

i can not
satisfy hypothesis I in Sec. II, and they can be
removed first. We use the following constraints:

����1 − ðlri Þ4
ðlri Þexp

���� ≤ 0.8; ði ¼ 2; 3Þ: ð33Þ

The choice 0.8 is large enough and does not
contradict with Eq. (27). This constraint seems very
weak, but most sets of Li are removed because of
this constraint. After this step, only about 6.8 × 104

sets of Lr
i are left.

(iii) For a given set of Lr
i , the number of redundant

parameters is 38 − 17 ¼ 21, which is still large. One
can not obtain a unique set of Cr

i . The random-walk
method [8,9] may give a reasonable set of Cr

i , but the
efficiency is low. It would take a very long time.
Generally, different sets of Cr

i may produce the same
χ2. It is hard to confirm which one is more
reasonable. Hence, we do not determine Cr

i directly.
On the other hand, there exist 17 observables.
Seventeen functions of Cr

i can be determined
uniquely. Generally, not all of these functions are
linear functions. Appendix A provides a method to
change them to linear ones called C̃i. For a given set
of Lr

i , these C̃i can be determined uniquely as
method I. The remaining about 6.8 × 104 sets of
Lr
i lead to about 6.8 × 104 sets of C̃i.
The relation between C̃i and Cr

j in Appendix A
can be expressed as

PijCr
j ¼ C̃i; ði ¼ 1…17Þ; ð34Þ

where Pij is a coefficient matrix, j is not continuous,
and its values can be found in Table V. To simplify
this linear relation, one can multiply a suitable
matrix B on both sides of Eq. (34),

BPCr ¼ BC̃≡ C̃0; ð35Þ

where the matrix BP is the reduced row echelon
form of matrix P. Most C̃0

i are still linearly depen-
dent on more than one Cr

i , but three C̃0
i are only

related to Cr
14, C

r
15, and Cr

17, respectively. This is
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because three rows in the matrix BP have only one
nonzero element; the related three Cr

i do not linearly
combine with the others. In other words, Cr

14, C
r
15,

and Cr
17 can be obtained directly because C̃i and B

are already known.
In this step, only the constraint in Eq. (27) is used

because Aiði ¼ 1;…; 5Þ (defined in Appendix A)
can not be obtained separately. These Ai are related
to the NNLO values of m2

αðα ¼ π; K; ηÞ and
Fαðα ¼ π; KÞ. Hence, Eqs. (25) and (26) can not
be calculated until now. These constraints are going
to be adopted later.

(iv) There remain about 6.8 × 104 sets of Lr
i and C̃i, but a

lot of them give bad convergences of the observ-
ables. A typical three-flavor ChPT correction at the
NLO, NNLO, and NNNLO are ∼25%, ∼7%, and
∼1.5%, respectively [9]. For an observable X, except
a1=20 , a3=20 , and lri (i ¼ 2, 3), the following constraints
are introduced:

����ðXÞ4X

����×100%≤ 30%;

����ðXÞ6X

����×100%≤ 12%;

����ðXÞHOX

����×100%≤ 7%; ð36Þ

where the denominator X is their theoretical esti-
mates in Eq. (21). Because the typical corrections in
each order are only a rough estimate, the upper
bounds in Eq. (36) are slightly more than the
estimates.
lri (i ¼ 2, 3) has been constrained by Eq. (27). For

πK scattering lengths a1=20 and a3=20 , as discussed in
Sec. VA, they have a poor convergence. Hence, we
assume they can have a larger NNLO contribution,

����ða
1=2
0 Þ6
a1=20

����×100%≤25%;

����ða
3=2
0 Þ6
a3=20

����×100%≤35%;

ð37Þ

where both denominators a1=20 and a3=20 are their
theoretical estimates. Their constraints at NLO and
the higher order are the same as those in Eq. (36).
For a3=20 , its LO value is too small because of the
discussion above Eq. (30). Hence, the constraint at
NNLO is looser than the other one.
After this step, some sets of Lr

i and the relevant C̃i
do not satisfy Eqs. (36) and (37) and are removed.

(v) Each remaining C̃i has its own distribution. Some
ranges could be very wide. However, in ChPT, the
absolute values of C̃i might not be very large. To
constrain the ranges of C̃i, we take advantage of the
values of Cr

i in other references. Some references

have estimated the values of Cr
i (see Table VIII in

Appendix B). With the help of these values, one can
constrain the ranges of C̃i. However, not all of the
results in the references are close to each other.
Some results which are quite different from the
others are excluded. The ranges of Ci are chosen as

Cr
i ∈ ½C̄r

i − 5σCr
i
; C̄r

i þ 5σCr
i
�; ð38Þ

where C̄r
i are the mean value of Cr

i in Table VIII and
σCr

i
are their standard deviations. Several outliers are

removed in the calculation. The numerical values
can be found in Table IX. The intervals chosen are
5σ wide. They are wide enough to cover nearly all
values in the references. In addition, 3σ-wide inter-
vals can not give a large enough set of Cr

i in our
method (see the next step). Equation (38) only gives
the reasonable boundaries of Cr

i . If some more
reasonable boundaries are found, it is not necessary
to use all values in the literature.

The constraints for m2
αðα ¼ π; K; ηÞ and Fαðα ¼

π; KÞ in Eqs. (25) and (26) are replaced by the
following constraints to constrain the ranges of Cr

i :

���� ðm
2
αÞ6

m2
α

���� ≤ 0.12ðα ¼ π; K; ηÞ;
����
�
Fα

F0

�
6


�
Fα

F0

����� ≤ 0.12ðα ¼ π; KÞ; ð39Þ

where Fα=F0 is the theoretical estimate of the decay-
constant ratios. Not all of Cr

i satisfy these con-
straints. Relevant C̃i and Lr

i are also removed.
(vi) The distributions of most remaining C̃i are similar to

a normal distribution. Only a few of them have little
asymmetry. The mean values and standard devia-
tions of C̃i are regarded as their estimates and errors,
respectively. To this step, 13114 sets of Lr

i and C̃i are
left. This number is large enough in the statistical
sense. To save computation time, we only use the
mean values of C̃i to estimate Cr

i , except for C
r
14,

Cr
15, and Cr

17 [they have been obtained in Eq. (35)].
Equations (35) and (38) describe a high-dimension

range in the parameter space of Cr
i . Figure 1 gives a

low-dimensional example. The box in Fig. 1(a) gives
the upper and the lower bounds of Cr

i as Eq. (38).
In the high-dimensional space, it is a hyperrectangle.
The blue and the red planes are two possible con-
straints of Cr

i for a given set of C̃i as Eq. (35), if the
matrix B is 1 × 3 dimensional. For some sets of C̃i,
the constraint planemaybe similar to the blue one; for
some other sets of C̃i, the constraint plane may be
similar to the red one; and for the other sets of C̃i, the
constraint plane can be the other possible cases. In the
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current situation, the box is 38 − 3 ¼ 35 dimensions
and the plane is 35 − 17 ¼ 18 dimensions. The shape
of the parameter space of Cr

i (as the blue or the red
range) is an 18-dimensional convex polyhedron. The
geometric center of this parameter space is regarded
as the estimates of Cr

i . In other words, we assume the
possibilities are equal in the 18-dimensional convex
polyhedron, becausewe have no reasonwhich area is
more possible.
We use the Monte Carlo method to determine the

center, because we could not find an analytical
method or a more effective numerical method. Con-
sidering the low-dimensional example in Fig. 1(a),
the blue and the red convex polygons are laid flat in
Figs. 1(b) and 1(c), respectively. One would scatter
points in the blue/red range to determine its center,
instead of the box in Fig. 1(a). However, we also
could not find a method to scattering points only in
this irregular range uniformly, especially in the high-
dimensional space. One would scatter points in a
larger rectangle range, such asKLMN in Fig. 1(b) or
A1B1G1F1 in Fig. 1(c). The choice of the rectangle is
not unique. This method works in the low-dimen-
sional space, but in the high-dimensional space, the
volumeof the convex polyhedronmight bevery small
compared with the volume of the smallest hyper-
rectangle. It would bevery hard to scatter points in the
convex polyhedron. Unfortunately, the values of C̃i
obtained above lead to this situation. Hence, instead
of the hyperrectangle, we scatter points in a high-
dimensional parallel polyhedron, such as AGDI (or
BHEJ) in Fig. 1(b) or A1D1C1B1 (or A1C1B1E1) in
Fig. 1(c). The choice of the high-dimension parallel
polyhedron is not unique too. There exist many
possible cases. To increase the chances of searching

points in the high-dimension convex polyhedron, the
volume of the high-dimension parallel polyhedron is
as small as possible. The volume of the smallest one
might be less enough than the volume of the hyper-
rectangle. However, the total number of these high-
dimension parallel polyhedrons is very large. Hence,
we also use theMonteCarlomethod to choose a lot of
different high-dimension parallel polyhedrons (not
all of them) and then calculate all their volumes.
Finally, we choose the smallest one. This method
seems a little boring and takes a long time, butwe find
a small enough high-dimension parallel polyhedron
at least. Now we can scatter points in this high-
dimensional parallel polyhedron and pick up the
points in the high-dimensional convex polyhedron.
Themeanvalues of the coordinates of these points are
the estimates of Cr

i . The standard deviations of the
coordinates of these points are regarded as the
estimates of ΔCr

i . In the calculation, we find that
the 3σ-wide intervals are too narrow to generate
points in the high-dimensional convex polyhedron.
Hence, 5σ-wide intervals are chosen in Eq. (38).

(vii) Using the estimates of Cr
i obtained above, L

r
i can be

determined by method I.
This method to obtain Lr

i and Cr
i with the truncation

errors is general. It is only based on the hypotheses in
Sec. II. It does not depend on the number of observables, as
long as the number of observables is larger than the number
of Lr

i . In the present case, the number of observables (17) is
small compared with the number of Cr

i (38). Theoretically,
if more observables are introduced, the values of Lr

i are
more precise. However, for Cr

i , besides giving more
constraints of the existing Cr

i , the new observables may
also introduce some new Cr

i. These new observables could
also constrain the ranges of the new Cr

i. Sometimes, a new

FIG. 1. The possible parameter space of Cr
i in three dimensions. The box in Fig. 1(a) gives the upper and the lower bounds of Cr

i as
Eq. (38). The blue and the red planes are two possible constraints of Cr

i for a given set of C̃i as Eq. (35), if the matrix B is 1 × 3

dimensional. All possible values of Cr
i are in the blue/red convex polygon. The blue and the red convex polygons are laid flat in Figs. 1

(b) and 1(c), respectively.
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observable may give a new linearly independent C̃r
i . In this

case, the rank of the matrix P in Eq. (34) increases. A new
constraint should be introduced, and Cr

i could be con-
strained in some narrower ranges. Otherwise, if the rank of
matrix P is not changed, this new observable has a little
impact on Cr

i . It only leads to a more precise set of C̃i.

VII. THE RESULTS BY METHOD II

The estimates and errors of C̃i are given in the Table IV.
If we randomly select a half of C̃i, the mean values and the
standard deviations are unchanged. It indicates that the
number of the samples is sufficient. Most of their relative
errors are small enough; only ΔC̃i=C̃i (i ¼ 1, 2, 3, 10) have
large values. One could use this set of C̃i to decide whether
a part of Cr

i are reasonable. A C̃i is only related to a few Cr
i.

For a particular research, sometimes it only needs a few Cr
i.

If these Cr
i are related to one or more C̃i, the values in

Table IV could decide to some extent whether these Cr
i

satisfy the observables discussed in this paper. If one knows
more exact values of some Cr

i , some other Cr
i can be

obtained by these C̃r
i too.

The distributions of Cr
i are shown in Fig. 2 and Fig. 3.

The upper and the lower boundaries in these figures
are according to Eq. (38); their values are given in
Table IX. They show that most Cr

i are dependent on the
initial boundaries. Cr

i (i ¼ 1, 3, 7, 8, 18, 66, 69, 88) are
dependent on both sides of the boundaries, and Cr

i ði¼
2;4;5;6;10;17;20;22;23;26;28;29;30;32;33;36;63;83;90Þ
are dependent on one side. To obtain a more precise value,
one needs more reasonable constraints or more inputs.
Eleven Cr

i ði ¼ 11;…; 16; 19; 21; 25; 31; 34Þ are nearly
boundary independent and are more reasonable. Cr

i
(i ¼ 11, 12, 13) are very special. There exists a jump in
the center. We solve the linear programming problem
[Eqs. (34) and (38)] and find that there does not exist
any solution in the other side of the jump. This is because
the other boundaries of Cr

i limit the solution. However, the
jump is far away from both boundaries. These LECs are
also considered boundary independent.

The values of Cr
i are shown in Table V. Actually, in the

calculation, the linear combinations Cr
63 − Cr

83 þ Cr
88=2

and Cr
66 − Cr

69 − Cr
88 þ Cr

90 arise as a whole. We also
present them in Table V. Our initial ranges of Cr

i are wide,
and many sets of Cr

i can give a small χ2=d:o:f: Hence, their
errors seem large. There is a high probability that the true
values of Cr

i are in these ranges, especially the boundary-
independent ones. Some results in Ref. [9] are marked with
an asterisk; these values are very close to the original data
on the website [24] (less than 10−10). We guess these results
meet the fitting boundaries. The symbol “≡0” in column 4
and column 8 means these values are zeros in the large-Nc
limit. However, most intervals of Cr

i (i ¼ 2, 6, 11, 13, 15,
23) are far away from zero. It indicates that these LECs do
not satisfy the large-Nc limit. That is why the results in
Ref. [16] can not fit Lr

i well by method I.
The second column in Table VI lists the results for Lr

i .
Compared with Ref. [9], χ2=d:o:f: ¼ 4.3=9 is closer to 1. It
means that the constraints in Sec. VI relieve the overfitting
problem. Convergences play an important role in the fit.
For the normal distribution in Eq. (32), the initial standard
deviation of Lr

i ¼ 11.5%. Now, most relative deviations (in
the third column) are obviously less than 11.5%, except for
Lr
2;3. Their values are a little large. We consider they are

also acceptable. PctLr
2
and PctLr

3
in the third column in

Table VI are larger than the others. The main reason is that a
set of Lr

i containing small Lr
2 (large L

r
3) are much easier to

be picked out in the step ii (iv). For comparison, column 4
presents the average values of the remaining sets in step vi
in Sec. VI; column 5 lists the relative deviations between
column 4 and column 6. The values in column 2 and
column 4 are close to each other. It seems that averaging Cr

i
or averaging Lr

i first gives nearly no difference. These
results are also not much different from fit 2 and the results
in Ref. [9]. Because the results in column 2 are related to Cr

i
in Table V, we choose them as our Lr

i results.
In Table VII, the values of the observables at each order

and Pctorder are listed. It can be seen that most observables
have good convergence, except a1=20 and a3=20 at NNLO.
The reason has been discussed in Sec. VA and step iv in
Sec. VI. Whether the higher-order values are really small or
not requires a more reasonable analysis. It is beyond this
work. The truncation errors in the fifth column are very
small; all PctHO are less than 4%, except lr2. However, the
absolute value of lr2 decreases order by order. It is not a
contradiction. Now, with the hypothesises in Sec. II, the
first three problems in the Introduction are solved, and the
cause of the last two problems is also found.

VIII. SUMMARY AND DISCUSSION

In this paper, we have computed the NLO and the
NNLO LECs for pseudoscalar mesons with a new method
(method II). The results are present in Table VI and Table V,
respectively. The truncation errors are considered in the

TABLE IV. The estimates and errors of C̃i.

C̃i Values C̃i Values

C̃1 0.02(12) 10C̃10 −0.06ð13Þ
C̃2 0.19(34) C̃11 0.24(02)
102C̃3 −0.72ð42Þ 103C̃12 −0.18ð01Þ
102C̃4 0.22(03) 103C̃13 1.02(44)
10C̃5 −0.16ð02Þ 104C̃14 0.29(06)
103C̃6 0.26(13) 103C̃15 −0.11ð01Þ
102C̃7 −0.42ð12Þ 104C̃16 −0.56ð06Þ
10C̃8 −0.45ð09Þ 104C̃17 0.19(16)
102C̃9 −0.99ð11Þ
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computation with some hypotheses in Sec. II; i.e., the
theoretical values of observables are satisfied with the
convergence in ChPT, all Lr

i are stable, and Cr
i are

consistent with those in the other references. The results

nearly satisfy all these hypotheses and all random processes
are repeated several times. The results are nearly
unchanged. They are reasonable in statistics. Some linear
combinations of Cr

i called C̃r
i are also given. Their relative
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FIG. 2. Distributions of the first part of Cr
i . The horizontal axis represents the value ofC

r
i , the upper and the lower boundaries are given

in Table IX. The vertical axis represents the probability density function (pdf).
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errors are less than Cr
i , and their values are more reliable. If

one knows more exact values of some Cr
i , some other Cr

i

can be obtained by these C̃r
i .

First, a modified global fit method is used to obtain Lr
i . If

they are only fitted at NLO, the results are very close to the

NNLO fitted results in Ref. [9]. It indicates that the higher-
order estimates have a good prediction. The estimation is
reasonable. However, some Lr

i deviate from the NLO fitting
ones in Ref. [9] too much. The main reason is that the
higher-order estimates of fs, gp, a00, and a1=20 are not very
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FIG. 3. Distributions of the second part of Cr
i . The horizontal axis represents the value of C

r
i , the upper and the lower boundaries are

given in Table IX. The vertical axis represents the probability density function (pdf).
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small; i.e., the truncation errors can make a great impact on
the values of the lower order LECs. The πK scattering
lengths a1=20 and a3=20 can not be fitted well because their
LO contributions can not give a good prediction, and the
NLO contributions tend to be small. For the NLO fit, all the
theoretical values of observables have good convergence.
However, at NNLO, we have tried two sets of Cr

i in the
references, but the results are not very good.

Later, we use a new method to obtain both Lr
i and Cr

i .
The idea is that the linearly independent combinations of
Cr
i (C̃i) are obtained first, and then Cr

i are estimated with
the Monte Carlo method. Finally, Lr

i are fitted by these Cr
i .

SomeCr
i are dependent on the initial boundaries. In order to

obtain more precise values, these Cr
i need more information

to narrow the boundaries. The other Cr
i are boundary

independent and can be limited to some reliable intervals.

TABLE V. The values of Cr
i in units of 10−6. The brackets “[” and “]” mean the results are dependent on the lower and the upper

boundaries, respectively. The parentheses “(” and “)” mean the results are independent on the lower and the upper boundaries,
respectively. The results with an asterisk mean the original data in the website [24] are very close to those in Ref. [9] (less than 10−10).
The symbol “≡0” for the results in Ref. [16] means these values are zeros in the large-Nc limits.

LECs Results Ref. [9] Ref. [16] LECs Results Ref. [9] Ref. [16]

Cr
1 14[37] 12� 25.33þ0.60

−1.11 Cr
22 14(13] 9.0� −2.98þ1.70

−2.21

Cr
2 16(1] 3.0� ≡0 Cr

23 5.6(0.9] −1.0� ≡0

Cr
3 2.9[6.0] 4.0� −0.43þ0.09

−0.09 Cr
25 34(33) −11� −25.76−3.49þ5.02

Cr
4 −26½16Þ 15� 18.11þ0.51

−0.85 Cr
26 31(36] 10 23.04þ2.98

−4.59

Cr
5 −31½7Þ −4.0� −10.88þ0.85

−1.11 Cr
28 −4.9½0.9Þ −2.0� 1.53þ0.00

−0.09

Cr
6 −7.9½1.8Þ −4.0� ≡0 Cr

29 −49½11Þ −20� −8.42−1.79þ2.04

Cr
7 2.4[6.1] 5.0� ≡0 Cr

30 9.0(1.9] 3.0� 3.15þ0.09
−0.17

Cr
8 15[16] 19� 17.85−1.28þ1.36 Cr

31 −0.71ð6.70Þ 2.0� −3.91þ0.60
−1.11

Cr
10 13(6] −0.25 −5.53þ0.43

−0.51 Cr
32 5.6ð1.9� 1.7 1.45−0.17þ0.26

Cr
11 −2.6ð1.8Þ −4.0� ≡0 Cr

33 −0.69½3.12Þ 0.82 −0.43−0.17þ0.43

Cr
12 18(2) −2.8 −2.89þ0.09

−0.09 Cr
34 0.68(4.67) 7.0� 5.61−1.53þ2.47

Cr
13 2.2(0.9) 1.5 ≡0 Cr

36 4.1ð4.3� 2.0� ≡0

Cr
14 −4.2ð1.2Þ −1.0� −7.40þ1.19

−1.79 Cr
63 −6.6½16.8Þ � � � 21.08−1.79þ2.13

Cr
15 1.2(1.0) −3.0� ≡0 Cr

66 −6.5½25.4� � � � 6.80þ0.34
−0.60

Cr
16 −0.81ð1.34Þ 3.2 ≡0 Cr

69 4.6½19.0� � � � 4.42þ0.00
−0.09

Cr
17 3.6(1.6] −1.0� 1.45þ0.09

−0.34 Cr
83 14ð16� � � � −14.79þ1.45

−1.87
Cr
18 −1.1½5.4� 0.63 −5.10þ0.60

−0.77 Cr
88 −38½59� � � � −14.37−5.78þ7.91

Cr
19 5.3(2.8) −4.0� −2.30þ0.77

−1.11 Cr
90 −35½44Þ � � � 19.72−3.74þ4.68

Cr
20 −2.9½2.3Þ 1.0 1.45−0.17þ0.26 Cr

63 − Cr
83 þ Cr

88=2 −39ð33Þ −9.6 28.69−6.13þ7.96

Cr
21 −0.28ð0.56Þ −0.48 −0.51þ0.09

−0.09 Cr
66 − Cr

69 − Cr
88 þ Cr

90 −7.9ð78.9Þ 50 36.47þ2.38
−3.74

TABLE VI. The results for Lr
i . The second column is the final results of Lr

i . The fourth column is only a simple average of the value in
step vi in Sec. VI. PctLr

i
in the second and the fourth column is defined in Eq. (31).

Lr
i Results PctLr

i
ð%Þ Average PctLr

i
ð%Þ Fit 2 Ref. [9] fit p6

103Lr
1

0.43(05) 2.2 0.44(05) 0.8 0.44(05) 0.53(06)
103Lr

2
0.74(04) 14.0 0.77(05) 10.2 0.84(10) 0.81(04)

103Lr
3

−2.47ð17Þ 15.0 −2.55ð15Þ 11.6 −2.84ð16Þ −3.07ð20Þ
103Lr

4
0.33(08) 9.3 0.30(03) 2.2 0.30(33) ≡0.3

103Lr
5

0.95(04) 2.6 0.95(09) 2.9 0.92(02) 1.01(06)
103Lr

6
0.20(03) 9.9 0.21(02) 8.8 0.22(08) 0.14(05)

103Lr
7

−0.23ð08Þ 2.2 −0.23ð03Þ 1.7 −0.23ð12Þ −0.34ð09Þ
103Lr

8
0.42(09) 5.4 0.42(04) 4.7 0.44(10) 0.47(10)

χ2ðd:o:f:Þ 4.3(9) � � � � � � � � � 4.2(4) 1.0(10)
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The relative errors between the NLO fitting results and the
one by this method are all small. All observables have good
convergence, except a1=20 and a3=20 . For a1=20 and a3=20 , we
assume that their contributions beyond NNLO are small
and their NNLO contributions are large because their NLO
values are not large enough. Whether this assumption is
correct or not needs a more reasonable estimate beyond the
NNLO according to ChPT.
Some constraints in this paper are very weak, such as

Eqs. (32), (33), (36), (38), and (39), because we want to
cover the true value as far as possible. Hence, some error
ranges of the NNLO LECs are large. If another method can
introduce more restrictive constraints, their error ranges
may be narrower. However, the values of Lr

i are more
reliable. Their NLO and NNLO fitting results are very
closed. One could use these Lr

i for further calculations
directly. However, the ranges of Cr

i are larger. They could
only give rough estimates at NNLO. The estimates could be
treated as references to judge whether the NNLO contri-
butions are small or large. We hope that this new method
not only determines the LECs in ChPT for mesons, but it
will also generalize to ChPT for baryons and another
effective field theory in the future. Other effective field
theories should also contain a lot of LECs, especially at the
high order. If one fits the low-order LECs, the fit at the low
order should also give a reliable set of LECs with truncation
errors, even without the higher calculations. It would save a
lot of effort. Some new predictions could be given with
these fitting LECs. Some choices in this paper are also
personal favorites. For example, the three hypotheses in
Sec. II are very rough; for some special cases, stricter or
looser conditions might be introduced. We also choose
uniform distribution in Eq. (32), but the strict distribution

would be very complex. These need to be further studied in
the future too.
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APPENDIX A: THE LINEAR
COMBINATIONS OF Cr

i

In Sec. VI, most Cr
i have not been calculated separately,

because the number of redundant parameters is very large.
In this appendix, some C̃i will be defined. They are linear
combinations of Cr

i . These C̃i can be calculated separately.
Generally, the NNLO contribution of some observables

Xj can be separated into two parts; one part is proportional
to Cr

i (Xj;C), and the other part is related to Lr
i (Xj;L),

Xj ¼ Xj;L þ Xj;C ¼ Xj;L þ djAj; ðA1Þ

where different j denotes different observables,whichwill be
discussedbelow,dj are possible dimensional parameters, and
Aj are dimensionless coefficients. dj are independent of Cr

i ,
but Aj are dependent on Cr

i . In this section, the discussion is
only about Xj;C, so we will not go into detail below.

TABLE VII. The convergence of observables. The second to the fifth columns give the contributions and Pctorder at each order. The
theoretical values are given in the sixth column. The experimental values (inputs) are listed in the last column. l̄i have been changed to lri .

Physical quantities LOjPctLOð%Þ NLOjPctNLOð%Þ NNLOjPctNNLOð%Þ HOjPctHOð%Þ Theory Inputs

ms=m̂j1 25.8(94.8) 2.0(7.2) −1.1ð4.0Þ 0.6(2.0) 27.3 27.3þ0.7
−1.3

ms=m̂j2 24.2(88.7) 3.3(12.2) −0.8ð2.8Þ 0.5(1.9) 27.3 27.3þ0.7
−1.3

FK=Fπ 1.000(83.4) 0.169(14.1) 0.023(1.9) 0.007(0.6) 1.199 1.199� 0.003
fs 3.782(66.2) 1.322(23.1) 0.371(6.5) 0.235(4.1) 5.709 5.712� 0.032
gp 3.782(76.7) 0.776(15.7) 0.366(7.4) 0.007(0.1) 4.931 4.958� 0.085

a00 0.1592(72.5) 0.0453(20.6) 0.0098(4.5) 0.0053(2.4) 0.2196 0.2196� 0.0034

10a20 −0.455ð103.8Þ 0.022(5.0) −0.010ð2.2Þ 0.005(1.1) −0.438 −0.444� 0.012

a1=20 mπ
0.142(62.6) 0.033(14.6) 0.049(21.7) 0.002(1.0) 0.226 0.224� 0.022

10a3=20 mπ
−0.709ð150.2Þ 0.094(19.8) 0.142(30.1) 0.001(0.3) −0.472 −0.448� 0.077

Fπ
Sð0Þ=2B0 1.000(98.1) 0.019(1.9) 0.000(0.0) 0.000(0.0) 1.019 � � �

103lr1 � � � −3.2ð81.5Þ −0.6ð15.1Þ −0.1ð3.4Þ −4.0 −4.0� 0.6

103lr2 � � � 3.0(145.6) −1.3ð66.5Þ 0.4(20.8) 2.0 1.9� 0.2

103lr3 � � � 0.2(102.5) −0.0ð2.6Þ 0.0(0.1) 0.2 0.3� 1.1

103lr4 � � � 6.3(96.8) 0.2(3.1) 0.0(0.1) 6.6 6.2� 1.3
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For meson masses and decay constants, j ¼ 1…5 denote m2
π , m2

K , m
2
η, Fπ=F0, FK=F0, respectively; d1;2;3 ¼ m6

π=F4
π ,

d4;5 ¼ m4
π=F4

π , and Aj are

A1 ¼ 48Cr
19 − 16Cr

14 − 16Cr
17 − 32Cr

12 þ 32Cr
31 − Cr

15ð32a2 þ 16Þ − Cr
13ð64a2 þ 32Þ

þ Cr
32ð64a2 þ 32Þ þ Cr

20ð64a4 þ 80Þ − Cr
16ð64a4 − 64a2 þ 48Þ þ 48Cr

21ð2a2 þ 1Þ2; ðA2Þ

A2 ¼ 32Cr
31a

6 − 32Cr
12a

6 − 16Cr
14a

2ð2a4 − 2a2 þ 1Þ þ 48Cr
19a

2ð2a4 − 2a2 þ 1Þ
− 16Cr

16a
2ð4a4 − 4a2 þ 3Þ þ 16Cr

20a
2ð8a4 − 2a2 þ 3Þ þ 48Cr

21a
2ð2a2 þ 1Þ2

− 32Cr
13a

4ð2a2 þ 1Þ − 16Cr
15a

4ð2a2 þ 1Þ − 16Cr
17a

2ð2a2 − 1Þ þ 32Cr
32a

4ð2a2 þ 1Þ; ðA3Þ

A3 ¼Cr
20ð256a6−192a4þ64a2þ16ÞþCr

19ð256a6−384a4þ192a2−16Þ

−Cr
16

�
256a6

3
−
320a4

3
þ256a2

3
−16

�
−Cr

32

�
−
512a6

3
þ256a4

3
þ64a2

3
−32

�

þCr
31

�
512a6

3
−256a4þ128a2−

32

3

�
−Cr

14

�
512a6

9
−
640a4

9
þ320a2

9
−
16

3

�

−Cr
17

�
512a6

9
−
640a4

9
þ320a2

9
−
16

3

�
−
32Cr

12ð4a2−1Þ3
27

−
32Cr

13ð2a2þ1Þð4a2−1Þ2
9

−
16Cr

15ð2a2þ1Þð4a2−1Þ2
9

þ16Cr
21ð2a2þ1Þ2ð4a2−1Þ−128Cr

18ða2−1Þ2ð4a2−1Þ
9

þ512Cr
33a

2ða2−1Þ2
3

; ðA4Þ

A4 ¼ 8Cr
14 þ 8Cr

17 þ Cr
15ð16a2 þ 8Þ þ Cr

16ð32a4 − 32a2 þ 24Þ; ðA5Þ

A5 ¼ Cr
17ð16a2 − 8Þ þ Cr

14ð16a4 − 16a2 þ 8Þ þ Cr
16ð32a4 − 32a2 þ 24Þ þ 8Cr

15a
2ð2a2 þ 1Þ; ðA6Þ

where a¼mK=mπ . Forms=m̂j1,ms=m̂j2, andFK=Fπ , the NNLOorder contributions related toCr
i are ðm4

π=F4
πÞC̃i (i¼1, 2, 3),

respectively, where

C̃1 ¼
m2

K

m2
π
A1 − A2; ðA7Þ

C̃2 ¼
m2

η

m2
π
A1 − A3; ðA8Þ

C̃3 ¼ A5 − A4: ðA9Þ

For Kl4 form factors, the NNLO contributions of fs and f0s can be written as [7]

Fðsπ; sl ¼ 0; cos θ ¼ 0Þ6 ¼ F6;L þ F6;C ¼ F6;L þ 1

F4
π
ðA6s2π þ A7sπm2

π þ A8m4
πÞ; ðA10Þ

A6 ¼ 4Cr
3 − 64Cr

2 − 14Cr
1 þ 20Cr

4; ðA11Þ

A7 ¼ Cr
10ð4a2 þ 4Þ þ Cr

5ð4a2 þ 16Þ þ Cr
8ð16a2 þ 4Þ þ Cr

12ð12a2 − 8Þ
þ Cr

22ð4a2 þ 8Þ þ Cr
11ð16a2 þ 8Þ þ Cr

4ð4a2 − 32Þ − Cr
23ð8a2 þ 16Þ

þ Cr
25ð8a2 þ 16Þ þ Cr

1ð10a2 þ 48Þ þ Cr
6ð40a2 þ 20Þ þ Cr

7ð32a2 þ 32Þ
þ Cr

13ð48a2 − 40Þ þ Cr
2ð32a2 þ 192Þ þ 4Cr

3a
2; ðA12Þ
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A8 ¼ 128Cr
16 þ 128Cr

28 þ Cr
5ð4a4 − 32Þ − Cr

1ð16a2 þ 32Þ − Cr
14ð16a2 − 32Þ

− Cr
26ð16a2 − 32Þ þ Cr

15ð80a2 þ 8Þ þ Cr
17ð64a2 − 48Þ − Cr

7ð64a2 þ 64Þ
− Cr

2ð64a2 þ 128Þ − Cr
6ð−8a4 þ 60a2 þ 32Þ − Cr

12ð12a4 − 24a2 þ 64Þ
− Cr

13ð16a4 þ 72a2 þ 64Þ − 28Cr
8a

2 − 16Cr
25a

2 − 32Cr
29a

2 − 64Cr
30a

2

− 8Cr
34a

4 − 32Cr
36a

2 þ 4Cr
10a

2ða2 þ 1Þ þ 8Cr
23a

2ða2 − 2Þ þ 4Cr
22a

2ða2 − 6Þ þ 8Cr
11a

2ð2a2 þ 1Þ: ðA13Þ

f0s can be calculated numerically

f0s ¼ 4m2
π
Fðs0πÞ − FðsπÞ

s0π − sπ
; ðA14Þ

where sπ ¼ ð2mπ þ 0.001 MeVÞ2 and s0π ¼ ð293 MeVÞ2 are around the threshold. The two observables fs and f0s are
related to two independent linear combinations,

C̃4 ¼ A6 −
m4

π

sπs0π
A8; ðA15Þ

C̃5 ¼ A7 þ
m2

πðsπ þ s0πÞ
sπs0π

A8: ðA16Þ

The discussion for gp and g0p is similar to fs and f0s. The parameters A9;10;11 and the independent linear combinations
C̃6;7 are

A9 ¼ 4Cr
3 − 2Cr

1 þ 2Cr
4 þ 3Cr

66 − 3Cr
69 − 3Cr

88 þ 3Cr
90; ðA17Þ

A10 ¼ Cr
10ð4a2 þ 4Þ − Cr

6ð8a2 þ 4Þ − 4Cr
8 − Cr

4ð8a2 þ 8Þ − Cr
12ð4a2 þ 16Þ

þ Cr
22ð8a2 þ 4Þ þ Cr

11ð16a2 þ 8Þ − Cr
25ð8a2 þ 4Þ þ Cr

63ð4a2 − 4Þ
− Cr

66ð2a2 þ 4Þ þ Cr
69ð2a2 þ 4Þ − Cr

13ð48a2 þ 24Þ − Cr
83ð4a2 − 4Þ

þ Cr
88ð4a2 þ 2Þ − Cr

90ð2a2 þ 4Þ − 2Cr
1a

2 þ 4Cr
3a

2 − 4Cr
5a

2; ðA18Þ

A11 ¼ 16Cr
17 þ Cr

15ð16a2 þ 8Þ þ Cr
66ð4a2 − a4Þ þ Cr

90ð4a2 − a4Þ − 4Cr
5a

4 − 4Cr
8a

2

− 28Cr
12a

4 þ 16Cr
14a

2 − 20Cr
22a

2 þ 20Cr
25a

2 þ 16Cr
26a

2 − 32Cr
29a

2 − 8Cr
34a

4

− Cr
88ða4 þ 2a2Þ − 2Cr

4a
2ða2 − 4Þ þ 4Cr

10a
2ða2 þ 1Þ − 4Cr

63a
2ða2 − 1Þ

þ Cr
69a

2ða2 − 4Þ þ 4Cr
83a

2ða2 − 1Þ − 4Cr
6a

2ð2a2 þ 1Þ þ 8Cr
11a

2ð2a2 þ 1Þ − 24Cr
13a

2ð2a2 þ 1Þ; ðA19Þ

C̃6 ¼ A9 −
m4

π

sπs0π
A11; ðA20Þ

C̃7 ¼ A10 þ
m2

πðsπ þ s0πÞ
sπs0π

A11: ðA21Þ

The NNLO contribution of the ππ scattering amplitude is related to Aðs; t; uÞ and Aðt; u; sÞ ¼ Aðu; s; tÞ, where s ¼ 4m2
π ,

t ¼ 0 and u ¼ 0. They can be written as Eq. (A1) [28],

A12 ¼ 192Cr
3 − 128Cr

2 − 64Cr
1 þ 384Cr

4 þ 32Cr
5 þ 64Cr

7 þ 32Cr
8 þ 32Cr

10 − 96Cr
12

þ 64Cr
14 þ 128Cr

16 þ 64Cr
17 þ 96Cr

19 − 128Cr
22 − 128Cr

23 þ 192Cr
25 þ 64Cr

26

þ 128Cr
28 − 192Cr

29 − 128Cr
30 þ 96Cr

31 þ Cr
6ð64a2 þ 32Þ þ Cr

11ð64a2 þ 32Þ
þ Cr

15ð64a2 þ 96Þ − Cr
13ð64a2 þ 160Þ þ Cr

20ð64a2 þ 160Þ þ Cr
32ð64a2 þ 160Þ þ Cr

21ð384a2 þ 192Þ; ðA22Þ
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A13 ¼ 64Cr
1 þ 128Cr

2 − 64Cr
3 − 128Cr

4 þ 32Cr
5 þ 64Cr

7 þ 32Cr
8 þ 32Cr

10 − 96Cr
12

− 64Cr
14 − 128Cr

16 − 64Cr
17 þ 96Cr

19 þ 128Cr
22 þ 128Cr

23 − 64Cr
25 − 64Cr

26

− 128Cr
28 þ 64Cr

29 þ 96Cr
31 þ Cr

6ð64a2 þ 32Þ þ Cr
11ð64a2 þ 32Þ

− Cr
15ð64a2 þ 96Þ − Cr

13ð64a2 þ 160Þ þ Cr
20ð64a2 þ 160Þ þ Cr

32ð64a2 þ 160Þ þ Cr
21ð384a2 þ 192Þ; ðA23Þ

and d12;13 ¼ m6
π=F6

π . The scattering lengths a00 and a20 are related to m6
πC̃8;9=ð32πF6

πÞ, respectively, where

C̃8 ¼ 3A12 þ 2A13; ðA24Þ

C̃9 ¼ A13: ðA25Þ

For πK scattering, the NNLO contribution is related to T
3
2ðs; t; uÞ and T

3
2ðu; t; sÞ, where s ¼ ðmK þmπÞ2, t ¼ 0, and

u ¼ ðmK −mπÞ2. They can be written as Eq. (A1) [45],

A14¼ 64Cr
29a

3−128Cr
4a

3−64Cr
25a

3−64Cr
3a

3−32Cr
14a

2ðaþ1Þ−32Cr
17aða3þ1Þ−16Cr

15að4a3þ2a2þ3aþ1Þ
þ16Cr

1a
2ðaþ1Þ2þ64Cr

2a
2ða2þ1Þþ16Cr

5a
2ða2þ1Þþ32Cr

7a
2ða2þ1Þþ16Cr

8a
2ða2þ1Þ

þ16Cr
10a

2ða2þ1Þ−48Cr
12a

2ða2þ1Þ−64Cr
16a

2ða2þ1Þþ48Cr
19a

2ða2þ1Þþ32Cr
22a

2ðaþ1Þ2
þ64Cr

23a
2ða2þ1Þ−16Cr

26a
2ðaþ1Þ2−64Cr

28a
2ða2þ1Þþ48Cr

31a
2ða2þ1Þþ32Cr

6a
2ð2a2þ1Þ

þ32Cr
11a

2ð2a2þ1Þ−32Cr
13a

2ð4a2þ3Þþ192Cr
21a

2ð2a2þ1Þþ32Cr
20a

2ð4a2þ3Þþ32Cr
32a

2ð4a2þ3Þ; ðA26Þ

A15¼ 64Cr
3a

3þ128Cr
4a

3þ64Cr
25a

3−64Cr
29a

3þ32Cr
14a

2ða−1Þ−32Cr
17aða3−1Þ−16Cr

15að4a3−2a2þ3a−1Þ
þ16Cr

1a
2ða−1Þ2þ64Cr

2a
2ða2þ1Þþ16Cr

5a
2ða2þ1Þþ32Cr

7a
2ða2þ1Þþ16Cr

8a
2ða2þ1Þ

þ16Cr
10a

2ða2þ1Þ−48Cr
12a

2ða2þ1Þ−64Cr
16a

2ða2þ1Þþ48Cr
19a

2ða2þ1Þþ32Cr
22a

2ða−1Þ2
þ64Cr

23a
2ða2þ1Þ−16Cr

26a
2ða−1Þ2−64Cr

28a
2ða2þ1Þþ48Cr

31a
2ða2þ1Þþ32Cr

6a
2ð2a2þ1Þ

þ32Cr
11a

2ð2a2þ1Þ−32Cr
13a

2ð4a2þ3Þþ192Cr
21a

2ð2a2þ1Þþ32Cr
20a

2ð4a2þ3Þþ32Cr
32a

2ð4a2þ3Þ; ðA27Þ

where d14;15 ¼ m6
π=F6

π . The scattering lengths a1=20 and a3=20 are related to m6
πC̃10;11=ð8πF6

π
ffiffiffi
s

p Þ, respectively, where

C̃10 ¼ −
1

2
A14 þ

3

2
A15; ðA28Þ

C̃11 ¼ A14: ðA29Þ

For the pion scalar form factor Fπ
SðtÞ, the NNLO contribution is [29]

�
Fπ
SðtÞ
2B0

�
6

¼
�
Fπ
SðtÞ
2B0

�
6;L

þ 1

F4
π
ðA16t2 þ A17tm2

π þ A18m4
πÞ; ðA30Þ

A16 ¼ −8Cr
12 − 16Cr

13; ðA31Þ

A17 ¼ 32Cr
12 þ 64Cr

13 þ 16Cr
14 þ 32Cr

16 þ 16Cr
17 þ 16Cr

34 þ 16Cr
36 þ Cr

15ð16a2 þ 24Þ; ðA32Þ

A18 ¼ 144Cr
19 − 48Cr

14 − 48Cr
17 − 96Cr

12 þ 96Cr
31 − Cr

15ð64a2 þ 64Þ
− Cr

13ð128a2 þ 128Þ þ Cr
32ð128a2 þ 128Þ − Cr

16ð64a4 − 64a2 þ 112Þ
þ Cr

20ð64a4 þ 64a2 þ 240Þ þ Cr
21ð192a4 þ 576a2 þ 240Þ: ðA33Þ

hr2iπS and cπS are related to C̃12 ¼ A16 and C̃13 ¼ A17, respectively.
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Reference [30] gives the relations between lri and Lr
i up

to the NNLO. The NNLO contributions related to Cr
i are

lri ∼M2
KC̃iþ13=ð16π2F2

0Þ; (i ¼ 1, 2, 3, 4), where

C̃14 ¼ 8Cr
6 − 8Cr

11 þ 32Cr
13; ðA34Þ

C̃15 ¼ 16Cr
11 − 32Cr

13; ðA35Þ

C̃16¼−32Cr
13−16Cr

15þ32Cr
20þ192Cr

21þ32Cr
32; ðA36Þ

C̃r
17 ¼ 16Cr

15; ðA37Þ

and M2
K is the one-loop expression of the kaon mass in the

limit mu ¼ md ¼ 0 [2].
Now the number of C̃i is related to the number of

observables. They can be obtained directly.

APPENDIX B: THE VALUES OF Cr
i IN THE

OTHER REFERENCES

TABLE VIII. Cr
i in the other references. Some results with an asterisk mean the original results are Ci. We have reduced them to the

renormalized ones. The numerical values are in units of 10−6.

i Cr
i

1 4.25� [20] −2.55� [20] −7.65� [20] −16.15� [20] 32.22þ0.85
−1.45

� [15] 30.69� [15] 12 [9]

1 25.33þ0.60
−1.11

� [16] 12.16 [8] 8.66 [8] 16.83 [8] −7.33 [8]

2 −7.82� 4.17� [46] −6.29� 4.17� [46] −0.43� [46] 0.00þ0.00
−0.00

� [15] ≡0� [15] 3.0 [9] ≡0� [16]

2 0.00 [8] 1.13 [8] 2.80 [8]

3 0.85� [20] 2.55� [20] 3.40 [20] 5.95� [20] −0.43þ0.09
−0.09

� [15] −0.09� [15] 4.0 [9]

3 −0.43þ0.09
−0.09

� [16] 0.00 [8] −0.11 [8] 3.24 [8] 0.84 [8]

4 5.10� [20] 0� [20] −4.25� [20] −10.20� [20] 26.35þ0.77
−1.28

� [15] 25.33� [15] 15 [9]

4 18.11þ0.51
−0.85

� [16] 14.52 [8] 7.08 [8] 22.25 [8] 12.66 [8]

5 −8.59þ0.68
−0.94

� [15] −4.34� [15] −4.0 [9] −10.88þ0.85
−1.11

� [16] 6.19 [8] −2.31 [8] 7.79 [8]

5 11.47 [8]

6 ≡0� [15] −4.0 [9] ≡0� [16] 0.00 [8] −3.07 [8] −0.50 [8]

7 ≡0� [15] 5.0 [9] ≡0� [16] 0.00 [8] 3.50 [8] −0.03 [8]

8 19.64−1.36þ1.53
� [15] 9.86� [15] 19 [9] 17.85−1.28þ1.36

� [16] 6.19 [8] 5.28 [8] 14.34 [8]

8 6.15 [8]

10 −8.93þ0.68
−0.77

� [15] −4.17� [15] −0.25 [9] −5.53þ0.43
−0.51

� [16] −12.39 [8] −2.40 [8] −1.64 [8]

10 3.07 [8]

11 ≡0� [15] −4.0 [9] ≡0� [16] 0.00 [8] −1.12 [8] −3.44 [8]

12 0.03� 0.54 [47] −10 [48] −3.74� 1.36� [49] −0.6� 0.3 [50] 4.90� 0.48 [14] 6.66� 0.49 [14] 3.99� 0.81 [14]

12 4.88� 0.81 [14] 3.99� 0.48 [14] 3.77� 0.75 [14] 0.43� 0.34� [19] −2.89þ0.17
−0.09

� [15] −1.62� [15] −2.8 [9]

12 −2.4 [9,51] −0.421 [52] −0.484 [52] −0.550 [52] −0.362 [52] −0.306 [52] −0.170 [52]

12 −0.235 [52] −0.683 [52] −0.743 [52] −0.234 [52] 1.107 [52] −0.202 [52] 1.132 [52]

12 −0.264 [52] 1.084 [52] −15 [29] −5.2 [29] 2.6 [29] 7.8 [29] −11 [29]

12 −8.4 [29] 1.2 [29] −13 [29] −2.89þ0.09
−0.09

� [16] −6.19 [8] −0.78 [8] −13.58 [8]

12 −5.12 [8]

13 0� 0.2 [50] ≡0� [15] 1.5 [9] −5.6 [29] −0.2 [29] 1.5 [29] 0.3 [29]

13 ≡0� [16] 0.00 [8] 2.65 [8] −0.02 [8]

14 −36.55� [17] ≡0� [14] 0.60� 1.21 [14] 0.55� 1.17 [14] ≡0.55 [14] −0.79� 0.57 [14] −7.06þ1.02
−1.62

� [15]

14 −2.21� [15] −1.0 [9] −7.40þ1.19
−1.79

� [16] 0.00 [8] −1.90 [8] −7.59 [8] −8.28 [8]

15 ≡0� [15] −3.0 [9] ≡0� [16] 0.00 [8] −2.28 [8] −2.33 [8]

16 ≡0� [15] 3.2 [9] 2.4 [53] 2.6 [53] 2.8 [53] 3.2 [53] ≡0� [16]

16 0.00 [8] 0.07 [8] 0.63 [8]

17 ≡0 [14] 0.13� 1.41 [14] 0.82� 1.43 [14] ≡0.13 [14] 1.77� 0.66 [14] 0.09−0.09−0.09
� [15] −1.28� [15]

17 −1.0 [9] 1.45þ0.09
−0.34

� [16] 0.00 [8] 0.02 [8] 1.25 [8] 11.21 [8]

(Table continued)
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TABLE VIII. (Continued)

i Cr
i

18 −4.76þ0.77
−0.94

� [15] −0.51� [15] 0.63 [9] −1.8 [9,54] −5.10þ0.60
−0.77

� [16] −2.02 [8] −1.28 [8]

18 −2.84 [8] −0.63 [8]

19 −23.80� [17] −4.08þ0.77
−1.11

� [15] −0.68� [15] −4.0 [9] −0.6 [9,54] −1.7 [53] −3.4 [53]

19 −4.5 [53] −3.8 [53] −2.4 [53] −2.30þ0.77
−1.11

� [16] 0.01 [8] −1.10 [8] −4.11 [8]

19 −11.47 [8]

20 1.53−0.26þ0.34
� [15] 0.17� [15] 1.0 [9] 0.9 [9,54] −0.5 [53] 0.7 [53] 1.2 [53]

20 0.8 [53] 0.4 [53] 1.45−0.17þ0.26
� [16] −0.02 [8] 0.41 [8] −3.35 [8] −0.43 [8]

21 −0.51þ0.09
−0.09

� [15] −0.09� [15] −0.48 [9] −0.51þ0.09
−0.09

� [16] 0.01 [8] −0.14 [8] 0.18 [8]

21 −0.88 [8]

22 2.30þ1.62
−2.13

� [15] 9.44� [15] 9.0 [9] −2.98þ1.70
−2.21

� [16] −2.97 [8] 0.62 [8] 5.45 [8]

22 11.17 [8]

23 ≡0� [15] −1.0 [9] ≡0� [16] 0.00 [8] 0.48 [8] 2.69 [8]

25 −50.84−4.17þ6.12
� [15] −61.29� [15] −11 [9] −25.76−3.49þ5.02

� [16] −18.38 [8] −13.66 [8] −14.52 [8]

25 12.82 [8]

26 28.48þ2.47
−4.00

� [15] 33.41� [15] 10 [9] 23.04þ2.98
−4.59

� [16] −2.84 [8] 7.65 [8] −5.97 [8]

26 −4.85 [8]

28 2.55þ0.09
−0.09

� [15] 2.47� [15] −2.0 [9] 1.53þ0.00
−0.09

� [16] 1.35 [8] 0.69 [8] 1.77 [8]

28 1.47 [8]

29 −26.18−2.21þ2.72
� [15] −32.39� [15] −20 [9] −8.42−1.79þ2.04

� [16] −13.63 [8] −7.04 [8] −19.07 [8]

29 −7.85 [8]

30 5.10þ0.17
−0.26

� [15] 4.93� [15] 3.0 [9] 3.15þ0.09
−0.17

� [16] 2.70 [8] 1.37 [8] 1.65 [8]

30 5.45 [8]

31 −5.36þ0.43
−0.77

� [15] −1.87� [15] 2.0 [9] −3.91þ0.60
−1.11

� [16] −6.16 [8] −1.44 [8] −3.89 [8]

31 13.10 [8]

32 1.53−0.26þ0.34
� [15] 0.17� [15] 1.7 [9] 1.45−0.17þ0.26

� [16] −0.02 [8] 0.41 [8] 2.91 [8]

32 3.56 [8]

33 0.77−0.00þ0.26
� [15] 0.68� [15] 0.82 [9] −0.43−0.17þ0.43

� [16] 2.08 [8] 0.21 [8] 2.91 [8]

33 −1.02 [8]

34 5.61� 4.00� [49] 2.16� 0.37 [14] −1.09� 0.37 [14] 3.20� 0.81 [14] 0.91� 0.82 [14] 3.20� 0.37 [14] 2.98� 0.80 [14]

34 13.52−0.85þ1.36
� [15] 8.76� [15] 7.0 [9] 6.480 [52] 3.971 [52] 1.344 [52] 8.879 [52]

34 11.176 [52] 4.741 [52] 2.235 [52] 8.229 [52] 5.718 [52] 1.534 [52] −0.216 [52]

34 0.666 [52] −1.092 [52] 2.400 [52] 0.659 [52] 5.61−1.53þ2.47
� [16] 14.32 [8] 3.63 [8]

34 23.21 [8] 10.77 [8]

36 ≡0� [15] 2.0 [9] ≡0� [16] 0.00 [8] 3.89 [8] −0.95 [8]

63 25.42−2.04þ2.55
� [15] 11.98� [15] 21.08−1.79þ2.13

� [16] 6.19 [8] 6.83 [8] 6.65 [8] 7.76 [8]

66 3.40� [20] −2.55� [20] −5.95� [20] −12.75� [20] 14.54þ0.60
−1.02

� [15] 14.71� [15] 0.68þ0.34
−0.60

� [16]

66 10.49 [8] 3.91 [8] 17.03 [8] 4.16 [8]

69 −3.40� [20] 2.55� [20] 5.95� [20] 12.75� [20] −7.31−0.34þ0.51
� [15] −7.65� [15] 4.42þ0.00

−0.09
� [16]

69 −5.77 [8] −1.96 [8] −6.64 [8] −7.84 [8]

83 0.60þ1.70
−2.30

� [15] 8.16� [15] −14.79þ1.45
−1.87

� [16] 1.63 [8] 0.16 [8] −2.94 [8] −5.53 [8]

88 −52� [18] −16� [18] −14� [18] −3.5� 1.0 [50] −46.50−6.21þ8.76
� [15] −66.56� [15] −14.37−5.78þ7.91

� [16]

88 −13.83 [8] −12.49 [8] −9.12 [8] −3.31 [8]

90 0.0� [18] 33� [18] 51� [18] 20.74−3.23þ3.91
� [15] 2.13� [15] 19.72−3.74þ4.68

� [16] 50.69 [8]

90 5.57 [8] 52.38 [8] −2.04 [8]
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