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Finite energy QCD sum rules involving nucleon current correlators are used to determine several QCD
and hadronic parameters in the presence of an external, uniform, large magnetic field. The continuum
hadronic threshold s0, nucleon mass mN , current-nucleon coupling λN , transverse velocity v⊥, the spin
polarization condensate hq̄σ12qi, and the magnetic susceptibility of the quark condensate χq, are obtained
for the case of protons and neutrons. Due to the magnetic field, and charge asymmetry of light quarks up
and down, all the obtained quantities evolve differently with the magnetic field, for each nucleon or quark
flavor. With this approach it is possible to obtain the evolution of the above parameters up to a magnetic
field strength eB < 1.4 GeV2.
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I. INTRODUCTION

The influence of external, strong magnetic fields on
hadronic and quantum chromodynamics (QCD) properties
is an active research field. There are two important physical
scenarios involving these extreme magnetic fields, i.e.,
peripheral heavy ion collisions and compact stars such as
magnetars. Several methods have been employed in order
to extract the magnetic evolution of various quantities, e.g.,
masses, coupling constants and QCD vacuum condensates.
These are, among others, lattice QCD, linear sigma model,
Walecka model, Nambu–Jona-Lasinio model, functional
renormalization group and QCD sum rules.
Lack of experimental data makes it imperative to explore

different perspectives for a better understanding of such
systems. There are a few open questions in this field, e.g.,
the magnetic behavior of vacuum condensates. However,

there is a consensus with respect to the existence of
magnetic catalysis of the chiral condensate at zero temper-
ature [1]. For this reason, the chiral condensate at finite
magnetic field can be considered as a reliable input in
several analyses. The magnetic behavior of other conden-
sates, e.g., the gluon condensate, is still not well estab-
lished. However, there seems to be a reasonable consensus
within a certain region of the magnetic field strength [2,3].
In the case of new condensates appearing in the presence of
an external magnetic field, the main object is the polari-
zation tensor condensate hq̄σμνqi. All approaches agree on
the linear behavior of this object for weak magnetic
fields [1,4].
The baryon sector, in particular the nucleon case, in

magnetic fields has been less explored. As a result, there are
several pending issues. For instance, the magnetic behavior
of the nucleon mass is unclear. In fact, different approaches
lead to different behavior. Some models lead to an
increasing mass with increasing field, others lead to the
opposite behavior, and still others suggest no significant
magnetic field dependence [5–9].
QCD sum rules have been used to study magnetic field

effects in baryonic systems. Early work was focused on the
determination of the nucleon magnetic moment in the
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presence of new condensates [10]. This procedure was later
extended to the full baryonic octet [11]. These approaches
considered only linear magnetic field dependences, and
included the new condensate. We consider here finite
energy QCD sum rules (FESR) in an external magnetic
field to obtain the behavior of various QCD and hadronic
parameters. The analysis is not restricted to linear magnetic
field dependences. These sum rules allow for the extraction
of information about the hadronic continuum threshold s0,
the current-nucleon coupling λN , the transverse velocity of
nucleons, the polarization tensor of the condensate, the
magnetic susceptibility of the quark condensate, and the
nucleon masses. For this purpose, techniques used in
previous work are implemented [2,12,13].
This paper is organized as follows. In Sec. II we present a

brief introduction to FESR, and their application to the
vacuum correlation of nucleonic interpolating currents.
Section III is devoted to the introduction of an external
magnetic field, specifying in detail the changes in propa-
gators, correlator structures and the corresponding mod-
ifications induced in the FESR. In Sec. IV we present the
set of QCD sum rules together with the numerical analysis.
The article ends with the conclusions in Sec. V.

II. VACUUM FESR

A. Brief description of FESR

The FESR involve current-current correlators in momen-
tum space Πðp2Þ multiplied by some analytic kernel (for a
review see e.g., [14]). These correlators are integrated along
a closed contour consisting of a circular path in the complex
plane s ¼ p2, skipping the singularities and branch cut that
lie along the real positive s plane (the pac-man contour)
[2,12,13]. From Cauchy’s theorem the contour integral can
be expressed as

1

π

Z
s0

0

dsKðsÞImΠðsÞjHad ¼
−1
2πi

I
s0

dsKðsÞΠðsÞjQCD; ð1Þ

where KðsÞ is an analytic kernel, usually a power of s, and
the integration path on the right hand side is a circle of
radius s0. This expression encapsulates the notion of quark-
hadron duality, with hadronic information along the pos-
itive real axis being related to QCD on the circle. One of the
advantages of FESR with respect to other sum rules is that
they provide a projection of vacuum condensates of a given
mass dimension for each power of s.

B. Nucleon FESR

The issue of the correlator involving two baryonic
currents was pioneered in [15]. Subsequently, a different
baryonic current was considered in [16–19]. However, this
latter version implies that the correlator receives no con-
tribution from the lowest order chiral symmetry breaking
operators. We shall use here the proton interpolating current
of [15]

ηNðxÞ ¼ εabc½ðuaÞTðxÞCγμubðxÞ�γμγ5dcðxÞ; ð2Þ

where C is the charge conjugation matrix given by
C ¼ iγ0γ2. For the neutron case one exchanges the quark
flavors, i.e., u ↔ d. In the hadronic sector ηðxÞ is defined as

h0jηNðxÞjNðp; sÞi ¼ λNuðp; sÞeip·x; ð3Þ

with λN , the current-nucleon coupling, a phenomenological
parameter a priori unknown, and uðp; sÞ is the nucleon
spinor. The interpolating function can then be expressed in
terms of the nucleon field as ηNðxÞ ¼ λNΨNðxÞ, and the
two-point function is

ΠðqÞ ¼ i
Z

d4xeiqxh0jTηðxÞη̄ð0Þj0i: ð4Þ

In the vacuum, this correlation function involves two
independent structures

ΠðqÞ ¼ =qΠ1ðq2Þ þ Π2ðq2Þ: ð5Þ

This correlator obeys the operator product expansion (OPE)
in the QCD sector. This includes a perturbative contribution
associated to a two-loop Feynman diagram, in absence of
radiative corrections, as well as a power series of non-
perturbative condensates, led by the chiral-quark and the
gluon condensates.
In the chiral limit, neglecting radiative corrections, the

structures Π1 and Π2 in Eq. (5) of the correlator in the QCD
sector are [15,20–22]

Π1ðsÞ ¼ −
1

64π4
s2 lnð−s=ν2Þ − 1

32π3
hαsG2i lnð−s=ν2Þ

−
2

3

hq̄qq̄qi
s

þ C8

hO8i
s2

þ C10

hO10i
s3

þ…; ð6Þ

Π2ðsÞ ¼
1

4π2
hq̄qis lnð−s=ν2Þ − 1

12π

hαsG2q̄qi
s

þ C0
9

hO9i
s2

þ C0
11

hO11i
s3

þ…; ð7Þ

where ν is the dimensional regularization scale, and the
correlator components in the hadronic sector are

Π1ðsÞ ¼
−λ2N

s −m2
N
; Π2ðsÞ ¼

−λ2NmN

s −m2
N
: ð8Þ

Integrating the two components of the correlator in
Eq. (1), and using the FESR kernel K ¼ 1 there follow
two equations relating the hadronic to the QCD sector

λ2N ¼ s30
192π4

þ s0
32π3

hαsG2i þ 2

3
hq̄qq̄qi; ð9Þ
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λ2NmN ¼ −
s20
8π2

hq̄qi þ 1

12π
hαsG2q̄qi: ð10Þ

Invoking vacuum dominance for the four-quark condensate
in Eq. (9) and for the mixed quark and gluon condensate in
Eq. (10), a nucleon mass mN ¼ 0.94 GeV, the quark
condensate hq̄qi ¼ −ð0.24 GeVÞ3 and the standard value
of the gluon condensate hαsG2i ¼ 0.037 GeV4 [14], we
obtain the values of the current-nucleon coupling λN ¼
0.017 GeV3 and the hadronic continuum threshold
s0 ¼ 1.26 GeV2.
The next step is the evaluation of the FESR in the

presence of a constant and uniform magnetic filed.

III. MAGNETIC FIELD EFFECTS

A. Propagators

The fermion propagator in the presence of a constant and
uniform magnetic field can be written as a power series in
qB [8]. Taking into account the anomalous magnetic
moment term Lanom ¼ − 1

2
κσμνFμν the fermion propagator

becomes

SðpÞ ¼ iðpþmÞ
p2 −m2 þ iϵ

− ðqBÞ iσ12ðpk þmÞ
ðp2 −m2 þ iϵÞ2

þ 2iðqBÞ2 ðpk þmÞ½p2⊥ − p⊥ðpk −mÞ�
ðp2 −m2 þ iϵÞ4

− ðκBÞ iðpþmÞσ12ðpþmÞ
ðp2 −m2 þ iϵÞ2 þ…; ð11Þ

where only relevant terms are considered, and σμν ≡
i
2
½γμ; γν� is the Dirac antisymmetric tensor.1 The mass m,

charge q and anomalous magnetic moment κ correspond to
the respective particles. The charges are ep ¼ e for protons,
en ¼ 0 for neutrons, eu ¼ 2e=3 for the u quark and ed ¼
−e=3 for the d quark. The magnetic anomalous moments
are κp ¼ 1.79μN for protons, κn ¼ −1.91μN for neutron
[23] and κ ¼ 0 for quarks, with μN ¼ e=2mN being the
nucleon Bohr magneton.
In the case of nucleons, the spatial asymmetry generated

by the presence of the external magnetic field will be
reflected in the effective nucleon propagator by considering
a transverse velocity term. The external momentum in the
nucleon propagator is written as p ¼ pk þ v⊥p⊥. The
particle velocity is a medium effect, often considered in
pionic dynamics [24–26], and smaller than the speed of
light. In the case of massless particles v⊥ is simply the
transverse velocity of the particles [24].

B. Correlators

The most general decomposition of a correlator is
given by

Π ¼ ΠS þ iγ5ΠP þ γμΠ
μ
V þ γμγ5Π

μ
A þ σμνΠ

μν
T ; ð12Þ

where the subindices refer, respectively, to scalar, pseudo-
scalar, vector, axial-vector and tensor structures. If no
topological anomalies are present, then ΠP ¼ 0. In the
vacuum, there are only scalar and vector contributions, with
ΠS ¼ Π2 and Πμ

V ¼ pμΠ1. In the presence of an external
uniform-electromagnetic field, the most general combina-
tions of the vector, tensor and axial-vector components
involve pμ, gμν, ϵμναβ and Fμν, on account of the correlator
being parity even. For the case of a constant external
magnetic field aligned along the third coordinate, the
electromagnetic strength tensor can be written as
Fμν ¼ Bϵ⊥μν, where the perpendicular, antisymmetric tensor
is defined as ϵ⊥μν ≡ ϵ0μν3. The most general decompositions
of the vector, axial-vector and tensor structures in Eq. (12)
are given by

Πμ
V ¼ pμ

kΠ
k
V þ pμ

⊥Π⊥
V þ p̃μ

⊥Π̃⊥
V ; ð13Þ

Πμ
A ¼ p̃μ

kΠA; ð14Þ

Πμν
T ¼ ϵμν⊥Π⊥

T þ ðpμ
kp

ν⊥ − pν
kp

μ
⊥ÞΠk⊥

T

þ ðpμ
kp̃

ν⊥ − pν
kp̃

μ
⊥ÞΠ̃k⊥

T ; ð15Þ

where p̃μ
⊥ ≡ ϵμα⊥ pα, p̃

μ
k ≡ ϵμαk pα, with the parallel antisym-

metric tensor defined as ϵμνk ≡ 1
2
ϵμναβϵ⊥αβ ¼ ϵμ12ν. In this

work we consider the structures ΠS, Π
k
V , Π⊥

V and Π⊥
T , in

order to compute the FESR.
Usually in the literature the structure decomposition of

the correlator is expressed in terms of combinations of
external momenta and Dirac matrices [10,11], which are
related to the above structures by

Fμνðpσμν þ σμνpÞ ¼ 4Bγμγ5p̃
μ
k; ð16Þ

iFμνðpμγν−pνγμÞp¼Bσμνðp̃μ
⊥pν

k− p̃ν⊥p
μ
k þ ϵμν⊥ p2⊥Þ; ð17Þ

which is the axial-vector function ΠA in Eq. (16), and a

combination of tensor components Π̃k⊥
T andΠ⊥

T in Eq. (17).

C. QCD contour integrals

The advantage of FESR lies on the natural truncation of
the nonperturbative OPE series when integrating around the
circle in Eq. (1). To visualize this truncation in the presence
of external magnetic fields we denote by Πn the correlator
term of order Bn. Then, one has ΠnðsÞ ∼ ∂n

∂sn Π0ðsÞ. This is

1Notice that in the literature σμν is often defined with the
opposite sign. This will produce a change in the sign of the
condensates hq̄σ12qi.
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easily understood in the chiral limit [12] as the only scales
available are s and eB, and the corrections to the vacuum
correlator will be of order ðeB=sÞn. However, there are
infrared divergences, which can be handled by including
quarks masses. In fact, quarks acquire magnetic masses
even in the chiral limit [2,13].
Considering nonlogarithmic contributions, the general

structure of a Feynman diagram will be ΠðsÞ∼R
xi
fðxiÞ=½s −M2�n, where f is some analytic function, n

is any integer number, and the integral in terms of Feynman
parameters xi is defined as

R
xi
¼ R

1
0 dx1…dxkδðx1 þ � � � þ

xk − 1Þ. Themass term, if one considers equal quarkmasses,
is defined as M2 ≡m2

qð 1x1 þ � � � þ 1
xk
Þ. Integrating around

the circle of radius s0 before integrating in the Feynman
parameters, one obtains

I
s0

ds
2πi

sN−1
�Z

xi

fðxiÞ
½s−M2�n

�

¼ θN−n

�
N−1

n−1

�Z
xi

θðs0−M2ÞfðxiÞðM2ÞN−n; ð18Þ

where the usual step function is denoted as θðξÞ, and we
define a discrete theta function θj ¼ 1 for j ≥ 0 and θj ¼ 0

for j < 0. Therefore, the magnetic field powers that partici-
pate are limited by the powers of s in the FESR kernel.
The other kind of integrals contain logarithms. Hence,

we first integrate around the contour obtaining

I
s0

ds
2πi

sN−1
�Z

xi

fðxiÞsn lnð−sþM2Þ
�

¼ 1

Nþn

Z
xi

θðs0−M2ÞfðxiÞ½sNþn
0 − ðM2ÞNþn�; ð19Þ

valid of course for N þ n > 0.
This is a very useful technique to handle infrared

divergences without the need for integrating the
Feynman parameters in the full correlator. Once we
integrated along the contour, the Heaviside function θðs0 −
M2Þ will provide limits of integration to the Feynman
parameters. Hence, an expansion in terms of m2

q=s0 can be
performed to the lowest order leading to logarithmic
corrections. These logarithmic contributions are strictly
magnetic, thus vanishing for B ¼ 0. More details are given
in Appendix B.
From the above magnetic power counting, and for sum

rules with kernel K ¼ 1, it follows that the perturbative part
in Eq. (9), and the dimension d ¼ 3 condensate contribu-
tion in Eq. (10), will have direct magnetic contributions.
It is important to mention that although there is no

contribution of dimension-five operators in vacuum, there
will be such contributions in a magnetic field. For instance,
this happens in the analysis of [10] involving the axial-
vector and the tensor structures in Eq. (12). However, they

are expected to be negligible for the magnetic field
strengths consider here.

IV. RESULTS

The magnetic FESR involving Πk
V , Π⊥

V , ΠS and Π⊥
T , in

the frame p⊥ ¼ 0, are as follows:

λ2p ¼ s3p
192π4

þ sp
32π3

hαsG2i þ 2

3
hūui2 þ sp

2π4
euedB2

þ sp
6π4

ðeuBÞ2½lnðsp=8m2
qÞ − 1�

þ sp
96π4

ðedBÞ2½8 lnðsp=8m2
qÞ − 9�; ð20Þ

λ2pvp ¼ s3p
192π4

þ sp
32π3

hαsG2i þ 2

3
hūui2 þ sp

4π4
euedB2

−
sp
6π4

ðeuBÞ2½lnðsp=8m2
qÞ − 1�

−
sp

96π4
ðedBÞ2½8 lnðsp=8m2

qÞ − 9�; ð21Þ

λ2pmp ¼ −
s2p
8π2

hd̄di þ 1

12π
hαsG2ihd̄di þ sp

2π2
euBhd̄σ12di

þ 4

3π2
ðeuBÞ2½lnðsp=m2

qÞ − 1�hd̄di; ð22Þ

−λ2p
κpB

2
¼ s2p

48π2
hd̄σ12di þ

euBsp
24π2

hd̄di; ð23Þ

respectively, where sp is the proton continuum threshold,
λp is the current-proton coupling, vp is the proton trans-
verse velocity and κp the proton anomalous magnetic
moment.
The FESR for the neutron correlator are the same as

above, except for the change in flavor d ↔ u and p ↔ n.
Details of the derivation of the above results are given in
Appendix A.
The only new entirely magnetic condensate is the spin

polarization one hq̄σ12qi, often referred to as the anomalous
magnetic moment condensate. From Eq. (23) it is easy to
obtain the quark susceptibility at zero magnetic field,
defined as χq ¼ hq̄σ12qi=eqBhq̄qi. At B ¼ 0, Eq. (23)
gives χdð0Þ ¼ −5.50 GeV−2 from proton FESR, while
using neutron FESR we find χdð0Þ ¼ −3.83 GeV−2.
These results are in a good agreement with expectations
(see [4] for a literature review on χq). The main difference
with other determinations is that we do not assume
flavor independence. Averaging these two results gives
χ̄qð0Þ ¼ −4.67 GeV−2.

A. Inputs

The first input is the quark condensate as a function of an
external magnetic field, as obtained in [27], fitted with a
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Padé approximant. Next, the gluon condensate determined
in [2,3] shows a minor dependence on the magnetic field,
so it is assumed constant. Next, the (average) light quark
mass in vacuum, following from the Gell-Mann-Oakees-
Renner relation, ismqð0Þ ¼ 6.05 MeV, at a scale of 1 GeV.
The running values from logarithmic terms have negligible
importance in the presence of magnetic fields. Finally, for
the third input we consider two scenarios. The first one is to
take as input the nucleon mass in order to obtain the
condensates hq̄σ12qi. The second possibility is to consider
a constant magnetic susceptibility of the quark condensate
in order to obtain the nucleon mass.
For the nucleon mass at finite magnetic field there are

different behaviors in the literature. Effective models such
as the Walecka model, or the linear sigma model or other
quark-hadron models, give either increasing masses with
increasing magnetic field [6,8], or no significant variations
[5]. Other models, assuming hadron masses as the sum of
constituent quark masses, lead to a decreasing nucleon
mass [7,9]. Given that all these different evolutions do not
change drastically the final results we keep the nucleon
mass constant.
In the case of a constant magnetic susceptibility, one can

obtain the magnetic dependence of the nucleon mass for
weak magnetic fields.

B. Numerical results

We proceed to solve the set of four equations obtained
from the FESR, Eqs. (20)–(23), considering first a constant
nucleon mass.
Figure 1 shows the continuum hadronic threshold,

s0ðeBÞ for the nucleon correlators, i.e., for proton and
neutron. The upper value of s0 is chosen below the
production threshold of the nucleon resonance N�ð1440Þ,
which is not part of this analysis. This truncation is a

standard, and convenient procedure in QCD FESR applica-
tions. Since the polemass of theN�ð1440Þ is about 1.37GeV
[28], then we consider eB < 0.07 GeV2 for the proton
correlator and eB < 0.14 GeV2 for the nucleon case.
The magnetic behavior of the current-nucleon coupling

λN , is shown in Fig. 2 for the proton and neutron.We can see
that the increasement in the current-nucleon couplings is
definitely non-negligible, and the change can be larger than
50% of their initial values. The correlator of two nucleonic
currents at finite temperature has been explored in [29].
Contrary towhat happens inmagnetic fields, the temperature
dependence of the current-nucleon coupling λNðTÞ turns out
to be a monotonically decreasing function, vanishing at Tc.
In Fig. 3, we observe the change of the transverse

velocity v⊥ for protons and neutrons, as a function of
the magnetic field. Both cases have a decreasing behavior
and they are always less than the speed of light as it is
expected.

FIG. 1. Continuum hadronic thresholds s0 as a function of the
magnetic field for the proton (solid line) and the neutron
correlator (dashed line).

FIG. 2. Current-nucleon coupling for the proton (solid line) and
the neutron (dashed line) as a function of the magnetic field
strength.

FIG. 3. Transverse velocity as a function of the magnetic field
strength. Solid line for proton and dashed line for neutron.
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In the QCD sector, we determinate the magnetic behav-
ior of the spin polarization condensate hq̄σ12qi, and it is
shown in Fig. 4. The up and down quarks exhibit opposite
behavior. This is to be expected since they have a different
electric charge. The behavior of our result is in agreement
with results found in the literature [4,30].
The magnetic susceptibility for u and d quarks is

essentially constant as can be appreciated in Fig. 5 for
almost the whole range of values of the magnetic field
strength. This means that one can consider a constant
magnetic susceptibility as a good approach for low mag-
netic field. If we consider a constant magnetic field
dependent nucleon mass, the behavior of the magnetic
susceptibility does not have a significant change, remaining
almost constant for lower values of the magnetic field. This

leads us to speculate about what kind of information can be
obtained considering a constant magnetic susceptibility,
because in this case we have an extra input.
If we now consider the condensates hq̄σ12qi ≈

eqBχqð0Þhq̄qi for a given value of the magnetic susceptibil-
ity, we can reduce the number of inputs and therefore obtain
the evolution of nucleon masses at low B. Using the values
obtained at B ¼ 0 from Fig. 5, i.e., χdð0Þ ¼ −5.50 GeV−2

and χuð0Þ ¼ −3.83 GeV−2, the resulting nucleonmasses are
shown in Fig. 6. The maximum values of the magnetic field
are obtained by imposing the variation in magnetic suscep-
tibility in Fig. 5 to be less than 0.05 GeV2.
The behavior of the nucleon masses agrees with that

obtained from lattice QCD results [9] leading to an
increasing proton mass and a decreasing neutron mass at
low B. However, these results are focused in the high
magnetic field region. The increase of the proton mass
agrees with results obtained in [8] from considering the
anomalous nucleon magnetic moment. It is important to
remark that the definition of nucleon mass might change
substantively in different approaches. For that reason we do
not compare with results that take the mass as the minimal
energy in the lowest Landau level.
It is worth mentioning that for the proton case it is not

possible to extend the numerical evaluation for eB >
0.04 GeV2, thus highlighting the importance of magnetic
effects for the full hq̄σ12qi condensate. On the other hand, for
eB > 0.12 GeV2 the neutron mass exhibits an inflection in
the curve and starts to growwith themagnetic field.However
at this point, the results are unreliable.
The magnetic behavior of the nucleon mass is quite

different from that at finite temperature [29] where it
remains approximately constant in a wide range of temper-
ature, increasing sharply near the critical deconfinement
temperature Tc.

FIG. 4. Magnetic behavior of the spin polarization condensate
(also known as anomalous magnetic moment condensate)
hq̄σ1;2qi as a function of the magnetic field. Shown are up-quark
(dashed line) and down-quark (solid line) terms.

FIG. 5. Magnetic susceptibility of the quark condensate for the
down-quark (solid line) and the up-quark (dashed line) as a
function of the magnetic field strength.

FIG. 6. Proton and neutron masses as a function of the magnetic
field strength.
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V. CONCLUSIONS

Different nucleon parameters were determined using
FESR for nucleon-nucleon correlators in the presence of
an external uniform magnetic field. The evolution of the
quark condensates, as function of the magnetic field and the
nucleon masses, was considered as an input. The magnetic
evolution of the quark condensates is one of the main and
direct contributions for the magnetic evolution of the other
parameters, in contrast to the case of magnetic evolution of
nucleon masses which produces a minimal impact.
The obtained threshold which delimits the quark-hadron

duality was calculated for protons and neutrons obtaining
different growing values. The maximum values must be
smaller than the mass pole of next nucleon resonances in
order to avoid the incorporation of them in the spectral
function. This limit provides a maximum magnetic field
allowed in our approach of eB < 0.07 GeV2 ≈ 3.6m2

π for
the proton channel and eB < 0.14 GeV2 ≈ 7m2

π for the
neutron channel.
The quantities that can be obtained are the current-

nucleon couplings λN , which grow with the magnetic field,
signaling a stronger confinement of quarks inside nucleons
and can increase by more that 50%. The transverse velocity
v⊥ decreases with the magnetic field as expected, being
smaller than the speed of light. The magnetic moment
condensates hq̄σ12qi is another quantity obtained, being in
good agreement with the expected behavior from other
models. From this quantity, the magnetic susceptibility of
the quark condensate χq can be obtained, with the interest-
ing behavior that it is almost constant for most of the
allowed range of values of the magnetic field. The main
difference with many other determinations is that we have
not considered the same magnetic susceptibility for the two
light flavors, and in fact the result show they are different.
In particular, the magnetic susceptibility at B ¼ 0 can be

compared with many other works and it is in good
agreement with the range of values of other results.
Since χqð0Þ can be calculated independently of the other
sum rules equations, it is possible to obtain the nucleon
masses for low magnetic field by keeping χqð0Þ as an input,
valid for low values of the magnetic field. As a result we
obtain a behavior that agrees with lattice results, namely
that proton mass increases for low B and neutron mass
decreases. The increasing proton mass numerically coin-
cides with an analysis in the frame of Walecka model when
nucleon anomalous magnetic moment is included.
The increasing of the hadronic threshold and current-

nucleon couplings was expected from previous determi-
nations, although every channel in principle behaves
independently, but it is an insight of stronger confinement.
The different behavior of the nucleon masses represents an
interesting scenario. Although it is valid for a lower
magnetic field, we are talking about eB < 1.8m2

π for
protons and eB < 3.6m2

π , it is strong enough for magnetic

field in magnetars. This is an interesting scenario, worth-
while to be explored including baryonic density effects.
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Note added—In [9] the mass reported corresponds to the
minimum energy in the lowest Landau level, and the
behavior of the proton mass is not clear in the low magnetic
field region we are considering. If we take the minimum
energy, the tendency then is to diminish with the magnetic
field for both nucleons, in agreement with lattice results.

APPENDIX A: MAGNETIC CORRELATORS

This appendix deals with current correlator terms in the
presence of an external magnetic field. Magnetic field
insertion is the name given to the individual propagators
fromEq. (11). They are expressed in powers ofB=ðp2−m2Þ,
and diagrammatically correspond to a single, double,
or higher number of external lines, depending on the power
of B. Figure 7 shows all diagrams with magnetic field

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 7. Nonvanishing Feynman diagrams with magnetic in-
sertions used in this work. The diagrams correspond to proton-
proton propagator. The case of neutron correlator is the same but
interchanging u ↔ d lines.
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insertions, including propagators. The relevant diagrams are
the one-loop ones, corresponding to the dimension-three
contribution in the OPE (quark condensate), i.e., diagrams
(a) to (d). The perturbative ones in the OPE are two-loop
diagrams (e) to (i). Notice that we do not include two-loop
diagrams with one magnetic field insertion. This is because
they only contribute to the axial component of the structure
decomposition in Eq. (12). This is not considered here. Also
notice the vanishing of one-loop and two-loop diagrams
with one magnetic insertion, with the top u propagator and
one magnetic insertion from the bottom u propagator.
Finally, we only consider contributions to the correlators

ΠS, ΠV and ΠT from Eq. (12), as well as Πk
V and Π⊥

V from
Eq. (13), andΠ⊥

T from Eq. (15). Results are expressed in the
frame p2⊥ ¼ 0, with p2

k ¼ s.

1. One-loop diagrams

The correlator corresponding to diagrams involving
operators of dimension d ¼ 3 is given by

Π ¼ i
Z

d4k
ð2πÞ4 tr½γμSuðkÞγνCSuðq − kÞC�

× γμ½hd̄di þ σ12hd̄σ12di�γν: ðA1Þ

This correlator corresponds to the proton diagrams (a) to
(d) in Fig. 7. Notice that the only condensate is the one in
the d line. This is because when cutting the top or bottom u
lines the correlator vanishes after performing the trace.
The first new contribution is that of the spin polarization

condensate, also entering the diagram without magnetic
field insertion. It contributes to the tensor part in the
structure decomposition in Eq. (15),

Π⊥
Tð0Þ ¼ −

1

24π2
s lnð−s=ν2Þhd̄σ12di; ðA2Þ

where the subscript (0) indicates that it is of order B0. This
contribution does not involve magnetic insertions, with
magnetic effects implicit in the spin polarization condensate.
Diagrams (a)+(b) give a contribution to a scalar and to a

tensor component

ΠSðaþbÞ ¼ −
euB
2π2

lnð−s=ν2Þhd̄σ12di; ðA3Þ

Π⊥
TðaþbÞ ¼

euB
4π2

lnð−s=ν2Þhd̄di: ðA4Þ

Diagrams (c)+(d) generate a contribution to a tensor
component, not considered here, and a contribution to the
scalar component which gives

ΠSðcþdÞ ¼ −
4

π2
ðeuBÞ2

Z
x

1 − x
3x

1

p2 −M2
1

hd̄di; ðA5Þ

withM1 ¼ m2
q=xð1 − xÞ. This last equation vanishes in the

chiral limit. Hence, it is not necessary to keep the quark
mass in the denominator to regularize it. Details of the
integration in Feynman parameters is given in Appendix B.

2. Two-loop diagrams

The perturbative correlator corresponding to two-loop
diagrams is

Π ¼ 12i
Z

d4k
ð2πÞ4

d4p
ð2πÞ4 tr½γμSuðkÞγνCSuðpÞC�

× γμSdðq − k − pÞγν: ðA6Þ

Diagrams (e) and (f), as well as diagrams (g) and (h), give
the same result. All diagrams from (e) to (i) contribute only
to the vector component of the correlator.
The parallel vector components are

Πk
VðeþfÞ ¼ −

euedB2

2π4
lnð−sÞ; ðA7Þ

Πk
VðgþhÞ ¼ −

ðeuBÞ2
π4

Z
1

0

dxdy lnð−sþM2
2Þ

×
xy4ð1 − yÞz

ðxyþ yzþ zxÞ5 ; ðA8Þ

Πk
VðiÞ ¼ −

ðedBÞ2
4π4

Z
1

0

dxdy lnð−sþM2
2Þ

×
2xy4ð1 − yÞz − x2y3z2

ðxyþ yzþ zwÞ5 ; ðA9Þ

with M2
2 ¼ m2

qð1x þ 1
y þ 1

zÞ and z ¼ 1 − x − y.
The perpendicular vector components are

Π⊥
VðeþfÞ ¼

1

2
Πk

VðeþfÞ; ðA10Þ

Π⊥
VðgþhÞ ¼ −Πk

VðgþhÞ; ðA11Þ

Π⊥
VðiÞ ¼ −Πk

VðiÞ: ðA12Þ

The quark mass entering the logarithms of diagrams (g),
(h) and (i) is kept finite in order to regularize infrared
divergences.

APPENDIX B: FEYNMAN PARAMETERS

Integrating theQCDcontributions on the contour in the s-
plane leads to integrals involving Feynman parameters, as
described in Eqs. (18) and (19). The quark mass regularizes
infrared divergences entering diagrams Figs. 7(c), 7(d), 7(g)
and 7(h), as described next.
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1. One-loop diagrams

Diagrams with a quark condensate are one-loop. From
Eq. (18) they are written asI
s0

ds
2πi

Π1−loop ¼
Z

1

0

dxdyδðxþ y − 1Þθðs0 −M2
1Þfðx; yÞ;

ðB1Þ

with M2
1 ¼ m2

qð1x þ 1
yÞ, and fðx; yÞ an analytic function.

Integrating in y, with the restrictions from the δ and the θ
function, givesI
s0

ds
2πi

Π1−loop ¼ θðs0 − 4m2
qÞ
Z

xþ

x−

dxfðx; 1 − xÞ; ðB2Þ

where the integration limits for equal quark masses are

x� ¼ 1
2
½1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

q=s0
q

�. For mq → 0 one recovers the

usual limits x− ¼ 0 and xþ ¼ 1.
The specific one-loop diagrams needed for this regu-

larization are Figs. 7(c) and 7(d). Integrating Eq. (A5) on
the contour in s, and then expanding in mq=s0 → 0 up to
first order givesI
s0

ds
2πi

ΠSðcþdÞ ¼ −
4

3π2
ðeuBÞ2½lnðsp=m2

qÞ − 1�hd̄di: ðB3Þ

2. Two-loop diagrams

The perturbative diagrams at the two-loop level involve
logarithmic terms and can be written asI
s0

ds
2πi

Π2−loop ¼
Z

1

0

dxdydzδðxþ yþ z − 1Þ

× θðs0 −M2
2Þfðx; y; zÞ½s0 −M2

2�; ðB4Þ

with M2
2 ¼ m2

qð1x þ 1
y þ 1

zÞ and fðx; y; zÞ an analytic func-
tion. Integrating in z, and considering the restrictions from
the δ and θ functions, givesI
s0

ds
2πi

Π2−loop ¼ θðs0 − 9m2
qÞ

×
Z

xþ

x−

dx
Z

yþ

y−

dyfðx; y; zÞ½s0 −M2
2�;

ðB5Þ

with z ¼ 1 − x − y and

x� ¼ 1

2

�
1 −

3m2

s0
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

3m2

s0

�
2

−
4m2

s0

s �
; ðB6Þ

y� ¼ 1

2

�
1 − x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − xÞ2 − 4m2xð1 − xÞ

s0x −m2

s �
: ðB7Þ

In the limit mq → 0 one recovers the usual limits x− ¼ 0,
xþ ¼ 1, y− ¼ 0 and yþ ¼ 1 − x. There are four nontrivial
integrals involved here, as can be seen from Eqs. (A8) and
(A9). All these integrals can be evaluated analytically when
integrating in the variable y, but not in x which will require
some fitting. Starting with the last term in Eq. (A9), in the
limit mq → 0, which becomes

Z
xþ

x−

dx
Z

yþ

y−

x2y3z2

ðxyþ yzþ zxÞ5 ½sp −M2
2� ¼

sp
12

: ðB8Þ

The term in this integral proportional to sp can be obtained
directly in the chiral limit. The term proportional to M2

2 is
evaluated numerically, but it vanishes in the limit mq → 0.
Next term is the one that enters in both equations (A8)
and (A9). In the limit mq → 0 it becomes

Z
xþ

x−

dx
Z

yþ

y−

xy4ð1 − yÞz
ðxyþ yzþ zxÞ5 ½sp −M2

2�

≈
sp
6
½lnðsp=8m2

qÞ − 1�; ðB9Þ

where it corresponds to a fit of the result expressed as an
integral in x, as a function of m2

q=sp. From these consid-
erations, the contour integral of Eqs. (A8) and (A9) leads to

I
sp

ds
2πi

Πk
VðgþhÞ ¼ −

ðeuBÞ2
12π4

sp½lnðsp=8m2
qÞ − 1�; ðB10Þ

I
sp

ds
2πi

Πk
VðiÞ ¼ −

ðedBÞ2
96π4

sp½8 lnðsp=8m2
qÞ − 9�: ðB11Þ
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