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We calculate the dressed gluon and ghost propagators of Landau gauge Yang-Mills theory in the
complex momentum plane from their Dyson-Schwinger equations. To this end, we develop techniques for
a direct calculation such that no mathematically ill-posed inverse problem needs to be solved. We provide a
detailed account of the employed ray technique and discuss a range of tools to monitor the stability of the
numerical calculation. Within a truncation employing model Ansätze for the three-point vertices and
neglecting effects due to four-point functions, we find a singularity in the gluon propagator in the second
quadrant of the complex p2 plane. Although the location of this singularity turns out to be strongly
dependent on the model for the three-gluon vertex, it always occurs at complex momenta for the range of
models considered.
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I. INTRODUCTION

There are at least two reasons why the analytic structure
of Yang-Mills propagators, viz., of the ghost and the gluon
propagators, are of great interest. First, there are direct
connections to fundamental properties and problems of the
theory such as color confinement, the associated construc-
tion of an asymptotic state space in terms of gauge-
invariant and colorless states, and the question of whether
BRST symmetry is broken nonperturbatively or not.
Second, on a practical level, the analytic structure of the
propagators plays an important role in the calculation of all
properties of bound states, not least glueballs, in the
functional framework of Dyson-Schwinger and Bethe-
Salpeter equations. It is also natural to assume that these
two issues are related to each other.
Consequently, the topic received a lot of attention over

the years. In the past century, based on studies of the gauge-
fixing problem, Gribov [1] and Zwanziger [2] suggested an
explicit expression for the gluon propagator with complex-
conjugate poles at purely imaginary squared Euclidean
momenta p2. Stingl [3] provided a generalization of
this Ansatz by shifting the complex-conjugate poles to
general complex momentum squares in the negative

half-plane. The refined Gribov-Zwanziger framework for-
mulated later also leads to conjugate poles located at
complex momenta [4]. An alternative form with a branch
cut structure for real and timelike squared momenta
was proposed in Ref. [5]. In recent years, research focused
in addition on general properties of the spectral function of
the gluon, which in turn restricts its analytic structure
[6–10].
There are in principle two different strategies to extract

the analytical properties of the gluon from explicit results of
nonperturbative approaches such as lattice or functional
methods. Lattice Yang-Mills theory generically delivers
results for positive and real (i.e., spacelike) momenta. Thus,
reconstruction methods have to be employed to study the
analytic continuation into the complex momentum plane. In
this respect, many of the above-mentioned explicit forms
have been used as trial functions to describe lattice data at
real and spacelike p2 [11–14]. In addition, reconstruction
algorithms like the Bayesian spectral reconstruction
method, the Tikonov regularization, or Padé approximants
in various forms have been used [15–19]. Of course, these
reconstruction methods can be applied equally well to
solutions from functional methods, i.e., either Dyson-
Schwinger equations or the functional renormalization
group [8,19,20]. In addition, such functions can also be
used to analytically continue results (instead of correlation
functions) obtained from Euclidean input to the physical
momentum regime. This was successfully realized for the
calculation of (pseudo)scalar glueballs [21], where the
availability of Euclidean input from a self-contained
calculation [22] led to results in quantitative agreement
with lattice results [23–25].
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One of the advantages of the functional approach,
however, is that direct calculations at timelike momenta
are possible. This property is exploited routinely in the
calculation of spectra and properties of bound states; see
e.g., Refs. [26,27] for reviews. For the gluon propagator, a
first explicit calculation was discussed in Ref. [28] using a
particular technique (the “ray method”) that has been
developed in the context of QED in three dimensions
[29]. It was also used for several other purposes since then
(e.g., Refs. [5,30–34]). Subsequently, other techniques for
the gluon propagator, in particular a direct solution
on a momentum grid in the complex plane, were also
explored [35].
In this work, we expand upon and refine previous work

using the ray technique [28]. We improve the numerical
stability of the method and introduce a number of tools to
monitor the reliability of the obtained results on a step-by-
step basis when probing the complex momentum plane
further towards the timelike region. As a result, we are able
to resolve an analytical structure in the second quadrant
which was not seen in Ref. [28]. We update and discuss
the corresponding results for the gluon and the ghost
propagators.
The remainder of this article is organized as follows. In

Sec. II, we explain the underlying idea of the ray technique.
The setup of our calculations is discussed in Sec. III, and
the results are presented in Sec. IV. In this section, also
several tests are introduced and applied to the results. We
close with a summary in Sec. V. Computational details, the
reconstruction from arbitrary rays and the employed three-
gluon vertex models are explained in Appendices.

II. THE RAY TECHNIQUE

The exact set of coupled Dyson-Schwinger equations
(DSEs) for the gluon and ghost propagators in Landau
gauge Yang-Mills theory is displayed in Fig. 1. In Landau
gauge, the ghost and gluon propagators, DG and Dμν, are
given by

DGðp2Þ ¼ −Gðp2Þ
p2

; ð1Þ

Dμνðp2Þ ¼
�
δμν −

pμpν

p2

�
Zðp2Þ
p2

; ð2Þ

where color factors have been suppressed. Their DSEs
feature nonperturbative one- and two-loop diagrams on
the right-hand side, which all share one property: if the
momentum variable p2 that enters the diagrams from the
outside is complex, poles and branch cuts in the various
integrands appear. In principle, this is the reason why a
direct solution of these equations on a complex momentum
grid is extremely dangerous if not prohibitive, since it
automatically implies integration across cuts. In the quark
sector of quantum chromodynamics, the situation is some-
what alleviated by the quark mass, which modifies the
location of these cuts [31,36] and allows the calculation in a
restricted momentum region. In practical calculations using
rainbow-ladder type models, it depends on the type of the
model whether cuts are absent [37,38], small [39] or
potentially relevant on a quantitative basis [40]. For the
gluonic system, such a rainbow-like truncation was
employed in Ref. [35]. However, due to the structure of
the integrals in the gluon propagator DSE, this breaks the
self-consistency of the equations, because the propagators
one would like to solve for are also contained implicitly in
the models. If we want to maintain self-consistency, the
appearance and proper treatment of cuts in the integrands
seem unavoidable [28].
We therefore need a different strategy [29], which we call

the “ray technique.” We illustrate the basics of the ray
technique using a simple massless scalar model with a
cubic interaction.1 The corresponding self-energy diagram
in the DSE for the scalar propagator has the same structure
as those we consider in Yang-Mills theory but without the
complications of Lorentz tensors. The massless propagator
is described by

DðxÞ ¼ ZðxÞ
x

ð3Þ

where x ¼ p2 and ZðxÞ is its dressing function. The
perturbative one-loop self-energy is given by

IðxÞ ¼
Z
Λ

ddq
ð2πÞd

1

q2ðpþ qÞ2 ;

→
Z

Λ2

0

dyy
d−2
2

Z
π

0

dθðsin θÞd−2 1

yz
; ð4Þ

where y ¼ q2, z ¼ ðpþ qÞ2 ¼ xþ yþ 2
ffiffiffiffiffi
xy

p
cos θ and

constant factors were dropped in the second line for brevity.

FIG. 1. Dyson-Schwinger equations for the gluon (top) and
ghost (bottom) propagators. Internal propagators are dressed,
black disks denote dressed vertices, dots denote bare vertices,
wiggly lines denote gluons and dashed lines denote ghosts.

1Since we are only interested in technical aspects, we can
ignore physical problems of the scalar theory like the vacuum
instability of this theory.
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This notation is kept throughout this paper, i.e., the external
momentum squared is x, the internal one squared is y and
the squared combined momentum is z. We regularize the
integral by the OðdÞ symmetric UV cutoff Λ for the radial
part. For now, we also keep the dimension d general.
Clearly, the integrand is singular for z ¼ 0. For fixed

external momentum x, this singularity is located at
y ¼ x expð�2iθÞ. The angular integration over θ then leads
to a branch cut in the y plane with the end points at y ¼ x.
As is visualized in Fig. 2, the branch cut lies on a circle with
jyj ¼ jxj. There is only one point at arg x ¼ arg y where the
cut is open. For any nonreal or negative x, the usual
integration path of y along the positive real axis is now
forbidden, since it would cross the cut. To avoid this
problem, one needs to deform the integration path from
y ¼ 0 to y ¼ Λ2 such that it goes through the opening at
y ¼ x in between. However, it depends on the dimension
(and in the most general case on the details of the integral
kernels and the dressing functions) whether the opening is
suitably finite and the path is safe. The crucial factor here is
the behavior of the integrand at the boundaries of the
angular integration. In our example, the perturbative treat-
ment of the scalar theory, singularities for jyj ¼ jxj appear
in d ¼ 2 dimensions which is just a manifestation of
perturbation theory being ill-defined for the massless
theory in two dimensions. In higher dimensions, the path
deformation is possible.
For Yang-Mills theory, the situation is more compli-

cated.2 Let us first have a closer look at the DSE for the
ghost propagator which contains the ghost-gluon vertex as
the only quantity beyond the propagators. It is a very well-
known object with only one dressing function DAc̄c;T

contributing to the integrand due to the transversality of
the gluon propagator in Landau gauge. The behavior of the
integrand of the angular integral is then controlled by a
momentum-dependent kinematic kernel times the dressing
functions of the vertex and, depending on the momentum
routing, the dressing of the ghost or the gluon propagator.
For the latter situation we obtain

IðxÞ →
Z

Λ2

0

dyy
d−2
2
GðyÞ
y

×
Z

π

0

dθðsin θÞd−2 ðsin θÞ
2ZðzÞDAc̄c;Tðx; y; zÞ

z
; ð5Þ

where the extra factor ðsin θÞ2 in the kernel stems from the
contraction of the gluon propagator with the two vertices.
This angular integral is finite at jyj ¼ jxj in any dimension
provided the vertex dressing function DAc̄c;T does not
develop a strong singularity for z ¼ 0 that overcompensates
for the kernel and the well-known infrared behavior ZðzÞ →
0 of the gluon dressing function. The information we have
about the ghost-gluon vertex does not support the existence
of such a problematic singularity (e.g., Refs. [22,42–54]).
A similar situation arises for the ghost loop in the gluon
propagator DSE. For the gluon loop, however, terms
proportional to 1=z2 appear (see, e.g., Ref. [55] for explicit
expressions). Fortunately, these are countered by the
presence of at least one factor of ZðzÞ → 0 in the integrand.
Thus, again, provided the three-gluon vertex does not
develop a strong singularity at z ¼ 0, the integral is finite
and the path deformation works. It should be stressed here
that the crucial momentum variable z affects only one leg of
the three-gluon vertex. The relevant divergence structure is
thus that of one momentum going to zero and not the global
IR behavior of the three-gluon vertex. Luckily, the former
divergences were found to be only weak [44–46].
One can show as well that the path deformation works

for the two-loop diagrams. Since below we will deal with a
truncation involving one-loop diagrams only, we refrain
from going into detail here and refer to Ref. [54] for details
on their structure. We furthermore wish to emphasize that
the problem of potential singularities at jyj ¼ jxj is absent
for massive propagators such as quarks. Due to the finite
mass one then encounters an opening of the branch cut of
finite size [31,36].
Additional problems may be encountered if dressing

functions present under the integral develop poles or branch
cuts at momenta other than z ¼ 0 probed by the integration.
In principle, this leads to additional constraints on the
integration contour. A typical case is a pole in a propagator
DðxÞ at complex momentum x0. If this propagator only
appears under the radial integral, then either the path may
be deformed around the pole, or a corresponding residue
needs to be taken into account. The situation is worse if the
propagator also depends on the angle, i.e., if we have DðzÞ
or more general momentum arguments. The singularity

FIG. 2. The branch cut (blue) in the y plane created by the angle
integration. The end points are at y ¼ q2 ¼ p2.

2In two dimensions, perturbation theory is ill-defined as for the
scalar theory. However, this is remedied in a nonperturbative
calculation [41].
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condition is then z ¼ x0 and corresponds to the case of a
massive propagator with mass m ¼ −x0. Thus in principle
it can be dealt with analogously, as already discussed above
and in Refs. [31,36]. In practice, however, this solution is
very hard to implement in a self-consistent way in numeri-
cally demanding situations such as the coupled system of
ghost and gluon propagators.
Setting these potential additional problems aside for the

moment, it remains to be discussed how the integration
contour is chosen in practice. A typical integration path is
shown in Fig. 3. The integration contour runs along a radial
“ray” and is then continued to the cutoff Λ2 by a second
curve which we call the “arc.” The precise form of the arc is
not so relevant in practice. All details concerning the
numerical implementation of the ray technique are dis-
cussed in Appendix A.

III. TRUNCATION AND RENORMALIZATION OF
THE GLUON AND GHOST PROPAGATOR DSEs

In this work, we are primarily interested in a conceptual
study of the gluon propagator at complex momenta. Thus,
although the two-loop diagrams in Fig. 1 are quantitatively
important on a 20% level [22,56], we neglect them to avoid
substantial technical complications. The tadpole diagram is
dropped as well because it vanishes in the renormalization
we employ. This truncation leaves us with the system
depicted in Fig. 4. This system is closed once the dressed
ghost-gluon and three-gluon vertices are known. It is well
known [22,42–54,57] that the ghost-gluon vertex only
receives small nonperturbative corrections. Therefore, we
take it as bare in our conceptual study. For the three-gluon
vertex we tested several models that will be described in the

next subsection. The second part of this section describes
the renormalization procedure.

A. The three-gluon vertex

The three-gluon vertex was studied in various
approaches, ranging from lattice simulations [58–65] to
effective models using a massive gluon propagator [49] to
functional equations [22,44,45,51,66–70]. From these
studies, the nonperturbative properties for spacelike
momenta are quite well understood. In particular, a sup-
pression at intermediate momenta is seen, and the dressing
of the tree-level tensor structure even becomes negative.
However, the zero crossing is at rather low momenta which
are difficult to reach in lattice calculations.
Herewe use a model for the three-gluon vertex which also

includes a term that restores the correct renormalization
group behavior of the gluon propagator. Note that this is only
necessary because we discarded the two-loop terms in the
gluon propagator DSE. For more elaborate truncations, the
correct renormalization group behavior is obtained auto-
matically; seeRefs. [22,54,71]. Thevertexmodel is restricted
to the tree-level tensor and parametrized as

ΓAAA;abc
μνρ ðp; q; rÞ
¼ igfabcΓAAA;ð0Þ

μνρ ðp; q; rÞC̃AAAðp2; q2; r2Þ; ð6Þ

where ΓAAA;ð0Þ
μνρ ðp; q; rÞ is the Lorentz tensor of the tree-level

vertex.
We tested various forms for C̃AAAðp2; q2; r2Þ which are

detailed in Appendix C. As the results for the gluon and
ghost propagators are qualitatively very similar for these
models, we choose one representative for illustration in
plots. This model reads

C̃AAA
1 ðx; y; zÞ ¼ 1

Z1

Gðp̄2Þ2−2a=δ−4a
Zðp̄2Þ2þ2a : ð7Þ

Z1 is the renormalization constant of the three-gluon vertex,
δ ¼ −9=44 is the anomalous dimension of the ghost
propagator and a is a parameter that determines the IR
behavior of the model. Note that in the UV a drops out due
to the scaling relation 1þ 2δþ γ ¼ 0 of the anomalous
dimensions δ and γ of the ghost and gluon propagators,
respectively. The vertex model is a reparametrization of the
model introduced in Ref. [47] without the IR part and
corresponds to a Bose-symmetrized version of the model
from Ref. [55]. The non-Bose-symmetric version is recov-
ered by replacing the dressings asGðp̄2Þ2 → GðyÞGðzÞ and
Zðp̄2Þ2 → ZðyÞZðzÞ. This version was used in Ref. [28]
and also tested here. Again, though, we did not find any
qualitative differences.
The IR behavior of this model is determined by the

parameter a. Originally, a ¼ 3δ was used which makes the

FIG. 3. Integration contour (red) from 0 to the cutoff Λ2 via the
opening in the branch cut (blue, dashed) at q2 ¼ p2.

FIG. 4. The ghost (top) and the truncated gluon (bottom)
propagator DSEs.
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expression IR finite for the scaling solution. Here, we solve
for a decoupling solution for which C̃AAA

1 ðx; y; zÞ is IR
divergent with a ¼ 3δ.3 One way to circumvent this is to
use a ¼ −1 instead. This removes the gluon dressing
function from the model. An alternative way is to modify
the momentum argument by adding a small scale Λ2

IR.
We do so by setting p̄2 ¼ ðxþ yþ zþ Λ2

IRÞ=2 with
Λ2
IR ∈ ½0; 0.01� GeV2. In the plots shown in Sec. IV, we

used a ¼ 3δ with Λ2
IR ¼ 0. However, we checked that the

results from the two methods are qualitatively the same.
In this model, the analytic behavior of the three-gluon

vertex is completely determined by the analytic structure of
the propagator dressing functions. As we found that for the
given truncation the gluon propagator seems to have a
singular point in the complex plane, we wanted to remove
its influence on the vertex. The corresponding models are
discussed in Appendix C. While these adaptations do have
quantitative effects, all qualitative aspects remain the same.
Thus, we conclude that our qualitative results are robust
against changes within a large class of three-gluon vertex
models, but we stress that our analysis only holds for
this class.

B. Renormalization

The propagator DSEs are renormalized via a momen-
tum-subtraction scheme. For the ghost propagator DSE this
leads to

Gðp2Þ−1 ¼ GðsÞ−1 þ ΣGðp2Þ − ΣGðsÞ: ð8Þ

GðsÞ denotes the ghost dressing function at an (infrared)
subtraction scale s and ΣGðp2Þ is the ghost self-energy. The
value chosen for GðsÞ selects a particular solution from a
one-parameter family of possible ones; for details see
Ref. [74]. To be able to perform the subtraction ray by
ray we need to analytically continue the value of GðsÞ from
ray to ray. We do so using the Cauchy-Riemann condition;
see Eq. (10) below and Appendix A for details.
For the gluon propagator DSE, the subtraction point

needs to be chosen at large momenta for numerical stability.
The hard UV cutoff employed in our calculations breaks
gauge covariance and leads to additional quadratic diver-
gences in the gluon propagator DSE. Several methods to
remove them exist; see Ref. [79] and references therein for
details. Such a procedure can entail ambiguities and should
thus be considered as part of the model input. However, a
unique subtraction might be possible with more elaborate
truncations [22]. Since the present truncation scheme is
constructed for qualitative tests, we use a simple but
effective subtraction scheme that modifies the integrand

of the gluon loop appropriately [55,80]. We also tested
other methods. For one, instead of subtracting the overall
divergence in the gluon loop, we split the subtraction
between ghost and gluon loops [47]. For another one, we
used a second renormalization condition [71,81] which
already proved very useful elsewhere [22]. It turns out that
the second renormalization condition can be chosen such
that both procedures lead to almost similar results.
Finally, it remains to set the physical scale of our results.

We do so by matching the gluon dressing function to
corresponding lattice results [59] in the region above
1 GeV. Thus, we inherit the scale setting used on the lattice.

IV. RESULTS

A. Baseline setup

In this section we first present results for what we call the
“baseline setup.” It is defined by fixed values for the
renormalization conditions, the subtraction method of
quadratic divergences in the gluon loop and the three-
gluon vertex model from Eq. (7) with a ¼ 3δ. More details
including computational parameters are explained in
Appendix A. Variations and tests of this setup are presented
in the subsequent subsections.
The gluon dressing function is shown in Fig. 5 as a

function of the radial and angular parts of the complex
variable x ¼ p2 ¼ p̃2eiθ. In the first quadrant, the calcu-
lation works without problems. However, in the second
quadrant, the bump in the gluon dressing function at p̃2 ≈
0.5 starts to rise appreciably, however, without becoming
singular. Beyond a certain value of θ, it flattens again and
remains finite until the negative squared momentum axis.
This behavior was seen before in a slightly different setup
and with less precise numerics [28] and was interpreted as
the gluon being regular at complex momenta. However,
with the improved numerical treatment followed in this
work, we clearly observe oscillations in the solution, which
may hint towards numerical artifacts. These signals and the
strong rise could also indicate that we may have hit a
singular point beyond which the ray technique is no longer
applicable. We tried to take this finding into account by
modifying the integration path appropriately (cf. the dis-
cussion in Sec. II), but then we loose the advantage of the
ray technique that we do not need to know the dressing
function in unknown regions, and we did not succeed in
improving the results in this way. Thus, from this plot we
concluded that our results probably cannot be trusted
beyond that point and that we may have hit a singularity.
We corroborated this conclusion further using various tests
that will be detailed below in Sec. IV B.
Our results for the ghost dressing function in the baseline

setup are shown in Fig. 6. In contrast to the gluon
propagator, we do not see any drastic changes in the
dressing functions. The real part of the ghost is smooth
throughout the complex momentum plane, whereas the

3Functional equations allow for a family of solutions called
decoupling solutions [44,72–74]. Their end point is called the
scaling solution [75,76] for which the dressing functions obey
simple power laws in the IR [44,74,77,78].
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imaginary part develops a negative bump at the same scale
at which the gluon rises drastically. However, since the
ghost and the gluon equations are directly coupled, the
results for the ghost dressing should only be considered
trustworthy up to the location of the potentially singular
point in the gluon dressing function.
The reason for the appearance of the potential singularity

is not clear. In particular, it cannot be understood in simple
terms similar to the Cutkosky rules [82,83] which allow to
determine the position of a branch cut from the masses of

the propagators in a Feynman diagram. In the language of
contour deformation, a branch cut in the external momen-
tum arises when the integration path cannot be deformed
continuously for two values of p2; see Ref. [36] for details.
This is, however, not the case here.

B. Variations

Since the origin of the potential singularity thus seems to
be dynamic, we tried to vary our setup to investigate the
influence on the existence and position of the singular

FIG. 5. Real (left) and imaginary (right) gluon dressing function shown in the complex momentum plane with p2 ¼ p̃2eiθ. The blue
line is at θ ¼ π=2 and the red line is the Euclidean result. The black line corresponds to a ray close to the singular point.

FIG. 6. Real (left) and imaginary (right) ghost dressing function. The blue line is at θ ¼ π=2 and the red line is the Euclidean result.
The black line corresponds to a ray close to the singular point.
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point. We attempted the following variations of the base-
line setup:
(1) We tried several modifications of the three-gluon

vertex model. The corresponding expressions are
listed in Appendix C. In addition, we varied the
parameter a in the model between 8δ ≈ −1.61 and
3δ ≈ −0.61. The effect of this is discussed below.

(2) We tested alternative methods to subtract quadratic
divergences as discussed in Sec. III B.

(3) We varied the renormalization condition Gð0Þ of the
ghost propagator to obtain different decoupling
solutions.

Most variations did not lead to a qualitative change of
our results and we do not discuss them further. Different
values forGð0Þ only led to small quantitative changes in the
position of the singularity. A larger effect was observed
from the employed three-gluon vertex model. In particular,
the position of the potentially singular point in the complex
momentum plane for the gluon propagator depends on the
details of the vertex model. Varying the parameter a,
cf. Fig. 7, we observed that the point moves closer to
the real axis (and at the same time closer to the origin) when
the parameter a was lowered. Lowering a as far as
a ¼ 8δ ≈ −1.61, we were able to move the potential
singularity almost onto the real axis. This, however,
happens at the expense that the gluon dressing function
at real spacelike momenta becomes unrealistically flat. We
therefore did not lower a further.

C. Tests

A propagator can be calculated in the complete complex
plane from the spectral density ρðsÞ via

Dðp2Þ ¼
Z

∞

0

ds
ρðsÞ
p2 þ s

ð9Þ

if no poles at complex momenta exist; see also Appendix B.
The inverse task of extracting the spectral density from the
propagator given at Euclidean momenta is an ill-posed
inverse problem [84]. This is reflected in the necessity of
some form of bias in these methods and a large sensitivity
of the results to the precision of the input. The direct
calculation performed here, on the other hand, does not
have these intrinsic problems. Rather, the main challenges
are of a numeric nature; see Appendix A. In particular,
the global nature of analyticity can be problematic, viz., the
analytic properties of a function are encoded in the
behavior of the function on any region of the complex
plane. Hence, the propagation of errors has to be under
control and it is important to check that the numeric
calculation does not interfere with analyticity. In this
section, we describe several possibilities for such checks
and apply them to our results.
One direct possibility for such a check is provided by

Cauchy’s integral formula. We use it to reconstruct the
propagators for real and spacelike momenta from any ray
and monitor the quality of the reconstruction. The details
for this procedure are listed in Appendix B.
We performed this reconstruction on all rays used for the

calculation of the gluon propagator and ghost dressing
function. For the baseline setup, the reconstructed functions
are shown in Fig. 8. For guidance, we also plot the
Euclidean result (in red at θ ¼ 0). The reconstruction
works very well in the first quadrant (θ ≤ π=2) and some
way into the second quadrant until it fails on the ray marked
with a thick black line. Beyond this ray, it fails completely.
Again, this indicates the appearance of a singularity in the
complex plane at or around the ray in black.
Another possibility for a check uses the Cauchy-

Riemann equations which relate the real and imaginary
parts of analytic functions. In polar coordinates they can be
written as

∂fðxÞ
∂r ¼ 1

ir
∂fðxÞ
∂θ ð10Þ

where x ¼ reiθ. We can use this to test the analyticity of our
results by monitoring

ΔCR½f�ðxÞ ¼
∂fðxÞ
∂r −

1

ir
∂fðxÞ
∂θ : ð11Þ

We approximate the derivatives by finite differences which
leads to its numeric deviations on its own. The results are
shown in Fig. 9. Again, we find small deviations for the
ghost and gluon propagators (cf. the scale of the z axis) up
to the singular point in the second quadrant beyond which
the Cauchy-Riemann equations are clearly no longer
fulfilled. The two ridges are artifacts from splitting the
grid for the dressing functions as discussed in Appendix A.

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 7. Three-gluon vertex dressing function for the vertex
model (7) with different values for the parameter a and
Λ2
IR ¼ 0.01.
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Having collected ample evidence that our results are
analytic until we hit a potential singularity in the second
quadrant, we turn the situation around and test the reliability
of extrapolating the results from the spacelike axis using the
analytic continuation from a Padé approximant. Specifically,
we use the Schlessinger point method [85] which provides a
pointwise exact description of the data. As input, we use a
random subset of momentum points on the positive and real
momentum axis. Note that this test has been performed

already in Ref. [19] for one of the truncations that we also
used here. There, indeed a singularity in the second quadrant
was found. Here, we check whether this finding persists for
all truncations considered in this work and, even more
important, whether the results from the Schlessinger point
method agree quantitatively with the explicit results from
solving the DSEs in the complex momentum plane.
We compare the direct calculation and the Schlessinger

point method by plotting the ratio

FIG. 8. Reconstruction of the ghost dressing function (left) and the gluon propagator (right) from the solution on the rays. The blue line
is at θ ¼ π=2 and the red line is the Euclidean result. The thick black line marks the ray where the reconstruction begins to fail.

FIG. 9. Test of the Cauchy-Riemann condition (11) for the ghost (left) and gluon (right) dressing functions. The two ridges for fixed p̃2

are artifacts not related to a failure of analyticity (see main text).
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ΔSPM½f�ðxÞ ¼
fðxÞ

fSPMðxÞ
; ð12Þ

where fSPMðxÞ is the function as obtained from the
Schlessinger point method. This is shown in Fig. 10.
The plots confirm that up to the potentially singular point
the two methods agree quite well. Next, we compare the
positions of the singular points found by the two methods
for the gluon propagator. To this end, we follow a simple
procedure. For a given subset of input momentum points
on the real and positive momentum axis, we calculate
the pole positions analytically from the coefficients of the
Schlessinger point method. Poles with small residues are
discarded as artifacts. For a final estimate of pole positions,
we sample several subsets of the Euclidean data. This
method is not as elaborate as the one introduced in
Ref. [19], where the sample of input points is optimized
based on the quality of the reconstruction from the spectral
function, but quite effective for the present purpose. For the
baseline setup, we find that the position of the pole indeed
agrees very well with our expectation from the rise of the
dressing function, with the location of the breakdown of
reconstruction and with the region of the breakdown of the
Cauchy-Riemann test. We indicate the location of the pole
extracted from the Schlessinger method by a thick black
line in Figs. 5, 6, 8, 9 and 10.
Thus, the combined evidence of all methods clearly

points towards a singularity in the gluon dressing function
at complex momenta. We observed the same quantitative
agreement between the pole location predicted by the
Schlessinger method and the explicit results from the ray
method for all truncations studied in this work.

V. SUMMARY

In this work, we studied the analytic structure of the
gluon and ghost propagators of Landau gauge Yang-Mills
theory from a coupled set of Dyson-Schwinger equations.
Using the ray technique, we were able to solve the
equations for a region of complex squared momenta that
extended well into the second quadrant. We continuously
checked our calculation by a variety of other methods,
namely by (i) reconstruction algorithms using our solutions
to reconstruct the propagators on the spacelike real
momentum axis, (ii) the Cauchy-Riemann equations, and
(iii) the Schlessinger point method which provides rational
functions for the analytic continuation that can be com-
pared with our explicit results. All of these methods agree
very well up to a certain ray in the second quadrant. At this
point, we encountered a steep rise in the gluon dressing
function at the same location where the Schlessinger
method predicts a pole. Thus, the combined evidence of
both methods strongly suggests the presence of a nonana-
lytic structure in the complex plane. Due to the less precise
numerics available at the time, this structure was not
recognized as a singularity in Ref. [28].
We studied the properties of this singularity and noted

that within our truncation, the details of the model for the
three-gluon vertex are most relevant for its location,
whereas other technical details such as the renormalization
procedure matter much less. Since in this study the three-
gluon vertex is modeled in terms of the propagators, we
cannot make a final statement about the existence or
nonexistence of such a pole.
It will be important in the future to further check the

dependence of the analytic structure on the gluon inter-
action. In this respect, it is highly relevant to improve this

FIG. 10. Comparison of the direct calculation with the Schlessinger extrapolation using Eq. (12) for the real parts of the ghost (left) and
gluon (right) dressing functions. For the imaginary parts, the qualitative aspects are similar.
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calculation with better input for the three- and four-gluon
vertices, e.g., by using explicit input from solutions of their
respective DSEs.
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APPENDIX A: TECHNIQUES USED TO SOLVE
THE DSEs NUMERICALLY

To extract a high-quality numerical solution of the
coupled system of DSEs for the gluon dressing function
Zðp2Þ and the ghost dressing function Gðp2Þ in the
complex p2 momentum plane, we employ a variety of
numerical tools that are described in some detail in the
following. Some of these have been already used in a
previous publication [28].

1. The grid

As explained in Sec. II, we solve the DSEs on a grid of
“rays” and “arcs.” Each ray extends radially outwards from
the origin to a fixed momentum cutoff at p2 ¼ eiθΛ2

1, where
θ denotes the angle between the ray and the positive real
axis. From this point on, the “arc” connects the ray with the
real axis along a path given by

p2ðtÞ ¼ eiθð1−tÞðΛ2
1 þ ðΛ2 − Λ2

1ÞtÞ ðA1Þ

with t ∈ ½0; 1�. Thus, we have to deal with two different
cutoff scales, Λ1 and Λ, which are chosen to be close to
each other; see Table I. For the grid of rays we typically use
181 rays that cover the complex plane from θ ¼ 0 to π − ϵ.
We also tested using 361 rays or 91 rays instead but did not
find any significant influence on the final results. On the
real axis, the corresponding ray and arc are of course
collinear and merge into a straight line integration path.

2. Representation of the dressing functions

The integration paths in the DSEs are along the rays and
along the arcs. Under the integrals of the DSEs, we
encounter two different types of arguments in the dressing
functions Z and G: on the one hand, there is the integration
momentum denoted by q2 ¼ y. On the other hand, there is
the squared difference between external momentum p and
integration momentum q denoted by ðq − pÞ2 ¼ z. The
external momenta p2 ¼ x are distributed over the rays,
while the integration momenta can be on the rays and the

arcs. If y is on a ray, the squared differences, z, are also on
the rays or their extensions. When y is on an arc, however,
z can also take values elsewhere in the complex plane;
see Fig. 11 for two examples.
To carry out the integrations on the right-hand side of the

DSE, we need the dressing functions Z and G on all these
points. In the following we explain in detail how we
manage this. Let us first deal with the rays. On each ray,
we represent the real part and the imaginary part of Z andG
separately by an expansion in terms of Chebyshev poly-
nomials. Such a representation was introduced in Ref. [86]
and has been used in many calculations since. Chebyshev
expansions work very well with smooth functions. It is
therefore advantageous to perform these expansions on a
logarithmic grid for the logarithm of the function to be
expanded. For a function fðxÞ this amounts to

fðxÞ ¼ exp
�XN−1

i¼0

tiðxÞRi

�
þ i exp

�XN−1

i¼0

tiðxÞIi
�
: ðA2Þ

The ti are the Chebyshev polynomials and the Ri=Ii are the
respective coefficients.
As it turns out, our solutions are indeed smooth enough

in the infrared and the ultraviolet momentum regions.
However, in a short interval at intermediate momenta,
we encounter large variations on rays in the second
quadrant of the complex p2 plane. We deal with this
situation numerically by splitting the radial distance from
the origin on each ray into three intervals, ½ϵ2; x1�, ½x1; x2�
and ½x2;Λ2

1�. Here, ϵ2 is an infrared momentum cutoff and
Λ2
1 is the ultraviolet momentum cutoff on each ray, already

discussed above. The middle interval ½x1; x2� is bracketed
close to the interval where the large variations occur. A set
of boundaries that worked for the cases considered in this
paper is given in Table I. Furthermore, we optimized the

TABLE I. Parameter values used for a typical calculation.
Internal units (i.u.) correspond roughly to GeV.

Parameter Value(s)

Physical parameters
Gð0Þ 5
ZðsÞ 0.38
s [i.u.] 200
αðμ2Þ 1

Computational parameters
Gluon Ghost

ϵ2 [i.u.] 10−5 10−5

x1 [i.u.] 0.2 0.2
x2 [i.u.] 1 0.6
Λ2
1 [i.u.] 675 675

Λ2 [i.u.] 103 103

N1 30 15
N2 30 15
N3 30 25
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number of Chebyshev polynomials N1, N2 and N3 needed
for each interval; the resulting numbers can be found in the
table as well. In total, we need to solve for the coefficients
of 290 Chebyshev polynomials on each ray, which is a
tremendous numerical task.
For momenta with absolute values smaller than ϵ2, we use

a constant extrapolation for the ghost dressing function
Gðp2Þ and a constant extrapolation of the gluon propagator
function Dðp2Þ ¼ Zðp2Þ=p2 into the deep infrared. Both
extrapolations are well justified from the known behavior of
the (decoupling case) dressing functions on the real axis and
we assume that this also works in the complex plane. In fact,
this can be checked by closely monitoring the behavior of
the dressing functions for momenta larger than but close to
ϵ2 which was found to agree with the extrapolation.
In the ultraviolet momentum region we used two types of

extrapolation: first, one could use the analytic form of the
known ultraviolet one-loop running of the dressing func-
tions to extrapolate (see e.g., Ref. [55]), or, second, one
could simply set the functions to a constant value from Λ1

on. Both procedures lead to similar results and we settled
with the simpler second option.
We also need to integrate on the arc. This integration path

generates momenta z in all regions of the complex
momentum plane. To avoid this, we use the angular
approximation ZðzÞ; GðzÞ → ZðyÞ; GðyÞ on the arc, which
is known to work very well for ultraviolet momenta.
For the main calculation, only the dressing functions on

the rays are required. However, for some test calculations
we also needed the dressing function between the rays.
Since our rays are close to each other, we checked that
linear interpolation between points on rays sharing a
common distance to the origin works very well.

3. Numerical integration and iteration

For the numerical integration, some points require
special attention which we discuss below. For the radial

integration we use an ordinary Gauss-Legendre method
separating the rays into four regions. For every external
momentum x we use the three intervals of the Chebyshev
expansion ½ϵ2; x1�, ½x1; x2� and ½x2;Λ2

1�, detailed above.
Additionally, we split the one region which contains x into
two intervals. Thus, for small x, for instance, we have
½ϵ2; x�,½x; x1� ½x1; x2�, ½x2;Λ2

1�, with appropriate modifica-
tions for intermediate and large x. This is important to have
many integration points close to the boundaries of the
region and close to x ≈ y, where we pass through the only
opening of the branch cut and encounter (depending on the
angle) very small z in one of the denominators of the
internal propagators. We typically choose 60 integration
points in each interval. Another integration region is the
interval ½Λ2

1;Λ2� on the arc. Since we use the angle
approximation, this integration is not problematic.
It turns out that the angular integral has to be treated with

extra care, since it is related to (the generation of) cuts and
branch points as explained in Sec. II. For any given pair of
external and loop momenta x and y, respectively, the
angular integral generates a potentially broad interval of
values of z. To treat the evaluation of ZðzÞ and GðzÞ in a
similar manner as with the argument y, we perform the
following procedure: for any pair of x and y, we monitor the
interval of z tested by the angular integral. Whenever this
interval crosses either x1 or x2 (the boundaries of the
regions discussed above), we split the angular integral at
these points. The total of 75 points used for the Gauss-
Legendre integration of the angle are then distributed into
these regions. We found that splitting the integration
intervals for both the radial and angular parts as described
above is pivotal, whereas the integration itself is rather
stable in the number of points as long as not severely fewer
points are used.
Finally, we need to discuss details of the iteration

procedure. The solution on the first ray/arc (only real
and positive momenta) is obtained with standard

FIG. 11. Two examples for the range of values for z (green line) for given values of x and y. The blue line represents the integration
contour. The orange region is covered by the rays up to the one on which x lies. In the yellow region, the UV extrapolation is applied.
When y is on the ray, all possible values for z also lie on the ray (and its UV extrapolation). When y is on the arc as in the plots, the
required values for z form a line. The hatched region is only accessible once solutions for rays beyond the one on which x lies have been
obtained. The lower half-plane can be accessed by complex conjugation of the dressing functions. The angle approximation corresponds
to putting the green points all equal to y.
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techniques. We then use this solution as a starting guess for
the second ray/arc combination and iterate until conver-
gence on the second ray is achieved. The solution for the
second ray is then used as a starting guess for the iteration
on the third ray and so on. As explained in the main text, we
renormalize the gluon DSE on the first ray/arc (only real
and positive momenta); the corresponding value of Z3

remains constant for all other rays. This procedure is not
possible for the ghost propagator DSE, since GðsÞ at the
infrared subtraction point s has a special meaning in
connection with the family of decoupling solutions. To
maintain a connection to one particular member of the class
of decoupling solutions dialed by GðsÞ on the first ray/arc,
we use the Cauchy-Riemann condition discussed in
Sec. III B to determine the (complex) GðsÞ on each
subsequent ray. Since, in particular in the infrared, the
rays are very close to each other, the numerical error of this
procedure is extremely small (we tested this explicitly on
trial functions with various analytic structures in the
complex plane).

APPENDIX B: CAUCHY’S INTEGRAL FORMULA
AND RECONSTRUCTION

Cauchy’s integral formula can be used to calculate the
value of a holomorphic function inside a closed region via
knowledge of the function on the boundaries:

DðxÞ ¼ 1

2πi

I
C
dz

DðzÞ
z − x

: ðB1Þ

From this, one can directly derive the spectral representa-
tion of a propagator. Here we repeat this derivation but use
different integration paths that correspond to the rays on
which we calculate the propagators. This can be used
as a test of whether the numeric solution still respects
analyticity.
In general, the analytic structure of a propagator can

contain poles and a cut on the timelike axis. An integration
contour of a circle at infinity thus needs to be deformed to
take them into account:

C ¼ C∞ þ Cc þ Cp: ðB2Þ

The integral at infinity (C∞) vanishes and only the integrals
along the cut (Cc) and around the poles (Cp) remain. The
latter leads to contributions of the residues of the n poles
at zj:

−
X
j

Res
z→zj

DðzÞ
zj − x

¼
X
j

Rj

x − zj
: ðB3Þ

The first minus sign comes from integrating clockwise
around the poles. The integral along the cut leads to

1

2πi

�Z
0

−∞
dz

Dðzþ iϵÞ
z − x

þ
Z

−∞

0

dz
Dðz − iϵÞ
z − x

�
ðB4Þ

¼ −
1

2πi

Z
∞

0

ds
Dð−sþ iϵÞ −Dð−s − iϵÞ

sþ x
ðB5Þ

¼ −
1

π

Z
∞

0

ds
ImDð−sÞ
sþ x

ðB6Þ

¼
Z

∞

0

ds
ρðsÞ
sþ x

ðB7Þ

This is the spectral representation for a propagator already
shown in Eq. (9). The spectral density is defined as

ρðsÞ ¼ −
discDð−sÞ

2πi
¼ −

1

π
ImDð−sÞ: ðB8Þ

One can also change the contour such that it runs from
infinity to the origin not along the timelike axis but along a
ray at angle θ (and out at angle −θ); see Fig. 12. We
consider the two contributions separately:

Dθ
rðxÞ¼

1

2πi

�Z
0

Λ2eiθ
dz

DðzÞ
z−x

þ
Z

Λ2e−iθ

0

dz
DðzÞ
z−x

�
ðB9Þ

¼ 1

2πi

�
−
Z

Λ2eiθ

0

dz
DðzÞ
z−x

þ
Z

Λ2e−iθ

0

dz
DðzÞ
z−x

�
ðB10Þ

¼ 1

2πi

Z
Λ2

0

dr

�
−eiθDðreiθÞ
reiθ−x

þe−iθDðre−iθÞ
re−iθ−x

�
ðB11Þ

FIG. 12. Integration contour (red) to reconstruct the propagator
on the positive real axis (blue) from the solution on a ray with
angle θ.
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¼ −
1

π

Z
Λ2

0

drIm

�
eiθDðreiθÞ
reiθ − x

�
: ðB12Þ

If θ ¼ π, we recover Eq. (9). Since we have a finite
cutoff Λ2, we also add the contribution from the circle
segment:

Dθ
aðxÞ ¼

1

2πi

�Z
Λ2eiθ

Λ2e−iθ
dz

DðzÞ
z − x

�
ðB13Þ

¼ Λ2

π

Z
θ

0

dϕRe

�
eiϕDðΛ2eiϕÞ
Λ2eiϕ − x

�
: ðB14Þ

The reconstructed propagator is then

Dθ
recðxÞ ¼ Dθ

aðxÞ þDθ
rðxÞ: ðB15Þ

APPENDIX C: THREE-GLUON
VERTEX MODELS

The different vertex models we employed in our studies
are detailed here. For convenience, we define an auxiliary
function

FðxÞ ¼ GðxÞ1−a=δ−2a
ZðxÞ1þa : ðC1Þ

δ ¼ −9=44 is the anomalous dimension of the ghost
propagator. The exponents of the dressings are taken such
that this function behaves like (δ − γ), which is the
anomalous dimension of the three-gluon vertex. The
parameter a can be used to modify the IR behavior and
was varied for testing.
The baseline vertex is then defined as

C̃AAA
1 ðx; y; zÞ ¼ 1

Z1

F

�
xþ yþ zþ Λ2

IR

2

�
2

: ðC2Þ

This is a Bose-symmetrized version of the one introduced
in Ref. [55] with an additional IR scale Λ2

IR that serves to
avoid the divergence for a ¼ 3δ. The exponent accounts for
the renormalization group improvement. We use as argu-
ments x ¼ p2, y ¼ q2 and z ¼ ðpþ qÞ2 as they actually
appear in the gluon loop for external/internal momentum
p=q. The factor 1=2 guarantees the correct behavior for
large loop momentum.
The integration kernel of the gluon loop contains the

gluon dressing functions as ZðyÞZðzÞ. To test the potential
influence of and avoid possible problems from these terms,
we discarded them in another vertex model and fixed the
UV behavior by essentially modifying the exponent of the
gluon dressing function from the original model:

C̃AAA
6 ðx; y; zÞ ¼ F

�
xþ yþ zþ Λ2

IR

2

�
2 ZðxþyþzþΛ2

IR
2

Þ2
ZðyÞZðzÞ :

ðC3Þ

Two variations of this model remove the dependence on the
angle by replacing the momentum arguments:

C̃AAA
7 ðx; y; zÞ ¼ F

�
xþ yþ Λ2

IR

2

�
2 ZðxþyþΛ2

IR
2

Þ2
ZðyÞZðzÞ ; ðC4Þ

C̃AAA
8 ðx; y; zÞ ¼ F

�
yþ Λ2

IR

2

�
2 ZðyþΛ2

IR
2

Þ2
ZðyÞZðzÞ : ðC5Þ

The potential poles induced by these arguments are
irrelevant for the integration as they are on the negative
real axis.
A final model we tested is the one from Ref. [55] which

was also used for the previous calculation of the gluon and
ghost propagators in the complex plane [28]. It is given by

C̃AAA
0 ðx; y; zÞ ¼ 1

Z1

ðGðyÞGðzÞÞ1−a=δ−2a
ðZðyÞZðzÞÞ1þa : ðC6Þ
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