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We explore connections between high energy QCD spin physics and CP-odd scalar gluonic operators
F̃μνFμν and F̃μνFμαFν

α, the latter being called the Weinberg operator in the context of the nucleons’ electric
dipole moment. We first introduce the twist-four generalized parton distribution associated with the
topological operator FμνF̃μν. This has interesting applications in spin physics which go beyond the standard
framework in terms of twist-two and twist-three distributions. In the second part, we show that the off-
forward matrix element of the Weinberg operator is proportional to a certain twist-four correction to the g1
structure function in polarized deep inelastic scattering.
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I. INTRODUCTION

This paper is a natural sequel to the previous work [1],
which discussed the parton distribution function (PDF)
associated with the scalar gluonic operator

FðxÞ ∼
Z

dz−eixP
þz−hPjFμνð0ÞFμνðz−ÞjPi; ð1Þ

where jPi is the nucleon single particle state. The main
motivation of [1] was to study the partonic structure of the
nucleon mass. Equation (1) is suitable for this purpose
because the first moment

R
dxFðxÞ ∼ hPjFμνFμνjPi is

proportional to the “gluon condensate” which is related
to the nucleon mass via the QCD trace anomaly. Being a
twist-four distribution, FðxÞ affects experimental observ-
ables only at the subleading order in the usual twist
expansion. Yet it can provide fundamentally important
insights into our understanding of the origin of hadron
masses in QCD, a problem recently proclaimed as one of
the major goals of the Electron-Ion Collider (EIC) [2].
A simple variant of (1) is another twist-four PDF or,

more precisely, a generalized parton distribution (GPD)

F̃ðx;ΔÞ∼
Z

dz−eixP
þz−hP0jF̃μνð−z−=2ÞFμνðz−=2ÞjPi; ð2Þ

whose first moment gives the nucleon matrix element of the
CP-odd scalar gluonic operator FμνF̃μν. It is necessary to

introduce nonvanishing momentum transfer P0 − P ¼
Δ ≠ 0, or else the distribution vanishes. Just as FðxÞ is
related to the partonic structure of the nucleon mass, F̃ðxÞ is
related to that of the nucleon spin—another major goal of
the EIC. The original motivation of this paper was to
explore this connection that goes beyond the standard
description of the nucleon spin structure in terms of twist-
two and twist-three distributions. Of course, the relevance
of the operator FF̃ to QCD spin physics is by no means
novel. There is a decade-long controversy over the role of
FF̃ in the nucleon spin puzzle through the chiral anomaly;
see, e.g., [3,4]. However, most of the discussion in the
literature is concerned with the integrated (local) operator
FF̃, with a notable exception in [5]. It is interesting to see
whether nonlocality in the light-cone direction can bring
about new insights into the problem. Indeed, very recently,
Tarasov and Venugopalan [6] have identified precisely the
same distribution (2) in their “worldline” approach to box
diagrams for the g1 structure function in polarized deep
inelastic scattering (DIS). In view of such developments, it
is timely to study the general properties of F̃ðxÞ from QCD
perspectives.
In addition to the above project which has many parallels

to the analysis done in [1], we have noticed that introducing
the x dependence in the FF̃ sector may open up a new
research direction of interdisciplinary nature. In a recent
paper [7], Seng suggested that the third moment of the
twist-three, chiral-odd PDF eðxÞ is related to the so-called
quark chromomagnetic dipole moment (cMDM) operator
important in the context of CP violation and the electric
dipole moment (EDM) of the nucleons. This is an interest-
ing new connection between nucleon structure studies
and physics beyond the Standard Model (BSM). We
point out that an entirely analogous connection exists

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 102, 094004 (2020)

2470-0010=2020=102(9)=094004(10) 094004-1 Published by the American Physical Society

https://orcid.org/0000-0001-6880-3238
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.094004&domain=pdf&date_stamp=2020-11-09
https://doi.org/10.1103/PhysRevD.102.094004
https://doi.org/10.1103/PhysRevD.102.094004
https://doi.org/10.1103/PhysRevD.102.094004
https://doi.org/10.1103/PhysRevD.102.094004
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


between the third moment of F̃ðxÞ and the so-called
Weinberg operator [8]

fabcF̃a
μνF

μα
b Fν

cα; ð3Þ

which is another candidate operator to generate a large
EDM in the nucleon. Based on this observation, we
establish a relation between the matrix element of the
Weinberg operator and observables in spin physics. This
suggests an exciting possibility that polarized DIS experi-
ments can provide useful information to the physics of the
nucleon EDM, or more generally, BSM origins of hadronic
CP violations.
This paper is structured as follows. In Sec. II, we give a

precise definition of (2) and discuss its connection to the

chiral anomaly and the nucleon spin decomposition. In
Sec. III, we perform one-loop calculations of F̃ðxÞ for
quark and gluon targets. In Secs. IV and V, we discuss the
third moment of F̃ðxÞ and identify an operator similar to
the Weinberg operator. Through a detailed analysis of the
properties of these operators, we shall derive a relation
between the off-forward matrix element of the Weinberg
operator and one of the twist-four corrections to the g1
structure function in polarized DIS.

II. GENERALIZED PARTON
DISTRIBUTION OF FF̃

We start by defining the twist-four gluon GPD for the
nucleon

F̃ðx; ξ;Δ2Þ≡ −iP̄þ

2M2

Z
dz−

2π
eixP̄

þz−hP0S0jF̃μνð−z−=2ÞWFμνðz−=2ÞjPSi

¼ 1

2M2
ūðP0S0Þ½HþΔþγ− þH−Δ−γþ −H⊥Δi⊥γi⊥�γ5uðPSÞ; ð4Þ

where M is the nucleon mass and Δ ¼ P0 − P is the momentum transfer. Sμ is the spin four-vector that satisfies S · P ¼ 0
and S2 ¼ −M2. We work in a frame in which P̄ ¼ PþP0

2
has vanishing transverse components. W is the lightlike adjoint

Wilson line that makes the operator gauge invariant (and will often be omitted in the following). Our convention is
ϵ0123 ¼ þ1,Dμ ¼ ∂μ þ igAμ, and γ5 ¼ −iγ0γ1γ2γ3 so that ūðPSÞγ5γμuðPSÞ ¼ 2Sμ. The three GPDsH�;⊥ are all functions
of x;Δ2 and the skewness parameter ξ ¼ −Δþ=2P̄þ, with the property H�ðx; ξ;Δ2Þ ¼ Hðx;−ξ;Δ2Þ. From Lorentz
invariance,

Z
dxHþ ¼

Z
dxH− ¼

Z
dxH⊥ ≡HðΔ2Þ ð5Þ

so that

Z
dxF̃ðx; ξ;Δ2Þ ¼ −i

2M2
hP0jF̃a

μνF
μν
a jPi ¼ HðΔ2Þ

2M2
ūðP0S0Þ=Δγ5uðPSÞ ¼

HðΔ2Þ
M

ūðP0S0Þγ5uðPSÞ: ð6Þ

While F̃ vanishes in the forward limit, H�;⊥ðx;ΔÞ is finite
in this limit and satisfies HðxÞ ¼ H�ðxÞ ¼ Hð−xÞ. To
linear order in Δ, one can approximate

ūðP0S0Þ=Δγ5uðPSÞ ≈ −2Δ · S ð7Þ

if S0 ≈ S. The connection between the operator FF̃ and spin
physics is already manifest.
As demonstrated in [1], FðxÞ in (1) contains the “‘zero-

mode” contribution proportional to δðxÞ. On general
grounds, one expects that F̃ðxÞ also contains the delta
function

H�;⊥ðxÞ ¼ H�;⊥
reg ðxÞ þ δðxÞC�;⊥: ð8Þ

The possible polarization dependence of C has to be
canceled by that of the regular part Hreg upon integrating

over x. We, however, conjecture that C�;⊥ ¼ 0 based on a
prejudice that spin-dependent distributions are in general
suppressed by one power of x compared to spin-indepen-
dent ones. That is, if FðxÞ in (1) contains a δðxÞ as shown in
[1], naively F̃ðxÞ does not because xδðxÞ ¼ 0. In the one-
loop calculation in the next section, we shall see an
example of this cancellation.

A. First moment

Let us study the first moment (6) in more detail. As is
well known, the FF̃ operator is related to the flavor-singlet
axial current via the UAð1Þ anomaly

∂μJ
μ
5 ¼ 2i

X
f

mfψ̄fγ5ψf þ nf
αs
4π

F̃a
μνFa

μν; ð9Þ
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where Jμ5 ¼
P

f ψ̄fγ
μγ5ψf is the UAð1Þ current. Taking the nonforward matrix element of (9), one finds

hP0jnf
αs
4π

F̃a
μνF

μν
a jPi ¼ iΔμhP0jJμ5ð0ÞjPi − 2

X
f

hP0jmfψ̄fiγ5ψfjPi

¼ iΔμūðP0Þ
�
γμγ5FAðΔ2Þ þ FPðΔ2Þ

2M
Δμγ5 þ i

FTðΔ2Þ
2M

σμνΔνγ5

�
uðPÞ − 2

X
f

mfGfðΔ2ÞūðP0Þiγ5uðPÞ

¼ 2M

�
FAðΔ2Þ þ Δ2

4M2
FPðΔ2Þ −

X
f

mf

M
GfðΔ2Þ

�
ūðP0Þiγ5uðPÞ; ð10Þ

where FA, etc., are various form factors. By definition,

hPSjJμ5jPSi ¼ −2SμΔΣ;→ FAð0Þ ¼ ΔΣ; ð11Þ
whereΔΣ is the quarks’ helicity contribution to the nucleon
spin. Since FPðΔÞ does not have a pole at Δ ¼ 0 due to the
absence of a massless singlet pseudoscalar meson, one
obtains the relation

ΔΣ −
X
f

mf

M
Gfð0Þ ¼

nfαs
4π

Z
dxHðxÞ: ð12Þ

On the other hand, the connection between the anomaly
and thegluon helicity contributionΔG to the nucleon spin has
been extensively discussed in the literature. To see quickly the
relevance of ΔG, one introduces the topological current

Kμ ¼ ϵμνρλ
�
Aa
νFa

ρλ þ
g
3
fabcAa

νAb
ρAc

λ

�
; ∂μKμ ¼ F̃a

μνF
μν
a :

ð13Þ
In the light-cone gauge Aþ ¼ 0, Kþ ¼ 2ϵijAa

i ∂þAa
j , and its

nucleon matrix element is related to ΔG,

hPjKþjPijAþ¼0 ¼ 4SþΔG: ð14Þ
However, the other components ofKμ bear no simple relation
to ΔG, nor do they have a well-defined forward matrix
element [9]. Consider then the modified current that is
approximately conserved

J̃μ5 ≡ Jμ5 − nf
αs
4π

Kμ; ∂μJ̃
μ
5 ¼ 2i

X
f

mfψ̄fγ5ψf: ð15Þ

Notice that

hPjJ̃þ5 jPijAþ¼0 ¼ −2Sþ
�
ΔΣþ nf

αs
2π

ΔG
�
: ð16Þ

Since J̃μ5 is conserved, naively one expects that the linear
combination is scale independent

∂
∂ ln μ2

�
ΔΣðμ2Þ þ nf

αsðμ2Þ
2π

ΔGðμ2Þ
�

¼ 0: ð17Þ

However, the current conservation does not automatically
imply vanishing anomalous dimensions for the components
of J̃μ5.

1 As shown in [10], the nonrenormalizability of (17)
actually boils down to that of the operator αsFF̃ at zero
momentum transfer, which is believed to be true to all orders
due to its topological nature. See [11] for a recent application
of this property.
In what follows, we avoid dealing with the gauge variant

operator Kμ which has caused a lot of confusion in the
literature. To establish a connection between FF̃ andΔG in
this case, we use the equation of motion relations for F̃ðxÞ.
It can be derived similarly to Eq. (29) of [1], except that we
now have to keep the surface terms and use the Bianchi
identity DμF̃μν ¼ 0. The result is

F̃regðx;ΔÞ¼
−iΔμ

2xM2

Z
dz−

2π
eixP̄

þz−hP0jF̃μ
νð−z−=2ÞFνþðz−=2Þ−Fνþð−z=2ÞF̃μ

νðz=2ÞjPi

þ i
2xM2

Z
dz−

2π
eixP

þz−
Z

z−=2

−z−=2
dω−hP0jF̃μνð−z=2ÞgFþμðω−ÞFþνðz−=2Þ−Fþνð−z=2ÞFþμðω−ÞF̃μνðz=2ÞjPi;

ð19Þ

1Consider the integral

∂þ

Z
dx−d2x⊥J̃þ5 ¼ −

Z
dx−d2x⊥ð∂−J̃−5 − ∂⊥J̃⊥5 Þ: ð18Þ

The usual argument is that the right-hand side is the integral of a total derivative, and hence it vanishes. This means
R
d3xJ̃þ5 is a

conserved charge and cannot be renormalized. However, in the present case, J̃−5 contains K− which is not gauge invariant. In the light-
cone gauge, the matrix element of this operator has a singularity K− ∼ 1

n·∂ j ¼ 1
∂− j [9].
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where Wilson lines are understood. Note that only the regular part [i.e., excluding the delta function δðxÞ] can be
constrained in this method; see [1]. Since the first line is multiplied by Δ, to linear order in Δ one can take the forward limit
and use the general decomposition

Pþ
Z

dz−

2π
eixP

þz−hPjF̃μ
νð0ÞFνþðz−ÞjPi ¼ ixΔGðxÞSþpμ þ 2ixG3TðxÞPþS⊥μ − ixG4ðxÞM2Sþnμ; ð20Þ

where Pμ ¼ pμ þ M2

2
nμ, Sμ ¼ ðS · nÞpμ þ Sμ⊥ þ ðS · pÞnμ, and p · n ¼ 1. In the last term one can write −M2Sþ=Pþ ¼

2PþS− from P · S ¼ 0.ΔGðxÞ is the usual twist-two polarized gluon distribution R 1
0 dxΔGðxÞ ¼ ΔG.G3TðxÞ is the gluonic

analog of the gTðxÞ distribution function relevant to the transverse polarization. Its properties have been studied in [12–14].
G4ðxÞ is the twist-four counterpart of these distributions whose properties are virtually unknown.
Equations (19) and (20) clearly show in a gauge invariant manner that in the near-forward limit F̃ðxÞ and ΔGðxÞ are

directly related at the density level (in the longitudinally polarized case). It also shows that they differ by the twist-four,
three-gluon correlation function ∼F̃FF. A similar relation has been derived in [9] in the light-cone gauge. The present
derivation is manifestly gauge invariant and avoids the subtleties of the light-cone gauge such as the boundary condition at
infinity. Integrating over x, we get

Z
dxF̃regðxÞ ≈

2

M2
ðΔ · SÞΔGþ i

M2

Z
dx

Z
dz−

2π

eixP
þz−

x

Z z−
2

−z−
2

dω−hP0jF̃μν

�
−z−

2

�
gFþμðω−ÞFþν

�
z−

2

�
jPi; ð21Þ

where
R
dxΔGðxÞ ¼ 2

R
dxG3TðxÞ ¼ 2

R
dxG4ðxÞ ¼ 2ΔG from Lorentz invariance. To simplify the notation, let us define

Nðx1; x2Þ ¼ lim
Δ→0

1

Δ · S

Z
dz−

2π

dω−

2π
e

i
2
ðx1þx2ÞPþz−þiðx2−x1ÞPþω−hP0jF̃μνð−z=2ÞgFþμðω−ÞFþνðz−=2ÞjPi: ð22Þ

From PT symmetry, Nðx1; x2Þ ¼ Nðx2; x1Þ. Using this and equating (10) with (21) in the near-forward limit, we arrive at

ΔΣþ nfαs
2π

ΔG −
X
f

mf

M
Gfð0Þ −

nfαs
4π

C ¼ nfαs
2π

Z
dx1dx2P

Nðx1; x2Þ
x1ðx1 − x2Þ

¼ −
nfαs
4π

Z
dx1dx2

Nðx1; x2Þ
x1x2

: ð23Þ

In this formula [actually already in (22)], we have assumed
that C does not depend on the spin orientation �;⊥. If this
turns out not to be the case, the formula must be modified
accordingly. (As already mentioned, we suspect that C ¼ 0
anyway.)
Among the various terms in (23), the u, d-quark mass

contributions can be safely neglected because mu;d=M <
0.01 and Gu;d is naturally order unity. The impact of the s-
quark ms=M ∼ 0.1 might not be negligible, though. The
value of Gsð0Þ can be studied in lattice QCD for instance.
Equation (23) shows that the renormalization group (RG)-
invariant linear combination of the twist-two quantities ΔΣ
andΔG is directly related to the nonforward matrix element
of a twist-four, three-gluon correlator. According to the
previous discussion, the latter has to be scale invariant. To
our knowledge (23) has not been presented in this explicit
form in the literature, although Ref. [9] comes close.

III. ONE-LOOP CALCULATIONS

In this section, we compute F̃ðxÞ for quark and gluon
targets in perturbation theory to one-loop in dimensional
regularization in d ¼ 4 − 2ϵ dimensions. We shall only
focus on the divergent part to investigate the UV structure
of the distribution. Calculating the finite part should also be

possible, but this involves extra complications regarding
the definition of ϵμνρλ in d ≠ 4 dimensions.

A. Quark target

We work in the light-cone gauge n · A ¼ Aþ ¼ 0 to
eliminate the Wilson line. For an on-shell quark target
ðp� Δ=2Þ2 ¼ m2 with p · Δ ¼ 0, a straightforward cal-
culation gives, to linear order in Δ,

F̃ðxÞ ¼ i
4g2CFpþ

m2

Z
dk−dd−2k⊥

ð2πÞd
k · Δk · S − k2Δ · S

ðk2 þ iϵÞ2

×

�
1

ðp − kÞ2 −m2 þ iϵ
þ 1

ðpþ kÞ2 −m2 þ ϵ

�
;

ð24Þ

where CF ¼ N2
c−1
2Nc

and n · k ¼ x. The first and second terms
are nonzero for 1 > x > 0 and 0 > x > −1, respectively.
The dk−d2k⊥ integral cannot be done all at once. Different
components of k · Δk · S ¼ kμkνΔμSν have to be evaluated
separately. The most nontrivial integral is

I ¼
Z

dk−dd−2k⊥
ð2πÞd−1

ðk−Þ2
ðk2Þ2ððp − kÞ2 −m2Þ : ð25Þ
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To evaluate this we write ðk−Þ2 ¼ ðk2þk2⊥
2kþ Þ2 and cancel some

denominators. We then use the formula
Z

dk−

2π
ðkþk− −M2 þ iϵÞ−ϵ ¼ i

ð−1Þϵ
ϵ − 1

δðkþÞðM2Þ1−ϵ ð26Þ

to get

I ¼ i
ΓðϵÞ
4π

p−

4ðpþÞ2 ðδð1 − xÞ − 2xÞ: ð27Þ

The other integrals are straightforward to evaluate. The
result is, for 1 > x > 0,

F̃ðxÞ ¼ αsCFΓðϵÞ
2πm2

ðð2 − xÞΔ−Sþ þ ð2þ δð1 − xÞ

− 3xÞΔþS− − ð1þ xÞΔ⃗⊥ · S⃗⊥Þ: ð28Þ
Comparing this with (19) and (20), we obtain

ΔGðxÞ ¼ αsCFΓðϵÞ
2π

ð2 − xÞ;

G3TðxÞ ¼
αsCFΓðϵÞ

2π

1þ x
2

;

G4ðxÞ ¼
αsCFΓðϵÞ

2π

2þ δð1 − xÞ − 3x
2

: ð29Þ

This identification is possible because the twist-four cor-
relator hgF̃FFi is at least Oðα2sÞ for a quark target. One
immediately recognizes the polarized splitting function
ΔPgqðxÞ ¼ CFð2 − xÞ in the longitudinal sector. Note that
the delta function at x ¼ 0 is absent. Once integrated over x,
F̃ becomes proportional to Δ · S as it should

Z
1

−1
dxF̃ðxÞ ¼ 3αsCFΓðϵÞ

2πm2
Δ · S: ð30Þ

This leads to

ΔΣ −
m
M

GFð0Þ ¼ −6nfCF

�
αs
4π

�
2

ΓðϵÞ; ð31Þ

which reproduces the known anomalous dimension of the
axial current operator [15,16]

γ ¼ −6nfCF

�
αs
4π

�
2

: ð32Þ

B. Gluon target

For regularization purpose, we assume that the incoming
and outgoing gluons are slightly off-shell ðp − Δ=2Þ2 ¼
ðpþ Δ=2Þ2 < 0. The initial and final polarization vectors
εi=f satisfy εi · p ¼ εi · Δ=2 and εf · p ¼ −εf · Δ=2,
respectively, and the OðΔÞ terms must be kept. The
diagrams to be calculated are identical to those in the case
of the FF correlator [1], but the off-forward kinematics
brings in considerable complications. For simplicity, in the
following we assume Δþ ¼ 0. This approximation signifi-
cantly reduces the number of terms in intermediate calcu-
lations while keeping the most important term ∼Δ−Sþ
relevant to longitudinal polarization. After a very tedious
calculation, the sum of the connected diagrams (i.e.,
without the self-energy diagrams on external legs) is found
to be, for 1 > x > 0,

M2F̃ðxÞ ¼ δð1 − xÞiϵΔε�fεip þ g2Nc

2

�Z
dk−d2k⊥
ð2πÞ4

pþI1
xð1 − xÞðk2 þ iϵÞ2ðp − kþ iϵÞ2

þ δð1 − xÞ
Z

d4k
ð2πÞ4

ðpþÞ2I2
kþðpþ − kþÞðk2 þ iϵÞ2ðp − kþ iϵÞ2

�
ϵΔε

�
fεip; ð33Þ

where ϵABCD ≡ ϵμνρλAμBνCρDλ and

I1 ¼ 12xðx − 1Þk2⊥ − 6x2ð1 − xÞðk − pÞ2 þ 4x2ð3 − 2xÞk2 þ 4x2ð2x − 1Þðx − 1Þp2; ð34Þ

I2 ¼ 2xð1 − xÞðp − kÞ2 þ 2xðx − 1 − 2x2Þp2 þ 2xð2x − 1Þk2 þ 2ðx − 1Þk2⊥: ð35Þ

At this point we may set εi ¼ εf and drop the subscripts i=f. To arrive at the above result, we used the following relations
which hold only when Δþ ¼ 0

ϵΔε
�εn ¼ 0; ϵΔε

�εk ¼ xϵΔε
�εp; ϵε

�εknΔ · k ¼ −x2ϵΔε�εp; Δ · kϵε
�εkp ¼ −

1

2
ðx2p2 − k2 − k2⊥ÞϵΔε

�εp: ð36Þ

To proceed, following [1], we employ the Mandelstam-Leibbrandt (ML) prescription for the spurious poles in the light-cone
gauge

1

½kþ�ML
¼ 1

kþ þ iϵk−
;

1

½pþ − kþ�ML
¼ 1

pþ − kþ þ iϵðp− − k−Þ : ð37Þ
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The remaining integrals can be done using the formulas collected in an appendix of [1] and other formulas such as

Z
d4k
ð2πÞ4

p2

½pþ − kþ�MLðk2Þ2ðp − kÞ2 ¼
iΓðϵÞ

16π2pþ ;
Z

d4k
ð2πÞ4

k2⊥
½kþ�MLðk2Þ2ðp − kÞ2 ¼

4iΓðϵÞ
16π2pþ : ð38Þ

Including also the self-energy diagrams, our final result is, for 1 > x > 0,

M2F̃ðxÞ ¼ Δ · S
�
δð1 − xÞ þ ΓðϵÞ αs

2π

�
ΔPggðxÞ þ 2Nc

�
1þ x −

3

2
δð1 − xÞ

���
; ð39Þ

where

Sμ ¼ iϵμε
�εp ð40Þ

is the spin four-vector for a spin-1 particle. In the OðαsÞ
terms, we have separated out the polarized splitting
function

ΔPggðxÞ ¼ 2Nc

�
1 − 2xþ 1

½1 − x�þ

�
þ β0

2
δð1 − xÞ; ð41Þ

where β0 ¼ 11Nc
3

− 2nf
3
. The remainder terms,

ΔP̃ðxÞ ¼ 2Nc

�
1þ x −

3

2
δð1 − xÞ

�
; ð42Þ

come from the twist-four operator gF̃FF which has the
nonvanishing gluon matrix element to OðαsÞ. A useful
consistency check is that the integral has to vanishR
1
0 dxΔP̃ðxÞ ¼ 0. This guarantees that the renormalization
of the local operator FF̃ is entirely due to the charge
renormalization. In other words, αsFF̃ is renormalization-
group invariant. Note that again there is no delta function
δðxÞ. Interestingly, the second term of I1 potentially gives
rise to a delta function from the integral

Z
dk−d2k⊥

1

ðk2 þ iϵÞ2 ∝ δðxÞ: ð43Þ

However, there remains one factor of x in the numerator
that kills this delta function xδðxÞ ¼ 0; see a similar
example in [17]. This is consistent with our previous claim
that C might actually be zero.

IV. THIRD MOMENT

This section is to a large extent inspired by the work of
Seng [7], which tried to establish a link between higher-
twist parton distributions and the so-called quark chromo-
magnetic dipole moment operator

hPjψ̄gFμνσμνψ jPi: ð44Þ

This matrix element is important in the context of CP
violation in low energy hadron physics, in particular, the
EDM of the nucleons. While the operator (44) itself does
not violate CP, via chiral symmetry its matrix element is
proportional to CP-violating effective low energy inter-
actions (see, e.g., [18]). The idea of [7] is that one can get
information about this matrix element from the chiral-odd
twist-three distribution

eðxÞ ¼ Pþ

2M

Z
dz−

2π
eixP

þz−hPjψ̄ð0ÞWψðz−ÞjPi; ð45Þ

accessible in high energy reactions such as semi-inclusive
DIS (SIDIS) [19–21].
Specifically, the third moment of eðxÞ reads

Z
dxx2eðxÞ ¼ 1

4MðPþÞ2 hPjψ̄gF
þμσþμ ψ jPi þ � � � ; ð46Þ

where the neglected terms are relatively better under
control. The operators in (44) and (46) indeed look similar,
but they are crucially different in the way Lorentz indices
are treated. In other words, they have different twists, and
the matrix elements of operators with different twists are in
general unrelated, unless one makes extra assumptions as
was done in [7]. While the validity of such assumptions
must be carefully scrutinized, that is not the purpose of this
paper. Here instead, we point out an analogous, tantalizing
connection between the third moment of F̃ðxÞ and the
matrix element of the so-called Weinberg operator [8]

OW ¼ gfabcF̃a
μνF

μα
b Fν

cα: ð47Þ

This operator violates CP and can be induced in the QCD
Lagrangian by physics beyond the Standard Model. It is
considered as one of the candidate operators to generate a
large EDM of the nucleons and nuclei.
At a superficial level, the connection can readily be seen

by computing the third moment
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I3 ≡
Z

dxx2F̃ðxÞ

¼ i
2M2ðP̄þÞ2 hP

0jF̃μνðD
↔þÞ2Fμνð0ÞjPi

¼ 1

M2ðP̄þÞ2Δ
μhP0jF̃μνDþ

↔
Fνþð0ÞjPi

−
1

ðP̄þÞ2M2
hP0jF̃μνð0ÞgFþμð0ÞFþνð0ÞjPi; ð48Þ

where D
↔þ ≡ Dþ−D⃖þ

2
. The three-gluon operator on the

second line is similar to the Weinberg operator, but it
has open Lorentz indices þþ as a remnant of the under-
lying light-cone distribution. This is entirely analogous to
the difference between (44) and (46). To better appreciate
this difference, let us consider the various matrix elements

in (48) in more detail. In fact, Eq. (48) is a special case of
the following more general operator identity2:

fabcF̃a
μνgF

αμ
b Fβν

c ¼−∂μðF̃μνD
↔ðβ

FναÞÞ−1

2
F̃μνD

↔ðβ
D
↔αÞ

Fμν

¼−∂μðF̃μνDðβFναÞÞ−1

2
F̃μνDðβDαÞFμν

¼−∂μðF̃μνDβFναÞ−1

2
F̃μνDβDαFμν; ð50Þ

where ðαβÞ denotes symmetrization of indices, e.g.,
AðαBβÞ ¼ AαBβþAβBα

2
. The matrix element of the total deriva-

tive operator on the right-hand side of (50) can be
essentially determined by observables in QCD spin phys-
ics. Since this is multiplied by ∂μ ∼ Δμ, it is enough to
consider the forward matrix element

hPSjF̃μ
νDðαFνβÞjPSi ¼ 2a2

3

�
SμPαPβ þ ðSαPβ þ SβPαÞPμ −

M2

6
ðgαβSμ þ gαμSβ þ gβμSαÞ

�

þ 2d2
3

�
2SμPαPβ − ðSαPβ þ SβPαÞPμ þM2

3
ð−2gαβSμ þ gαμSβ þ gβμSαÞ

�

þ f0M2

18
ð5gαβSμ − gαμSβ − gβμSαÞ; ð51Þ

where the first, second, and third lines correspond to twist-2,3,4 parts of the operator, respectively. To get this structure note
that S · P ¼ 0 and require that the tensor vanishes after summing over μ and α (or μ and β) because F̃μνðDμFνβ þDβFνμÞ ¼
∂μðF̃μνFνβÞ þ 1

2
∂βðF̃μνFνμÞ is a total derivative operator. In particular, the trace part reads

hPSjF̃μ
νDαFναjPSi ¼ −hPjψ̄gF̃μνγνψ jPi ¼ f0M2Sμ; ð52Þ

where we used the equation of motion. The parameter f0 shows up as part of the twist-four corrections to the first moment of
the g1 structure function in polarized DIS [22–25]. On the other hand, a2 and d2 are related to the third moment of ΔGðxÞ
and G3TðxÞ as [13]

1

2

Z
dxx2ΔGðxÞ ¼ a2;

Z
dxx2G3TðxÞ ¼

a2 þ 2d2
3

: ð53Þ

Thus, at least in principle, these parameters can be constrained by high energy polarized hadron collision experiments.
Next consider the matrix element of the three-gluon operator on the left-hand side of (50). Its general parametrization is

1

M2
hP0jgfabcF̃a

μνF
αμ
b Fβν

c jPi

¼ ūðP0Þ
�
A

�
ΔðαγβÞ −

=Δgαβ

4

�
iγ5 þ

B
M

�
PαPβ −

gαβM2

4

�
iγ5 þ

C
M

�
ΔαΔβ −

Δ2gαβ

4

�
iγ5 þ gαβiγ5EM

�
uðPÞ

≈ −2iAð0Þ
�
ΔðαSβÞ −

Δ · Sgαβ

4

�
− i

Bð0Þ
M2

�
PαPβ −

gαβM2

4

�
Δ · S − igαβEð0ÞΔ · S; ð54Þ

2To prove (50), the following identity is useful:

½Dβ; ½Dν; Fαμ��a − ½Dν; ½Dβ; Fαμ��a ¼ gfabcFb
αμFc

βν: ð49Þ
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where A, B, C, E are dimensionless form factors (all functions of Δ2). In the last line of (54) we took the limit Δ → 0 and
kept only the terms linear in Δ. The Weinberg operator is related to the E form factor

1

M2
hP0jgfabcF̃a

μνF
μσ
b Fν

cσjPi ¼ 4EðΔ2ÞMūðP0Þiγ5uðPÞ: ð55Þ

Plugging the αβ ¼ þþ component of (51) and (54) into (48), we find

I3 ¼
Δ · S
M2

�
2

Z
dxx2G3TðxÞ − Bð0Þ

�
þ ΔþS−

M2

�
4Að0Þ þ 2

9
ð2a2 − 4d2 þ f0Þ

�
: ð56Þ

Note that the second term is absent if one considers
transverse polarization Sμ ¼ δμi S

i⊥.
Equation (56) is as far as one can get based only on

general principles such as symmetries and the equation of
motion. It confirms our previous expectation that there is in
general no relation between the third moment I3 and the
matrix element of the Weinberg operator Eð0Þ. However,
there may be hidden relations among different form factors
which follow from the dynamics of the theory. For
example, if one naively (perhaps unjustifiably) applies
the argument of [7] to the present problem, one finds
Eð0Þ ∼ − 3B

4
and I3 becomes sensitive to Eð0Þ.

V. CONNECTION BETWEEN THE WEINBERG
OPERATOR AND POLARIZED DIS

Quite independently of “hidden relations” just men-
tioned, our analysis in the previous section has revealed an
important, model-independent feature of the Weinberg
operator. Taking the matrix element of the trace of (50)

OW ¼ −∂μðF̃μνD
↔

αFναÞ − 1

2
F̃μνD

↔2
Fμν ≡O4 þOD; ð57Þ

we find

Eð0Þ ¼ f0
4
þ 1

8iM2
lim
Δ→0

1

Δ · S
hP0jF̃μνðD

↔Þ2FμνjPi: ð58Þ

This shows that Eð0Þ is related to the parameter f0 that
enters the twist-four corrections to the g1 structure
function, unless f0 is completely canceled by the unknown
matrix element ∼hF̃D2Fi. We can actually exclude the
latter possibility using the following RG argument.
Equation (57) shows that one can choose OW and O4 as
the independent basis of operators and study their mixing.3

To linear order in ∂ ∼ Δ, this is equivalent to considering
the operator

O4 ≈ ∂μðψ̄gF̃μνγ
νψÞ; ð59Þ

due to the equation of motion. Such mixing is usually
neglected in the literature because O4 is a total derivative
and hence does not contribute to the CP-violating effective
action

R
d4xO4 ¼ 0. However, when it comes to hadronic

matrix elements, mixing becomes crucial because only the
nonforward matrix element is nonvanishing.4 Specifically,
their RG equation takes the form

d
d ln μ2

�
OW

O4

�
¼ −

αs
4π

�
γW γ12

0 γ4

��
OW

O4

�
; ð60Þ

where [26–28]

γW ¼ Nc

2
þ nf þ

β0
2
¼ 7

3
Nc þ

2

3
nf: ð61Þ

(The factor β0=2 comes from the explicit QCD coupling g
multiplying the operator in our convention.) The anoma-
lous dimension of O4 is the same as that of the undiffer-
entiated, twist-four operator ψ̄gF̃μνγνψ and is known to be
[27,31]

γ4 ¼
8

3
CF þ 2

3
nf: ð62Þ

To determine the off-diagonal component γ12, we evalu-
ate the following three-point Green’s function:

h0jTfψð−kÞAρ
aðqÞψ̄ðpÞOWgj0i ð63Þ

with off-shell momenta and nonzero momentum transfer
Δ ¼ k − p − q ≠ 0. There are three diagrams as shown in
Fig. 1. It is convenient to use the compact Feynman rules
suggested in [28].5 The first diagram gives

3Using the identities DμF̃μν ¼ 0 and DμFαβ þDαFβμþ
DβFμα ¼ 0, one sees that there are no other independent,
pseudoscalar, dimension-six gluonic operators up to one total
derivative. We also neglect the mixing with the quark chromo-
electric dipole moment operator mψ̄gFμνσ

μνγ5ψ [26–28] assum-
ing massless quarks.

4For general discussions of mixing with total derivative
operators, see [29,30].

5The normalization of OW in [28] differs from ours by a factor
−3g. Also, the sign convention of γ5 is opposite to ours (but
ϵ0123 ¼ þ1 is the same).

YOSHITAKA HATTA PHYS. REV. D 102, 094004 (2020)

094004-8



ig2fabctctb
Z

ddl
ð2πÞd

γν=lγμ

ðp − lÞ2l2ðl − kÞ2
−3g
16

× Tr½½=q; γρ�½=p − =l; γμ�½=l − =k; γν�γ5�: ð64Þ

Since the gamma matrix trace provides the necessary
antisymmetric tensor, we may replace6

γν=lγμ → lνγμ þ lμγν − gμν=l ð65Þ
and find

diagram ðaÞ ¼ −
3Ncg3

16π2
ΓðϵÞgtaγμð−ϵμρkq þ ϵμρpqÞ

¼ 3Ncαs
4π

ΓðϵÞgtaγμϵμρΔq: ð66Þ

The second diagram is “one-particle reducible” (1PR) [32]
and contains the propagator pole 1=ðp − kÞ2. After the loop
integral, the numerator becomes proportional to ðp − kÞ2 as
well as to Δ, so the pole disappears. The result is

diagram ðbÞ ¼ −
3Ncαs
4π

ΓðϵÞgtaγμϵμρΔq; ð67Þ

which cancels the first diagram. The third diagram also
contains 1=ðp − kÞ2 ¼ 1=ðqþ ΔÞ2, while the numerator is
proportional to q2 (as well as Δ). To linear order in Δ, one
can approximate q2=ðqþ ΔÞ2 ≈ 1 and find the same result
(67). Finally, the tree-level matrix element of O4 is

hTfψð−kÞAρ
aðqÞψ̄ðpÞO4gi ¼ −gtaγμϵμρΔq: ð68Þ

From these results, we deduce that

γ12 ¼ −3Nc: ð69Þ

It immediately follows that the following linear combi-
nation is the eigenstate of the RG evolution:

OW þ γ12
γW − γ4

O4 ¼ OW −
9N2

c

3N2
c þ 4

O4: ð70Þ

Since this operator has a rather large anomalous dimension
γW ∼ 10, in particular larger than γ4 by a factor of about 2,
at high enough renormalization scales μ2 one has

hOWi ≈
9N2

c

3N2
c þ 4

hO4i ≈ 1.31hO4i; ð71Þ

or equivalently,

E ≈
9N2

c

4ð3N2
c þ 4Þ f0 ≈ 0.33f0: ð72Þ

Comparing with (58), we see that the operator F̃D2F also
contributes to the trace part.
We have thus argued that the matrix element of the

Weinberg operator is dominated by its mixing with the total
derivative operator O4 which is further related to the twist-
four operator relevant to polarized DIS. Our result urges
one to revisit previous estimates of hOWi. For instance,
Ref. [33] suggested the following ansatz:

hNj g3

16π2
fabcFa

μνF
μα
b Fν

cαjNi ¼ Λ2
QCDhNj αs

4π
Fa
μνF

μν
a jNi:

ð73Þ
While such a relation may give a reasonable order-of-
magnitude estimate, it has to be interpreted with great care.
Both sides vanish in the forward limit, and in the off-
forward case the matrix elements are sensitive to the spin
polarization. If one tries to relate the coefficients of Δ · S in
the near-forward limit, the right-hand side essentially gives
ΔΣ, the quark helicity contribution to the nucleon spin,
while the left-hand side is related to the parameter f0 which
enters the twist-four corrections in polarized DIS as we
have shown. There is no known relation between the two
quantities.

VI. CONCLUSIONS

In this paper we have studied the roles of CP-odd
gluonic operators F̃μνFμν and F̃μνFμαFν

α in QCD spin
physics. These high-dimension, high-twist operators usu-
ally do not appear in the standard description of spin-
dependent phenomena in terms of twist-two (and

FIG. 1. Diagrams that contribute to the mixing between OW and O4. The black dot denotes the insertion of OW .

6One can check that the neglected term ∼ϵμνρλγργ5lλ in (65)
vanishes after the l integral.
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sometimes twist-three) distributions. However, with the
future Electron-Ion Collider poised to reveal the gluonic
contributions to the nucleon spin and various polarization
observables, it is worthwhile and maybe necessary to
expand our scope to the twist-four sector. Indeed, we have
shown in (23) that the twist-two observables ΔΣ and ΔG
are related to a certain twist-four correlator. Moreover, F̃ðxÞ
directly shows up in a recent calculation of the g1ðxÞ
structure function [6]. As we have seen, F̃ðxÞ contains
ΔGðxÞ, and this should be taken into account when fully
extracting the implications of the result in [6]. Concerning
the dimension-six, Weinberg operator F̃μνFμαFν

α, hopefully
our result better motivates a precise determination of the
parameter f0 through the measurement of the g1ðxÞ

structure function. This could be a useful input to the
studies of the nucleon electric dipole moment.
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