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We analyze the electromagnetic current correlator at an arbitrary photon invariantmass q2 by exploiting its
associated dispersion relation. The dispersion relation is turned into an inverse problem, by which the
involved vacuum polarization functionΠðq2Þ at low q2 is solvedwith the perturbative input ofΠðq2Þ at large
q2. It is found that the result forΠðq2Þ, including its first derivativeΠ0ðq2 ¼ 0Þ, agrees with those from lattice
QCD, and its imaginary part accommodates the eþe−-annihilation data. The corresponding hadronic vacuum
polarization (HVP) contribution aHVPμ ¼ ð641þ65

−63 Þ × 10−10 to the muon anomalous magnetic moment g − 2,
where the uncertainty arises from the variation of the perturbative input, also agrees with those obtained in
other phenomenological and theoretical approaches. We point out that our formalism is equivalent to
imposing the analyticity constraint to the phenomenological approach solely relying on experimental data
and can improve the precision of the aHVPμ determination in the Standard Model.

DOI: 10.1103/PhysRevD.102.094003

I. INTRODUCTION

How to resolve the discrepancy between the theoretical
prediction for the muon anomalous magnetic moment aμ ¼
ðgμ − 2Þ=2 in the Standard Model and its experimental data
has been a long standing mission. The major uncertainty in
the former arises from the vacuum polarization function
Πðq2Þ defined by an electromagnetic current correlator at a
photon invariant mass q2, to which various phenomeno-
logical and theoretical approaches have been attempted. For
instance, the measured cross section for eþe− annihilation
into hadrons has been employed to determine the hadronic
vacuum polarization (HVP) contribution in a dispersive
approach, giving aHVPμ ¼ð693.9�4.0Þ×10−10 [1] [see also
aHVPμ ¼ ð692.78� 2.42Þ × 10−10 in [2] ]. This value, con-
sistent with earlier similar observations [2–5], corresponds
to a 3.3σ deviation between the Standard Model prediction
for aμ and the data [6], a

exp
μ − aSMμ ¼ ð26.1� 7.9Þ × 10−10.

The above phenomenological determinations of aHVPμ ,
solely relying on experimental data, suffer a difficulty:
the discrepancy among individual datasets, in particular
between the BABAR and KLOE data in the dominant πþπ−
channel, leads to additional systematic uncertainty [1].
Therefore, theoretical estimates of the HVP contribution to
the muon g − 2 are indispensable and have been performed
mainly in lattice QCD (LQCD) (see [7] for a recent review

and [8] for a recent progress). Results, such as aHVPμ ¼
ð654� 32þ21

−23Þ × 10−10 in [9], are comparable to those from
the phenomenological approach. It has been known that the
finite volume in LQCD makes it unlikely to compute the
vacuum polarization at low momenta with high statistics,
for which a parametrization is always required to extrapo-
late lattice data.
In this paper we will calculate the vacuum polarization

function in a novel method proposed recently [10], where a
nonperturbative observable is extracted from its associated
dispersion relation. Taking theDmeson mixing parameters
as an example [10], we separated their dispersion relation
for D mesons of an arbitrary mass into a low mass piece
and a high mass piece, with the former being regarded as an
unknown, and the latter being input from reliable perturba-
tion theory. The evaluation of the nonperturbative observ-
able is then turned into an inverse problem: the observable
at low mass is solved as a “source distribution,” which
produces the “potential” at high mass. The resultant
Fredholm integral equation allows the existence of multiple
solutions as a generic feature. However, it has been dem-
onstrated that nontrivial solutions for the D meson mixing
parameters can be identified by specifying the physical
charm quark mass, which match the data well. This work
implies that nonperturbative properties can be extracted
from asymptotic QCD by solving an inverse problem.
Here we will solve for the vacuum polarization function

Πðq2Þ via an inverse problem, and derive the HVP
contribution aHVPμ to the muon g − 2. The electromagnetic
current correlator is decomposed into three pieces accord-
ing to the quark composition of the ρ, ω, and ϕ mesons.
A dispersion relation is considered for each resonance,
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and converted into a Fredholm integral equation, which
involves the unknown constant Πðq2 ¼ 0Þ and the
imaginary part ImΠðq2Þ corresponding to the eþe− →
ðρ;ω;ϕÞ → hadron spectra of nonperturbative origin. We
solve the Fredholm equation with the perturbative input of
the leading order correlator at large q2, and select the
solution which best fits the eþe−-annihilation data for the
resonance spectra. The determined Πð0Þ, together with
the resonance spectra at low q2 and the perturbative input at
high q2, then yields Πðq2Þ from the dispersion relation.
It will be shown that our predictions forΠðq2Þ, including its
first derivative Π0ðq2 ¼ 0Þ, and for aHVPμ from the above
three resonances agree with those obtained in the literature.
We point out that simply inputting data into a dispersive

approach does not automatically guarantee exact realization
of the analyticity. When fitting the data, we search for the
parameters involved in ImΠðq2Þ that satisfy the Fredholm
equation, i.e., the analyticity constraint, instead of tuning
them arbitrarily. An intermediate impact of our formalism on
other approaches is that one can impose the analyticity
constraint to the conventional data-driven method. That is,
one may, for instance, check whether the dispersive integral
of a dataset reproduces the perturbativeΠðq2Þ at largeq2. It is
then possible to discriminate the inconsistent datasets, such
as the BABAR and KLOE data mentioned above, so that the
precision in the individual datasets can be fully exploited.We
will assess that such discrimination is achievable, in princi-
ple, although the required precision for the perturbative input
of Πðq2Þ goes beyond the scope of the present work.
The rest of the paper is organized as follows. In Sec. II

we present our formalism for extracting the nonperturbative
vacuum polarization function Πðq2Þ at low q2, and solve
the corresponding Fredholm equation. The similar pro-
cedure is extended to compute the slopeΠ0ð0Þ that gives the
leading contribution in the representation of Πðq2Þ − Πð0Þ
in terms of Padé approximations [11–13], and serves as a
key ingredient in the “hybrid” approach proposed in [14].
We evaluate the HVP contribution to the muon anomalous
magnetic moment numerically in Sec. III, and compare our
prediction aHVPμ ¼ ð641þ65

−63Þ × 10−10 from the ρ, ω, and ϕ
resonances, where the uncertainty comes from the variation
of the perturbative input, with those from other phenom-
enological and LQCD approaches. Besides, we briefly
demonstrate how to discriminate inconsistent datasets by
imposing the analyticity constraint in light of attainable
precise inputs in the future. Section IV is the conclusion.

II. THE FORMALISM

Start with the correlator

Πμν
EMðqÞ ¼ i

Z
d4xeiq·xh0jT½JμðxÞJνð0Þ�j0i

¼ ðqμqν − q2gμνÞΠEMðq2Þ; ð1Þ

with the electromagnetic current JμðxÞ ¼ P
f Qfq̄fðxÞ×

γμqfðxÞ, with Qf being the charge of the quark qf with
f ¼ u, d, s. The leading order expression for the HVP
contribution to the muon anomalous magnetic moment is
written, in terms of the vacuum polarization function
ΠEMðq2Þ, as [15,16]

aHVPμ ¼ 4α2EM

Z
1

0

dxð1 − xÞ
�
ΠEMð0Þ − ΠEM

�
−
x2m2

μ

1 − x

��
;

ð2Þ
with the electromagnetic fine structure constant αEM and
the muon massmμ. The first term can be set to ΠEMð0Þ ¼ 0

[17] in the on-shell scheme for the QED renormalization,
but is kept for generality, because it also receives the
nonperturbative QCD contribution. The behavior of
ΠEMð−sÞ in the region with a large invariant mass squared
s has been known in perturbation theory. We will derive
ΠEMð−sÞ in the low s region, where the nonperturbative
contributions from the ρ, ω, and ϕ resonances dominate.
The vacuum polarization function obeys the dispersion

relation

−
ΠEMð−sÞ

s
þ ΠEMð0Þ

s
¼ 1

π

Z
∞

λ
ds0

ImΠEMðs0Þ
s0ðs0 þ sÞ ; ð3Þ

with λ being a threshold. The function ΠEMðsÞ for large s
can be expressed as

ΠEMðsÞ ¼
X

f¼u;d;s

Q2
fΠðs;mfÞ; ð4Þ

with mf being a light-quark mass. The real parts of the
functions Πðs;mfÞ at leading order are read off [18] up to
an overall normalization,

ΠOSð−s;mfÞ¼
5

12π2
−

1

π2
m2

f

s
−

1

2π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4m2

f

s

s �
1−

2m2
f

s

�

×tanh−1
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ4m2
f=s

q ;

ΠMSð−s;mfÞ¼ΠOSð−sÞ−
1

4π2
ln
μ2

m2
f

;

ΠMSð−s;mfÞ¼ΠOSð−sÞ−
1

4π2

�
ln
μ2

m2
f

þ lnð4πÞ−γE

�
; ð5Þ

with s > 0 in the on-shell, MS, and MS schemes for the
QED renormalization, respectively. The imaginary part is
given by [18]

ImΠðs;mfÞ ¼
(
0; s < 4m2

f

1
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

f=s
q

ð1þ 2m2
f=sÞ; s ≥ 4m2

f:

ð6Þ
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It is seen that the real parts ΠEMð−sÞ in the above schemes
differ by the s-independent terms, which can be always
absorbed into the redefinition of the unknown constant
ΠEMð0Þ in Eq. (3). It is also clear that our result for aHVPμ will
not depend on the choice of a specific renormalization
scheme, because the scheme dependence cancels between
the two terms in Eq. (2). Hence, we will stick to the on-shell
scheme, and omit the subscript OS in the formulation below.
We decompose Eq. (3) into three separate dispersion

relations labeled by r ¼ ρ, ω, ϕ, and rewrite them as

Z
Λr

λr

ds0
ImΠrðs0Þ
s0ðs0 þ sÞ − π

Πrð0Þ
s

¼ ΩrðsÞ; ð7Þ

ΩrðsÞ≡ −π
Πrð−sÞ

s
−
Z

∞

Λr

ds0
ImΠrðs0Þ
s0ðs0 þ sÞ ; ð8Þ

where the thresholds are set to λρ ¼ 4m2
πþ , λω ¼

ð2mπþ þmπ0Þ2, and λϕ ¼ 4m2
Kþ , with the pion (kaon) mass

mπ (mK). The separation scale Λr will be determined later,
which is expected to be large enough to justify the perturba-
tive calculation of the imaginary part ImΠrðsÞ in Eq. (8).
Equation (7) is then treated as an inverse problem, i.e., a
Fredholm integral equation, where ΩrðsÞ defined by Eq. (8)
for s > Λr is an input, and ImΠrðsÞ in the range s < Λr is
solved with the continuity of ImΠrðsÞ at s ¼ Λr. That is, the
“source distribution” ImΠrðsÞ will be inferred from the
“potential” ΩrðsÞ observed outside the distribution.
Equation (7) can be regarded as a realization of the global
quark-hadron duality postulated in QCD sum rules [19].
Both the real and imaginary parts of the input functions

ΠrðsÞ in ΩrðsÞ are related to Πðs;mfÞ via
ΠρðsÞ ¼ CρΠðs; ðmu þmdÞ=2Þ;
ΠωðsÞ ¼ CωΠðs; ðmu þmdÞ=2Þ;
ΠϕðsÞ ¼ CϕΠðs;msÞ; ð9Þ

with the charge factors Cρ ¼ ½ðQu −QdÞ=
ffiffiffi
2

p �2 ¼ 1=2,
Cω¼½ðQuþQdÞ=

ffiffiffi
2

p �2¼1=18, and Cϕ ¼ Q2
s ¼ 1=9. The

behaviors of −πΠρð−sÞ=s, −
R
ds0ImΠρðs0Þ=½s0ðs0 þ sÞ�,

and ΩρðsÞ in Eq. (8) for the running masses mu ¼
2.16 MeV and md ¼ 4.67 MeV at the scale 2 GeV, and

the separation scale Λρ ¼ 11.6 GeV2, are displayed in
Fig. 1. The behaviors of the quantities for the ω and ϕ
resonances, obtained with the replacements of the quark
masses (ms ¼ 93 MeV), are similar. Note that an inverse
problem is usually ill-posed, and the ordinary discretization
method to solve a Fredholm integral equation does not
work. The discretized version of Eq. (7) is in the formP

i AijImΠj − πΠrð0Þ=si ¼ Ωi with Aij ∝ 1=½jðiþ jÞ�. It
is easy to find that any two adjacent rows of the matrix A
approach to each other as the grid becomes infinitely fine.
Namely, A tends to be singular, and has no inverse. We
stress that this singularity, implying no unique solution,
should be appreciated actually. If A is not singular, the
solution to Eq. (7) will be unique, which must be the
perturbative results in Eqs. (5) and (6). It is the existence of
multiple solutions that allows us to possibly account for the
nonperturbative ImΠrðsÞ in the resonance region. After
solving for Πrð0Þ together with ImΠrðsÞ in the whole range
of s, we derive Πrð−sÞ from the three dispersion relations,
and ΠEMð−sÞ from their sum to be inserted into Eq. (2).
Knowing the difficulty to solve an inverse problem

and the qualitative behavior of a resonance spectrum, we
propose the parametrizations

ImΠρðsÞ ¼
��

1 −
λρ
s

�
bρ0j1þ κs=ðm2

ω − s − idωÞj2
ðs −m2

ρÞ2½1þ z2ðs −m2
ρÞ2� þ d2ρ½1þ z1ðs −m2

ρÞ�
þ cρ0ðs − λρÞ

�
θð1 − λρ=sÞ;

ImΠωðsÞ ¼
��

1 −
λω
s

�
bω0

ðs −m2
ωÞ2 þ d2ω

þ cω0 ðs − λωÞ
�
θð1 − λω=sÞ;

ImΠϕðsÞ ¼
��

1 −
λϕ
s

�
bϕ0

ðs −m2
ϕÞ2 þ d2ϕ

þ cϕ0 ðs − λϕÞ
�
θð1 − λϕ=sÞ; ð10Þ

FIG. 1. s dependence of ΩρðsÞ with the input parameters
Λρ ¼ 11.6 GeV2, mu ¼ 2.16 MeV, and md ¼ 4.67 MeV in
the on-shell scheme.
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according to [20,21], where dr ¼ mrΓr is the product of the
meson mass mr and the width Γr. The parameter br0 (cr0)
describes the strength of the resonant (nonresonant) con-
tribution, and κ characterizes the ρ − ω mixing effect. We
have adopted the same threshold for the KþK−, KSKL, and
πþπ−π0 final states of ϕ decays for simplicity. For the
denominator of the ρ resonance in Eq. (10), we introduce
the linear and quartic terms in s −m2

ρ, which are motivated
by the Gounaris-Sakurai model [22]. We have verified that
the gross shape of the Gounaris-Sakurai model for the
resonance is reproduced with this simpler parametrization
in order to facilitate the numerical analysis below. The
parameters z1 and z2 lead to the effective width and mass
of a ρ meson. This can be understood by completing the
square of the denominator of the resonance term, with the
quartic term being left aside first. The z1 term then shifts
the ρ meson mass and width into m02

ρ ¼ m2
ρ − z1d2ρ=2 and

d02ρ ¼ d2ρð1 − z21d
2
ρ=4Þ. The approximation z2ðs −m2

ρÞ4 ≈
z2ðs −m02

ρ Þ4 valid for jsj ≫ m2
ρ will be assumed. We have

confirmed that the quartic term is much less important than
the quadratic term in the denominator even for s ∼m2

ρ and
z1 and z2 determined later, so the approximation indeed
holds well.
We have examined that the variations of the meson

masses mr and widths Γr and the ρ-ω mixing parameter κ
change our results at 0.1% level, so mr and Γr are set to
their values in [6], and the mixing parameter is set to
κ ¼ 2.16 × 10−3 [1]. The free parameters z1, z2, br0, c

r
0, Λr,

and ImΠrð0Þ are then tuned to best fit the input ΩrðsÞ
under the continuity requirement from ImΠrðs ¼ ΛrÞ.
The separation scale Λr introduces an end-point
singularity into ΩrðsÞ in Eq. (8) as s0 → Λr. To reduce
the effect caused by this artificial singularity, we consider
ΩrðsÞ from the range 15 GeV2 < s < 250 GeV2, in which
200 points si are selected. We then search for the
set of parameters that minimizes the residual sum of
square (RSS)

X200
i¼1

				
Z

Λr

λr

ds0
ImΠrðs0Þ
s0ðs0 þ siÞ

−
πΠrð0Þ

si
−ΩrðsiÞ

				
2

: ð11Þ

Such a set of parameters corresponds to a solution of the
Fredholm equation in Eq. (7) in terms of the parametriza-
tions in Eq. (10), namely, respects the analyticity con-
straint most.

III. NUMERICAL ANALYSIS

A. HVP contribution

The scanning over all the free parameters reveals the
minimum distributions of the RSS defined in Eq. (11), and
typical distributions on the Λr − Πrð0Þ plane are displayed
in Fig. 2. The minima along the curve, having RSS about
10−12 − 10−13 relative to 10−8 from outside the curve,
hint at the existence of multiple solutions. A value of Λr
represents the scale at which the nonperturbative resonance
solution starts to deviate from the perturbative input. This
explains the dependence on Λr of a solution. It is observed
that the solutions for Πrð0Þ, including the sign and magni-
tude, fall in the same ballpark as LQCD results [9]. We then
search for a solution along the RSS minimum distribution,
which best accommodates the eþe−-annihilation data. For
the ρ resonance spectrum, we consider the SND data for the
process eþe− → πþπ− from the VEPP-2M collider in [23],
which are consistent with those from all other collaborations
as indicated by Fig. 5 in [1]. It means that we are making a
conservative prediction for the HVP contribution to the
muon anomalous magnetic moment. We are guided by the
data for the process eþe− → πþπ−π0 through the ω reso-
nance in [24]. For the ϕ resonance, the SND data [25] are
also adopted, which include the eþe− → KþK−, KSKL, and
πþπ−π0 channels. We explain the fitting procedure for the ρ
resonance spectrum in more detail: because of the additional
parameters z1 and z2 involved in this case, we first select a
set of z1 and z2 values, perform the above fitting procedure to
find the best fit to the data, and then vary z1 and z2 to further
improve the best fit. The parameters z1 ¼ 2.7 GeV−2 and
z2 ¼ 0.532 GeV−4 are obtained in this way, based on which
Fig. 2(a) is generated.
Searching for the parameters along the RSS minimum

distributions in Fig. 2, we find that the parameters

ρ∶ Λρ ¼ 11.6 GeV2; bρ0 ¼ 2.97 × 10−3 GeV4; cρ0 ¼ 3.45 × 10−3 GeV−2; Πρð0Þ ¼ −0.0954;

ω∶ Λω ¼ 2.8 GeV2; bω0 ¼ 1.72 × 10−5 GeV4; cω0 ¼ 1.51 × 10−3 GeV−2; Πωð0Þ ¼ −0.00953;

ϕ∶ Λϕ ¼ 3.2 GeV2; bϕ0 ¼ 3.90 × 10−4 GeV4; cϕ0 ¼ 3.95 × 10−3 GeV−2; Πϕð0Þ ¼ −0.00520; ð12Þ

best fit the eþe−-annihilation data through the ρ, ω, and ϕ
resonances. The values of Λr in Eq. (12) are large enough
for justifying the perturbative evaluation of the inputΩrðsÞ.
Note that the above parameters follow the correlation
demanded by the perturbative input via the Fredholm

equation, and are not completely free. This correlation,
originating from the analyticity of the vacuum polarization,
distinguishes our approach from the phenomenological one
[1–5] in which the free parameters are solely determined
by data fitting. We emphasize that a sensible resonance
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spectrum should be a solution of the Fredholm equation,
i.e., respect the analyticity of the vacuum polarization.
Therefore, one may check whether a dataset obeys the
Fredholm equation, i.e., whether its dispersive integral
reproduces the perturbative vacuum polarization function
at large s, before it is employed in the phenomenological
approach. This check will help discriminating inconsistent
datasets, such as the BABAR and KLOE data mentioned
before, and enhancing the precision of the obtained
hadronic contribution to the muon g − 2.
The predicted cross sections corresponding to the sets of

parameters in Eq. (12) are shown in Fig. 3, which agree
with the measured ω and ϕ resonance spectra well, but
deviate from the ρ spectrum slightly. The agreement is
nontrivial, viewing the correlation imposed by the analy-
ticity constraint on the parameters. A parametrization more
sophisticated than Eq. (10), e.g., the one proposed in [1]
below the threshold of the inelastic scattering may improve
the agreement in the ρ channel. However, we will not
attempt an exact fit, since the SND data are just one of the

(a) (b)

(c)

FIG. 2. RSS minimum structures from the Fredholm equations for the (a) ρ, (b) ω, and (c) ϕ resonances. The parameters
z1 ¼ 2.7 GeV−2 and z2 ¼ 0.532 GeV−4 have been fixed for (a).

FIG. 3. Cross sections for eþe−→ðρ;ω;ϕÞ→hadrons obtained
as solutions of the inverse problem. The SND data from the VEPP-
2Mcollider [23–25] are also exhibited for comparison. The data for
the three modes eþe− → ϕ → πþπ−π0, KSKL, and KþK− have
been combined with their uncertainties being added in quadrature.
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many available datasets, and subject to the scrutinization of
the analyticity constraint to be elaborated in Sec. III C.
Instead, we investigate whether the theoretical uncertainty
in the present analysis can explain the deviation. Higher
order QCD corrections to the perturbative input cause about
αs=π ∼ 10% variation at the scale of Λr around few GeV2

[26]. As a test, we increase and decrease the perturbative
input in Eq. (8) by 10%, and estimate the errors associated
with this variation by repeating the above procedure for the
same fixed values of z1 and z2. We pick up the minima of
RSS corresponding toΩi withþ10% and −10% variations,
i ¼ ρ, ω, and ϕ, at Λi in Eq. (12). The parameters bi0, c

i
0,

and Πið0Þ read off from the above minima then lead to the
error bands in Fig. 3, although the bands associated with the
ω and ϕ spectra are too thin to be seen. It is found that most
data for the ρ spectrum are covered (the recent SND data for
the ρ spectrum [27] are also covered, while the new result is
in conflict with both the BABAR and KLOE experiments),
except the tail part at low s, which gives a minor
contribution to aHVPμ . It implies that the estimate of the
theoretical uncertainty through the variation of the pertur-
bative input is relevant. Certainly, different choices of the
parametrizations for the resonance spectra may also cause
theoretical uncertainty. Because our results have matched
the data satisfactorily, we do not take into account this
source of uncertainty here.
Once the imaginary part ImΠrðsÞ at low s is derived, its

behavior in thewhole s range is known (with the perturbative
input at high s), and the real part Πrð−sÞ can be calculated
from Eq. (3). The behaviors of the vacuum polarization
functions in both the spacelike s < 0 and timelike s > 0
regions are presented in Fig. 4. The oscillations of the curves
ought to appear when the photon invariant mass crosses
physical resonance masses. The predicted vacuum polari-
zation function from the u and d quark currents, i.e., the ρ
andωmeson contributions, is exhibited in Fig. 5. In order to

compare our result with ΠðQ2Þud in LQCD [9], where a
photon invariant mass is defined in the Euclidean momen-
tum space, we have converted Eq. (3) into ΠðQ2Þud ¼
Πρð0ÞþΠωð0ÞþðQ2=πÞR ds0½Πρðs0ÞþΠωðs0Þ�=½s0ðs0þQ2Þ�.
It is obvious that our prediction forΠðQ2Þud agrees with the
LQCD one corresponding to the pion massmπ ¼ 185 MeV
within the 10% theoretical uncertainty. The LQCD results
show the tendency of decreasing with the pion mass, so a
better agreement is expected, if a further lower pion mass
could be attained.
With the vacuum polarization functions ΠrðsÞ being

ready in the whole s range and the relation ΠEMðsÞ ¼P
r¼ρ;ω;ϕΠrðsÞ, we get the HVP contribution through

Eq. (2)

aHVPμ ¼ ð641þ65
−63Þ × 10−10; ð13Þ

to the muon anomalous magnetic moment, where the
uncertainty comes from the variation of the perturbative
inputs by 10%, and mainly from the ρ channel. The
decomposition of the central value into the three pieces
of resonance contributions gives aHVP;ρμ ¼ 548 × 10−10,
aHVP;ωμ ¼ 45 × 10−10, and aHVP;ϕμ ¼ 49 × 10−10. All the
above results, which are consistent with those in the
literature [9], imply the success of our formalism: non-
perturbative properties can be extracted from asymptotic
QCD by solving an inverse problem. We recall that the
result in Eq. (13) comes only from the considered 2π, 3π,
and KK channels. Adding the contributions from the other
channels, such as 4π and charmonia, will increase our
prediction for the HVP contribution.

B. The hybrid approach

A hybrid method has been proposed in [14], which
combines the data fitting and the LQCD input for the first

FIG. 4. Vacuum polarization functions associated with the ρ, ω,
and ϕ resonances obtained as solutions of the inverse problem.

FIG. 5. Comparison of the predicted ΠðQ2Þud in the Euclidean
momentum space with the LQCD result [9]. See text for the
definition of ΠðQ2Þud.
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derivative of the vacuum polarization function Π0
EMð0Þ.

The final expression for the light-quark HVP contribution
to the muon anomalous magnetic moment is written as

aHVPμ ¼ 183.2� 2.1þ 5027Π0
EMð0Þ GeV2½10−10�; ð14Þ

where the first error largely stems from the data of the
eþe−-annihilation cross section. The first derivative in the
second term is given by the sum Π0

EMð0Þ ¼
P

r¼ρ;ω;ϕΠ0
rð0Þ

with each piece

Π0
rð0Þ ¼

Z
Λr

λr

ImΠrðsÞ
s2

dsþ
Z

∞

Λr

ImΠrðsÞ
s2

ds; ð15Þ

where the determined parameters in Eq. (12) are taken for
the first integral, and the perturbative input is inserted into
the second integral. Equation (15) then yields the first
derivatives at the origin

Π0
ρð0Þ ¼ 0.0819; Π0

ωð0Þ ¼ 0.0063; Π0
ϕð0Þ ¼ 0.0066;

ð16Þ

which are scheme independent, though the on-shell scheme
has been adopted. Substituting Eq. (16) into Eq. (14), we
have

aHVPμ ¼ ð660� 2þ48
−48Þ × 10−10: ð17Þ

This value, turning out to be close to that in [1], further
supports our formalism for evaluating the vacuum polari-
zation. The accuracy of a calculation in the hybrid approach
can be improved by including higher derivatives of the
vacuum polarization function [14], which are not yet
available in LQCD, but can be derived using our formalism.
At last, we present an alternative expression for the

vacuum polarization function, which may be considered for
a hybrid approach. Starting with Eq. (3) and following the
idea of [14,28,29], we write

ΠEMð−sÞ ¼
1

2πi

I
js0j¼Λ

ds0
ΠEMðs0Þ

s0
þ 1

π

Z
Λ

sthr

ds0
ImΠEMðs0Þ

s0 þ s

−
s
π

Z
∞

Λ
ds0

ImΠEMðs0Þ
s0ðs0 þ sÞ ; ð18Þ

with the threshold sthr. The first and third terms can be
computed in perturbation theory for a large enough scaleΛ,
and the second term, receiving the low mass contribution,
can take the data input.

C. Analyticity constraint

As stated in the Introduction, simply inputting data into a
dispersive approach does not automatically guarantee exact
realization of the analyticity. Note that the perturbative
ImΠðsÞ has been employed to evaluate the R ratio, RQCD,

for
ffiffiffi
s

p
> 1.8 GeV in [1]. To satisfy the analyticity con-

straint, the dispersive integral of a dataset at low energy
must reproduce the real part of the vacuum polarization
function ΠðsÞ at large s. However, this self-consistency has
never been examined seriously in the literature. Here we
briefly demonstrate how to discriminate the BABAR [30,31]
and KLOE [32] data for eþe− → πþπ− by imposing the
analyticity constraint, although a rigorous discrimination
requires more precise perturbative inputs. For the latter, the
results in 2008 [33], 2010 [34], and 2012 [35] have been
combined. The dispersion relation in Eq. (8) for r ¼ ρ is
rewritten as

Z
0.95

0.10

ImΠBABAR;KLOE
πþπ− ðs0Þds0
s0ðs0 þ sÞ

¼ ΩρðsÞ þ π
Πρð0Þ
s

−
Z

Λρ

0.95

ImΠρðs0Þds0
s0ðs0 þ sÞ ; ð19Þ

where the range of 0.10 GeV2 < s0 < 0.95 GeV2 is the
common domain of the BABAR and KLOE data. On the
left-hand side of Eq. (19), the BABAR and KLOE data for
πþπ− are converted into ImΠðs0Þ, and the integrals for
10 GeV2 < s < 12 GeV2, approximated by discretized
sums, are presented in Fig. 6(a). These integrals represent
the contributions from the BABAR and KLOE data to the
right-hand side of Eq. (19). The discrepancy between the
BABAR and KLOE bands implies that these two datasets
cannot respect the analyticity constraint simultaneously.
The 2.5% difference between the central values of the two
dispersive integrals persists to the higher s region. The
same amount of difference has been observed between the
contributions to the muon g − 2 from the BABAR and
KLOE data in the phenomenological approaches [1,2]. We
have also computed the dispersive integral for the SND
data, which, if included into Fig. 6(a), is located between
and overlaps with the BABAR and KLOE bands.
Next we adopt the perturbative input forΩρ in Eq. (8), and

the solution which respects the analyticity, i.e., the param-
eters determined in Eq. (12) for Πρð0Þ, ImΠρ and Λρ to get
the right-hand side of Eq. (19). The right-hand side esti-
mated at leading order with the 10% uncertainty gives the
wide band above theBABAR one, indicating that theBABAR
data, whose dispersive integral is closer to the solution, are
more favored over the KLOE and SND data by the
analyticity requirement. To discriminate the BABAR and
KLOE data, the evaluation of the right-hand side of Eq. (19)
should be more precise than 2.5%. For ImΠðsÞ (or equiv-
alently theR ratio) in the definition ofΩρðsÞ, the calculation
has been performed up toα4s [36], thus being precise enough:
the precision of RQCD has reached about 0.5% according to
[1] for the range 15 GeV2 < s0 < 250 GeV2, where the
inputs to our analysis are selected. In principle, the real part
of ΠðsÞ should be computed up to the same order for
consistency, and a precision of 0.5% is expected. ThenΩρðsÞ
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will be determined precisely enough,withwhichwe can also
update the second and third terms on the right-hand side of
Eq. (19) to the same precision by solving the Fredholm
equation. We conclude that it is possible to discriminate the
BABAR and KLOE data with the 2.5% difference by higher
order calculations for ΠðsÞ in the large s region.
As emphasized before, the analyticity constraint imposes

a correlation among the parameters involved in Eq. (10).
For Λρ and bρ0, their correlation is described by the
minimum distribution of RSS on the Λρ − bρ0 plane in
Fig. 6(b). This minimum distribution is equivalent to that
in Fig. 2(a), but projected on to the Λρ − bρ0 plane. Ignoring
the correlation and simply fitting ImΠρðsÞ to the data, as
done in the conventional dispersive approach, we find Λρ

and bρ0 marked by the square and triangle in Fig. 6(b) for the
BABAR and KLOE data, respectively. The distance
between a mark and the RSS minimum distribution reflects
the deviation of the corresponding dataset from the ana-
lyticity constraint. It is obvious that the BABAR dataset,
being nearer to the minimum distribution than the KLOE
one, respects more the analyticity constraint, an observation
consistent with the indication of Fig. 6(a). To realize our
proposal by means of the conventional dispersive approach,
one can assign a weight with each dataset in the fit
according to its distance to the minimum distribution.
Certainly, the analysis will be lengthier due to the more
complicated model for the resonance spectra in [1]: one has
to derive the minimum distribution, determine the best-fit
points for the adopted datasets, and assign weights accord-
ing to the distances between them in the multidimensional
space formed by the involved parameters. If it turns out that
the KLOE data are not favored by the analyticity require-
ment with sufficiently precise perturbative inputs, the

removal of the KLOE dataset from the fit will enhance
the ππ contribution to aHVPμ from 507.9 × 10−10 up to
510.6 × 10−10 [1]. That is, the central value of aSMμ could be
increased by ∼3 × 10−10. Given that the theoretical pre-
cision of aSMμ is unchanged, the anomaly could be reduced
from 3.3σ to 3.0σ. This reduction elaborates the potential
impact of our work.

IV. CONCLUSION

In this paper we have extended a new formalism for
extracting nonperturbative observables to the study of the
HVP contribution aHVPμ to the muon anomalous magnetic
moment g − 2. The dispersion relation for the vacuum
polarization function Πðq2Þ was turned into an inverse
problem, through which Πðq2Þ at low q2 was solved with
the perturbative input of Πðq2Þ at high q2. Though multiple
solutions exist, the best ones can be selected, which
accommodate the data of the eþe−-annihilation cross
section. Because the involved parameters are correlated
under the analyticity requirement of the vacuum polariza-
tion, and are not completely free, the satisfactory agreement
of our solutions with the data is nontrivial. It has been
shown that our prediction for Πðq2Þ, including its first
derivative Π0ð0Þ, is close to those from LQCD, and
contributes aHVPμ ¼ ð641þ65

−63Þ × 10−10 to the muon g − 2

from the ρ, ω, and ϕ resonances in consistency with the
observations from the other phenomenological, LQCD, and
hybrid approaches. The slight deviation of our result for the
ρ resonance spectrum from the SND data could be resolved
by considering subleading contributions to the perturbative
input. This subject will be investigated systematically in a
forthcoming publication, and the corresponding theoretical

(a) (b)

FIG. 6. (a) Low-energy experimental data confronted with the analyticity constraint. The blue and yellow bands show 1σ errors
estimated from the correlated uncertainty in the BABAR and KLOE data, respectively, while the green band represents the right-hand
side of Eq. (19) with the 10% uncertainty from the perturbative input. (b) Minimum distribution of RSS on the Λ − bρ0 plane. The red
triangle and the purple square denote the Λ and bρ0 values that best fit the KLOE and BABAR data, respectively.
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uncertainty is expected to be reduced. Other sources of
uncertainties need to be examined, such as the one from
different parametrizations for the resonance spectra.
The purpose of this work is not to fit the eþe−-

annihilation data exactly, but to demonstrate how our
formalism is implemented, and that reasonable results
can be produced even with a simple setup like the leading
order perturbative input, the naive parametrizations in
Eq. (10), and the fit only to the SND data. We stress that
imposing the analyticity constraint to the conventional
phenomenological approach, which solely relies on data
fitting, forms a more self-consistent framework for deter-
mining aHVPμ in the Standard Model with higher precision.
We have explained how to discriminate the BABAR and
KLOE data for eþe− → πþπ− via the analyticity constraint

as an example, and proposed to assign weights with fitted
datasets according to their deviation from the solutions
of the inverse problem. The success achieved in this paper
also stimulates further applications of our formalism to
the hadronic contributions to the muon g − 2 from heavy
quarks and from the light-by-light scattering [17,37–39],
for which a lack of experimental information persists, and a
theoretical estimation is crucial.
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