
 

Neutrino flavor oscillations without flavor states

Bruno de S. L. Torres ,1,2,3,* T. Rick Perche ,1,2,3,† André G. S. Landulfo,4,‡ and George E. A. Matsas 3,§
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Santo André, São Paulo 09210-580, Brazil

(Received 23 September 2020; accepted 26 October 2020; published 18 November 2020)

We analyze the problem of neutrino oscillations via a fermionic particle detector model inspired by the
physics of the Fermi theory of weak interactions. The model naturally leads to a description of emission and
absorption of neutrinos in terms of localized two-level systems. By explicitly including source and detector
as part of the dynamics, the formalism is shown to recover the standard results for neutrino oscillations
without mention to “flavor states,” which are ill defined in quantum field theory. This illustrates how
particle detector models provide a powerful theoretical tool to approach the measurement issue in quantum
field theory and emphasizes that the notion of flavor states, although sometimes useful, must not play any
crucial role in neutrino phenomenology.
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I. INTRODUCTION

Neutrinos have become one of the greatest protagonists
in the search for hints of physics beyond the Standard
Model. It is believed that a better understanding of neutrino
physics could shed light into broad, long-standing ques-
tions in fundamental physics, which include the nature of
dark matter [1] and the asymmetry between matter and
antimatter in the Universe [2]. One of the most direct
indications that neutrinos provide for the need of extensions
of the Standard Model comes from the phenomenon of
flavor oscillations, which implies that the neutrinos (which
are predicted to be massless in the Standard Model) are
actually massive, and that the neutrinos with well-defined
flavor—which couple directly to the charged leptons
through the weak interactions—are linear combinations
of the neutrinos with well-defined mass.
Despite its apparent simplicity, the description of flavor

states as linear combinations of mass ones has raised
important questions regarding whether this is well defined
within the framework of quantum field theory (QFT).
Whereas the construction of a Fock basis of massive

neutrinos is straightforward via standard canonical quan-
tization, the difficulty in formulating Fock states for
neutrinos with well-defined flavor [3] makes it relevant
to investigate whether a Fock basis for flavor neutrinos is
necessary at all. Indeed, attempts to construct a Fock space
for flavor neutrinos [4] exhibit undesirable features [5] as,
e.g., the fact that the canonical vacuum state would be
populated with flavor neutrinos or that the flavor vacuum
state would not be invariant under time translations. It has
been shown, indeed, that flavor states can be defined only
under certain conditions depending, in general, on the
underlying phenomenological process [6]. As a result, the
usual description of flavor states as linear combinations of
mass neutrino states turns out to be circumstantial rather
than a fundamental feature of neutrinos physics (for a more
comprehensive discussion see Ref. [7]). In this vein, it
would be fruitful to devise a framework where all neutrino
phenomenology is entirely rephrased in terms of neutrinos
with well-defined mass [8]. In particular, here, we focus on
the neutrino oscillation phenomenon.
In order to accomplish this goal, it turns out to be useful to

think more thoroughly about the process of emission and
detection of neutrinos as an inherent part of the dynamics.
This is efficiently achieved in the framework of particle
detector models. Broadly speaking, particle detectors con-
sist of controllable quantum systems that couple to quantum
fields in a localized region of spacetime. It has been shown
that particle detectors are a powerful tool in various areas of
theoretical physics, which range from quantum optics to
QFT in curved spacetimes. They provide an appealing
operational approach for the problem of measurement in
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QFT and have also shed light into a wide array of phenom-
ena, including, but not restricted to, the Unruh and Hawking
effects [9], entanglement harvesting [10], and quantum
energy teleportation [11].
A prototype particle detector model is the Unruh-DeWitt

(UDW) one. This is a localized two-level quantum monop-
ole, which couples linearly to scalar fields. There has been
increasing interest, however, in extending this model to
consider the coupling with higher-spin fields. For instance,
the coupling of a detector to the electromagnetic field has
been shown to model interactions of atoms with light.
There have also been proposals of particle detector models
coupling to the linearized gravitational field [12] with the
intent of probing underlying quantum gravitational effects.
It is then just natural to consider a detector-based frame-
work that describes the coupling to a fermionic field. As we
will see, it is possible to probe the phenomenon of neutrino
flavor oscillations using one such detector.
In summary, the major purpose of the present paper is to

phrase the phenomenology of neutrino oscillations with the
explicit use of particle detector models in a way that
naturally precludes the notion of neutrino flavor states.
The conceptualization of neutrino oscillations in quantum
field theory without flavor states has been previously
studied [13–19], but the role of particle detector models
in those descriptions was not explored or emphasized.
Given the growing importance of particle detector models
in theoretical physics, formulating neutrino oscillations
with the aid of a fermionic detector model represents
relevant progress in our understanding of the phenomenon.
It is important to note that Kobach, Manohar, and
McGreevy have recently used a preliminary detector-based
strategy to analyze the oscillation phenomenon for scalar
fields [20]. Our present approach, however, does not make
use of the rotating wave approximation (which may yield
important differences, e.g., in cases where detector and
source couple to the field for finite times [21]). Our
description based on an explicit interaction action (14)
seems also better suited to include effects due to relative
source-detector motions. Moreover, here, we take a step
further and introduce a fermion detector which is necessary
to treat the oscillation phenomenon in more realistic terms.
The paper is organized as follows. In Sec. II, we review

the usual quantum-mechanical derivation of the oscillation
phenomenon based on flavor and mass states. In Sec. III,
we consider the simplified case where fermionic fields with
flavor mixing are replaced by scalar ones and show how a
suitable UDW model can describe emission and absorption
processes of “scalar” neutrinos. In particular, it clarifies
how the standard picture of flavor oscillations can be
rephrased in terms of detector observables. As a result,
we obtain an exact quantum-field-theoretical result at the
lowest order, which is in agreement with the standard
oscillation probability result in the proper regime. In
Sec. IV, we present a fermionic particle detector model

derived in the context of the Fermi theory. We apply our
model to the process of emission and absorption of
neutrinos, and show under what circumstances it can
recover the scalar result. In particular, it is shown that
one can successfully account for the phenomenon of flavor
oscillations without the need of any notion of flavor states.
In Sec. V, we present our final conclusions.
Wewill assume metric signature ðþ;−;−;−Þ and natural

units, ℏ ¼ c ¼ 1, unless stated otherwise.

II. QUANTUM MECHANICS APPROACH TO
NEUTRINO OSCILLATIONS

In the proper regime, the oscillation phenomenon can be
derived using plain quantum mechanics overlooking the
neutrino fermionic nature [22]. We review it here briefly for
further comparison.
Let us denote the state of neutrinos with masses, mi,

i ¼ 1, 2, 3, and momentum p by jνiðpÞi. These states are
regarded as the eigenstates of the free Hamiltonian, Ĥ, so
that they satisfy

ĤjνiðpÞi ¼ ωiðpÞjνiðpÞi; ð1Þ

where ωiðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ p2
p

.
Next, let us define the corresponding flavor states,

jναðpÞi, α ¼ 1, 2, 3, in terms of the mass states through
the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix
Uαj:

jναðpÞi ¼
X
j

UαjjνjðpÞi; ð2Þ

where

X
j

UαjU�
βj ¼ δαβ;

X
α

UαjU�
αk ¼ δjk: ð3Þ

Flavor states will be labeled by Greek indices α; β ¼ e, μ, τ,
corresponding to the electron, muon, and tau neutrinos.
In this context, the neutrino oscillation phenomenon is

associated with the nonconservation of the neutrino flavor
between production and detection. Indeed, given that the
massive neutrinos are eigenstates of the Hamiltonian,
each one of them evolves in time with a global phase:
jνiðt; pÞi ¼ e−iωiðpÞtjνiðpÞi. It follows, then, that the time
evolution of the flavor neutrinos is given by

jναðt; pÞi ¼
X
j

Uαje−iωjðpÞtjνjðpÞi: ð4Þ

The amplitude associated with emitting jναðpÞi and meas-
uring jνβðpÞi some later time t is
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Aα→βðtÞ ¼ hνβðpÞjναðt; pÞi;
¼

X
ij

UαjU�
βie

−iωjðpÞthνiðpÞjνjðpÞi;

¼
X
j

UαjU�
βje

−iωjðpÞt: ð5Þ

Given that neutrinos are ultrarelativistic, mi ≪ jpj≡ p, in
oscillation experiments, the phases acquired by the differ-
ent mass neutrinos can be cast as

ωjðpÞt ≈ pLþm2
j

2p
L; ð6Þ

where L ≈ t is the distance traveled by the neutrino in the
time interval t. Hence, Eq. (5) becomes

Aα→βðLÞ ≈ e−ipL
X
j

UαjU�
βje

−im2
jL=2p; ð7Þ

which yields the following probability for the process

Pα→β ≈
����Xj

UαjU�
βje

−im2
jL=2p

����2: ð8Þ

Equation (8) agrees with every neutrino oscillation experi-
ment to date. This encodes the essence of the phenomenon,
where the phase difference acquired between different mass
neutrinos is proportional to the difference between the
squared masses.
It is remarkable how much can be obtained from

standard quantum mechanics neglecting the more detailed
properties of the particles under consideration. A more
fundamental description of the phenomenon, however, begs
for a QFTanalysis. This is necessary, e.g., to make a precise
sense of the “≈” symbols introduced in the derivation
above.
In the QFT context, the mass neutrinos are associated

with quantum fields ν̂iðxÞ, for which one can define
creation and annihilation operators associated with massive
neutrinos and antineutrinos of massesmi through canonical
quantization. The states jνiðpÞi should be identified with
the one-particle states in the Fock space for their respective
fields. The mixing is now encoded in the fields rather than
in the states:

ν̂αðxÞ≡
X
j

Uαjν̂jðxÞ; ð9Þ

where ν̂αðxÞ is seen as the quantum field associated with the
α-flavor neutrino. However, the spectrum of real particles
of the theory is only well understood with respect to the
fields with well-defined mass. The states jναðpÞi defined in
Eq. (2) do not correspond to Fock states of the flavor
neutrino fields, and should instead be interpreted as

convenient phenomenological states [7]. Therefore, the
quantum-mechanical approach described in this section
should be seen, at best, as a good first approximation.
The next sections will be devoted to showing how the

neutrino oscillation phenomenon can be fully understood
within the framework of QFT endowed with a suitable
neutrino detector, which will allow us to include the
neutrino production and detection in the analysis.

III. SCALAR NEUTRINO OSCILLATIONS VIA
UNRUH-DEWITT DETECTORS

In a very broad sense, the conceptualization of a
theoretical framework for neutrino oscillations that does
not evoke flavor states can naturally be accommodated by a
more careful analysis of how flavor oscillations are
measured. One way of obtaining such a framework is by
employing particle detectors, which are very well adapted
to the intuitive picture of localized emission and absorption
of particles. Moreover, from a fundamental point of view,
measurements in QFT are better understood in terms of
particle detectors. The most famous detector model is the
UDW one. It consists of a first-quantized two-level system
whose internal structure can, to a good approximation, be
described by a nonrelativistic system, which couples
linearly to a real scalar field in a localized region of space
and time.
The interaction action of a pointlike UDW detector with

monopole moment μ̂ðτÞ coupled to a real scalar field
ϕ̂ðxÞ is

SI ¼ −λ
Z þ∞

−∞
dτχðτÞμ̂ðτÞϕ̂ðxðτÞÞ: ð10Þ

Here, λ is a coupling constant, xðτÞ denotes the trajectory of
the detector parametrized by its proper time τ, and χðτÞ is a
switching function that is responsible for dictating the
temporal profile of the interaction strength. Let us define
(in the interaction picture)

μ̂ðτÞ≡ σ̂þðτÞ þ σ−ðτÞ; ð11Þ
with σ̂�ðτÞ≡ e�iΩτσ̂�, where

σ̂þ ¼ jeihgj and σ̂− ¼ jgihej; ð12Þ
are raising and lowering operators, respectively, connecting
the ground, jgi, and excited, jei, states of the two-level
system and Ω is the corresponding proper energy gap. For
later comparison, let us recast Eq. (10) as

SI ¼−λ
Z þ∞

−∞
dτχðτÞ½σ̂þðτÞϕ̂ðxðτÞÞþ σ̂−ðτÞϕ̂ðxðτÞÞ�: ð13Þ

Now, let us write the interaction action for a (scalar)
neutrino coupled with a source, s, and detector, d, both of
them modeled by UDW two-level systems as
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SI ¼ −λs
Z þ∞

−∞
dτsχsðτsÞμ̂sðτsÞϕ̂αðxsðτsÞÞ;

− λd

Z þ∞

−∞
dτdχdðτdÞμ̂dðτdÞϕ̂βðxdðτdÞÞ; ð14Þ

where τs and τd are the source and detector proper times,
respectively. We are considering a setup where the source
and detector couple to flavor neutrino fields ϕ̂αðxÞ
and ϕ̂βðxÞ, respectively. They are defined as linear combi-
nations of the neutrino fields with well-defined mass,
ϕ̂jðxÞ, as

ϕ̂ζðxÞ ¼
X
j

Uζjϕ̂jðxÞ; ζ ¼ α; β; ð15Þ

where the PMNS matrix Uζj is real in the scalar case. For
the sake of further comparison, let us use Eq. (11) to rewrite
Eq. (14) as

SI ¼ −λs
Z þ∞

−∞
dτsχsðτsÞσ̂−s ðτsÞϕ̂αðxsðτsÞÞ þ H:c:

− λd

Z þ∞

−∞
dτdχdðτdÞσ̂−d ðτdÞϕ̂βðxdðτdÞÞ þ H:c: ð16Þ

The process which will represent an oscillation experi-
ment has, thus, the following initial and final states

jii ¼ j0ijesijgdi and jfi ¼ j0ijgsijedi; ð17Þ

respectively, where j0i is the vacuum state of the three
neutrino mass fields (i.e., the state that is annihilated by all
the annihilation operators of the mass neutrino fields).
Thus, the oscillation event is rephrased in terms of

states associated with the source and detector with no
intermediate state for the neutrino fields themselves being
assumed—see Fig. 1. What would be otherwise interpreted
as the “emission of an α-neutrino” and “detection of a
β-neutrino” is understood now as the “deexcitation of an
α source” and “excitation of a β detector,” respectively.
Assuming that both source and detector follow inertial

trajectories at rest with respect to each other, there is a
Cartesian coordinate system ðt; xÞ where the worldlines can
be parametrized by

xsðτsÞ ¼ ðt; 0Þ and xdðτdÞ ¼ ðt;LÞ; ð18Þ

with jLj≡ L ¼ const being the distance between source
and detector.
It is straightforward to read the corresponding interaction

Hamiltonian from Eq. (16):

V̂IðtÞ ¼ λsχsðtÞσ̂−s ðtÞϕ̂αðxsÞ þ H:c:|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼V̂sðxsÞ

þ λdχdðtÞσ̂−d ðtÞϕ̂βðxdÞ þ H:c:|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼V̂dðxdÞ

; ð19Þ

and so, up to the lowest order in perturbation theory, the
oscillation amplitude is

Aα→β ¼ hfjT expðiSIÞjii;

¼ −
Z þ∞

−∞
dt
Z

t

−∞
dt0hfjV̂sðtÞV̂dðt0Þ þ V̂dðtÞV̂sðt0Þjii;

where T is the time-ordering operator. By evaluating it, we
obtain

Aα→β ¼ −λsλd
X
j

UαjUβj

Z
d3pj

ð2πÞ3
1

2ωjðpÞ
× ½FjðpÞe−ipj·L þ GjðpÞeipj·L�; ð20Þ

where

FjðpÞ≡
Z þ∞

−∞
dt
Z

t

−∞
dt0χsðtÞχdðt0Þ

× eiðΩdþωjðpÞÞt0e−iðΩsþωjðpÞÞt; ð21Þ

FIG. 1. The figure illustrates our understanding of the oscil-
lation process. In the naïve quantum mechanical approach a
flavor neutrino “jϕαi” is emitted due to some source deexcitation
and oscillates up to the detection moment. (We are assuming that
the source-detector distance is not larger than the decoherence
length.) In the present approach, the source deexcitation emits
coherently three (well-defined) mass neutrinos which eventually
excite the detector. The design of the oscillation experiment is
codified in the α and β flavor labels present in the interaction
action (16). For the DUNE, e.g., α ¼ μ and β ¼ e, μ, τ.
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GjðpÞ≡
Z þ∞

−∞
dt
Z

t

−∞
dt0χdðtÞχsðt0Þ

× e−iðΩs−ωjðpÞÞt0eiðΩd−ωjðpÞÞt; ð22Þ

ωjðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpjj2 þm2

j

q
, and we have used

h0jϕjðxÞϕkðx0Þj0i ¼ δjk

Z
d3pj

16π3ωjðpÞ
e−ipj·ðx−x0Þ: ð23Þ

[We would rather use ωjðpÞ than ωjðpjÞ to simplify the
notation.]
In order to make further progress, we choose a particular

temporal profile for the source and detector interactions
with the field. Our source will remain coupled to the field
for an arbitrarily long time, whereas the detector is kept
switched on during the time interval Δt≡ t1 − t0 > 0. The
following switching functions model quite well this setup:

χsðtÞ ¼ e−ϵjtj; χdðtÞ ¼ Θðt − t0Þ − Θðt − t1Þ; ð24Þ
where ΘðtÞ is the Heaviside step function, and ϵ is a small
regulator introduced to guarantee that the integrals con-
verge at t → �∞.
By using Eq. (24) to calculate Eqs. (21)–(22), we obtain

FjðpÞ ¼ −
ΔT

Ωs þ ωjðpÞ
; ð25Þ

GjðpÞ ¼
ΔT

Ωs − ωjðpÞ
; ð26Þ

where

ΔT ≡ eiΔΩt1 − eiΔΩt0

ΔΩ
;

¼ 2i exp½iðΔΩðt0 þ t1Þ=2�
sin ðΔΩΔt=2Þ

ΔΩ
; ð27Þ

ΔΩ≡ Ωd − Ωs, and we have taken ϵ → 0 at the end. Using
Eqs. (25)–(26) in Eq. (20), we write the oscillation
amplitude as

Aα→β ¼ −λsλdΔT
X
j

UαjUβj

Z
d3pj

ð2πÞ3
eipj·L

Ω2
s − ω2

jðpÞ
;

¼ i
λsλd
4π2L

ΔT
X
j

UαjUβj

Z þ∞

−∞
dpj

pjeipjL

Ω2
s − ω2

jðpÞ
;

ð28Þ

where pj ≡ jpjj and L≡ jLjj. The integral above can be
solved via the residue theorem once the poles in the real
axis are properly circumvented (see Fig. 2). As a result, one
obtains

Aα→β ¼
λ2

4πL
ΔT

X
j

UαjUβjeiΔjL; ð29Þ

where Δj ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

s −m2
j

q
and we have defined λ2 ≡ λsλd.

Thus, using Eq. (27) in Eq. (29), we can write the
probability of an “α-flavor” neutrino to be detected as a
“β-flavor” neutrino as

jAα→βj2 ¼
λ4

16π2L2

�
sin ðΔΩΔt=2Þ

ΔΩ=2

�
2
����Xj

UαjUβjeiΔjL

����2:
ð30Þ

The quotation marks introduced above stress that by
α-flavor (β-flavor) neutrino we actually mean a neutrino
“produced (detected) through a weak process involving the
corresponding α lepton (β lepton).” Note that the overall
prefactor 1=L2 in Eq. (30) is expected since it encodes the
area-law decay associated with isotropically emitting
sources.
Next, let us consider the particular case where the

detector is kept turned on for an arbitrarily long time
interval. In this case,

lim
Δt→þ∞

�
sin ðΔΩΔt=2Þ

ΔΩ=2

�
2

¼ 2πδðΩd − ΩsÞΔt; ð31Þ

where Δt is associated with the (arbitrary long) detector
proper time. Using Eq. (31) in Eq. (30), we obtain the
corresponding (stationary) detector excitation rate as

Γα→β ≡ lim
Δt→þ∞

jAα→βj2
Δt

;

¼ λ4

8πL2
δðΩd −ΩsÞ

����X
j

UαjUβjeiΔjL

����2: ð32Þ

The delta function guarantees energy conservation in the
ideal case where the detector is kept permanently switched
on (no external agent is present making work to turn on/off
the detector).

FIG. 2. Contour of integration used to evaluate Eq. (28). The

two poles in the real axis are at pj ¼ ∓Δj with Δj ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

s −m2
j

q
.
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Finally, the familiar Eq. (8) can be recovered after one
normalizes Eq. (32):

Pα→β ¼
Γα→βP
β0Γα→β0

¼
����Xj

UαjUβjeiΔjL

����2: ð33Þ

This is an exact result up to the lowest order. In order to
recover the approximate result (8), we must impose that the
source produces ultrarelativistic neutrinos: mj ≪ Ωs, in
which case

Δj ≈ Ωs −
m2

j

2Ωs
: ð34Þ

It should be clear, therefore, that the usual UDW scalar
model is capable of capturing the main features of neutrino
oscillations without any assumption about the form of the
neutrino fields as they travel from the source to the detector.
In particular, we did not have to prescribe by hand any
wave packet profile for the emitted neutrinos and, most
remarkably, we never had to assume that the states
describing the neutrinos participating in the coupling with
source and detector were “flavor eigenstates.” The phe-
nomenon can be understood entirely in terms of Fock states
associated with the neutrino fields with well-defined mass.
It is also worth pointing out that the energy-momentum
uncertainty in emission and detection—necessary for the
coherent emission and absorption of massive neutrinos with
different mass, and usually described directly in terms of
wave packets—is here realized by the pointlike localization
of the coupling in space. This directly leads to infinite
uncertainty in the spatial momentum of the neutrino that
couples to source and detector. Moreover, we could have
included temporal profiles with finite spread, where the
energy uncertainty would then be directly linked to (the
inverse of) the time duration of the interaction. Similarly, a
more refined uncertainty in spatial momentum could be
explored by endowing detector and source with some
nontrivial spatial extension, which would then lead to
the use of smeared detector models [23].

IV. NEUTRINO OSCILLATIONS VIA FERMIONIC
PARTICLE DETECTORS

We will now generalize the scalar UDW model by
coupling our two-level system to fermionic fields, which
will allow us to properly treat the neutrino as a spinor.
Section IVA below is dedicated to motivating and present-
ing this new particle detector model. Then, in Sec. IV B, we
use it to investigate the oscillation phenomenon.

A. The model

The paradigmatic process which will motivate our
fermion detector comes from β decay:

n → pþ e− þ ν̄e: ð35Þ

At energies much lower than the W- and Z-boson masses,
this process is well described by the Fermi theory of the
weak interactions, where the proton (p), neutron (n),
electron (e), and neutrino (ν) fields interact via a pointlike
current-current coupling. We will take the Lagrangian that
describes the process to be

L4F ¼ −
GFffiffiffi
2

p ½ð ˆ̄νeγμð1 − γ5ÞêÞð ˆ̄nγμð1 − γ5Þp̂Þ þ H:c:�;

ð36Þ

where GF ¼ 1.17 × 10−5 GeV−2 is the Fermi constant and
all fields are treated as massive Dirac fermions. The
projection operator PL ≡ ð1=2Þð1 − γ5Þ appears because
charged current in weak interactions only couple to left-
chiral fermions, as is well known. The Lagrangian (36) is
motivated by taking the charged-current interaction term in
the Fermi theory (which explicitly involves the coupling
between electrons, neutrinos, and quarks) and replacing the
up and down quarks by the proton and the neutron,
respectively. The heuristics behind this is the picture of
the transition n → p as implicitly udd → uud. The actual
effective Lagrangian that better describes this process is in
fact more complicated than this [24], but such additional
complications will be mostly irrelevant for our following
discussion.
The first main idea to devise our particle detector is to

think of the neutron-proton as quantum states of a localized
two-level nucleon to be described through a semiclassical
current. This has been explored elsewhere [25] but here we
show how this can be naturally motivated from the four-
fermion theory itself. After this, we will be able to see a
transition neutron → proton as a nucleon deexcitation,
while the emitted neutrino will induce the reverse process,
proton → neutron, at the detector.
In order to build the raising and lowering operators

acting on the nucleon Hilbert space, let us begin recalling
the free Dirac field expansion:

f̂ðxÞ ¼
X
s¼�1

Z
d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3ωk

p ðusðkÞb̂sðkÞe−ik·x

þ vsðkÞĉ†sðkÞeik·xÞ; ð37Þ

where usðkÞ and vsðkÞ are positive and negative frequency
solutions with helicity s and momentum k of the Dirac
equation (see, e.g., Ref. [25]) and b̂sðkÞ and ĉsðkÞ† are
creation and annihilation operators of particles and anti-
particles, respectively, satisfying

fb̂sðkÞ; b̂†s0 ðk0Þg ¼ fĉsðkÞ; ĉ†s0 ðk0Þg ¼ δ3ðk − k0Þδs;s0 :

Using the field expansion from Eq. (37), we obtain
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ˆ̄nγμð1 − γ5Þp̂ ¼ 1

ð2πÞ3
X
s;s0

Z
d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωnðkÞ

p d3k0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωpðk0Þ

p
× ei½ðωnðkÞ−ωpðk0ÞÞt−ðk−k0Þ·x�

× ½ūs;nðkÞγμð1 − γ5Þus0;pðk0Þ�
× b̂†s;nðkÞb̂s0;pðk0Þ þ…; ð38Þ

where we only display the term that contains the creation of
a neutron and annihilation of a proton, corresponding to the
nucleon excitation.
One can heuristically think of the sum over momenta in

Eq. (38) as implementing a spatial profile for the proton-
neutron system, which is assumed to be localized at the
atom’s location. Thus, the nucleon will be effectively
pictured as a nonrelativistic quantum system following a
well-localized spatial trajectory. This can be modeled by a
classical current jμðxÞ with support on the nucleon with its
quantum nature being encompassed by the internal degree
of freedom of a two-level system. As a result, we replace
the positively charged hadronic current in Eq. (36) as
follows:

ˆ̄nγμð1 − γ5Þp̂ → jμðxÞeiΔMτσ̂þ; ð39Þ

where ΔM ≡Mn −Mp withMn andMp being the neutron
and proton masses, respectively, τ represents the proper
time associated with the center-of-mass trajectory, and σ̂þ
is the two-level-system raising operator. Hence, the inter-
action Lagrangian (36) becomes

LI ¼ −
GFffiffiffi
2

p jμðxÞ½eiΔMτσ̂þð ˆ̄νeγμð1 − γ5ÞêÞ

þ e−iΔMτσ̂−ð ˆ̄eð1þ γ5Þγμν̂eÞ�: ð40Þ

The effect of taking the more complete effective Lagrangian
for nuclear β decay from [24] herewould simply amount to a
refined expression for the current jμðxÞ, with no conceptual
impact in our discussion from now on. We note that we are
not including any degree of freedom corresponding to the
nucleon helicity and, thus,we do not consider here processes
involving exchanges of angular momentum.
Now, we take a step further and expand the electron field

using Eq. (37) [26] to include it in the detector model. By
doing so, we can write

eiΔMτð1 − γ5Þê ¼
X
s¼�1

Z
d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞ32ωeðkÞ
p

× ei½Mn−Mp−ωeðkÞ�τeik·xψ̂ s;eðkÞ þ…; ð41Þ

where we have defined

ψ̂ s;eðkÞ≡ ð1 − γ5Þus;eðkÞâs;eðkÞ; ð42Þ

and we only display the term associated with the nucleon
“excitation”:

pþ e− þ ν̄e → n: ð43Þ

It is important to note that, for each electron mode with
momentum k, the exponential time dependence in Eq. (41)
strongly suggests we interpret Ω≡Mn −Mp − ωeðkÞ
(including the energy carried by the electron) as being
the effective energy gap for the fermion detector. In this
sense, the presence of an auxiliary fermion at the detection
(see Fig. 3) allows us to see our fermion detector as a
collection of UDW detectors with different energy gaps.
By focusing on one particular energy gap, we use

Eq. (40) to write our detector-neutrino interaction action as

SI ¼ −
GFffiffiffi
2

p
Z

d4x
ffiffiffiffiffiffi
−g

p
jμðxÞ½σ̂þðτÞ ˆ̄ναγμψ̂

þ σ̂−ðτÞ ˆ̄ψγμνα�; ð44Þ

where σ̂�ðτÞ ¼ e�iΩτσ̂�, as in the scalar case. We have
replaced e → α, since the detector can be used to measure
any neutrino. It is important to keep in mind that hereafter
the energy gap Ω will include the lepton energy that
participates in the process. Here,

ψ̂ ≡X
s¼�1

Z
Sðk0;δkÞ

d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32ωαðkÞ

p ð1 − γ5Þus;αðkÞâs;α;

ð45Þ

FIG. 3. The fermionic case is analogous to the scalar one
except for the fact it includes extra fermionic lines associated
with the leptons which turn out to be part of our fermion detector.
The detector deexcitation associated with the neutrino emission
at the source, jesi → ðjgsi þ j1siÞ þ “jν̄αi”, should be compared
with n → ðpþ e−Þ þ ν̄e and the aftermost neutrino detection,
ðjgdiþj1diÞþ“jν̄αi”→ jedi, should be compared with ðpþ e−Þþ
ν̄e → n.
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where Sðk0; δkÞ is a spherical shell centered at radius k0 and
with thickness 2δk. ψ̂ encodes the spinorial nature of the
charged lepton which couples to the neutrino in the process.
This is a left-chiral spinor operator, where us;αðkÞ is the
Dirac spinor computed at the central value of the lepton-α
momentum distribution (with dispersion δk), and âs;α is the
corresponding annihilation operator. (Note also that ψ̂ is
“nondynamical” in the sense that the lepton dynamics has
already been accounted for in the definition of the effective
energy gap.)
A convenient orthonormal basis for the Hilbert space

associated with our fermion detector is

fjgij0i; jgij1i; jeij0i; jeij1ig;

where σ̂�ðτÞ acts on jgi and jei, as in the scalar case,
and [27]

ˆ̄ψ j0i≡Ψ̄j1i; ψ̂ j1i≡Ψj0i; ˆ̄ψ j1i¼ ψ̂ j0i≡0: ð46Þ

Equation (44) comprises the interaction action of our
detector with the fermionic field. For our purposes, it will
be enough to consider the particular case where it is strictly
pointlike. In this case,

jμðxÞ ¼ δð3Þðx − xðτÞÞffiffiffiffiffiffi−gp
u0

uμðτÞ; ð47Þ

with uμðτÞ being the detector’s four velocity. As a conse-
quence, the interaction action (44) becomes

SI ¼ −λ
Z þ∞

−∞
dτuμðτÞχðτÞ

× ½σ̂þðτÞ ˆ̄ναðxðτÞÞγμψ̂ þ σ̂−ðτÞ ˆ̄ψγμν̂αðxðτÞÞ�; ð48Þ

where we have introduced the switching function χðτÞ, as in
the scalar case, and λ ¼ GF=

ffiffiffi
2

p
(for a weakly interacting

detector). [Compare Eq. (48) with its scalar counterpart,
Eq. (13).]

B. Fermionic oscillation probability

We will now apply the results of Sec. IVA to investigate
the neutrino oscillation phenomenon with our fermion
detector (which includes spinorial degrees of freedom
absent in the simplified calculation of Sec. III). We denote
the trajectories of detector and source in the same way we
did in Eq. (18). The interaction action for a system with
source, detector, and neutrinos is now given by

SI¼−λs
Z

dτsu
ðsÞ
μ ðτsÞχsðτsÞσ̂−s ðτsÞ ˆ̄ψ sγ

μν̂αðxsðτsÞÞþH:c:

−λd
Z

dτdu
ðdÞ
μ ðτdÞχdðτdÞσ̂−d ðτdÞ ˆ̄ψdγ

μν̂βðxdðτdÞÞþH:c:;

ð49Þ

which is the fermionic counterpart of Eq. (16), and

ν̂αðxÞ ¼
X
j

Uαjν̂jðxÞ: ð50Þ

We will take the particular case where source and detector
are inertial and at rest with respect to each other, as in
Eq. (18). In this case, the four velocities of source and
detector in the Cartesian frame where both are stationary
are given by

uðsÞμ ðtÞ ¼ uðdÞμ ðtÞ ¼ ð1; 0Þ: ð51Þ

The interaction Hamiltonian comes from Eq. (49):

ĤIðtÞ ¼ λsχsðtÞσ̂−s ðtÞψ̄ sγ
0ν̂αðxsÞ þ H:c:|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ĤsðtÞ

þλdχdðtÞσ̂−d ðtÞψ̄dγ
0ν̂βðxdÞ þ H:c:|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ĤdðtÞ

ð52Þ

The initial and final states associated with emission of a
neutrino and aftermost detection is

jii ¼ j0iðjesij0siÞðjgdij1diÞ; ð53Þ

jfi ¼ j0iðjgsij1siÞðjedij0diÞ; ð54Þ

where j0i codifies that the neutrino only enters as a
propagator line and j1si, j1di and j0si, j0di encode the
presence and absence of the charged lepton coupling to
the neutrino at the source and detector, respectively—
see Fig. 3.
Now, we can compute the oscillation amplitude in

complete analogy to the scalar case. Up to the lowest
nontrivial order of perturbation theory, we have

Aα→β ¼ −hfjT expðiSIÞjii;

¼ −
Z þ∞

−∞
dt
Z

t

−∞
dt0hfjðĤsðtÞĤdðt0Þ

þ ĤdðtÞĤsðt0ÞÞjii: ð55Þ

In order to evaluate it, we use Eq. (52):
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Aα→β ¼ −λsλd
X
j

UαjU�
βj

Z
d3pj

ð2πÞ3
1

2ωjðpÞ
×Ψ†

sðFjðpÞð=pj þmjÞe−ip·L
− GjðpÞð=pj −mjÞeip·LÞγ0Ψd; ð56Þ

where =pj ≡ ωjðpÞγ0 − pj · γ, functions FjðpÞ andGjðpÞ are
defined in Eqs. (21) and (22), respectively, and

Ψ̄s ¼ h1sj ˆ̄ψ sj0si; Ψd ¼ h0djψ̂dj1di ð57Þ

come from Eq. (46). It is worthwhile to note that in
order to get Eq. (56), we have used h1sjψ sj0si ¼ 0 and
h0djψ̄dj1di ¼ 0 (which makes several contributions in the
Dyson expansion vanish) and the two-point functions

h0jν̂jðxÞ ˆ̄νkðx0Þj0i ¼
δjk

ð2πÞ3
Z

d3pj

2ωjðpÞ
ð=pj þmjÞeipj·ðx−x0Þ;

ð58Þ

h0j ˆ̄νkðx0Þν̂jðxÞj0i ¼
δjk

ð2πÞ3
Z

d3pj

2ωjðpÞ
ð=pj −mjÞe−ipj·ðx−x0Þ:

ð59Þ

We can now make further progress with Eq. (56) by
recalling that both Ψd and Ψs have left chirality [28]:

Aα→β ¼ λsλdΔT
X
j

UαjU�
βj

Z
d3pj

ð2πÞ3
eipj·L

Ω2
s − ω2

jðpÞ
×Ψ†

sðΩsγ
0 − pj · γÞγ0Ψd;

where FjðpÞ and GjðpÞ were used as in Eqs. (25) and (26),
respectively.
Now, let us assume that either Ψd or Ψs have zero

angular momentum in the direction of propagation. As our
model assumes that all fermions are left handed, it can be
shown that the term Ψ̄sðpj · γÞΨd does not contribute to the
integral. Then,

Aα→β ¼ λsλdΔTΩsΨ
†
sΨd

X
j

UαjU�
βj

×
Z

d3pj

ð2πÞ3
eipj·L

Ω2
s − ω2

jðpÞ
;

¼ i
λsλd
4π2L

ΔTΩsΨ†
sΨd

X
j

UαjU�
βj

×
Z þ∞

−∞
dpj

pjeipjL

Ω2
s − ω2

jðpÞ
: ð60Þ

Equation (60) is the fermionic analog of Eq. (28).
By solving the integral as in the scalar case, we get

Aα→β ¼
λ2eff
4πL

ΔT
X
j

UαjU�
βje

iΔjL; ð61Þ

where we have defined the effective coupling constant
λ2eff ¼ λsλdΩsΨ

†
sΨd. Notice that λ2eff in the fermionic case

depends on the energy gap of the source in contrast to λ2 in
the scalar case. This so because in the present fermionic
case, λs; λd ∝ GF have a dimension of energy−2. By
recalling, that Ψs, Ψd have dimension of energy3=2 [see
Eq. (45)] andΩ has dimensionless of energy, we obtain that
λeff is dimensional, as it should be.
It follows, then, that the probability of an “α-flavor”

neutrino to be detected as a “β-flavor” neutrino is

jAα→βj2 ¼
λ4eff

16π2L2

�
sin ðΔΩΔt=2Þ

ΔΩ=2

�
2
����Xj

UαjU�
βje

iΔjL

����2;
ð62Þ

where we have used Eq. (27). The corresponding detector
excitation rate, for its turn, is obtained in the limit where the
detector is turned on for an infinite time interval, as in the
scalar case:

Γα→β ≡ lim
Δt→þ∞

jAα→βj2
Δt

;

¼ λ4eff
8πL2

δðΩd −ΩsÞ
����Xj

UαjU�
βje

iΔjL

����2: ð63Þ

This is analogous to Eq. (32) with the only difference being
contained in the effective coupling constant. In contrast to
the scalar case, λeff will, in general, depend on the particular
processes used at the source and detector to produce and
observe the neutrinos. Of course, this information is
washed out once Eq. (63) is normalized as in Eq. (33).
Indeed, the relative oscillation probability among different
flavors is the same as in Eq. (33), except for the fact that
in the fermionic case the PMNS matrix elements can be
complex.

V. CONCLUSION

We have successfully described the phenomenon of
neutrino oscillations without the need of flavor states, by
using particle detectors to model the emission and absorp-
tion of neutrinos in charged-current weak interactions.
Inspired by the UDW model, we first introduced most
of the important conceptual elements and calculations in
the framework of particle detectors by describing a simpler
theory, where the flavor mixing occurred between real
scalar fields. With this setup, we have shown how one
can rephrase the standard neutrino oscillation probability
formula in terms of processes directly associated with
sources and detectors of neutrinos, with an area-law
decay characteristic of isotropic emission by the source.

NEUTRINO FLAVOR OSCILLATIONS WITHOUT FLAVOR … PHYS. REV. D 102, 093003 (2020)

093003-9



Most importantly, the result is obtained without assuming
any further knowledge about the propagating states for the
fields.
We then pursued a refinement of the UDW model, by

including spinorial degrees of freedom that couple to
neutrinos treated as fermionic quantum fields. We have
shown how this can be motivated from physically reason-
able simplifications of the four-fermion theory of weak
interactions, which provides a good description of low-
energy processes by which neutrinos are primarily emitted
and absorbed. This demonstrates how we can naturally
include important features of neutrinos that were left out in
the scalar calculation, while remaining in the framework of
localized particle detector models.
Under the assumption that the spin of the nucleons is

unchanged in the processes of emission and absorption of
neutrinos, the fermionic calculation can recover the same
dependence on the distance and on the difference of
squared masses of massive neutrinos that were derived
in the scalar case and coincides with the usual quantum-
mechanical calculation. This supports the intuition that
particle detector models which couple two-level systems to
scalar fields already capture much of the important physics
in processes that do not involve exchanges of angular
momentum between detector and field.
Besides, the fermionic detector model devised in

Sec. IVA also leaves new possibilities for future research.
One such example would be the study of how the relative
motion between source and detector may impact the
oscillation phenomenon. From the perspective of relativ-
istic quantum information, the introduction of a new

fermion detector model also provides different venues
for probing features of quantum fields that are not fully
grasped by the case of scalar fields.
Finally, our work vindicates Ref. [29], where the validity

of the Unruh effect for mixing neutrinos was shown using
solely mass states for the neutrinos. Therefore, in general, it
is not true that one misses phenomena such as neutrino
flavor oscillations by restricting oneself to a quantum
description in terms of mass states (see, e.g., Refs. [30,31]
and reference therein).
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