
 

Double box and hexagon conformal Feynman integrals

B. Ananthanarayan,1* Sumit Banik ,1† Samuel Friot,2,3‡ and Shayan Ghosh 4§

1Centre for High Energy Physics, Indian Institute of Science, Bangalore 560012, Karnataka, India
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The off-shell massless six-point double box and hexagon conformal Feynman integrals with generic
propagator powers are expressed in terms of linear combinations of multiple hypergeometric series of the
generalized Horn type. These results are derived from 9-fold Mellin-Barnes representations obtained from
their dual conformal Feynman parameter representations. The individual terms in the presented expressions
satisfy the differential equation that relates the double box in D dimensions to the hexagon in Dþ 2

dimensions.
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I. INTRODUCTION

It was noted in a recent work [1] that there is a close
connection between the Mellin-Barnes (MB) computa-
tional technique and the constraints coming from a recently
discovered Yangian symmetry of conformal Feynman
integrals [2,3]. The authors of [1] argue that the MB
method can be used to generate Yangian invariants as
sums of residues. However, they also point out, for the
important cases of the analytically unknown off-shell
massless six-point D-dimensional double box integral
and related hexagon, that there are complications, both
in the MB and Yangian approaches, in identifying the latter
integrals as particular combinations of these invariants.
Thus, the resolution of these remains a challenging and
unsolved problem.
To make a breakthrough in this context, we have

extended the computational technique of [4,5] in order
to deal with N-fold MB integrals. This allows us to solve
the problem above from the MB side, by extracting series
representations of both the double box and hexagon
Feynman integrals with generic propagator powers from
their ninefold MB representations in a systematic way. The
results are given in terms of linear combinations of multiple

hypergeometric series of the generalized Horn type. We
emphasize that the derivation of these linear combinations
does not require convergence considerations. Regarding the
large number of possible series to build the linear combi-
nations, 2530 in the hexagon case and 4834 for the double
box, this amounts to a distinct advantage compared to the
corresponding situation in the Yangian bootstrap approach
of [1] where the convergence properties of the involved
series seem to be a necessary external input.
For each of the ninefold MB integrals, one can obtain

hundreds of different linear combinations which are analytic
continuations of one another converging in different regions of
the nine-dimensional space of the cross-ratios that enter the
expressions. Obviously the full set of these linear combina-
tions cannot be presented here. We therefore focus on one
example of such expressions for both the double box and
hexagon, which is explicitly given in the Supplemental
Material [6] to this paper. The individual terms in the presented
expressions satisfy the differential equation that relates the
double box in D dimensions to the hexagon in Dþ 2
dimensions. In addition to solving the thus far unsolved
problem of evaluating these complicated Feynman integrals,
it is likely that such an approach may yield insights for the
solution of the corresponding Yangian constraints.

FIG. 1. The double box and hexagon integrals.
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II. MELLIN-BARNES REPRESENTATIONS OF THE DOUBLE BOX AND HEXAGON

We follow in our computations the notational conventions of [1] where the six-point off-shell massless double box with
generic propagator powers (see Fig. 1 left) is written, in dual momentum space, as

I3;3 ¼
Z

dDx0dDx00

x2a10x
2b
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2c
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2l
000x

2d
400x

2e
500x

2f
600

¼ V3;3ϕ3;3; ð1Þ

with ϕ3;3 a conformally invariant function of nine cross-ratios (ui, i ¼ 1;…; 9) and V3;3 is the prefactor,

V3;3 ¼ x2l−D13 xD−2l
14 x−2d−2e15 x2dþ2e−2a

16 x−2b26 xD−2c−2l
36 x2l−2d−D46 x2d56: ð2Þ

The dual conformal Feynman parameter representation of the double box is given in [1], where

ϕ3;3ðu1;…; u9; DÞ ¼ Q3;3

Z
∞

0

dβ2dβ3dβ4dβ5
βb−12 βc−13 βd−14 βe−15

XD=2−l
2 YD=2−fZf

4

; ð3Þ

with

Q3;3 ¼
πDΓðD=2 − lÞΓðD=2 − fÞ
ΓðaÞΓðbÞΓðcÞΓðlÞΓðdÞΓðeÞ ; ð4Þ

X2 ¼ β2u6u9 þ β3u9 þ β2β3u1u2u3u9; ð5Þ
Y ¼ u8X2 þ β4u9 þ β2β4u2u3u9 þ β3β4u2u3u4u5u9 þ β5 þ β2β5u3 þ β3β5u3u5 þ β4β5u3u5u7; ð6Þ

and

Z4 ¼ 1þ β2 þ β3 þ β4 þ β5: ð7Þ

In the expressions above, xμij ¼ xμi − xμj and the momenta are related to their duals by pμ
j ¼ xμj − xμjþ1. Note that the

conformal constraints are aþ bþ cþ l ¼ D and dþ eþ f þ l ¼ D.
A similar analysis yields the hexagon integral (see Fig. 1 right) as

I6 ¼
Z

dDx0
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60

¼ V6ϕ6; ð8Þ

where [1]

ϕ6ðu1;…; u9; DÞ ¼ Q6

Z
∞

0

dβ2dβ3dβ4dβ5
βb−12 βc−13 βd−14 βe−15

YD=2−fZf
4

; ð9Þ

with

Q6 ¼
πD=2ΓðD=2 − fÞ

ΓðaÞΓðbÞΓðcÞΓðdÞΓðeÞ ð10Þ

and V6 ¼ x2f−D15 xD−2a−2f
16 x−2b26 x−2c36 x−2d46 xD−2e−2f

56 .
In this case, the conformal constraint is aþ bþ cþ dþ eþ f ¼ D.
It is straightforward to derive the MB representations of the double box and hexagon from the Feynman parametrizations

given in Eqs. (3) and (9) which can be written as

ϕ3;3 ¼
Q3;3u

D=2−l
8

ΓðD=2 − fÞΓðfÞ
1

ð2iπÞ9
Z þi∞

−i∞
dz1…

Z þi∞

−i∞
dz9Π9

i¼1ðwzi
i Γð−ziÞÞΓðD − f − lþ z1 þ � � � þ z9Þ

× Γðbþ z1 þ z5 þ z8 þ z9ÞΓðcþ z2 þ z6 þ z7 þ z8ÞΓðdþ z3 þ � � � þ z6Þ
× Γðeþ f þ l −D − z4 − � � � − z9ÞΓð−b − c − d − eþD − l − z1 − z2 − z3 − z5 − z6 − z8Þ

×
Γðl −D=2 − z7 − z8 − z9Þ

Γð−z7 − z8 − z9Þ
ð11Þ
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and

ϕ6 ¼
Q6

ΓðD=2 − fÞΓðfÞ
1

ð2iπÞ9
Z þi∞

−i∞
dz1…

Z þi∞

−i∞
dz9Π9

i¼1ðwzi
i Γð−ziÞÞΓðD=2 − f þ z1 þ � � � þ z9Þ

× Γðbþ z1 þ z5 þ z8 þ z9ÞΓðcþ z2 þ z6 þ z7 þ z8ÞΓðdþ z3 þ � � � þ z6Þ
× Γðeþ f −D=2 − z4 − � � � − z9ÞΓð−b − c − d − eþD=2 − z1 − z2 − z3 − z5 − z6 − z8Þ; ð12Þ

where thewi are combinations of theui (see Eq. (A20) in [1]).
It is implicit here that the integration contours are nonstraight
contours which avoid the poles of the gamma functions, in
accordance with the commonly used convention [7].
The two integrals in Eqs. (11) and (12) belong to a class

of MB integrals for which several series representations of
the latter coexist, converging in various regions of the cross-
ratios’ nine-dimensional space. Indeed, if one expresses the
gamma functions that appear in the integrands of Eqs. (11)
and (12) in the form ΠiΓðAi þ ai · zÞ=ΠjΓðBj þ bj · zÞ
where z ≐ ðz1;…; z9Þ, it is easy to see that the nine-
dimensional vector Δ ¼ P

i ai −
P

j bj is null for each
of theMB integrals, which proves the statement above [8,9].
As a final remark, one should note that the conformally

invariant functions of the double box in D dimensions and
hexagon in Dþ 2 dimensions are related by the differential
equation

∂u8ϕ3;3ðu1;…;u9;DÞ¼−
πD=2−1

ΓðlÞ ϕ6ðu1;…;u9;Dþ2Þ ð13Þ

whenD=2 − l ¼ 1, which can be easily checked both at the
level of the Feynman parameterizations and MB representa-
tions above. We will show in the next section that this is also
the case, at the level of each term in the linear combinations
that form the solutions that we present in this work.

III. SOLUTION

We will now extract series representations of both
the ninefold MB integrals shown in Eqs. (11) and (12).

This can be done in a systematic way following our new
simple and general method that is based on the construction
given in [4,5] and which will be presented in detail in [10].
As already mentioned in the Introduction, an important
advantage of our method is that the derivation of the linear
combinations of multiple hypergeometric series that give
the different series representations of N-fold MB integrals
does not require convergence considerations. In this sense,
our method extends, in a geometrical way, the graphical
computational approach of [4,5] dedicated to twofold MB
integrals. It is straightforward to derive the possible series
representations as well as their total number from our
procedure, and therefore to obtain the different analytic
continuations, from the series point of view, that can be
extracted for a given N-fold MB integral. We have checked
for this in many cases that are simpler than the double box
and hexagon. However, for the ninefold MB integrals under
study in the present paper, deriving all the series repre-
sentations was much too time consuming. Indeed, applying
our method to the hexagon, for example, we have obtained
hundreds of different series representations built from
linear combinations of 26 series that belong to a set of
2530 possible series (note that this total number of possible
series has been also obtained from the Yangian analysis of
[1]). However, we do know that many more can be derived.
It is therefore impossible to list all these possible linear
combinations explicitly in one paper and we focus here on
the series representations of the double box and hexagon
associated to one particular series representation.
For the double box case, the result is

ϕ3;3 ¼
Q3;3u

D=2−l
8

ΓðD=2 − fÞΓðfÞ ðD1 þD4 þD10 þD18 þD27 þD45 þD76 þD140 þD158 þD190

þD208 þD318 þD340 þD440 þD542 þD674 þD1063 þD1091 þD1435 þD1581 þD1646

þD2382 þD3047 þD3068 þD3786 þD4580 þD5 þD19 þD28 þD46

þD142 þD210 þD826 þD926 þD942 þD988 þD1094 þD1112 þD1330 þD1449

þD1647 þD2436 þD3069 þD3806Þ; ð14Þ

where the Di are explicitly given in Appendix A (see the Supplemental Material [6] ). The index i of the Di corresponds to
their ranking in our list of 4834 series that are used to constitute the different series representations of the double box.
The series representation of the hexagon that corresponds to the series shown in Eq. (14) (from the differential

equation (13) point of view) is
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ϕ6 ¼
Q6

ΓðD=2 − fÞΓðfÞ ðH1 þH4 þH9 þH15 þH22 þH35 þH58 þH94 þH103 þH123

þH133 þH199 þH210 þH270 þH331 þH409 þH637 þH653

þH838 þH925 þH960 þH1375 þH1664 þH1675 þH2062 þH2442Þ: ð15Þ

The Hi are also explicitly given in Appendix B (see the
Supplemental Material [6] ). As for the Di, the index i of
theHi corresponds to their ranking in our list of 2530 series
that are used to constitute the different series representa-
tions of the hexagon.
It is straightforward to see that, taking into account the

overall factor, for each of the first 26 individual terms of
Eq. (14) that we had reordered to ease this exercise, the
differential equation (13) is satisfied when compared to the
26 individual terms of the hexagon shown in Eq. (15). For
the 18 remaining terms of the double box, the differential
equation is also satisfied because the derivative of the latter
with respect to u8 gives zero.

Finding the convergence region of the series representa-
tion presented in Eq. (14) [resp. (15)] from the intersection
of the convergence regions of its 44 series (resp. 26 series)
is a very hard problem that we have not solved yet.
However, our method also allows to derive one particular
series, that we call the master series, whose convergence
region we conjecture to be included in both the conver-
gence regions of the series representations given in
Eqs. (14) and (15) (the detailed derivation of master series
will be discussed in [10]). The latter master series has the
following characteristic list [11]:

fn1 þ n2 − n3; n3 − n2 − n5; n3 þ n4 þ n5 − n1 − n6; n6 − n3; n1 þ n2 þ n6 − n3 − n4 − n7;

n6 − n5 − n8; n7 þ n8 − n6; n3 − n9; n4 þ n5 þ n7 þ n8 − n6 − n9; n9; n9 − n8; n3; n5; n6; n8; n9g; ð16Þ

and its arguments are in the order: w1w6

w3w8
, w2w5

w3w8
, w3w8

w5w6
, w4w8

w6w9
, w5w7

w6w9
,

w6w9

w7w8
, w8

w9
, w7

w9
, and w9.

Having obtained the form of the master series, it is now
possible to perform numerical checks of the results pre-
sented in Eqs. (14) and (15). For this, we do not need to
know the convergence region of the master series explicitly,
because one can guess particular values of the wi that make
it converge. Using these, we have compared the numerical
value of both the series representations (14) and (15) with
the direct numerical integration of the corresponding
Feynman parametrization integrals given in Eqs. (3) and
(9), with the help of Mathematica.
The size of the contributions of each series in Eqs. (14)

and (15) strongly depends on the values of the powers of
the propagators and in some cases one can find dozens of
orders of magnitude between two different series, the tiniest
contributions being often well under the precision level that
can be reached by Mathematica for the numerical integra-
tion in a decent time. Therefore, in order to perform
relevant numerical checks, we have chosen specific values
of the powers of the propagators such that all series of
Eqs. (14) and (15) contribute significantly to the total result
and we forced the level of accuracy in the numerical
integration of the Feynman parametrization integrals such
that the error given by Mathematica is smaller, in absolute
value, than the least contributing series. This numerically
ensures that the contributions of every one of the series of
Eqs. (14) and (15) can be tested.

We have done this exercise for different sets of values for
both the hexagon and double box, each time obtaining an
excellent numerical agreement between the series and the
numerical integration, thereby completing the check. Note
that this numerical analysis also gives a strong evidence
that our conjecture concerning the master series is correct.

IV. CONCLUSIONS

Series representations of the six-point off-shell massless
double box with generic propagator powers, and related
hexagon, have been presented in Eqs. (14) and (15). These
series representations, which have the form of linear
combinations of multiple hypergeometric series of the
generalized Horn type, belong to a large set of different
series representations that can be systematically derived
from our new powerful and simple method of evaluation of
multiple MB integrals. All the series representations of this
set are analytic continuations of one another. As a check of
the results presented in Eqs. (14) and (15), we have shown
that each of their individual terms satisfies the differential
equation (13). A detailed numerical analysis has been
performed to corroborate this check. It is likely that the
solutions of the double box and hexagon that we have
obtained from our MB analysis may yield insights for
solving the corresponding Yangian constraints.
Our method to derive these series representations, that

we will describe in a detailed way in [10], is a direct
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extension to the N-fold case of the practical computational
approach developed in [4,5] for the twofold case. It has the
great advantage of selecting the different series that con-
stitute a given linear combination forming a series repre-
sentation of theN-fold MB integral under study without the
need of a prior knowledge of the convergence regions of the
possible involved series.
Finding the convergence regions of the ninefold hyper-

geometric series that constitute the series representations
presented in this paper is a difficult open problem, but we
would like to add that, for each of the linear combinations
that our method can produce, one can also derive a master
series whose convergence region, we believe, is common to
the convergence regions of all the series that constitute the
corresponding linear combination [note that the double box

and hexagon series representations in Eqs. (14) and (15)
have the same master series; see Eq. (16)]. This can
dramatically simplify the convergence analysis in the cases
where the convergence region of the master series is equal
to the convergence region of the series representation and,
in the other cases, this considerably simplifies the numeri-
cal checks.
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