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The nonlinear LC circuit dual to the Toda lattice (voltage) soliton is studied using the reductive
perturbation method. It is found that the current flowing through the circuit obeys the defocusing modified
Korteweg–de Vries equation with shock-wave-type (current) solitons. The current soliton spatially
modulates the nonlinear inductance, equivalently the spatial modulations of electromagnetic wave velocity
in the circuit, resulting in the generation of analogue black holes. Hawking radiation from the black holes is
also discussed based on the tunneling models.
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I. INTRODUCTION

A soliton is a solitary wave formed by balancing
dispersion and nonlinearity of the nonlinear dispersive
media and behaves as a particle against collisions between
solitons [1–3]. This unique property is not only a funda-
mental concept for understanding nonlinear physical phe-
nomena in various fields, but it also has been applied to
information communication such as optical solitons [4]. In
electrical circuits, the Toda solitons [5] have been studied
by generating voltage solitons in the nonlinear LC circuit to
explore the basic concept of soliton theory and have been
utilized to signal transmissions. In the previous studies, the
origin of the nonlinearity was due to nonlinear capacitance
in the circuit. On the other hand, the system we consider is
an electronic circuit dual to the nonlinear LC circuit
mentioned above. The nonlinearity in the circuit is due
to nonlinear inductance rather than capacitance. This type
of circuit was studied in the 1990s. Although numerical
calculations have revealed the existence of shock waves
[6,7] for current in the circuit, the analytical solutions have
not been successfully derived so far.
In this paper, we deal with two issues: new types of

solitons and soliton-induced analogue black holes. First, we
clarify the wave nature hidden in the circuit equation by
using the reductive perturbation method [8]. As a result, it
was found that modified Korteweg–de Vries (mKdV)
equation with a negative nonlinear term is obtained with
shock-wave-type current soliton solutions, which are con-
sistent with numerical results obtained in the previous
studies [6]. Second, we demonstrate that this current soliton

behaves as black holes in the circuit [9,10]. In the
LC circuit, the velocity c of the electromagnetic wave
depends on both the inductance L and the capacitanceC via
c ¼ a=

ffiffiffiffiffiffiffi
LC

p
with a being the unit length of the circuit. The

current soliton produces spatially dependent inductance,
resulting in the spatially varying velocity of electromag-
netic waves. In our Josephson transmission line, it is
clarified that analogue black holes can be created by
spatially varying inductance induced by current solitons.
In addition, the Hawking temperature is derived on the
basis of tunneling mechanism and is evaluated to discuss
the observability of Hawking radiation.

II. JOSEPHSON TRANSMISSION LINES

Let us consider a coplanar Josephson transmission line
indicated in Fig. 1, where all Josephson junctions are
assumed to have identical critical current Ic and capaci-
tance C.

In In+1In-1

QnQn-1 Qn+1

VnVn-1 Vn+1 Vn+2

Qn+2

FIG. 1. Schematic diagram of a Josephson transmission
line. The cross indicates a Josephson junction. In, Vn, and Qn
represent current, voltage, and electric charge of the nth junction,
respectively.*noriyuki@hiroshima-u.ac.jp
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From the Kirchhoff’s law together with the Josephson
relation, the circuit equations are given by

InðtÞ − In−1ðtÞ ¼ C
dVnðtÞ
dt

ð1Þ

and

Vnþ1ðtÞ − VnðtÞ ¼
ℏ
2e

dθnðtÞ
dt

; ð2Þ

where ℏ and e are the Plank constant h divided by 2π and
the elementary electric charge, respectively. In, Vn, and θn
represent the current, voltage, and phase difference of the
nth Josephson junction on the line, respectively. These
equations lead to the discrete equation of motion for the
phase difference as

ℏ
2e

C
d2θnðtÞ
dt2

¼ Inþ1ðtÞ þ In−1ðtÞ − 2InðtÞ: ð3Þ

In continuum approximation, i.e., InðtÞ ¼ Iðx; tÞ≡ I
together with the Josephson relation,

θ ¼ sin−1
I
Ic

¼
X∞
i¼1

1

ð2i − 1Þ!
�
I
Ic

�
2i−1

: ð4Þ

Equation (3) is reduced to

ℏ
2e

C
∂2

∂t2
�X∞

i¼1

1

ð2i−1Þ!
�
I
Ic

�
2i−1

�
¼
X∞
i¼1

2a2i

ð2iÞ!
∂2i

∂x2i I: ð5Þ

By introducing the normalized variables x̄ ¼ x=a and
t̄¼t=ω−1

J ¼t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ic=ðCℏ=2eÞ

p
with ωJ being the Josephson

plasma frequency, the equation reduces to

∂2

∂ t̄2
�X∞

i¼1

1

ð2i − 1Þ! Ī
2i−1

�
¼

X∞
i¼1

2

ð2iÞ!
∂2i

∂x̄2i Ī; ð6Þ

where Ī ¼ I=Ic.

III. MODIFIED KORTEWEG–DE VRIES
EQUATION

A. Reductive perturbation method

Now let us find the wave nature hidden in the circuit
equation by using the reductive perturbation method [8]. It
derives a scale-invariant nonlinear evolution equation near
a linear approximation by considering the balance between
dispersion and nonlinearity in the comoving frame of
reference. Changes in physical quantities appear to be
gradual in coordinate systems that move together with
phase velocities at long-wavelength limits. This requires
stretched (slow) variables called the Gardner-Morikawa
transformation [11,12] such as

ξ ¼ ϵ
1
2ðx̄ − t̄Þ; ð7Þ

τ ¼ ϵ
3
2t̄; ð8Þ

where ϵ represents the small amplitude of the perturbation.
The gradual temporal change in the higher order compared
to ϵ1=2 represents the wave number dispersion because the
phase velocity depending on the wave number deviates
from the long-wavelength limit phase velocity. Inserting the
transformation into the field equation (6), we have

�
ϵ
∂2

∂ξ2 − 2ϵ2
∂2

∂ξ∂τ þ ϵ3
∂2

∂τ2
��X∞

i¼1

1

ð2i − 1Þ! Ī
2i−1

�

¼
�X∞

i¼1

2

ð2iÞ! ϵ
i ∂2i

∂ξ2i
�
Ī: ð9Þ

Now let us assume that the normalized current Ī is
expanded in a power series of a small parameter ϵ in order
to include nonlinearity perturbatively as follows:

Ī ¼ ϵ
1
2Īð1Þ þ ϵĪð2Þ þ ϵ

3
2Īð3Þ þ � � � : ð10Þ

Introducing the expansion Eq. (10) into Eq. (9) and setting
the coefficients of similar powers equal to zero, we obtain a
set of differential equations. For ϵ

5
2,

2
∂2Īð1Þ

∂ξ∂τ −
1

6

∂2ðĪð1ÞÞ3
∂ξ2 þ 1

12

∂4Īð1Þ

∂ξ4 ¼ 0: ð11Þ

From the integration of Eq. (11) with respect to ξ, we get

2
∂ Īð1Þ
∂τ −

1

6

∂ðĪð1ÞÞ3
∂ξ þ 1

12

∂3Īð1Þ

∂ξ3 ¼ gðτÞ; ð12Þ

where gðτÞ is an arbitrary function of its argument and
can be chosen to be zero. By rescaling our coordinates as
Īð1Þ ¼ 2u, ξ ¼ ξ̄=2, and τ ¼ 3τ̄, this finally reduces to the
modified Korteweg–de Vries equation with a negative
nonlinear term [13],

∂u
∂ τ̄ − 6u2

∂u
∂ξ̄ þ

∂3u

∂ξ̄3 ¼ 0: ð13Þ

This equation is specifically called defocusing mKdV or
mKdV−, because the sign of the nonlinear term is negative.
The difference in the sign of the nonlinear term in the KdV
equation only changes its polarity, and no significant
changes appear in the soliton solution. In contrast, the
difference in the sign of the nonlinear term in the mKdV
equation makes a drastic change. The mKdV− produces an
entirely new solution set shown below.
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B. Soliton solutions

Unlike the mKdVþ equation, the mKdV− equation has
kink (or shock-wave-type) traveling wave solutions of the
form [13,14]

uðξ̄; τ̄Þ ¼ α tanhðαξ̄þ 2α3τ̄Þ; ð14Þ

where the parameter α characterizes solitonslike amplitude
α and velocity ð−2α2Þ. In terms of electric current in the
system, the normalized current soliton in the x̄ − t̄ coor-
dinate is given as

Īðx̄; t̄Þ¼ 2α
ffiffiffi
ϵ

p
tanh

�
2α

ffiffiffi
ϵ

p �
x̄−

�
1−

ðα ffiffiffi
ϵ

p Þ2
3

�
t̄

��

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1− v̄sÞ

p
tanh ½2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1− v̄sÞ

p
fx̄− v̄st̄g�; ð15Þ

where v̄s stands for the normalized soliton velocity in the
x̄ − t̄ coordinate (v̄s ¼ 1 − α02=3) and α0 ¼ α

ffiffiffi
ϵ

p
. This is

exactly in agreement with the numerical results in the
previous studies [6,7]. Thus, we succeeded in demonstrat-
ing analytically the existence of shock-wave-type solutions
in the superconducting circuits that have not been solved
for many years. Note that the smaller shock-wave-type
soliton moves more rapidly than the larger one, contrary to
the solitons of both KdV and mKdVþ equations. In
addition, discrete treatment might be required for detailed
analysis when the soliton speed is slow, since the soliton
width d approaches the lattice spacing a.

IV. BLACK HOLE SOLITONS

Here let us discuss analogue black holes induced by
current soliton in this system based on the seminar work by
Unruh and Schützhold [15] rather than Gegenberg and
Kunstatter using a duality between black holes in Jackiw-
Teitelboim dilaton gravity and solitons in sine-Gordon field
theory [16,17]. The basic idea of artificially creating a black
hole in a laboratory system is as follows. Take a carp
climbing a waterfall as an example. The flow velocity is
gentle in the upstream, whereas it is high in the down-
stream. In this way, the flow velocity changes spatially. In
other words, the velocity is different between upstream and
downstream, and there are places where carps cannot climb.
That corresponds to the horizon of the event. Therefore, if
such a system in which the flow velocity changes spatially
can be produced, a pseudo black hole can be created.
In our system, the current through the junction modifies

the junction inductance according to the relation

L ¼ ℏ
2eIc cosðarcsin Īðx; tÞÞ

; ð16Þ

resulting in the spatial modification of the velocity
of the electromagnetic wave in the transmission line via
c ¼ a=

ffiffiffiffiffiffiffi
LC

p
. Since the current soliton depends on the

position, the velocity of the electromagnetic wave is
modulated in space as

cðx̄; t̄Þ ¼ c0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos½arcsinf2α0 tanh f2α0ðx̄ − v̄st̄Þgg�

p
; ð17Þ

with c0 ¼ a=
ffiffiffiffiffiffiffiffiffi
L1C

p
and L1 ¼ ℏ=2eIc. The soliton param-

eter α0 is restricted to jα0j ≤ 1=2 because the electromag-
netic wave velocity must be in real numbers. Equation (17)
is rewritten by

c̄ðx̄; t̄Þ ¼ ½1 − 12ð1 − v̄sÞtanh2f2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 − v̄sÞ

p
ðx̄ − v̄st̄Þg�

1
4;

ð18Þ

where c̄ðx̄; t̄Þ is the normalized velocity of the electromag-
netic wave, i.e., c̄ðx̄; t̄Þ ¼ cðx̄; t̄Þ=c0, in the Josephson
transmission lines.
Figure 2 shows the correlation diagram of a current

soliton (b) and the velocity of the electromagnetic wave
(c) in the Josephson transmission line (a). Two event
horizons are formed due to the spatially varying velocities
of the electromagnetic wave, leading to a pair of black hole
and white hole as presented in nonlinear optical fibers [18].
The event horizon of analogue black hole appears at the
place where the velocity of electromagnetic wave c̄ðx̄; t̄Þ is
equal to the velocity of the reference wave, i.e., the
normalized current soliton v̄s ¼ vs=c0. In short, the veloc-
ity of the current soliton determines the position of the
event horizon. In our system, a pair of black holes occurs
within 11=12 ≤ v̄s < 1 as follows. The lower bound is
given by the condition jα0j ¼ j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1 − v̄sÞ
p j ≤ 1=2 demon-

strated above. This is also equivalent to the condition that
the soliton width is larger than the lattice spacing. In other
words, the continuum approximation is justified for soliton
velocities greater than this. On the other hand, the upper
bound is determined by the condition that the velocity of

FIG. 2. (a) Josephson transmission line, (b) shock-wave-type
normalized current soliton at t̄ ¼ 0 with the velocity v̄s ¼ 0.98,
and (c) normalized velocity of the electromagnetic wave at t̄ ¼ 0.
The horizontal dotted line represents the normalized soliton
velocity v̄s. x̄−h and x̄þh indicate the black hole and white hole
horizon positions, respectively.
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the soliton is smaller than the velocity of the electromag-
netic wave c0.

V. HAWKING RADIATION

A black hole is an area of space where a gravitational
field is so strong that no matter or radiation (including light)
can escape. However, Hawking proposed that virtual
particle pairs that arise quantum mechanically from a
vacuum near the event horizon may result in one particle’s
escape as Hawking radiation in the vicinity of the black
hole while the partner particle with negative energy falls
into it before the pair annihilation can happen [19,20].
Hawking temperature is the key to assess the observ-

ability of Hawking radiation. In the previous papers [15], it
was evaluated from the surface gravity of the effective
horizon that depends on the rate of spatial change of the
light velocity in the laboratory frame across the horizon.
Here we employ the tunneling mechanism known as radial
null geodesic method [21,22]: a particle with positive
energy of virtual particle pairs tunnels through the event
horizon toward the outside of the black hole. The tunneling
probability Γ of the classically forbidden trajectory from
inside ðxinÞ to outside ðxoutÞ of the horizon, per unit time per
unit volume, in the semiclassical approximation is given by
the following formula:

Γ ¼ exp

�
−
2 Im S
ℏ

�
; ð19Þ

where S is classical action of the trajectory and is given as

S ¼
Z

ðp_x −Hðx; pÞÞdt

¼
Z

xout

xin

Z
p

0

dp0dx −
Z

Hðx; pÞdt

¼
Z

xout

xin

Z
EðtÞ

0

dH
dx=dt

dx −
Z

Hðx; pÞdt; ð20Þ

where Hamilton’s equation of motion _x ¼ dH=dp is used.
To evaluate the imaginary part of the action, we need to
express dx=dt concretely.
In the Painléve-Gullstrand coordinates [9,10], the metric

of this system is

ds2 ¼ −ðv2s − c2Þdt2 þ 2cdxdtþ dx2: ð21Þ

The radial null geodesic (ds2 ¼ 0) leads to

�
dx
dt

�
2

þ 2c
dx
dt

− ðv2s − c2Þ ¼ 0: ð22Þ

The solution is then given as

dx
dt

¼ −c� vs; ð23Þ

where the positive (negative) sign in the second term on the
right side represents the external (internal) mode. For the
external mode, Eq. (20) is reduced to

S ¼
Z

xout

xin

Z
EðtÞ

0

dH0

vs − c
dx −

Z
Hðx; pÞdt: ð24Þ

Hereafter, the second term of this equation is ignored since
it is real. Taylor expansion of cðx; tÞ near the position of the
event horizon xh is written as

cðx; tÞ ¼ cðxh; tÞ þ
∂c
∂x

				
x¼xh

ðx − xhÞ þOððx − xhÞ2Þ

≃ vs þ
∂c
∂x

				
x¼xh

ðx − xhÞ: ð25Þ

According to the Hilbert formula,

fðxÞ
x − x0 ∓ iε

¼ P
fðxÞ
x − x0

� iπδðx − x0Þ; ð26Þ

the action is described as

S ≃
Z

xout

xin

Z
H

0

dH0

− ∂c
∂x jx¼xhðx − xhÞ

dx

¼ −P
Z

xout

xin

EðtÞ
∂c
∂x jx¼xhðx − xhÞ

dx − iπ

�
−

EðtÞ
∂c
∂x jx¼xh

�
: ð27Þ

Since the principal value is real, the imaginary part of the
action is given as

Im S ¼ πEðtÞ
∂c
∂x jx¼xh

: ð28Þ

The tunneling rate is then expressed as

Γ ≃ exp

�
−
2 Im S
ℏ

�
¼ exp

�
−

2πEðtÞ
ℏ ∂c

∂x jx¼xh

�
: ð29Þ

The Hawking temperature TH is defined by assuming
that the tunneling rate is related to the Boltzmann factor
expð−EðtÞ=kBTHÞ with kB being the Boltzmann constant.
That reads as

TH ¼ ℏ
2πkB

				 ∂c∂x
				
x¼xh

: ð30Þ

This is exactly identical with the Unruh’s expression [15]
despite being derived in a different way. Higher-order
quantum corrections will appear in the theory beyond
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the semiclassical approximation. This will be discussed
elsewhere. The Hawking temperature in our system is
derived as

TH ¼ ℏ
2πk0

�
c0

dx̄
dx

�				 ∂c̄∂x̄
				
x̄¼x̄h

¼ T0
Hfðv̄sÞ; ð31Þ

where the bare Hawking temperature T0
H is the dominant

term of the Hawking temperature expression and deter-
mines the order of the temperatures, while fðv̄sÞ represents
the dynamical contribution to the Hawking temperature of
solitons as defined below,

T0
H ¼ ℏ

2πkB

�
1ffiffiffiffiffiffiffiffiffi
L1C

p
�
; ð32Þ

fðv̄sÞ ¼
				 ∂c̄∂x̄

				
x̄¼x̄h

¼
				

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v̄4s

p
ð12v̄s − v̄4s − 11Þ
2v̄3s

				: ð33Þ

Here we use the position of the event horizon arising under
the condition v̄2sðx̄Þ ¼ c̄2ðx̄Þ as follows:

x̄�h ¼ � 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 − v̄sÞ

p tanh−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ v̄sÞð1þ v̄2sÞ
12

r �
: ð34Þ

The Hawking temperature is essentially determined by
the characteristic time scale ð1= ffiffiffiffiffiffiffiffiffi

L1C
p Þ as shown in

Eq. (32). This implies that the Hawking temperature can
be controlled by designing the circuit. In fact, the bare
Hawking temperature T0

H changes with the junction param-
eters C and Ic as shown in Fig. 3. Note that the bare
Hawking temperature is in the order of the Kelvin temper-
ature range that is accessible experimentally in existing
technologies. This result shows that analogue Hawking

radiation is observable in our system, as in the previous
papers.
In addition, there is a completely new contribution to the

Hawking temperature in our expression that has not been
found in the previous theories. This is the dynamical
contribution of the soliton represented by fðv̄sÞ in
Fig. 4. This stems from the change in the shape of soliton
depending on the soliton velocity. This indicates that the
Hawking temperature can be controlled simply by chang-
ing the soliton velocity without changing the circuit at all.
Therefore, it can be confirmed that the experimentally
detected radiation is indeed due to Hawking radiation
through this change. This is the advantageous feature that
has never existed before. Considering this effect, the
Hawking temperature eventually reaches tens milli-
Kelvin order for vs ¼ 0.98c0 and is sufficiently observable.
Finally, we comment on the radiation power of

Hawking radiation. The radiation power for black holes
in 1þ 1-dimensional asymptotically flat spacetime [23,24]
is given by

dE
dt

¼ kBT
2π

Z
∞

0

dω
ℏω
kBT

e
ℏω
kBT − 1

¼ π

12ℏ
ðkBTHÞ2: ð35Þ

It is interesting to note that the radiation power depends
only on Hawking temperature. Using the results obtained
above, the radiation power can be estimated to be in the
region of 10−17 W to 10−15 W for vs ¼ 0.98c0. Therefore,
Hawking radiation can be detected experimentally enough
from the viewpoint of radiation power.

VI. SUMMARY

We have studied the current that flows through the
Josephson transmission line dual to the LC circuit with
nonlinear capacitance generating the Toda soliton (voltage
soliton). Starting from the circuit equation, we revealed that
the current obeys the mKdV− equation with a shock-wave-
type soliton solution (current soliton) by using the reductive
perturbation method. This proved the existence of such a

FIG. 3. Diagram of junction parameter (the capacitance C and
critical current Ic) dependence on the bare Hawking temperature
T0
H defined in Eq. (32).

FIG. 4. Diagram of soliton velocity v̄s dependence on Hawking
temperature fðv̄sÞ given in Eq. (33).
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solution known numerically in the Josephson transmission
lines that had been unsolved analytically for a long time.
In addition, we found that the current soliton creates an

analogue black hole and a white hole pair by the modi-
fication of the electromagnetic wave velocity through the
soliton-induced spatially varying inductance in the circuit.
This pair provides a new platform for exploring Hawking
radiation. Then, we derived the Hawking temperature based
on the tunneling mechanism for Hawking radiation. As a
result, the Hawking temperature was found to be exper-
imentally accessible. The resulting formula also showed
that the experimentally observed temperature was indeed
due to Hawking radiation by confirming the dependence of

soliton velocity on the temperature without changing circuit
parameters.
Black hole solitons might enable us to explore further

fascinating features and unveil phenomena of black holes
that have not been accessible in real black holes so far, such
as dynamical event horizon and birth of micro black holes
as quantum nucleation. These will be discussed in the
forthcoming papers. Therefore, this study will open a new
path to the circuit quantum gravity.
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