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We apply the classical double-copy procedure to a class of regular, nonsingular black hole solutions.
We give several examples, paying particular attention to a string-theory-corrected black hole solution
emerging from T-duality. Nonperturbative stringy corrections introduce an ultraviolet (UV) zero-point
length cutoff which results in nonsingular black hole spacetimes. Apart from the UV regulator, the solution
is equivalent to the Bardeen black hole spacetime. We extend this solution to include an asymptotic de
Sitter background. All Yang-Mills field theory quantities associated with the double copy are well-behaved
and finite for all values of parameters. We present a thorough analysis of the black hole horizon structure,
additionally uncovering a simple yet new connection between horizons on the gravity side and electric
fields on the gauge theory side of the double copy.
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I. INTRODUCTION

In general relativity (GR), the only spherically symmetric
vacuum solution is the Schwarzschild solution. The result-
ing Schwarzschild black hole is plagued with singular
curvature invariants at its center, indicating a breakdown
of general relativity, a notion made mathematically rigorous
by the seminal work of Hawking, Ellis, Penrose, and others
during the 1960s [1–5] (see [6] for a somewhat recent
review). The singularity has prompted physicists to consider
gravitational theories beyond GR. Nonsingular, spherically
symmetric solutions using an antisymmetric, Hermitian
metric were found in [7], for example. Additional successes
include considering stringy α0 corrections as in [8], extend-
ing Einstein-Maxwell theory to include coupling to higher
order curvature terms [9], and introducing interacting gauge
fields in Lovelock gravity [10].
Alternatively, supplementing the Einstein-Hilbert

Lagrangian with “nonstandard” matter actions, such as
those of an Abelian gauge field in a nonlinear electrody-
namic theory (NLED), produces nonsingular black hole
solutions. [11–15]. Solutions of this type include the
Dymnikova metric [16] and the Bardeen black hole [17],
both of which are sourced by nonsingular magnetic
monopoles.1 The monopole charge g acts as a regulating
parameter, curing the curvature divergences at the center of
the black hole. Although the monopole sources are unusual

in that the associated Lagrangians are somewhat ad hoc,
they indeed produce reasonable stress energy tensors
satisfying the weak energy condition (WEC) [18–20].
Another possibility for resolving the black hole singu-

larity is Markov’s limiting curvature hypothesis (LCH)
which suggests, given the existence of a fundamental
ultraviolet (UV) length scale, all curvature invariants
remain bounded [21]. The LCH has been used to construct
nonsingular black holes in a variety of contexts [22–32] and
to resolve cosmological singularities as well [33–41]. In
addition, nonsingular, or regular, black hole metrics are
appealing through the lens of black hole thermodynamics
[42]. Unlike the Schwarzschild black hole, a generic feature
of nonsingular solutions is a finite, nonzero final evapo-
ration temperature [43]. The Hayward model [44], for
example, nicely illustrates the attractive physical character-
istics of nonsingular black hole evaporation processes. The
nonsingular nature of the black holes has important
implications for the evaporation process, remnants, dark
matter, and the information loss problem, all of which are
discussed partly in the above references.
Another common thread between the nonsingular black

hole models is the existence of a “de Sitter core”; the
spacetime geometry locally becomes de Sitter space as the
radial coordinate r is taken to zero. The effective cosmo-
logical constant in the small r region is related to the metric
parameter that serves to regulate the curvature singularities.
It is natural to expect the regulating parameter to come from
some quantum gravity theory, and indeed in [45], it was
shown that a nonperturbative string theory correction
produces an ultraviolet cutoff parameter l, known in the
literature as a zero-point length, which appears in the
denominator of the gravitational potential. The parameter l
plays the precise role of the singularity-regulating
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1In fact in [12], the idea to couple a black hole to a NLED

source in Einstein gravity was first introduced, while in [13], the
authors showed how the Bardeen solution can be understood as
being sourced by such a monopole. We review this in Sec. II C 1.
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parameter in the metric. The resulting spacetime is non-
singular and equivalent in form to the Bardeen black hole
with l in place of the monopole charge g. Their derivation
can be understood as induced by T-duality, and hence, we
refer to their solution as the T-duality black hole.
The double copy, first presented in [46], provides a

simple way to obtain graviton scattering amplitudes in
terms of simpler gauge theory amplitudes (see [47] for a
comprehensive review on the subject). Qualitatively, the
double copy entails first organizing a diagrammatic expan-
sion in (super) Yang-Mills theory such that the overall
amplitude manifestly exhibits a particular color-kinematic
duality, the BCJ (Bern, Carrasco, Johansson) duality, then
replacing the non-Abelian gauge theory color factors with
“kinematic numerators” (momenta invariants and polar-
izations). The resulting gravitational amplitude will match
both the brute force calculation using the expansion of the
Ricci scalar at the Lagrangian level in linearized gravity and
that obtained using the string theory KLT (Kawai,
Lewellen, Tye) relations (see, respectively, Secs. 1.1 and
2.3.1 of [47]). The double copy is inherently perturbative at
the amplitude level; however, in [48], it was shown that a
double-copy relationship exists between exact solutions in
gravity and exact solutions in gauge theory. This part of the
story is referred to as the classical double copy and will be
the focus of our Sec. III.
The classical double copy has been studied in wide

variety of settings, [49–65], including in the context of
nonsingular, static spherically symmetric black holes [66].
Overall findings are generally consistent with what one
would expect intuitively (the textbook examples being a
point charge mapping to Schwarzschild and Kerr being
associated with electric and magnetic fields, the latter
depending on the rotation parameter). It has also been
extremely fruitful in the realm of gravitational wave
physics from black hole collisions [67–74]. Recent explo-
rations of the classical double copy include its interplay in
the fluid-gravity duality [75], classical backreaction [76], as
well as in the context of Born-Infeld theory [77].
In this work, we explore nonsingular black hole sol-

utions in the framework of the classical double copy. We
focus on the T-duality black hole of [45]; however, we
study a slightly more general metric with de Sitter asymp-
totics. The metric, which we call the T-dual de Sitter black
hole, is structurally identical to the Bardeen–de Sitter
metric studied in [78], although arguably it is derived from
a more well-motivated origin,2 since the black hole regu-
lator comes from the UV-corrected massless scalar propa-
gator. Associated with the metric gμν is an Abelian gauge
field Aμ that is referred to as the single copy. We will show
that for the T-dual de Sitter black hole spacetime, all gauge
field quantities are nonsingular at the origin,

lim
r→0

Aμ ¼ 0; lim
r→0

Fμν ¼ 0; lim
r→0

∂νFμν ¼ constant; ð1:1Þ

where Fμν ¼ ∂μAν − ∂νAμ is the usual field strength tensor.
We will see that verifying (1.1) is essentially a trivial task,
although not necessarily obvious a priori.
Moreover, by investigating the T-dual de Sitter black

hole, we find illuminating relationships between the electric
field associated with the single-copy gauge theory and
horizons on the gravitational side. The horizon structure
can be understood in terms of two parameters in the
metric, and the spacetime can exhibit between zero and
six horizons. In Sec. II, we present a complete analysis of
the (positive mass, positive cosmological constant) param-
eter space for the T-dual de Sitter black hole spacetime and
find a natural classification scheme that breaks the metric’s
behavior into 12 total cases (see Fig. 4). Following a
comprehensive treatment of the causal structure, energy
conditions, and circular orbits of the black hole, we show
how the single-copy electric fields exhibit significantly
different behaviors that can be traced back to the horizon
structure of the black hole.
This paper is organized as follows. Section II is devoted

to the features of the T-dual de Sitter black hole spacetime
most relevant to our treatment of the associated single-copy
gauge theory: we analyze the horizon structure in II A,
present the conformal diagrams in II B, work through the
energy conditions in II C including a review of the NLED
monopole source for the Bardeen solution, then treat
massless and massive circular orbits in II D. In Sec. III,
we start with a short review of the classical double copy
before computing the single-copy gauge field, field
strength, and charge density. We also include a discussion
of the interplay between the sources on the gravity and
gauge theory sides, the Komar energy, along with a few
comments about the Hayward and Dymnikova solutions
toward the end of Sec. III A. In Sec. III B, we illustrate our
new findings relating the single-copy electric fields to the
horizon structure before adding a few last statements
regarding electric and gravitational forces in Sec. III C.
We conclude in Sec. IV.

II. NONSINGULAR BLACK HOLE SOLUTION

The T-dual de Sitter black hole metric can be written as

ds2 ¼ gttðrÞdt2 þ grrðrÞdr2 þ r2dΩ2; ð2:1Þ

with dΩ2 ¼ dθ2 þ sin2 θdϕ2 and grrðrÞ ¼ − 1
gttðrÞ, where

the metric function gtt has the profile

−gttðrÞ ¼ 1 −
2MðrÞ

r
−
Λr2

3
; ð2:2Þ

with
2Note the case of de Sitter asymptotics no longer obeys

T-duality.
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MðrÞ ¼ mr3

ðr2 þ l2Þ3=2 : ð2:3Þ

In the above, m is the (black hole) mass, l is a new
parameter with units of length (associated with the funda-
mental zero-point length or string scale l ∼

ffiffiffiffi
α0

p
), Λ is the

cosmological constant setting the scale of the de Sitter
space, and our coordinates span the ranges t ∈ ð−∞;∞Þ,
r ∈ ð−∞;∞Þ, θ ∈ ½0; π�, and ϕ ∈ ð−π; π�. Depending
on model parameters, the above metric smoothly interpo-
lates between de Sitter space as r → �∞, ordinary
Schwarzschild for midranges of the radial coordinate,
and an “interior” spacetime, and is everywhere nonsingular
even as r → 0. The lack of singularities is most easily seen
by examination of the Kretschmann scalar constructed from
the Riemann tensor Rμνρσ, which is everywhere finite,

K ¼ RμνρσRμνρσ

¼ 12m2ð8l8 − 4l6r2 þ 47l4r4 − 12l2r6 þ 4r8Þ
ðr2 þ l2Þ7

þ 8Λmð4l4 − l2r2Þ
ðr2 þ l2Þ7=2 þ 8Λ2

3
: ð2:4Þ

By expanding the metric around r ¼ 0, we find the static
de Sitter patch

−gttðr ≈ 0Þ ¼ 1 −
r2

l2
þOðr4Þ; ð2:5Þ

where l is the interior length scale,

1

l2
¼ Λ

3
þ 2m

l3
: ð2:6Þ

The relation (2.6) suggests some particularly intriguing
features for the exotic case of m < 0. Depending on the
magnitude of the mass, the interior length scale can become
infinite ifm ¼ − l3Λ

6
, making the interior region locally flat.

Alternatively, if m < − l3Λ
6
, the interior region is locally

anti–de Sitter (AdS). These features would also arise for
m > 0 and Λ < 0. In this work, we restrict our attention to
m > 0 and Λ > 0; we plan to explore these other cases in
future work.
Far from the black hole, we find the asymptotic behavior

−gttðrÞ ¼ 1 −
2m
r

þ 3ml2

r3
−
Λr2

3
þOðr−5Þ: ð2:7Þ

This form differs from the standard Reissner–Nordström–
de Sitter black hole sourced by an electric point charge q,
since here we have a r−3 contribution rather than the q2=r2

term in −gttðrÞ. We will return to this point in Sec. II C 1.

A. Horizon structure and surface gravity

Weplot themetric function (2.2) for all cases in Figs. 1–3.
For a general solution, there may be an interior horizon,
exterior horizon, and cosmological horizon, in both the
r > 0 and r < 0 regions. We denote the location of the three
horizons as rþ, r−, and rc, respectively.
The timelike Killing vector

Kμ ¼ ð∂tÞμ ¼ ð1; 0; 0; 0Þ ð2:8Þ

is null at each horizon and has norm

KμKμ ¼ gμνKμKν ¼ −
�
1 −

2mr2

ðr2 þ l2Þ3=2 −
Λr2

3

�
; ð2:9Þ

FIG. 1. Plot of metric function −gtt for the asymptotically Minkowski spacetimes. The horizonless wormhole is shown in orange, the
extremal black hole with merged horizons at �rþ ¼ �r− ¼ �r⋆ ¼ � ffiffiffi

2
p

l in red, and the standard four horizon nonsingular black hole
in blue.
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yielding surface gravities κ†, given by

∇σð−KμKμÞ ¼ ∇σ

�
1 −

2mr2

ðr2 þ l2Þ3=2 −
Λr2

3

�

¼ 2κ†Kσ; ð2:10Þ

where † ¼ fc;þ;−g for de Sitter, outer and inner horizons,
respectively. In the ft; r; θ;ϕg coordinates, since the
timelike Killing vector (2.8) vanishes at the horizons
and KμKμ ∝ gtt, the zeros of (2.2) provide the horizon
locations.
It is useful to write the metric function using the dimen-

sionless coordinate r̃ ¼ r=l and define the parameters

α ¼ 2m
l

; Λ̃ ¼ Λl2; ð2:11Þ

so that

−gtt ¼ 1 −
αr̃2

ð1þ r̃2Þ3=2 −
Λ̃
3
r̃2: ð2:12Þ

Thedifferent horizon structures can beunderstood in termsof
critical values of α and Λ̃, as we will see below. We present
the full fα; Λ̃g parameter space in Fig. 4.

1. Asymptotically Minkowski solutions

When Λ ¼ 0, the spacetime is asymptotically flat and
has the metric profile

−gtt ¼ 1 −
αr̃2

ð1þ r̃2Þ3=2 : ð2:13Þ

This solution may have zero, two, or four horizons depend-
ing on α. The analysis is straightforward: a critical point
for α occurs when −gtt ¼ −∂rgtt ¼ 0, corresponding to the

value αcrit ¼ 3
ffiffi
3

p
2
. At αcrit, the inner and outer horizons

merge (in both the r > 0 and r < 0 regions) at r ¼ � ffiffiffi
2

p
l.

Consequently, we obtain the following statements for the
general horizon structure, which we refer to as the cases
M1;M2, and M3:

M1∶ α <
3

ffiffiffi
3

p

2
⇒ no horizons;

M2∶ α ¼ 3
ffiffiffi
3

p

2
⇒ two horizons;

M3∶ α >
3

ffiffiffi
3

p

2
⇒ four horizons: ð2:14Þ

FIG. 2. Plot of metric function −gtt for the class A asymptoti-
cally de Sitter spacetimes.

FIG. 3. Plot of metric function −gtt for the class B and C
asymptotically de Sitter spacetimes. The B2 subclass (defined by
having parameter values fα; Λ̃g ¼ 55=2

24
; 1
8
g) clearly has its hori-

zons at r=l ¼ �2.

FIG. 4. fα; Λ̃g parameter space with all 12 cases. The dashed/
solid red line is α ¼ 55=2

3
Λ̃, while the purple and orange curves are

given respectfully by (2.21) and (2.24). The extremal asymp-
totically flat spacetime (M2) is at the point f3 ffiffiffi

3
p

=2; 0g and the
asymptotically de Sitter cubic horizon spacetime (B2) is at the
point f55=2=24; 1=8g. We note that A1 − A4 as well as B2 were
discussed in [78], and their findings are consistent with ours for
those cases.
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In the fα; Λ̃g parameter space in Fig. 4, the above three
cases all lie on the vertical (Λ̃ ¼ 0) axis, withM1 in dashed
blue, M3 in solid blue, and the M2 point at ðα; Λ̃Þ ¼
ð3 ffiffiffi

3
p

=2; 0Þ labeled with a solid blue star. Figure 1 shows
these three separate cases contrasted to the usual
Schwarzschild solution.3 In the M3 case, we have that
−gtt < 0 between the inner and outer horizons. In this
region, the r coordinate switches roles with t and timelike
(spacelike) curves become spacelike (timelike) curves.
We have two black hole surface gravities given by

κ� ¼ 1

2
∂r

�
1 −

2mr2

ðr2 þ l2Þ3=2
�����

r�

; ð2:15Þ

where the above is evaluated at either the inner or
outer horizons r�. In the case where the inner and outer
horizons merge to �rþ ¼ �r− ≡�r⋆, it follows that
∂rgttð�r⋆Þ ¼ 0, signaling a vanishing surface gravity. In
GR, surface gravity is proportional to the black hole
temperature; therefore, extremal solutions of this type
are often referred to as cold black holes.
For a given black hole massm, the horizons r� are given

by the expression

m ¼ ðl2 þ r2�Þ3=2
2r2�

; ð2:16Þ

which has global minimum corresponding to the extremal
values r⋆ ¼ ffiffiffi

2
p

l, m⋆ ¼ 3
ffiffiffi
3

p
l=4. In the limit as m → ∞,

the outer horizon rþ → 2m and the inner horizon r− → l.

2. Asymptotically de Sitter solutions

With a nonzero (positive4) cosmological constant, the
metric (2.2) has a very rich horizon structure. It is natural to
divide the various cases into three main classes, which we
refer to as classes A, B, and C. The relation between α and
Λ̃ that distinguishes between the three classes can be
obtained from finding the r values for the extrema of
−gtt by computing the zeros of −∂rgtt such that
−∂rgttðrexÞ ¼ 0, asking whether −gtt is positive, negative,

or zero at rex, and finally answering if −gtt is linear,
quadratic, or cubic near rex. We find that the line

α ¼ 55=2

3
Λ̃ ð2:17Þ

in the fα; Λ̃g parameter space serves to differentiate
between −gtt having either local extrema (class A), inflec-
tion points (class B), or the sole global maxima and no
other extrema (class C).
Class A: four local extrema.— There are five different

cases that exhibit four local extrema and one global
maximum. These cases may have two, four, or six horizons.
We denote the radius where −gtt has a local minimum as
r̃min and the radius where−gtt has a local maximum as r̃max.
Since −gtt is symmetric in r → −r, there will always be a
local extrema at �r̃max and �r̃min. The global maximum
always occurs at −gttðr̃ ¼ 0Þ ¼ 1. For all five cases, we
have that

α >
55=2

3
Λ̃: ð2:18Þ

A1: Wormhole with cosmological horizons.—If
−gttðr̃minÞ > 0, then the spacetime exhibits no black hole
horizons and two cosmological horizons at radii �r̃c. An
example of such a spacetime is plotted in orange in Fig. 2.
In the parameter space of fα; Λ̃g, the A1 subclass is
bounded by the Λ̃ ¼ 0 axis, the α ¼ 55=2

3
Λ̃ line, and above

by a curve αA2ðΛ̃Þ we will describe in the next subsection.
A2: Merged black hole horizons.— The inner and outer

black hole horizons merge when −gtt as in (2.12) satisfies

−gttðr̃⋆Þ ¼ −∂rgttðr̃⋆Þ ¼ 0; −∂2
rgttðr̃⋆Þ > 0; ð2:19Þ

where r̃⋆ ¼ r̃min ¼ r̃max is the location of the merged
horizons,

r̃2⋆ ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8Λ̃

p

2Λ̃
: ð2:20Þ

−gtt is quadratic near r̃ ¼ �r̃⋆. The associated critical value
for α is given by

αA2ðΛ̃Þ ¼
2Λ̃
3

ðr̃2⋆ þ 1Þ5=2
r̃2⋆ − 2

; ð2:21Þ

which is shown in purple in Fig. 4. Spacetimes of this type
are also referred to as cold black holes, as ∂rgtt ∝ TH ¼ 0
at the merged horizon. Since we still have de Sitter
asymptotics, there will also be cosmological horizons at
�rc. An example of such a spacetime is shown in red
in Fig. 2.
A3: Four black hole and two cosmological

horizons.— The metric (2.12) can exhibit at most six

3By reinserting G and c so that α ¼ 2Gm
lc2 , we can approximate

regime in which two or no horizons would be possible for a
physical black hole is m

l ∼
3
ffiffi
3

p
4

c2
G ∼ 1.75 × 1027 kg=m. If l ∼

OðlPlanckÞ, then the black hole mass would be around 30 μg,
roughly the order of the Planck mass. Any macroscopic black
hole today described by the model under consideration would
have two horizons in the r > 0 region, although the inner horizon
is generally located a few multiples of l from the origin r ¼ 0.
These estimates are consistent with the findings of [45,78].

4We focus on Λ > 0 and m > 0. We note, however, that unlike
negative mass Schwarzschild black holes, negative mass solu-
tions with (2.3) cannot be ruled out simply on the bases of a
cosmic censorship conjecture, as horizonless solutions exist
without the objectionable singularities. Such solutions violate
several if not all of the canonical energy conditions.
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horizons. This subclass is analogous to M3 in the asymp-
totically flat examples except with cosmological horizons
for large r̃. The profile function −gtt is linear near all of the
six horizons. The A3 region in the fα; Λ̃g parameter space
is bounded by the Λ̃ ¼ 0 axis, below by (2.21), and above
by a second curve αA4ðΛ̃Þ that we will describe in the
following subsection. We plot an example of such a
spacetime in blue in Fig. 2. In this case, surface gravity
can be computed at both the inner and outer black hole
horizons, as −∂rgtt ≠ 0 at all of the horizon radii. This class
of black holes thus has nonzero temperature.
A4: Merged black hole and cosmological horizons

(Nariai spacetime).— It is possible for the outer black
hole horizon to merge with the cosmological horizon. Such
solutions are called Nariai spacetimes [79,80], and the
metric function satisfies

−gttðr̃NÞ ¼ −∂rgttðr̃NÞ ¼ 0; −∂2
rgttðr̃NÞ < 0; ð2:22Þ

where now

r̃2N ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8Λ̃

p

2Λ̃
ð2:23Þ

gives the locations of the merged horizons. −gtt is quadratic
near�r̃N. There is still a pair of inner black hole horizons at
�r̃−, where −gtt behaves linearly. We therefore can
compute nonzero surface gravity at the inner horizon,
but not at the merged outer/cosmological horizon.
As for the A2 subclass, such spacetimes lie on a curve in

the fα; Λ̃g parameter space given by

αA4ðΛ̃Þ ¼
2Λ̃
3

ðr̃2N þ 1Þ5=2
r̃2N − 2

: ð2:24Þ

This class is shown in orange in Fig. 4, while we plot an
example of −gtt for such a solution in purple in Fig. 2. Note
that limΛ̃→0 αA4ðΛ̃Þ → ∞, as expected; if a cosmological
horizon is preserved as Λ̃ → 0, its location must tend to
�r̃c → �∞. Keeping the (outer) black hole horizon equal
to the cosmological horizon in that limit requires that the
black hole mass diverge to infinity, consistent from the
intuition built from the Schwarzschild black hole.
A5: Two linear horizons.— Finally, it is possible for −gtt

to have all local extrema below the −gtt ¼ 0 axis. In this
case, there is a single pair of horizons and −gtt is linear
about each. The only region in which the spacetime is
timelike (−gtt > 0) is the small-r de Sitter patch; otherwise,
−gtt < 0 for all r ∉ ½−r−; r−�. The horizons appear as
cosmological horizons to an observer in the small-r region,
while they are more similar to the inner black hole horizons
to any other observer.
These solutions occupy a significant region of the fα; Λ̃g

parameter space. The A5 region is bounded below by

αA4ðΛ̃Þ as in (2.24) and the α ¼ 55=2

3
Λ̃ line, but is otherwise

unbounded from above. This is easily seen in Fig. 4. We
plot an example of −gtt for such a spacetime in black
in Fig. 2.
Class B: single inflection point.— For − gtt to have an

inflection point at some radius r̃I , we must have that
−∂rgttðr̃IÞ ¼ −∂2

rgttðr̃IÞ ¼ 0. Such solutions all lie on the
straight line

α ¼ 55=2

3
Λ̃ ð2:25Þ

in the fα; Λ̃g parameter space. We will see in Sec. III that
these solutions are unique from the A and M classes when
they are considered through the double-copy mapping.
B1 and B3: linear horizons.— Subclasses B1 and B3 are

characterized, respectively, by−gttðr̃IÞ>0 and−gttðr̃IÞ < 0.
Consequently, −gtt will be linear near the horizon location,
and a nonzero surface gravity can be computed for both
subclasses. Similar to the A5 subclass, −gtt has a negative
slope near the horizon in the r̃ > 0 region, akin to what we
see as either the inner black hole horizon or cosmological
horizon in the A3 case.
Since the inflection point at �r̃I occurs before the

horizon for the B1 subclass, it is natural to think of its
horizon as being a cosmological horizon for all observers.
On the other hand, since the inflection point occurs after the
horizon for the B3 subclass, it may be more natural to
consider its horizon most similar to the inner black hole
horizon for observers in the spacelike ð−gtt < 0Þ region,
and the usual de Sitter core for observers at small r̃.
An example of a B1 and B3 spacetime is shown in,

respectively, orange and blue in Fig. 3. In the fα; Λ̃g
parameter space in Fig. 4, the B1 subclass lies on the
dashed section of the red line given by (2.25), while the B3
subclass lies on the solid section.
B2: cubic horizon.— For − gtt to have a “cubic” horizon,

we have −gttðr̃IÞ ¼ −∂rgttðr̃IÞ ¼ −∂2
rgttðr̃IÞ ¼ 0. This

leads to r̃I ¼ �2, as well as constraining α and Λ̃ to take
the values

α ¼ 55=2

24
; Λ̃ ¼ 1

8
; ð2:26Þ

which is shown as a red star in Fig. 4. −gtt has an inflection
point at the radius at which −gtt ¼ 0; therefore, −gtt is
approximately cubic near the horizon. It is thus natural to
think of this spacetime as having a triply merged horizon,
where the inner, outer, and cosmological horizons all
meet at �r̃− ¼ �r̃þ ¼ �r̃c ¼ �r̃I . These solutions are
sometimes referred to as ultracold black holes, since
not only −∂rgttðr̃IÞ ¼ 0, implying zero temperature, but
−∂2

rgttðr̃IÞ ¼ 0 as well. We illustrate an example of such a
spacetime in red in Fig. 3.
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Class C: no local extrema.— The last possibility is for
−gtt to be monotonically decreasing from the global
maximum of −gttðr̃ ¼ 0Þ ¼ 1. These solutions occur when
the cosmological constant is comparable or larger than the
mass of the black hole. Specifically, these solutions occupy
the entire

α <
55=2

24
Λ̃ ð2:27Þ

region of the fα; Λ̃g parameter space (see Fig. 4). We plot
an example of such a solution in green in Fig. 3. It is easy to
see that −gtt is approximately linear near the horizons. This
spacetime is most similar to pure de Sitter space with
“small” cosmological horizons. We will show that the
gauge theory associated with this class of solutions through
the double-copy mapping behaves differently than classes
M, A, or B (see Sec. III A 1).

B. Penrose-Carter diagrams

We now construct Penrose-Carter diagrams for the three
cases of interest discussed above for the regular black hole
solution with Minkowski asymptotics (see Fig. 5).5 The
three cases of interest are those parametrized by α in
Eq. (2.14), although we emphasize the diagrams con-
structed below are representative of regular black hole
solutions with de Sitter interior and not specific to the
metric (2.3). As discussed elsewhere in the text, all cases
asymptotically approach Schwarzschild at large values of
the radial coordinate and de Sitter spacetime as r → 0. The
most general maximal extension of the regular black hole
solution is similar to that of the Reissner-Nordström
solution but with a nonsingular de Sitter interior. In the
Penrose-Carter diagrams below, the most general solution
describes an infinite number of asymptotically flat regions
denoted by I outside of the outer black hole event horizon
rþ. These regions are connected by intermediate regions:
one between the outer event horizon and the inner Cauchy
horizon r−, denoted by II with r− < r < rþ, and region III
having 0 < r < r−. In region II, surfaces of constant r are
spacelike so that each point in the diagram corresponds
to a two-sphere, S2. The black hole center at r ¼ 0 bounds
each region III and is nonsingular. The light cone structure
in the background spacetime is given by null paths with
ds2 ¼ 0 and constant θ and ϕ,

dr
dt

¼ �
�
1 −

2mr2

ðr2 þ l2Þ3=2 −
Λr2

3

�
: ð2:28Þ

In the diagrams, we adopt the traditional notation for
spacetime boundaries defined in [82]: J −, J þ identify past
and future null infinity. i−, iþ, identify past and future
timelike infinity. i0 is spatial infinity while p is used to
identify exceptional points at infinity. Without detracting
from our desired analysis, we take Λ ¼ 0 in the diagrams.

1. Horizonless wormhole

For the case that α < 3
ffiffi
3

p
2
, our solution depicts a two-way

traversable wormhole with no horizon. Observers in our
Universe correspond to observers having r > 0. From their
point of view, observers living at negative values of the
radial coordinate live in an alternate universe. The Penrose-
Carter diagram for this case is depicted in Fig. 6.

2. Wormhole with single horizon

For the case that α ¼ 3
ffiffi
3

p
2
, the solution depicts a one-way

wormhole with null throat located at the critical value
r⋆ ¼ ffiffiffi

2
p

l. The outer event horizon and inner Cauchy
horizon join to form a single horizon at r ¼ r⋆. There are an
infinite set of region Is connected by region IIIs. The
exceptional points at infinity p are not actually part of the
de Sitter region at r ¼ 0. The Penrose-Carter diagram for
this situation is depicted in Fig. 7.

3. Two horizon black hole

For the case that α > 3
ffiffi
3

p
2
, our solutions depict a black

hole with an outer event horizon (r ¼ rþ) and inner Cauchy
horizon (r ¼ r−). The Penrose-Carter diagram for this
situation is depicted in Fig. 8. Future directed timelike
paths can pass from asymptotically flat regions I, across the
horizon rþ, through II, III, and II and emerge in an
asymptotically flat region I in a different universe.

FIG. 5. Plot of metric function −gtt versus rescaled radial
coordinate r=l. Shown in the plot are the outer horizon rþ, inner
horizon r−, and critical horizon r⋆. Regions for the three cases of
interested are asymptotically flat region I, between horizon
region II (r− < r < rþ), and region III (0 < r < r−).

5The diagrams can be constructed by defining the usual
tortoise function FðrÞ ¼ R

r dr0
gttðr0Þ, first passing to coordinates

u ¼ t − F, v ¼ tþ F, then choosing functions ũðuÞ and ṽðvÞ that
satisfy gttðrÞ dudũ dv

dṽ > 0 such that the metric is

ds2 ¼ −gttðrÞ
du
dũ

dv
dṽ

dũdṽþ r2dΩ2:

See, for example, [81] for further description.
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Furthermore, future directed causal curves from region I,
crossing the horizon rþ, may pass through regions II and
III and cross the nonsingular de Sitter space at r ¼ 0,
wrapping around the Universe until they exit into an
asymptotically flat region I via a region II. In the Penrose-Carter diagram, the observer B, remaining

outside the horizon rþ and traveling along the timelike
worldline to future infinity at iþ, observes that particles A
approaching the horizon rþ slow and become infinitely
redshifted. An observer A crossing r ¼ r− would observer
the entire history of one of the regions I in a finite time.
Therefore, particles in the region I would gain infinite blue
shift as they approached future infinity iþ. Hence, small
perturbations of initial data on the spacelike surface Σ
would seemingly lead to catastrophic singularity creation
on the surface r ¼ r− (although actual infinities could
perhaps be ameliorated by a UV cutoff at the model scale
parameter l).

C. Energy momentum tensor and energy conditions

Here, we consider the null, weak, dominant, and strong
energy conditions for the T-dual–de Sitter black hole.6 For a
typical solution having both black hole and cosmological
event horizons, outside of the black hole, we have

2m <
ðl2 þ r2Þ3=2ð3 − Λr2Þ

3r2
; ð2:29Þ

FIG. 7. Penrose-Carter diagram for the maximally extended
spacetime for regular center black hole (one-way wormhole)
when outer and inner horizons coincide.

FIG. 8. Penrose-Carter diagram for the maximally extended
spacetime for regular center black hole with two horizons.

FIG. 6. Penrose-Carter diagram for a standard traversable
wormhole.

6Though we consider all of the energy conditions, the weak
energy condition was examined in [18] for two asymptotically
Schwarzschild regular black holes and was expanded on in [19]
for a survey of similar black holes, while [14] considered the
weak energy condition for an asymptotically Reissner-Nordström
regular black hole solution.
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and the energy density is ρ ¼ −Tt
t. The pressure is

given parallel to the radial coordinate by pk ¼ Tr
r and

perpendicular to the radial coordinate p⊥ ¼ Tθ
θ ¼ Tϕ

ϕ.
From the Einstein equation Gμ

ν ¼ 8πGNTμ
ν,

ρ ¼ 6l2m

8πGNðl2 þ r2Þ5=2 þ
Λ

8πGN
; ð2:30Þ

pk ¼ −ρ; ð2:31Þ

p⊥ ¼ 3ml2ð3r2 − 2l2Þ
8πGNðl2 þ r2Þ7=2 −

Λ
8πGN

: ð2:32Þ

Note that the NEC requires both ρþpk≥0 and ρþ p⊥ ≥ 0

for all values of the parameters. The first condition is
clearly satisfied for all values of l;Λ; m, and r. In addition,

ρþ p⊥ ¼ 15l2mr2

8πGNðl2 þ r2Þ7=2 ; ð2:33Þ

which is non-negative for all parameter values we consider.
We have therefore shown that the NEC holds for all values
of parameters. For the following discussion regarding
energy conditions, we refer the reader to Fig. 9.
Inside any horizon we have

2m >
ðl2 þ r2Þ3=2ð3 − Λr2Þ

3r2
: ð2:34Þ

Beyond any horizon the r coordinate becomes timelike
and the t coordinate spacelike. We therefore have that
ρ ¼ −Tr

r, pk ¼ Tt
t, and p⊥ ¼ Tθ

θ ¼ Tϕ
ϕ. Remarkably,

for our spacetime Tr
r ¼ Tt

t, and the expressions for ρ and

p remain unchanged. We therefore deduce that the NEC is
satisfied for all ranges of the r coordinate. In addition,
the WEC is satisfied since ρ ≥ 0 and ρþ p⊥ ≥ 0 and
ρþ pk ≥ 0. The dominant energy condition can also be
shown to hold: ρ ≥ 0, p⊥ ∈ ½−ρ; ρ�, and pk ∈ ½−ρ; ρ�. From
(2.31), we see that the strong energy condition is violated,
since for certain values of parameters ρþ pk þ p⊥ ≱ 0.
We note that all of these findings are consistent with
expectations from [66], where energy conditions are
discussed for nonsingular metrics in the context of the
double copy.

1. The nonsingular black hole from
a magnetic monopole

In [13], it was shown that the Bardeen black hole can be
considered as an exact solution in general relativity with a
source coming from nonlinear electrodynamics (NLED).
A generic feature of NLED models is that gauge field
quantities are finite everywhere, including the position of a
point source. This may have motivated the authors of [13]
to work toward understanding the Bardeen black hole as
being sourced by a monopole from some NLED theory.
Specifically, the source is a magnetic monopole with

charge g, with a Lagrangian given by

L ¼ 3m
jgj3

� ffiffiffiffiffiffiffiffiffiffi
2g2F

p
1þ

ffiffiffiffiffiffiffiffiffiffi
2g2F

p
�

5=2
; ð2:35Þ

where F≡ 1
4
FμνFμν and m is the black hole mass. The

ansatz for the gauge field and metric

−gttðrÞ ¼ 1 −
2MðrÞ

r
; Fμν ¼ 2δθ½μδ

ϕ
ν�Bðr; θÞ ð2:36Þ

become solutions to the Einstein-NLED equations when

MðrÞ ¼ mr3

ðr2 þ g2Þ3=2 ; BðθÞ ¼ g sin θ: ð2:37Þ

This form matches the T-duality black hole and produces all
of the same curvature quantities in our Appendix with the
substitution l → g (and with Λ ¼ 0).
Asymptotically, the metric (2.36) behaves as

−gttðrÞ ¼ 1 −
2m
r

þ 3mg2

r3
þOðr−5Þ: ð2:38Þ

This is clearly different to the Reissner-Nordström solution,
which assumes a static electric monopole source of the
form Fμν ∝

q
r2 δ

t
½μδ

r
ν� in Maxwell theory with LðFÞ ¼ −F

and results in the metric −gttðrÞ ¼ 1 − 2m
r þ q2

r2 (up to the
dimensionful factors). Comparatively, we see that the
nonlinear magnetic monopole’s contribution to the metric
falls off more rapidly than its linear, electric monopole

FIG. 9. Plot of energy density ρ (solid red), negative of the
energy density −ρ (dashed red), ρþ p⊥ (green), p⊥ (solid blue),
and pk (dashed blue). Model parameters are m ¼ 1, l ¼ :5,
Λ ¼ :05. Since pk ¼ −ρ, the dashed red and dashed blue curves
are coincident.
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counterpart. We will return to the discussion of the sources
in the context of the double copy.

D. Orbital equations

We move on to consider the basic details of circular
orbits in the T-dual–de Sitter black hole background. A full
treatment of all the orbital properties of the Bardeen
spacetime (without a cosmological constant) can be found
in [83].
Metric compatibility and the geodesic equation imply

that the following is constant along particle trajectories in
our background spacetime:

ϵ ¼ −gμν
dxμ

dλ
dxν

dλ
; ð2:39Þ

where ϵ ¼ 1 for timelike, massive particles and ϵ ¼ 0 for
null, massless particles. Without loss of generality, we
consider motion in the equatorial plane with θ ¼ π=2.
Expanding (2.39) gives

gtt

�
dt
dλ

�
2

− grr

�
dr
dλ

�
2

− r2
�
dϕ
dλ

�
2

¼ ϵ: ð2:40Þ

We consider the timelike Killing vector (2.8) and spacelike
Killing vector for the angular coordinate,

Rμ ¼ ð∂ϕÞμ ¼ ð0; 0; 0; 1Þ; ð2:41Þ

which lead to the conserved energy E and angular
momentum L for photons (conserved energy and angular
momentum per unit mass for massive particles),

E ¼ −Kμ
dxμ

dλ
¼

�
1 −

2mr2

ðr2 þ l2Þ3=2 −
Λr2

3

�
dt
dλ

; ð2:42Þ

L ¼ Rμ
dxμ

dλ
¼ r2

dϕ
dλ

: ð2:43Þ

In terms of the conserved quantities, we have

�
dr
dλ

�
2

¼E2−
�
1−

2mr2

ðr2þl2Þ3=2−
Λr2

3

��
ϵþL2

r2

�
; ð2:44Þ

yielding effective orbital potentials

VϵðrÞ ¼ −
1

2
gtt

�
L2

r2
þ ϵ

�
ð2:45Þ

¼ ϵ

2
−

mr2ϵ

ðl2þr2Þ3=2þ
L2

2r2
−

L2m

ðl2þr2Þ3=2−
ΛL2

6
−
Λϵ
6
r2:

ð2:46Þ

Ignoring the de Sitter complications of the later terms, the
general relativistic corrections to the Newtonian orbital

analysis result in the fourth term in (2.45) with l ¼ 0, that
is, a term which dominates V at small r that is proportional
to −1=r3. Perhaps the most significant difference between
the above potential and that derived from the familiar
Schwarzschild solution occurs at small values of the radial
coordinate. Due to the absence of the singularity in the
black hole solution (2.3), the fourth term in V no longer
diverges at r ¼ 0; thus, the Newtonian angular momentum
barrier term (third term) in V dominates the potential at
small r which is proportional to þ1=r2. Due to the
complexity of the metric under consideration, we apply
numerical analysis to the remainder of the orbital analysis.

1. Photon orbits

The orbital dynamics of massless particles or photons
traveling along null paths are governed via the effective
potential with ϵ ¼ 0,

V0ðrÞ ¼
L2

2r2
−

L2m

ðl2 þ r2Þ3=2 −
ΛL2

6
: ð2:47Þ

Circular photon orbits are located at r ¼ rc, where rc is
obtained via V 0

0ðrcÞ ¼ 0, where

V 0
0ðrcÞ ¼

3L2mrc
ðl2 þ r2cÞ5=2

−
L2

r3c
: ð2:48Þ

The circular photon orbits occur at maxima (unstable) and
minima (stable) of the potential (2.47) (see Fig. 10). For
simplicity, we focus on the case where Λ ¼ 0 (see e.g.,
[83]). We find outside of the black hole outer horizon rþ
unstable circular orbits for photons exist at the maxima of
the potential. The effective potential vanishes at the outer
and inner horizons r�. Interestingly, and unlike the ordi-
nary (singular) Schwarzschild solution, we find stable
circular orbits for photons exist in between the outer and
inner horizons, rþ and r−.

2. Massive particle orbits

The orbital dynamics of massive particles traveling along
timelike paths are governed via the effective potential with
ϵ ¼ 1,

V1ðrÞ ¼
1

2

�
L2

r2
þ 1

��
1 −

2mr2

ðl2 þ r2Þ3=2 −
Λr2

3

�
: ð2:49Þ

Circular massive particle orbits are located at r ¼ rc, where
rc is obtained via V 0

1ðrcÞ ¼ 0, where

V 0
1ðrcÞ ¼ L2

�
3mrc

ðl2 þ r2cÞ5=2
−

1

r3c

�
þmrcðr2c − 2l2Þ

ðl2 þ r2cÞ5=2
−
Λrc
3

:

ð2:50Þ
The circular massive particle orbits occur at maxima
(unstable) and minima (stable) of the potential (2.49)
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(see Fig. 11). For simplicity, we focus on the case where
Λ ¼ 0. We find for sufficiently high L it is possible to have
outside of the black hole outer horizon rþ one unstable
circular orbit radius exists at the maxima of the potential
and one stable circular radius at large r. The effective
potential vanishes at the outer and inner horizons r�.
Again, interestingly, and unlike the ordinary (singular)
Schwarzschild solution, we find stable circular orbits for
massive particles exist in between the outer and inner
horizons, rþ and r−.

III. NONSINGULAR DOUBLE COPY

The double-copy story originates with [46], where it was
observed that complicated graviton scattering amplitudes
can be obtained from simpler gauge field scattering

amplitudes. Briefly summarizing, one starts with a Yang-
Mills amplitudeAYM and exchanges a color factor ci with a
kinematic numerator ñi to obtain the graviton amplitude
Mgrav. Schematically,

AYM ∼
X
k

nkck
propagators

⟶
ck→ñk X

k

nkñk
propagators

∼Mgrav;

ð3:1Þ
where the sum is over all three-point vertex graphs, the nk
are the kinematic numerators associated with each graph,
and the ck are the color factors that satisfy a Jacobi identity
of the form ci þ cj þ ck ¼ 0. The second set of kinematic
numerators ñk is also organized to also satisfy an identical
Jacobi identity.
There is also a “zeroth copy” in the amplitudes story,

where, starting with the left-hand side of (3.1), replacing
the kinematic numerators ni with a second set of color
factors c̃i builds scalar amplitudes of the form

Ascalar ∼
X
k

ckc̃k
propagators

ð3:2Þ

for biadjoint scalars ϕaa0 .
As a basic example, pure (nonsupersymmetric) Yang-

Mills mills theory double copies to general relativity coupled
to a two-form field and a dilaton. These relations are
perturbative statements; however, the authors of [48] showed
that a double-copy procedure can be applied to relate exact
solutions in general relativity to exact solutions in the Uð1Þ
sector of Yang Mills, aptly named the classical double copy.
The first realization7 of the classical double copy relies

on a spacetime admitting a Kerr-Schild metric,

gμν ¼ ημν þ ϕkμkν; ð3:3Þ

where kμ is null with respect to both the flat background
and the full metric, gμνkμkν ¼ ημνkμkν ¼ 0, and ϕ ¼ ϕðxμÞ
is a scalar function. The statement relating the gravity
solution to a gauge theory solution is if gμν satisfies the
Einstein equations, then the gauge field

Aa
μ ¼ ϕcakμ ð3:4Þ

satisfies theUð1Þ sector of Yang-Mills over the background
ημν. The gauge field (3.4) is referred to as the single copy.
The ca is a color vector carrying the non-Abelian index,
and analogously to ck → ñk in (3.1), in the classical double

FIG. 10. Plot of null ϵ ¼ 0 effective potential (2.47) for various
values of angular momentum (L ¼ 6 purple, L ¼ 5 red, L ¼ 4
green, L ¼ 3 orange, L ¼ 2 blue.) The solid black lines show the
location of the inner and outer horizons.

FIG. 11. Plot of timelike massive particles with ϵ ¼ 1 effective
potential (2.49) for various values of angular momentum (L ¼ 6
purple, L ¼ 5 red, L ¼ 4 green, L ¼ 3 orange, L ¼ 2 blue.) The
solid black lines show the location of the inner and outer
horizons.

7A second version of the classical double copy appeared in
[49], called the Weyl double copy, where the relationship between
the gravity side and gauge side is built using the symmetric four-
index Weyl spinor and the spinor forms of the gauge field
strengths. More recently, [84] presented a map for self-dual
solutions using the Newman-Penrose formalism. Both of these
works have shown equivalences to the Kerr-Schild double copy.
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copy, the graviton is obtained by exchanging the color
vector with a copy of the null vector,

Aa
ν ¼ ϕcakν ⟶

ca→kμ
ϕkμkν ¼ hμν: ð3:5Þ

Thus, the gauge field can be thought of as being a “square
root” of the graviton. Since theUð1Þ sector of Yang-Mills is
Abelian, the ca plays a passive role in the single-copy
equations and we generally will not write it with the gauge
fields. Further, the scalar function ϕ plays the role of the
zeroth copy in the classical story and satisfies a (possibly
sourced) wave equation over ημν.
In the Kerr-Schild coordinates (3.3), the mixed Ricci

tensor reads

Rμ
ν ¼

1

2
ð∂μ∂αðϕkαkνÞþ∂ν∂αðϕkαkμÞ−∂2ðϕkμkνÞÞ: ð3:6Þ

If we specialize to the case where the metric is completely
time independent, ∂0ϕ ¼ ∂0kμ ¼ 0, then we may write the
Rμ

0 component of the mixed Ricci tensor associated with
(3.3) as

Rμ
0 ¼ −

1

2
∂νð∂μðϕkνÞ − ∂νðϕkμÞÞ ¼ −

1

2
∂νFμν; ð3:7Þ

which illustrates the connection between curvature on the
gravity side and the Maxwell equations via the ansatz (3.4).
Here, the derivatives ∂μ are taken over the flat background
ημν. Moreover, in the time-independent case, the zeroth
copy is related to the mixed Ricci tensor by

R0
0 ¼

1

2
∂2ϕ: ð3:8Þ

In the presence of a source where ∂νFμν ¼ 4πJμ, we
have that Rμ

0 ¼ −2πJμ. Instead in terms of the Einstein
tensor, this is

Gμ
0 þ

1

2
Rδμ0 ¼ −2πJμ ⇒ Tμ

0 þ
1

2
Rδμ0 ¼ −2πJμ; ð3:9Þ

where we use the Einstein equations8 to write the second
relation. Equation (3.9) shows that the gauge field source
can be thought of as coming from both the gravitational
source and the spacetime curvature. We will revisit the
relation in Sec. III A 2. We next write arbitrary spherically
symmetric metrics in the form (3.3) and analyze the
nonsingular black hole solutions.

A. Kerr-Schild single copy

To write the metric (2.1) in the Kerr-Schild form (3.3),
we make the coordinate transformation

dτ ¼ dt − ð1þ g−1tt Þdr: ð3:10Þ
This indeed has the correct form over the Minkowski
background, gμν ¼ ημν þ ϕkμkν, with ημν ¼ diagð−1; 1; r2;
r2 sin2 θÞ, kμ ¼ ð1; 1; 0; 0Þ, and ϕðrÞ ¼ 1þ gttðrÞ. The
single-copy gauge field is Aμ ¼ ϕðrÞð1; 1; 0; 0Þ, which
subject to the gauge transformation

Aμ → Aμ þ ∂μχ;

χ ¼ −
Z

ϕðr0Þdr0 ⇒ Aμ ¼ ϕðrÞð1; 0; 0; 0Þ ð3:11Þ

leaves us with a Coulomb-type solution. For the T-dual de
Sitter black hole, the scalar profile is

ϕðrÞ ¼ 2mr2

ðr2 þ l2Þ3=2 þ
Λ
3
r2: ð3:12Þ

We examine the electric fields associated with the gauge
theory, defined covariantly as

Eμ ¼ FμνKν; ð3:13Þ
where Kμ is the timelike Killing vector (2.8). Computing
the field strength Fμν ¼ ∂ ½μAν� over the flat Minkowski
background, we get one nonzero component, Fτr, which,
contracted with Kμ, gives a radial electric field

ErðrÞ ¼
2mrð2l2 − r2Þ
ðr2 þ l2Þ5=2 þ 2Λ

3
r: ð3:14Þ

The associated charge density J0 ¼ ρc obtained from
∂νFμν ¼ 4πJμ is

4πρcðrÞ ¼
6ml2ð2l2 − 3r2Þ

ðr2 þ l2Þ7=2 þ 2Λ: ð3:15Þ

From (3.12), (3.14), and (3.15), it is easy to see that every
relevant quantity in the gauge theory is completely non-
singular for all values of r in the range r ∈ ð−∞;∞Þ,
including the origin

lim
r→0

Aμ ¼ 0; lim
r→0

Fμν ¼ 0; lim
r→0

∂νFμν ¼ constant: ð3:16Þ

Note that expanding the charge density around r ¼ 0
gives

4πρcðrÞ ¼
12m
l3

þ 2ΛþOðr2Þ: ð3:17Þ

As was discussed in Sec. II, the metric limits to a de Sitter
core as r → 0, with length scale 1

l2 ¼ Λ
3
þ 2m

l3 . Hence, from
(3.17), we find ρc ¼ 6

l2 þOðr2Þ, which is consistent with
the expectation of a pure de Sitter single copy produced by
a constant charge density [57].8We follow the convention m2

p ¼ 1
8πG ¼ 1.
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Finally, observe that in the r < 0 region of the spacetime,
a positive (negative) charge density sources a negative
(positive) electric field. This sign is the opposite of what we
have defined as the normal convention in our universe. This
feature can be traced to the first component of the Maxwell
equations, ∂νFμνδτμ ¼ 4πJμδτμ, which is just Gauss’s law.
In spherical coordinates, the noncovariant divergence (for

E⃗¼Err̂) is ∇⃗ · E⃗ ¼ ð2r þ ∂rÞEr ∝ ρc. The operator ð2r þ ∂rÞ
is antisymmetric in r → −r; therefore, if we imagine
ρc > 0, it must be that Er < 0 when r < 0.

1. Single-copy electric fields and charge density

We now proceed to discuss the electric fields and charge
densities associated with the M, A, B, and C classes of the
T-dual de Sitter metric. We plot the dimensionless forms of
each field quantity as Ẽr ¼ lEr and ρ̃c ¼ l2ρc, where

Ẽr¼
αr̃ð2− r̃2Þ
ð1þ r̃2Þ5=2þ

2Λ̃
3
r̃; 4πρ̃c¼

3αð2−3r̃2Þ
ð1þ r̃2Þ7=2 þ2Λ̃; ð3:18Þ

and r̃ ¼ r=l as before.
Classes M and A.— The gauge theory quantities Er and

ρc are very similar for both the asymptotically Minkowski
class of the T-dual black hole and the T-dual de Sitter
spacetime. By inspection to (3.18), the only difference
between Λ̃ ¼ 0 and Λ̃ ≠ 0 is shifting ρc by a constant,
while the electric field’s contribution from Λ̃ amounts to a
term linear in r̃ that dominates away from the origin.
Interestingly, the electric field changes signs when

approaching the origin from large �r̃. Due to the spherical
symmetry of the spacetime, this sign change occurs on
concentric two-spheres centered at r̃ ¼ 0. This behavior is
clearly visible in Figs. 12 and 13, as well as in the electric
field equation (3.18). For class A, with Λ̃ ≠ 0, the single-

copy electric field switches sign twice when approaching
the origin, while for classM where Λ̃ ¼ 0 there is only one
sign switch, as seen in Figs. 12 and 13. We will return to
this point in Sec. III B.
Classes B and C.— As we alluded to in Sec. II A 2, the B

and C class spacetimes are associated to gauge theories that
behave slightly differently from the M and A classes.
Mainly, instead of exhibiting sign changes when approach-
ing the origin from positive or negative r̃, the electric field
either vanishes without changing signs (class B) or does not
change signs at all (class C). These features are apparent
in Fig. 14.

2. Discussion of the sources

We briefly described in Sec. II C 1 that the Bardeen black
hole is an exact solution to the Einstein equations coupled
to a nonlinear electrodynamic theory. Let us consider this in
the context of our single-copy gauge field source. In (3.9),
we have only the tt-component being nonzero, so

Tμ
0þ

1

2
Rδμ0¼−2πJμ ⇒−ρNLEDþ

1

2
R¼−2πρc: ð3:19Þ

In the above, we write the energy density T0
0 as −ρNLED,

which we may think of as being produced by (2.35).
Consequently, our single-copy gauge field can be under-
stood as being sourced by a combination of the energy
density from a nonsingular magnetic monopole and the
Ricci curvature of the nonsingular black hole.
Neither ρNLED nor the Ricci scalar dominates the single-

copy charge density in any region, as can be seen by
expanding both quantities in a power series in r. For the
pure T-dual black hole, the near-origin and asymptotic
behaviors of the Ricci scalar are

FIG. 12. The dimensionless charge density and radial electric fields associated with the asymptotically Minkowski T-dual black hole
solutions. The horizonless wormhole (M1) is shown in orange, the extremal black hole (M2) with two degenerate horizons in red, and
the four horizon nonsingular black hole in blue (M3). Each color/subclass on both of the plots above corresponds to the same parameter
value as the −gtt curves in Fig. 1. The electric field associated with the Schwarzschild solution, Er ∼m=r2, is shown in dashed black.
The charge density for such a solution is given by a Dirac delta function and is not shown in the left panel.
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Rðr ≈ 0Þ ¼ 24m
l3

−
90m
l5

r2 þOðr4Þ;

Rðr ≈∞Þ ¼ −
6ml2

r5
þOðr−7Þ; ð3:20Þ

while for ρNLED stemming from (2.35),

ρNLEDðr ≈ 0Þ ¼ 6m
g3

−
15m
g5

r2 þOðr4Þ;

ρNLEDðr ≈∞Þ ¼ 6mg2

r5
−Oðr−7Þ: ð3:21Þ

Clearly, R and ρNLED have nonzero terms at the same
order in r. Thus, ρc cannot “disentangle” contributions
from the spacetime curvature from those of the matter
energy density.

3. Komar energy and net electric charge

In Sec. II C, we mentioned that nonsingular spacetimes
of the type under consideration were studied in the context
of the Kerr-Schild double copy in [66]. Here, we consider
the Komar energy as discussed in [66] and verify that
sensible results are recovered. The Komar energy contained
in a three-dimensional (spatial) volume Σ is

FIG. 13. The charge density and radial electric fields associated with the T-dual de Sitter solution. The parameter values used to make
each of the above curves are the same as those used to plot Fig. 2. We have the wormhole with two cosmological horizons (A1) in orange,
the degenerate black hole with two cosmological horizons (A2) in red, the six horizon spacetime (A3) in blue, the Nariai spacetime (A4)
in purple, and the solution with two linear horizons (A5) in black.

FIG. 14. The charge density and radial electric fields associated with the T-dual de Sitter solution. The parameter values used the make
each of the above curves are the same as those used to plot Fig. 3. The triply degenerate horizon spacetime is shown in orange (B2),
while the double linear horizon black holes are shown in orange, blue, and green (B1, B3, and C). We remind the reader that class C
solutions are such that −gtt has no local extrema, while the class B solutions exhibit a single inflection point in each (r̃ > 0 and r̃ < 0)
region.
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EK ¼ 2

Z
Σ
d3x

ffiffiffi
γ

p
nμKνRμ

ν; ð3:22Þ

where Kν ¼ ð1; 0; 0; 0Þ is the timelike Killing vector, nμ ¼
ð1= ffiffiffiffiffiffiffiffi−gtt

p
; 0; 0; 0Þ is the unit normal to the hypersurface,

and γ ¼ r4 sin2 θ=gtt is the determinant of the induced
metric on Σ.
Using the relation R0

0 ¼ ∂2ϕ=2 from (3.8), we can
simplify (3.22) to

EK ¼ −
Z
Σ
r2drdΩ∂2ϕ; ð3:23Þ

which illustrates the Komar energy density is

ρK ¼ −∂2ϕ ¼ 4πρc: ð3:24Þ

Taking our result9 for 4πρc from (3.15), we find after
performing the angular integration that

EK ¼ −4π
Z

∞

0

r2dr
6ml2ð2l2 − 3r2Þ

ðr2 þ l2Þ7=2
¼ ð4πÞ2m: ð3:25Þ

As anticipated, we find the Komar energy is proportional to
the black hole mass. Interestingly, since ρK is well defined
for r ∈ ð−∞;∞Þ, in addition to being symmetric in
r → −r, the integral can be extended over all r, which
picks up another factor of 2. On the other hand, if the r < 0
region is thought of as an alternate universe, then an
observer there will also see a Komar energy proportional
to the mass in the integral over ð−∞; 0Þ.
Alternatively, from the gauge theory’s point of view,

4π

Z
∞

0

r2ρcðrÞdr≡Qnet; ð3:26Þ

where Qnet is the net electric charge. This relationship
between energy in the gravity and charge in the single-copy
gauge theory is to be expected, since the parameter
exchange between the gravity side and gauge theory side is

2m → Q ∼ gTaca ð3:27Þ

for the Schwarzschild-to-Coulomb single copy, as was first
written down in [48] (here, g is the Yang-Mills coupling
and the Ta are the gauge group generators). Therefore, we
indeed see a natural association between the Komar energy
and the net “electric” charge.

4. Other nonsingular black holes

The essential features of the nonsingular single copies are
mostly unchanged for the Hayward [44] and Dymnikova10

[16] black holes (see also [43]), whose metrics are the same
form as (2.1) but with profile functions

−gHttðrÞ ¼ 1 −
2mr2

r3 þ 2ml2
;

−gDttðrÞ ¼ 1 −
2m
r

ð1 − e−r
3=2ml2Þ: ð3:28Þ

Unlike the T-duality solution, neither of the above is
symmetric in r → −r, and both profiles diverge in the
r < 0 region. However, for the r ∈ f0;∞g domain, the
single copies are in essence just scaled versions of the
T-duality result. The associated electric fields for each
solution are

EH
r ðrÞ ¼

2mrð4ml2 − r3Þ
ðr3 þ 2ml2Þ2 ;

ED
r ðrÞ ¼

2m
r2

�
e−r

3=2ml2

�
1þ 3r3

2ml2

�
− 1

�
ð3:29Þ

and are shown in Fig. 15.

B. Vanishing electric field and horizons

In contrast to the Schwarzschild black hole, the non-
singular black holes under consideration are such that gtt

FIG. 15. Plot of the metric functions (3.28) and electric fields
(3.29) for the Hayward (green) and Dymnikova (orange) black
holes compared with the T-dual black hole (blue). The electric
fields are the dashed curves and the metric functions −gtt are the
solid curves.

9Note that we have set Λ ¼ 0 for this discussion, as the Komar
energy is only defined for asymptotically flat spacetimes. For a
somewhat recent discussion on mass in asymptotically de Sitter
spacetimes, see [85].

10Recently, itwas shown in [11] that theDymnikova solution can
also be obtained from a NLED magnetic monopole, with a
Lagrangian given byLðFÞ ¼ 3m

jbj3 exp½−ð2=b2FÞ3=4�. Their monop-

ole charge b is related to our length parameter by jbj3 ¼ 2ml2.
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has local extrema. The single-copy gauge field is A ¼
ð1þ gttðrÞÞdt, so that the electric field is of the form

E ¼ ∂rgttðrÞdr ∧ dt: ð3:30Þ

Therefore, the electric field will vanish precisely at the
extrema of gtt. To remind the reader, we may write a
dimensionless electric field Ẽðr̃Þ ¼ lEðrÞ as in (3.18),

Ẽðr̃Þ ¼ αr̃ð2 − r̃2Þ
ð1þ r̃2Þ5=2 þ

2Λ̃
3

r̃:

When Λ̃ ¼ 0, we found that the black hole horizon
structure was quite sensitive to the critical value of

αcrit ¼ 3
ffiffi
3

p
2
. In that case, the electric field sees α just as

an overall scaling with αcrit being of no special meaning. So
in one sense, the information about the horizon on the
gravity side is lost through the Kerr-Schild double-copy
ansatz. We see this in Fig. 12, where each electric field is
identical up to overall scaling, while the three different
subclasses, M1;M2, and M3, have radically different
horizon structures on the gravity side.
On the other hand, any static black hole that has at least

two horizons is guaranteed to have an extremum between
the two radii, say r�, where −gttðr�Þ ¼ 0. Hence, we
expect a single-copy electric field that vanishes at that
extremum between r�. For this reason, the class M and A
spacetime’s single-copy electric field changed sign when
approaching r ¼ 0. This feature is also exhibited in more
standard solutions in general relativity, such as the
Reissner-Nordström black hole and Schwarzschild–
de Sitter spacetime. For the nonsingular solutions, in the
degenerate casesM2, A2, and A4, the electric field changes
signs precisely at the degenerate horizons due to the fact
that −gtt ¼ −∂rgtt ¼ 0 at that point.
In the more general case of Λ̃ ≠ 0, we found that−gtt can

also exhibit inflection points (class B) or have no extrema
aside from the global maximum at −gttðr ¼ 0Þ ¼ 1 (class
C). As a consequence, the single-copy electric fields for
class B spacetimes vanish precisely at the location of the
inflection point without changing signs. Electric fields
associated with the class C spacetimes retain the same
sign, respectively, in the r > 0 and r < 0 regions, only
switching signs when passing through the origin. The right
panel in Fig. 14 well illustrates this fact.
Summarizing, whenever spacetimes of the form (2.1)

have two or more horizons, the associated single-copy
electric field must change signs between the horizons. In
the case where gtt has one or zero horizons, the electric field
will not switch signs except where gtt possesses extrema. In
the exceptional case when gtt has an inflection point, the
associated electric field vanishes at that radius without
changing signs.

C. Comment on orbits and forces

In this section, we wish to point out a generic feature of
static, spherically symmetric metrics and their associated
single-copy gauge fields. It is well known that a classical
(nonrelativistic) particle of charge q in the presence of an
external electric field is subject to the Coulomb force
F⃗c ¼ qE⃗. Since conservative forces (including the gravi-
tational force) can be written in terms of the gradient of a

scalar potential, F⃗g ¼ −∇⃗V, we can start from (2.45),

VϵðrÞ ¼ −
1

2
gtt

�
L2

r2
þ ϵ

�
;

and take the (negative) gradient to obtain the gravitational
force on either a massive (ϵ ¼ 1) or massless (ϵ ¼ 0)
particle,

Fgrav ¼ −
1

2
ErðrÞ · ϵ −

L2

r2

�
gttðrÞ
r

−
1

2
g0ttðrÞ

�
: ð3:31Þ

In the above, we make the identification that E ¼ ∂rgtt,
illustrating a very simple but interesting fact: if we imagine
a massive particle falling inwards toward the black hole
(L ¼ 0), then

Fgrav ¼ −
1

2
Er ∝ Fc; ð3:32Þ

where Fc ∼ qE is the force on a charge q due to the electric
field E. It is of course also true that evaluating Fgrav at some
black hole horizon rH is simply the usual expression for
surface gravity κ,

κ ¼ −
1

2
∂rgttðrÞ

���
rH
; ð3:33Þ

which is nothing more than the single-copy electric field
evaluated at the horizon.
These considerations seem to suggest that in certain

special cases, the dynamics of a charged particle in an
electromagnetic background produced by the single-copy
fields are related to the dynamics of a massive particle in the
associated gravitational background. This also may hint at a
possible connection between quantities in the single-copy
gauge theory and black hole thermodynamics.

IV. CONCLUDING REMARKS

In this work, we have explored nonsingular black holes
and their associated gauge theories in the framework of the
classical double copy. Focusing on the T-dual de Sitter
black hole spacetime, we provided a complete study of the
horizon structure and (positive mass) parameter space for
the profile function gtt, expanding on the results of [78].
After presenting the Penrose-Carter diagrams for general
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nonsingular black holes, we studied the energy conditions
for the T-dual de Sitter black hole spacetime, the NLED
monopole source of the Bardeen spacetime, before working
out a partial treatment of the null and timelike circular
orbits for the T-dual black hole.
Following the analysis on the gravitational side of the

double copy, we computed the single-copy gauge theory
quantities Aμ; Fμν, and ∂νFμν, finding each to be non-
singular at the origin r ¼ 0. These computations illustrate
some simple but interesting relationships between the
gauge and gravity sides of the double copy for this
spacetime, including a “convention-flip” that associates
positive (negative) charge to negative (positive) electric
field values in the r < 0 region. In addition to verifying that
expectations for the gauge theory in the interior de Sitter
core of the black hole are consistent with [57], we saw that
the Bardeen black hole’s single-copy charge density ρc was
a combination of the energy density from the NLED source
and the Ricci scalar; however, ρc could not “see” any
difference between the two terms due to each contributing
at the same polynomial order in r. We next used the T-dual
black hole as an example spacetime to confirm the Komar
energy maps to the black hole mass which in turn maps to
electric charge as outlined in [66], before showing that the
gauge theories associated with the Dymnikova and
Hayward solutions exhibited qualitatively identical behav-
iors to that of the T-dual solution in the r > 0 region.
Possibly our most interesting finding is the interplay

between horizons on the gravity side and electric fields on
the gauge theory side of the double copy: when the
spacetime has multiple horizons, the single-copy electric
field changes signs between the horizon radii. The reason as
to why this happens is straightforward for such simple
spacetimes, since the electric field is the first derivative of
gtt, which must have a local extrema between two horizons.
For all of the extremal solutions, the electric field will have
a zero precisely at the merged horizon. In the unique case
where the inner, outer, and cosmological horizons all
merged (the subclass we called B2), we saw that the
electric field vanishes yet does not change signs at the
location of the triply merged horizon, since gtt has an
inflection point at that radius.
There have been very few mentions in the classical

double-copy literature concerning the role that gravitational
horizons play in the single-copy gauge theory. Notably,
in [56], the authors comment on how the single-copy’s
charge looks qualitatively the same regardless of the black
hole mass in the Schwarzschild–de Sitter spacetime
[cf. (3.27)], even when the mass takes the maximal value
corresponding to the Nariai limit. Here, we have instead
found that the single-copy electric field’s behavior can
indicate the presence of a horizon. In order to see this
effect, the spacetime must possess at least two horizons for
the single copy to “notice” their existence, signaled by
E⃗ ¼ 0.

However, we also showed that E⃗ can vanish for space-
times with no horizons at all, as in the traversable wormhole
(case M1). This behavior arises because −gtt has its local
extrema where −gtt > 0. Therefore, the gauge theory
exhibiting E⃗ ¼ 0 could be the single copy of a spacetime
with multiple horizons or no horizons at all. This degen-
eracy is similar to the fact that taking the square root of a
real number always has two solutions corresponding to a
positive and negative value. The information of the sign of
the solution is then lost when it is squared. This reasoning is
consistent with the few additional comments in [56]
regarding horizons.
Finally, we showed that off of the horizon, the gravita-

tional force on an infalling mass (with zero angular
momentum) is proportional to the force per unit charge
on a charged particle in the presence of the single-copy
electric field. Correspondingly, the electric field evaluated
at a horizon maps to the surface gravity (up to a factor of
− 1

2
), which may be a hint toward a connection between the

gauge theory fields and black hole thermodynamics.
Our findings suggest a number of possible avenues to

consider. To start, there are many NLED theories that emit
nonsingular, static, spherically symmetric solutions. It
would be interesting to know which theories double copy
to a gravitational theory that also has nonsingular solutions,
and which do not. In [77], for example, it was shown that
the nonsingular electric field solution to Born-Infeld theory
double copies to a gravitational solution that still has
curvature singularities at r ¼ 0. Caution must be taken,
however, since the Kerr-Schild classical double-copy maps
Maxwell theory onto general relativity. More complex
equations of motion on the gauge theory side, as those
from a NLED, ought to map to gravitational theories that
are more complicated than general relativity. Modifications
to the Kerr-Schild single-copy ansatz Aμ ¼ ϕkμ might be
necessary to make the map between the equations of
motion on both sides of the duality consistent.
Spacetimes with multiple horizons are plentiful, and

answering whether or not the feature of a vanishing E⃗
persists between horizons for more complex metrics could
illuminate whether the connection between the electric field
and horizon structure is generic in the classical double
copy. For the Schwarzschild-type (grr ¼ −1=gtt) static
spherically symmetric black hole, we were able to write
the associated gauge vector field and corresponding E⃗ in
terms of an arbitrary gtt, thus making a statement about the
entire class of such metrics. One issue in extending this
analysis to stationary spacetimes is the problem of writing a
Kerr-Schild form for an arbitrary metric of that type. It is
unclear if the general stationary line element can be written
in Kerr-Schild form so that its single-copy gauge field is
easy to identify. Progress could be made by approaching
the problem using the Weyl double-copy prescription [49]
instead of Kerr-Schild, which uses curved space spinor
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formalism and does not explicitly rely on the metric being
written in Kerr-Schild coordinates.
We have focused on spacetimes with positive black hole

mass and Λ > 0 and leave a complete study of the fα; Λ̃g
parameter space to future work. As discussed in Sec. II,
allowing for Λ < 0 and/or m < 0 uncovers regions of the
fα; Λ̃g parameter space where the local structure of the
spacetime around r ¼ 0 can be flat or AdS. This is due to
the effective cosmological constant being proportional to
1
3
Λþ 2m

l3 . There is also the possibility for the spacetime
around r ¼ 0 to be locally de Sitter, yet tend to AdS as
r → �∞. Because AdS is arguably the most significant
spacetime in holography, it may be interesting to inves-
tigate the features of the single-copy gauge theory in those
regions of the parameter space, which may uncover new
connections between the double copy and AdS=CFT.
Finally, it would be quite interesting if the physics of

black hole thermodynamics has a connection to the
classical double copy that is deeper than what we have
pointed out in this work. Since the horizon structure of a
black hole is intimately connected to its thermodynamics,
our observation about the tied behavior of the single-copy
electric field and the double-copy gravitational horizon is a
possible sign of such a relationship. Another hint of a
relationship is [75] which explored fluid-gravity duality in
the context of the classical double copy. We hope to return
to this issue in future work.

ACKNOWLEDGMENTS

The authorswish to thankAndresLuna andNikhilMonga
for useful conversations while this workwas in progress.We
would also like to thank the referee for valuable comments
on our original draft. The work of D. A. E. was supported in
part by the Foundational Questions Institute (FQXi). The
work of C. K. was supported by the U.S. Department of
Energy under Grant No. DE-SC0019470.

APPENDIX: CURVATURE TENSORS
AND INVARIANTS

The nonvanishing components of the mixed Riemann
tensor are

Rtr
tr ¼

mð2l4 − 11l2r2 þ 2r4Þ
ðl2 þ r2Þ7=2 þ Λ

3
;

Rtθ
tθ ¼ Rtϕ

tϕ ¼ Rrθ
rθ ¼ Rrϕ

rϕ ¼ mð2l2 − r2Þ
ðl2 þ r2Þ5=2 þ

Λ
3
;

Rθϕ
θϕ ¼ 2m

ðl2 þ r2Þ3=2 þ
Λ
3
; ðA1Þ

and those related by symmetries. All of the above approach
a finite value in the limit as jrj → 0,

2m
l3

þ Λ
3
: ðA2Þ

In the large r limit (as r → ∞), all components of the
Riemann tensor approach the asymptotic constant value:
Λ=3. Hence, for all then entire range of the radial
coordinate r ∈ ð−∞;þ∞Þ the Riemann tensor components
are finite.
The nonvanishing components of the mixed Weyl

tensor are

Ctθ
tθ ¼ Ctϕ

tϕ ¼ Crθ
rθ ¼ Crϕ

rϕ ¼ −
1

2
Ctr

tr ¼ −
1

2
Cθϕ

θϕ

¼ mr2ð3l2 − 2r2Þ
2ðl2 þ r2Þ7=2 ðA3Þ

(and those related by symmetry). Note all the components
of the Weyl tensor approach zero in the limit as r → 0 and
in the large r limit, jrj → ∞.
The nonvanishing components of the mixed Ricci

tensor are

Rt
t ¼ Rr

r ¼
3l2mð2l2 − 3r2Þ

ðl2 þ r2Þ7=2 þ Λ; ðA4Þ

Rθ
θ ¼ Rϕ

ϕ ¼ 6l2m

ðl2 þ r2Þ5=2 þ Λ: ðA5Þ

Finally, the nonvanishing components of the mixed
Einstein tensor are

Gt
t ¼ Gr

r ¼ −
6l2m

ðl2 þ r2Þ5=2 − Λ; ðA6Þ

Gθ
θ ¼ Gϕ

ϕ ¼ 3l2mð3r2 − 2l2Þ
ðl2 þ r2Þ7=2 − Λ: ðA7Þ

The Ricci scalar is

R ¼ 6l2mð4l2 − r2Þ
ðl2 þ r2Þ7=2 þ 4Λ: ðA8Þ

The contracted Ricci tensor is

RμνRμν ¼ 2

�
6l2Λmð4l2 − r2Þ

ðl2 þ r2Þ7=2

þ 9l4m2ð8l4 − 4l2r2 þ 13r4Þ
ðl2 þ r2Þ7 þ 2Λ2

�
; ðA9Þ

which is everywhere finite. The Kretschmann scalar is
likewise everywhere finite,
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K ¼ RμνρσRμνρσ

¼ 12m2ð8l8 − 4l6r2 þ 47l4r4 − 12l2r6 þ 4r8Þ
ðr2 þ l2Þ7

þ 8Λmð4l4 − l2r2Þ
ðr2 þ l2Þ7=2 þ 8Λ2

3
: ðA10Þ

The contracted Weyl tensor gives

CμνρσCμνρσ ¼ 12m2r4ð3l2 − 2r2Þ2
ðl2 þ r2Þ7 : ðA11Þ

All invariants remain finite for all values of the
radial coordinate. Deep inside the black hole the

Ricci scalar (A8) approaches a constant value revealing
a de Sitter core,

lim
r→0

R ¼ 24m
l3

þ 4Λ: ðA12Þ

Expanding the metric near r ¼ 0 gives that of the static de
Sitter patch,

gtt ≈ −ð1 − r2=l2 þOðr4ÞÞ; ðA13Þ
where we have introduced the interior de Sitter scale

l2 ¼ 3l3

l3Λþ 6m
: ðA14Þ
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