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Gravitational physics is arguably better understood in the presence of a negative cosmological
constant than a positive one, yet there exist strong technical similarities between the two settings. These
similarities can be exploited to enhance our understanding of the more speculative realm of quantum
cosmology, building on robust results regarding anti–de Sitter black holes describing the thermody-
namics of holographic quantum field theories. To this end, we study four-dimensional gravitational path
integrals in the presence of a negative cosmological constant and with minisuperspace metrics. We put a
special emphasis on boundary conditions and integration contours. The Hawking-Page transition is
recovered, and we find that below the minimum temperature required for the existence of black holes the
corresponding saddle points become complex. When the asymptotic anti–de Sitter space is cut off at a
finite distance, additional saddle points contribute to the partition function, albeit in a very suppressed
manner. These findings have direct consequences for the no-boundary proposal in cosmology, because
the anti–de Sitter calculation can be brought into one-to-one correspondence with a path integral for
de Sitter space with Neumann conditions imposed at the nucleation of the Universe. Our results lend
support to recent implementations of the no-boundary proposal focusing on momentum conditions at
the “big bang.”
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I. INTRODUCTION

General relativity is a spectacularly successful theory of
spacetime and gravity, but among its physically relevant
solutions there are some that contain singularities and
which, thus, predict the breakdown of the theory from
which they originated. Most notable are the singularities
inside black holes and the big bang in cosmological
solutions. A series of insights originating already in the
1970s and 1980s implied that black holes and the big bang,
which may be seen as the most extreme manifestations of
gravity in the Universe, could be tamed when perceived
from the point of view of Euclidean spacetime. In the case
of black holes, the Euclidean solution ends at the horizon,
and the interior part containing the singularity is simply
absent [1]. For the big bang, the proposed resolution
consists of rounding off the singularity by extending the
spacetime to contain a nonsingular Euclidean section near
the big bang [2].

The study of Euclidean black holes has been a fruitful
way of deriving and elucidating thermodynamic properties
of black holes and, thus, also the link between gravity and
quantum theory. In particular, Euclidean solutions offer the
most pragmatic way of deriving the temperature of black
holes. Another famous application for black holes in anti–
de Sitter (AdS) spacetime, on which we will focus here, is
the Hawking-Page transition [3]. There one finds that,
depending on the temperature, either empty AdS or black
holes dominate the partition function, while a minimum
temperature is required for black hole solutions to exist at
all. Via holography, gravitational physics in AdS acquires
an alternative description in terms of more familiar quan-
tum field theory (QFT) phenomena [4–6], which makes
AdS the best understood instance of quantum gravity. In
particular, the Hawking-Page transition in holography
becomes a thermal phase transition between confined
and deconfined phases in a dual QFT with the thermody-
namic limit achieved by a very large number of underlying
QFT degrees of freedom [7].
In this work, we will reproduce features of the Hawking-

Page phase transition by calculating explicitly the gravita-
tional path integral in the minisuperspace approach [8]. Our
studies for black holes in AdS space are motivated by recent
developments in cosmology, as there is a very close analogy
between the calculations performed in the present work and
novel studies of the no-boundary proposal in cosmology
utilising the minisuperspace Ansatz [9]. The idea is to make
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use of the firm results for the thermodynamics of black holes
to learn lessons for path integrals in quantum cosmology.
In the cosmological context, one would also like to

calculate path integrals which, instead of partition func-
tions, are interpreted as describing transitions between an
initial state of the Universe and a final state which may
usually be thought of as the current spatial section of the
Universe. The analogy is technically closest in the case
where one models a possible early inflationary phase by a
positive cosmological constant and where the spatial
section of the Universe is taken to be a three-sphere. We
will focus on this case here. This de Sitter solution
represents a useful approximation during an inflationary
phase. The idea of Hartle and Hawking was that one could
resolve the big bang singularity by gluing half of the
Euclidean version of the solution to the waist of the
Lorentzian de Sitter hyperboloid, so that the Universe is
smoothly rounded off in the past [2]. This would replace the
big bang by a semiclassical geometry and provide initial
conditions for an inflationary phase in the early Universe.
A question that has been discussed for about 40 years

now is how to implement this proposal in a precise
technical manner. Hartle and Hawking originally made
the proposal that in the path integral one should sum only
over compact, regular metrics. In this manner, one should
obtain a saddle point geometry corresponding to the
rounded-off big bang they had in mind. This definition
suggests using Dirichlet conditions in which the initial size
of the Universe is set to zero. However, one can show that if
one implements a path integral with such Dirichlet con-
ditions, then one necessarily obtains saddle points with
unstable fluctuations [10–12]. For such saddle points, the
weighting is larger when the fluctuations are larger, and this
results in unphysical predictions.1 By contrast, path inte-
grals with an initial Neumann condition allow for a
consistent and stable formulation of the Hartle-Hawking
wave function [9].2

In the present work, we study gravitational path integrals
in AdS with the aim of using holographic intuitions to shed
light on the aforementioned studies in cosmology. To this
end, we will consider path integrals over four-dimensional
geometries within the minisuperspace class with weight-
ing provided by the Einstein-Hilbert term + a negative

cosmological constant + appropriate boundary terms.
These geometries will be anchored on a Euclidean boun-
dary, and we will consider two separate cases of the latter:
three-spheres and direct products of a circle and a two-
sphere. According to holography, an appropriately under-
stood gravitational path integral corresponds to evaluating
the dual QFT partition function with the QFT living on the
chosen boundary geometry. The latter we impose on the
gravity side as a Dirichlet boundary condition for the four-
dimensional metrics we path integrate over. Evaluating
such path integrals in the minisuperspace approach requires
us to introduce a coordinate r on which our metric will
depend. Without loss of generality, we can assume that this
coordinate runs between 0 and 1, and we choose the
Euclidean boundary to lie at r ¼ 1. However, in order to
make our calculation well defined, we will also need to
provide information on how the metrics we integrate over
behave at r ¼ 0. To be more specific, for an outer boundary
consisting of a circle of radius R1 and a two-sphere of
radius R2 illustrated in Fig. 1, we will analyze the sum over
geometries

ZðR1; R2Þ ¼
X
B

Z
R1;R2

B
d½gμν�eði=ℏÞS; ð1Þ

where B encapsulates conditions imposed on the metric
gμν at r ¼ 0.
The first of our two main challenges will be to specify

the boundary conditions B on the inner boundary, including
possibly summing over a class of them. An important
guiding principle for us in this quest will be the dual QFT
interpretation. Following this thread, one thing that we do
not want to do is to impose another Dirichlet boundary
condition in which the locus r ¼ 0 is a nontrivial three-
dimensional Euclidean space, since according to hologra-
phy each such boundary corresponds to an independent
copy of a QFT. As we will see later, interpreting the setup
from Fig. 1 as calculating the thermodynamic partition
function in a dual QFT implies that in our approach we
must impose a Neumann condition on the metric at the
inner boundary of the integration region at r ¼ 0. Similarly,
a Neumann boundary condition can also be utilized in the
case of the boundary being a three-sphere, in which case the
litmus test comes from a comparison with the exactly
evaluated QFT partition function using supersymmetric
localization. Our AdS calculation in this case can be
brought into one-to-one correspondence with the recent
definition of the no-boundary proposal in Ref. [9] and
shows that using momentum conditions at the big bang
rather than summing over compact metrics is, in fact, quite
natural from the holographic point of view.
The second main challenge in making sense of Eq. (1)

will be evaluating the path integral itself. The appearance
of meaningful Euclidean saddle point solutions, such as
empty Euclidean AdS or a Euclidean AdS black hole,

1There were a number of papers that attempted to evade this
conclusion by modifying integration contours or modifying
boundary conditions for the perturbations; see [13–15]. We will
not follow this road based on the analysis given in Ref. [16].

2Early suggestions to use the Neumann condition can be found
in Refs. [17–19]. The importance of specifying the initial mo-
mentum was also highlighted more recently in Ref. [20]. In the
earlier works, the Neumann condition was imposed at the level of
theminisuperspace action.Here, as inRef. [9], wewill be careful to
consider the boundary conditions as arising from the full Einstein-
Hilbert action, thus guaranteeing that our treatment is covariant.
One may also consider more general conditions that form a linear
combination of Dirichlet and Neumann conditions [21].
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would naturally suggest that gravitational path integrals
should be defined as sums over Euclidean geometries in the
framework known as Euclidean quantum gravity [22].
However, when using the minisuperspace path integral
as a definition of Eq. (1), with the exception of using
a Neumann condition at r ¼ 0 when the boundary is a
three-sphere, we find that, in general, the sum over bulk
Euclidean metrics is not given by a convergent integral
and, therefore, is mathematically meaningless. Following
Ref. [10], we define the path integral (1) as a sum over
a class of sections of complex manifolds. This is necessary
in order to turn the conditionally convergent integral (1)
into a sum of manifestly convergent integrals. These
convergent integrals live on steepest descent contours
(“Lefschetz thimbles”), and they fix both the meaning
and the order of integration of the conditionally convergent
sum over metrics. Our approach rests on the formalism of

Picard-Lefschetz theory [23], although we will need only
the simplest, one-dimensional, version of the theory.
Let us alreadymention some consequenceswhichwewill

explore. We find that, in addition to well-known Euclidean
saddle points describing empty AdS and AdS black holes,
there always exist three other saddle points with Euclidean
or complex bulk geometries. These play no role in the case
where the outer boundary is sent off to infinity (i.e., R1 and
R2 diverge with the ratio kept fixed) corresponding to
dealing with a ultraviolet-complete holographic QFT [in
our case, a holographic conformal field theory (CFT)] [4].
However, they do contribute, though in a very suppressed
manner, to the path integral (1) when the boundary is
brought to a finite radius (i.e., both R1 and R2 are finite)
describing a particular class of effective holographic QFTs
[24,25]. The latter arise as irrelevant deformations ofCFTby
an operator being a square of its energy-momentum tensor.
The plan of our paper is as follows: In Sec. II, we will

first review different forms for the metrics of AdS space and
AdS black holes, which we will require in our later
calculations. Section III is devoted to the calculation of
the partition function with a three-sphere boundary. In
Sec. IV, we will then extend these results by changing the
boundary topology to S1 × S2, which will allow us to
include black holes to our discussion. The connections with
cosmology are discussed in Sec. V, and an outlook and
some interesting open problems are provided in Sec. VI.

II. USEFUL METRICS FOR AdS
AND BLACK HOLES

The evaluation of gravitational path integrals is greatly
simplified by choosing particularly well-adapted metric
Ansätze, which differ from the metric forms that are most
often used in other contexts. In this section, for convenience
we will present the AdS and asymptotically AdS black hole
metrics both in a common form and in the form that we will
employ later.
We will consider general relativity in four spacetime

dimensions in the presence of a negative cosmological
constant Λ, with action

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2Λ�; ð2Þ

where one may define

Λ≡ −
3

l2
ð3Þ

with l denoting the radius of curvature of the maximally
symmetric AdS solution. We specialize here and in the
following to gravity in four dimensions, because we want to
draw lessons about cosmology in our Universe. It would
certainly be interesting to generalize the findings of our
article to an arbitrary number of dimensions.

FIG. 1. We study partition functions that sum over all metrics
with a fixed Euclidean boundary, where the boundary will be
either a three-sphere or the product of a circle and a two-sphere.
Illustrated here is the case with a fixed boundary consisting of the
product of a circle of radius R1 and a two-sphere of radius R2. The
sphere is shown only at a single point on the circle. We will use
coordinates in which the boundary resides at r ¼ 1, and we will
sometimes refer to it as the “outer” boundary. Wewill assume that
the geometry ends at r ¼ 0, and we will refer to the r ¼ 0
coordinate location as the “inner” boundary. Guided by holog-
raphy, we will be interested in situations in which this location is
not a true geometrical boundary but rather just the end point of a
coordinate range.
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The Euclidean version of the empty AdS solution may be
written as

ds2 ¼ dρ2 þ l2 sinh2
�
ρ

l

�
dΩ2

3; ð4Þ

where dΩ2
3 is the metric on the unit three-sphere with

volume V3 ¼ 2π2 and the (asymptotic) boundary resides at
ρ → ∞. Via holography, the gravitational action evaluated
on shell on this solution and supplemented with appropriate
counterterms to kill divergences incurred as ρ → ∞
approximates the logarithm of a partition function (free
energy) for a dual CFT living on the boundary. For the
metric (4), the latter is a three-sphere. One reason why it
is interesting to compute partition functions for three-
dimensional QFTs on spheres stems from this quantity
being a natural measure of the number of degrees of
freedom in such QFTs [26].
Wewill find it useful to consider a metric of the form [18]

ds2 ¼ −
N2

qðrÞ dr
2 þ qðrÞdΩ2

3; ð5Þ

whereN denotes the lapse function. Note that theminus sign
in the above equations is not a standard convention in
holography, but it will facilitate the comparison with
cosmology. Also, in the end we will define Eq. (1) as a
path integral over complex geometries, so this is just a choice
of a convention. Moreover, we will consider situations in
which there is a boundary at a fixed radius. For this purpose,
it will be useful to rewrite the solutions in terms of a radial
coordinate with a finite range, say, 0 ≤ r ≤ 1. A patch of
the Euclidean Anti-de Sitter (EAdS) solution for 0 ≤ ρ ≤
ρmax ¼ larcsinhðR3

l Þ then corresponds to

N ¼ �il
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
3 þ l2

q
þ l
�
; ð6Þ

qðrÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
3 þ l2

q
þ l
�2
r2 − 2l

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
3 þ l2

q
þ l
�
r: ð7Þ

Note that the lapse function is imaginary, in accordancewith
the Euclidean nature of the solution. HereR3 may be seen to
fix the proper radius of the three-sphere at the outer
boundary at coordinate location r ¼ 1. In particular, within
this Ansatz considering the solution all the way to the
asymptotic boundary corresponds to blowing up the
radius R3.
We will also consider metrics with S1 × S2 topology on

constant radial surfaces. A corresponding metric for AdS
space is

ds2 ¼ dρ2

ðρ2l2 þ 1Þ
þ
�
ρ2

l2
þ 1

�
dτ2 þ ρ2dΩ2

2; ð8Þ

where

dΩ2
2 ¼ dθ2 þ sin2ðθÞdϕ2 ð9Þ

is the metric on the unit two-sphere and where we have
chosen the “time” coordinate τ to be Euclidean. In these
coordinates the empty anti–de Sitter solution can be
straightforwardly extended to include a (Euclidean)
Schwarzschild black hole [27], as

ds2¼ dρ2

ðρ2l2 þ1− 2M
ρ Þ

þ
�
ρ2

l2
þ1−

2M
ρ

�
dτ2þρ2dΩ2

2; ð10Þ

where M denotes the mass of the black hole. The horizon
radius rþ of the black hole is given by the real root of

ρ3

l2
þ ρ − 2M ¼ 0≡ 1

l2
ðρ − rþÞðρ − r1Þðρ − r2Þ; ð11Þ

while the other two roots r1 and r2 form a complex
conjugate pair, since the discriminant of this cubic equation
is negative.3 From this, one immediately obtains an
expression for the mass in terms of the horizon radius:

M ¼ 1

2
rþ

�
1þ r2þ

l2

�
: ð12Þ

In order for the manifold to avoid a conical singularity at
the horizon, one must impose that the τ coordinate is
periodic (so that the near-horizon metric resembles that of
the origin of flat space in polar coordinates) with period [3]

β ¼ 4πl2rþ
3r2þ þ l2

: ð13Þ

The AdS/CFT correspondence maps the mass M in
Eq. (12) to the expectation value of the corresponding
CFT Hamiltonian in a thermal state on a unit two-sphere at
temperature equal to 1=β [28].
Once again, we would like to bring the metric (10) into a

form where the radial coordinate has finite range. For this,
we will first pick a radius ρ ¼ R2, where R2 denotes the
radius of the two-sphere on the boundary. Our radial
coordinate r ranges from 0 to 1 and should interpolate
between rþ and R2. Thus, we will define

ρ≡ bðrÞ ¼ rðR2 − rþÞ þ rþ: ð14Þ

Here one can see that sending ρ to ∞ is equivalent to
blowing up R2, as we wrote earlier. Using the Ansatz for the
Kantowski-Sachs class of metrics [19],

3The cubic roots have the properties that rþ þ r1 þ r2 ¼ 0 and
r1r2 ¼ r2þ þ l2.
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ds2 ¼ −
bðrÞ
cðrÞN

2dr2 þ cðrÞ
bðrÞ dτ

2 þ bðrÞ2dΩ2
2; ð15Þ

the black hole geometry can now be rewritten as

N ¼ �iðR2 − rþÞ; ð16aÞ

cðrÞ ¼ 1

l2
½b3ðrÞ þ l2bðrÞ − r3þ − l2rþ�: ð16bÞ

On the outer boundary at r ¼ 1, we have

bð1Þ¼R2 and cð1Þ¼ 1

l2
ðR3

2þ l2R2−r3þ− l2rþÞ: ð17Þ

If we denote the period of τ by β, then we can see that the
size of the circle direction on the boundary is given by

ffiffiffiffiffiffiffiffiffi
cð1Þ
bð1Þ

s
β≡ R1: ð18Þ

Keeping R1 and R2 fixed specifies the size of the outer
boundary. At the inner boundary at r ¼ 0, the metric (10)
implies

bð0Þ ¼ rþ and cð0Þ ¼ 0: ð19Þ

The value bð0Þ effectively specifies the mass of the black
hole, according to Eq. (12). Again, a conical singularity at
r ¼ 0 is avoided provided the periodicity β is given by

β ¼ 4πbð0ÞjNj
_cð0Þ ¼ 4πl2rþ

3r2þ þ l2
; ð20Þ

where a dot denotes a derivative with respect to r.
Pure Euclidean AdS space (8) is recovered in the limit

rþ → 0, and in that case the periodicity β is arbitrary, since
the manifold is smooth in any case.

III. S3 BOUNDARY AND EUCLIDEAN
AdS4 SADDLES

A. Neumann condition at r= 0

We will first review how Euclidean AdS space is
obtained as the saddle point of a gravitational path integral.
This calculation was done previously by Caputa and Hirano
in Ref. [29] and in three dimensions in Ref. [30].4 Here we
will perform the analogous calculation in a different style
adopted from Ref. [10], which has the advantage that it will
allow us to extend the calculation to black holes in the next
section. Also, motivated by the extension to black holes, we
will impose here different boundary conditions at r ¼ 0

than in Ref. [29]. In Sec. III B, we will show how the results
of Ref. [29] fit into our framework, and we will discuss
some implications of our studies in Sec. III C.
The object we are interested in is the partition function

ZðR3Þ ¼
Z

R3

d½gμν�eði=ℏÞS; ð21Þ

with a three-sphere of radius R3 at the fixed (outer)
boundary. Note that the nature of the bulk metrics that
we integrate over is going to be determined by the contour
of integration in the lapse integral and will, in general,
involve complex metrics. Also, the signature of the metric
in which a dual QFT lives is fixed by the outer boundary
condition and unaltered by this genuinely bulk phenome-
non. To be more precise about our aim, we want to define
Eq. (21) within the minisuperspace approach so that it is
mathematically meaningful and has features consistent
with calculating a partition function in a dual QFT.
The action we will consider consists of the Einstein-

Hilbert action with a negative cosmological constant,
supplemented by the York-Gibbons-Hawking (YGH) sur-
face term [22,32] at the (outer) boundary:

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ 6

l2

�

þ 1

8πG

Z
outer

d3y
ffiffiffi
h

p
K þ Sct; ð22Þ

where the counterterms Sct will be discussed below. Note
that in this subsectionwe do not add any surface terms on the
inner boundary, for reasons that will become clear. Wework
with minisuperspace metrics given the Ansatz (5). The
coordinate r interpolates between the inner boundary at
r ¼ 0 and the outer boundary at r ¼ 1, that is to say,
0 ≤ r ≤ 1. Here NðrÞ is the lapse function and qðrÞ is the
scale factor squared, which determines the size of the three-
sphere.Wewill denoteqðr¼0Þ≡q0 andqðr¼1Þ≡q1¼R2

3.
The reason for choosing this less familiar metric Ansatz is
that the action ends up being quadratic in q, which will be
very useful in evaluating the path integral over q. In fact, the
action reduces to5

S¼ 3π

4G

Z
1

0

dr

�
−

_q2

4N
þN

�
1þ q

l2

��
−
3πq0 _q0
8GN

þSct; ð23Þ

where a dot over a function denotes here and in the following
a derivativewith respect to r. Second derivatives acting on q
have been eliminated using integration by parts, and the

4See also Ref. [31] for another recent application of the
minisuperspace approach in holography.

5One subtlety that we want to highlight is that in passing from
the general action (22) to its form for the minisuperspace metrics
(5) we made a choice of a branch in the expression

ffiffiffiffiffiffi−gp
. For a

purely Euclidean metric, this would be the standard choice one
makes.
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resulting surface term at r ¼ 1 has eliminated the YGH
surface term there while introducing a surface term − 3πq0 _q0

8GN
at r ¼ 0. Variation of the action with respect to q leads to

δS ¼ 3π

4G

Z
1

0

dr
δq
2N

�
q̈þ 2N2

l2

�
−
3π _q1δðq1Þ

8GN
−
3πq0δð _q0Þ

8GN

þ δSct: ð24Þ

Thus, we obtain the equation of motion q̈ ¼ − 2N2

l2 , supple-
mented by the boundary conditions that we can hold q fixed
at the outer boundary, as desired (the variation δSct will be
consistent with this), while self-consistency upon not
including the York-Gibbons-Hawking term on the inner
boundary of the integration range forces us to fix _q there.
More properly, we should say that it is the momentum
conjugate to the scale factor,

Π ¼ δL
δ _q

¼ −
3π

8GN
_q; ð25Þ

that will be fixed on the inner boundary. This Neumann
condition, understood as fixing the momentum to some
value (not necessarily 0), is not strictly needed in the present
calculation:Aswewill show in the next subsection,we could
have used the Dirichlet condition here. However, a momen-
tum conditionwill be necessary when including black holes,
if we want to reproduce standard results of black hole
thermodynamics in the canonical ensemble and we interpret
the result of the bulk path integral as the thermodynamic
partition function. It will be useful for us to parameterize the
momentum at r ¼ 0 by a rescaled parameter α:

Π0 ¼ −
3π

8GN
_q0 ≡ −

3π

4G
α: ð26Þ

To proceed, we must evaluate the path integral over the
metric, i.e., the integrals over the lapse and the scale factor,R
d½gμν� ¼

R
d½N�d½q�, where we will ignore Jacobian fac-

tors given that we will eventually evaluate the partition
function in the saddle point approximation. Here and in the
following, we will make use of an old result of Refs. [8,33],
namely, that one can use the gauge freedom of general
relativity to restrict the sum to run over manifolds in which
the lapseN does not depend on r. This drastically simplifies
the integral overq and also transforms the functional integral
over N into an ordinary integral. The procedure to evaluate
the path integral over q is to shift variables by writing
q ¼ q̄þQ [18]. Here q̄ denotes a solution of the equation of
motion for q respecting the boundary conditionsΠð0Þ ¼ Π0

and qð1Þ ¼ q1 ¼ R2
3. Explicitly, we have

q̄ðrÞ ¼ −
N2

l2
ðr2 − 1Þ þ 2Nαðr − 1Þ þ R2

3: ð27Þ

Meanwhile Q is an arbitrary perturbation (not necessarily
small), which obeys the boundary conditions, i.e., vanishes

at r ¼ 1 and has a vanishing momentum at r ¼ 0. Since the
action is quadratic in q, the path integral then turns into a
factor given by the action evaluated along the q̄ plus a
Gaussian integral overQ. As we show in the Appendix, this
yields just a numerical prefactor. Thus, up to this numerical
factor, we are left with

ZðR3Þ ¼
Z

dNeiðS0þSctÞ=ℏ; ð28aÞ

4G
π

S0ðNÞ ¼ N3

l4
− 3α

N2

l2
þ 3N

�
R2
3

l2
þ 1þ α2

�
− 3αR2

3;

ð28bÞ

where it is important that the counterterms contain no
dependence on the lapse. While the integral over N from
−i∞ to 0 converges in this particular case, below we take a
route ofRef. [10]whichwill apply to all the cases considered
in the present work.6

The lapse integral above can, in fact, be evaluated
exactly. It is easiest to see this by shifting the integration
variable to Ñ ≡ N − αl2, which leads to

4G
π

S ¼ 1

l4
½Ñ3 þ 3l2ðR2

3 þ l2ÞÑ þ αð3þ α2Þl6�: ð29Þ

Then our path integral can be identified as an Airy integral
(using dÑ ¼ dN). The possible integration contours are
defined in terms of the asymptotic regions of convergence
labeled 0, 1, and 2 in Fig. 2. They are located at phase
angles θ≡ argðNÞ: 0 ≤ θ ≤ π

3
(region 1), 2π

3
≤ θ ≤ π

(region 0), and 4π
3
≤ θ ≤ 5π

3
(region 2). We define the

contours as C0 ¼ 0 → 1, C1 ¼ 1 → 2, and C2 ¼ 2 → 0,
which define for us the two Airy functions as follows [34]:

Ai½z� ¼ 1

2π

Z
C0

dxei½ðx3=3Þþzx� and

Bi½z� ¼ i
1

2π

Z
C2−C1

dxei½ðx3=3Þþzx�: ð30Þ

Since the CFT partition function is real, we should also
expect the gravitational partition function to yield a real-
valued result. There are then two possible contours. The
first is to integrate along C0, and this yields a result
proportional to the Airy function Ai½ð3πl2

4GℏÞ2=3ðR2
3 þ l2Þ�.

At large R3, this function is exponentially suppressed
∼e−R3

3 and, thus, cannot represent the desired answer.
The other possibility is to integrate along C2 − C1. This
can be seen as follows: Our integrand is odd in the lapse,

6We will see below that N ¼ 0 is not a natural end point of
integration, as the relevant steepest descent contour continues
beyond this point.
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which implies that under the transformation N → −N� the
integrand changes into its complex conjugate. An integra-
tion contour that is even under N → −N� can then be split
up into two pieces which are reflection symmetric across
the imaginary N axis, and, if they have the same orientation
(e.g., left to right), they represent a sum of an integral and
its complex conjugate—thus, the result is real. This is the
case for the contour C0 ¼ −ðC2 þ C1Þ, which gives the Airy
Ai function. The other possible contour that is even under
N → −N� is the difference C2 − C1. It corresponds to the
difference of an integral and its complex conjugate and is
pure imaginary; after multiplication with the imaginary unit
i, it also yields a real result, namely, the Airy Bi function.
Reinstating the spatial volume V3 and using Eq. (30), the

integral over C2 − C1 yields the following answer:

ZðR3Þ ¼ eiðV3=8πGℏÞαð3þα2Þl2Bi
��

3V3

8πGℏl

�
2=3

ðR2
3 þ l2Þ

�
× eði=ℏÞSct : ð31Þ

We will determine α momentarily, but first it is useful to
look at the large R3 limit of this expression. Naively, our
result diverges as the boundary is pushed to infinity,
R3 → ∞. This is the usual infinite volume divergence
found in the context of asymptotically AdS spacetimes.
This divergence is cured by the introduction of counter-
terms [28,35]:

Sct ¼
i

16πG

Z
outer

d3y
ffiffiffi
h

p �
4

l
þ lRð3Þ

�
; ð32Þ

where h and Rð3Þ are the determinant and the Ricci scalar,
respectively, of the three-metric on the outer boundary. For
themetricAnsatz (5), they becomeSct¼þ iV3

8πGlð2R3
3þ3R3l2Þ,

so that7

eði=ℏÞSct ¼ e−ðV3=8πGℏlÞð2R3
3
þ3R3l2Þ: ð33Þ

For large values of R3 the gravitational path integral (31)
takes the form

ZðR3Þ ≈ eðV3=8πGℏÞ½2ðR2
3
þl2Þ3=2þiαð3þα2Þl2−2R3

3
−3l2R3�; ð34Þ

where we kept terms up to Oð1=R3Þ in the exponent, and
leads to

Z ¼ eiðV3=8πGℏÞαð3þα2Þl2 ð35Þ

asR3 → ∞.Wewant to emphasise that, up to an ambiguity in
the notion of the path integral measure, this is the exact result
of the path integral within the minisuperspace Ansatz.
On the QFT side of holography, the partition function on

a three-sphere can be evaluated exactly in the very special
case of the Aharony-Bergman-Jafferis-Maldacena (ABJM)
theory [36] using localization [37]. The result reads [38,39]

Z ¼ Ai

��
3V3l2

8πGℏ

�
2=3
�
; ð36Þ

where we utilized the holographic dictionary for the ABJM
theory to reinstate G instead of the number of underlying
QFT degrees of freedom. In the limit when the gravity side
is described in terms of classical gravity, i.e., when the
argument in Eq. (36) is very large, one gets

Z ∼ e−2V3l2=ð8πGℏÞ: ð37Þ

Thus, we see that we recover the leading term of the ABJM
result with the choice α ¼ þi. At the current point in the
calculation, this choice appears somewhat mysterious, but
we will see shortly that it has a perfectly sensible physical

FIG. 2. The figure shows the structure of the flow lines with
boundary conditions α ¼ þi, q1 ¼ R2

3. The saddle point N−
represents the EAdS geometry, while Nþ represents a singular
section of complexified AdS space. The asymptotic regions of
convergence are shown in light green and are labeled by the
encircled numbers 0,1,2. We denote the contour of integration
linking region 0 to region 1 by C0 ¼ 0 → 1, and similarly C1 ¼
1 → 2 and C2 ¼ 2 → 0. Integration along C0 yields the Airy Ai
function. Meanwhile, the combination C2 − C1 gives a result
proportional to the Airy Bi function. This sum of contours is
equivalent to summing the two contours shown by the orange
dashed lines, which run via the saddle point N− to the saddle
pointNþ and from there to opposite regions of convergence. Note
that the required contours of integration are neither Lorentzian
nor Euclidean and the combination C2 − C1 is the closest it gets to
an effectively Euclidean path integral.

7Note that the counterterms depend only on the radius R3 and
not on its derivative, and, hence, the variation of the counterterms
is consistent with our Dirichlet condition at r ¼ 1.
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origin. There are two immediate consequences, however:
The first is that this identification means that the momen-
tum condition α ¼ þi, corresponding to Π0 ¼ − 3π

4G i, must
be fixed and should not be summed over in the partition
function. The second is that, with α ¼ þi, the total partition
function in Eq. (31) is real for any value of R3, as expected
on general grounds.
To gain more insight into this calculation, we will also

perform the lapse integral (28) in the saddle point approxi-
mation. For this it is useful to first study the nature of the
saddle points. These are located at extrema of S0ðNÞ, i.e., at

N� ¼ αl2 � il
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
3 þ l2

q
; ð38aÞ

4G
π

S0ðN�Þ ¼ αð3þ α2Þl2 � 2i
l
ðR2

3 þ l2Þ3=2; ð38bÞ

where we also indicated the value of the action at the
saddle points. We can obtain the saddle point geometry by
inserting N� into Eq. (27):

q̄ðrÞjN� ¼ −
�
αl� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
3 þ l2

q �2
r2

þ 2α
�
αl2 � il

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
3 þ l2

q �
r − l2ð1þ α2Þ: ð39Þ

Here we can see that if we are to evade a physical boundary
at r ¼ 0, we need to restrict to the momentum conditions
α ¼ �i, so that q̄ð0Þ ¼ 0. This consideration already
reduces the possible values of α to just two. All saddle
points consist of sections of complexified AdS spacetime.
When α ¼ þi, the saddle pointN− corresponds to the usual
Euclidean AdS space, which we expected to find. The other
saddle point, Nþ, describes a section of Euclidean AdS
glued onto a reversed-signature EAdS piece. For this last
saddle point, the squared scale factor q̄ passes through zero
and becomes imaginary, and, thus, we would expect
perturbations to blow up there; cf. Fig. 3. Also note from
Eq. (38b) that the EAdS solution has a higher weighting
than the singular saddle point. By contrast, when α ¼ −i,
the EAdS is at Nþ and the singular geometry at N−, and in
this case the singular geometry dominates. In the limit of
large R3, the subdominant saddle points are suppressed,
which indeed implies that we should choose α ¼ þi.
The saddle points, along with their steepest descent lines,

are shown in Fig. 2. The contour of integration C2 − C1,
which we chose above, can then be deformed into the sum
of two contours that are symmetric with respect to the
imaginary lapse axis and which run from negative imagi-
nary infinity either to the convergence region 0 or 1. These
contours follow the steepest descent path through the
saddle point N− representing EAdS space, on to the saddle
point Nþ, and from there along either half of the steepest
descent path associated with Nþ. At Nþ, the two parts of
the total integration contour run parallel to the real lapse

axis but in opposite directions, implying that the end result
will not contain a contribution from the singular saddle
point. In the saddle point approximation, including the
counterterms, the partition function is then approximated as

ZðR3Þ ≈ eðV3=8πGℏlÞð−2l3þð3l4=4R3ÞþOðR−3
3
ÞÞ; ð40Þ

in agreement with our earlier result (35) for α ¼ þi.
We are thus able to define a partition function peaked

around Euclidean AdS space, by using a Neumann con-
dition at r ¼ 0 and a Dirichlet condition at the boundary.
Perhaps the most surprising aspect of this calculation is that
the contour for the lapse integral can be neither Euclidean
nor Lorentzian but must be inherently complex, as shown in
Fig. 2. However, it is interesting to note that if one were to
“sum” the contours together, then C2 − C1 is, in fact, equal
to the Euclidean lapse axis.8 This may be the closest one is
able to come to a realization of Euclidean quantum gravity
with the caveat that we discussed before.
We will see later that many of these aspects persist when

we extend our calculation to include black holes. For now,
we will first compare our calculation with one using
Dirichlet boundary conditions on both ends.

B. Dirichlet condition at r= 0

To compare with Ref. [29], we have to compare
our results with the calculation performed with Dirichlet
boundary conditions

qðr ¼ 0Þ ¼ 0; qðr ¼ 1Þ ¼ R2
3: ð41Þ

r

q(r)

0.2 0.4 0.6 0.8 1.0

5

10

15

20

25

FIG. 3. This graph shows the profile of the scale factor squared
qðrÞ at the saddle points N− ¼ −4i; Nþ ¼ 6i, obtained with the
parameter values l ¼ 1; R2

3 ¼ 24. The solid curve is given by
qðrÞ ¼ 8rþ 16r2 and represents EAdS space at N−, while Nþ
corresponds to a section qðrÞ ¼ 12rþ 36r2 of (complexified)
AdS space in which the scale factor turns imaginary in one
region.

8Note that the result of this calculation differs from the naive
summation over the negative imaginary axis that one can do in
this special case.
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Note that in this case the condition of starting at zero size is
put in from the outset.9 It will thus hold everywhere, i.e.,
also off shell, and not just at the saddle points. However,
this condition does not guarantee that at r ¼ 0 the geometry
will be regular—in fact, it will be so only at the saddle
points. For the Dirichlet calculation, we must use the
Einstein-Hilbert action supplemented with the YGH terms
at both r ¼ 0, 1, which reduces to the minisuperspace
action10

8πG
V3

S ¼ 3

Z
1

0

dr

�
−

_q2

4N
þ N

�
1þ q

l2

��
: ð42Þ

The second term in the action arises from the positive
curvature of the three-sphere and the last term from the
cosmological constant. The YGH boundary term has
eliminated all second derivatives, so that the variational
problem will be well posed when imposing Dirichlet
boundary conditions on q. The trick to evaluate the path
integral over q is once again to shift variables by writing
q ¼ q̄þQ. Here q̄ denotes a solution of the equation of
motion for q respecting the boundary conditions:

q̄ðrÞ ¼ −
N2

l2
r2 þ

�
N2

l2
þ R2

3

�
r: ð43Þ

Meanwhile, Q is an arbitrary perturbation (not necessarily
small) with a vanishing value at the end points Qð0Þ ¼
Qð1Þ ¼ 0. Since the action is quadratic in q, the path
integral then turns into an integral over q̄, which is just a
given function of r and can be integrated directly, plus a
Gaussian integral over Q, which just changes the prefactor
by a factor 1=

ffiffiffiffi
N

p
[18]. Thus, up to an overall numerical

factor that we were persistently neglecting throughout the
text, we are left with

Ψ ¼ eiðπ=4Þffiffiffiffiffiffi
πℏ

p
Z

dNffiffiffiffi
N

p eiS0=ℏ; ð44aÞ

8πG
3V3

S0 ¼
N3

12l4
þ N
2l2

ðR2
3 þ 2l2Þ − R4

3

4N
: ð44bÞ

Here we have denoted the path integral by the new letter Ψ,
since the relation to the partition function of the previous
section is a priori not clear. The asymptotic convergence

regions at infinity are unchanged from the Neumann case,
but in addition the action now contains a pole at N ¼ 0, so
that there are additional choices for the lapse integration
contour. Intuitively, the appearance of a singularity at
N ¼ 0 should not be all that surprising. In fact, here
we are summing over four-geometries which interpolate
between two three-spheres of radii qðr ¼ 0Þ ¼ 0 and
qðr ¼ 1Þ ¼ R2

3 > 0. When N ¼ 0, then the proper distance
between them vanishes and the singularity is signaling that
the corresponding geometry is not smooth. Note also that
this pole invalidates any attempts to perform the integral
along the negative imaginary axis within the Euclidean
quantum gravity approach. This singularity was not present
in the case where we fixed the momentum at r ¼ 0, as this
Neumann condition can be thought of as a sum over all
possible sizes q0. Indeed, from Eq. (27), one can see that
the size of the sphere located at r ¼ 0 changes with the
lapse and the geometry with N ¼ 0 is regular and has
qðr ¼ 0Þ ¼ qðr ¼ 1Þ.
It turns out that also in the present case the lapse

integral in Eq. (44) can be evaluated exactly [34]. The
trick is to rewrite the measure factor as a Gaussian integral
e−i½ðq1−q0Þ2=4N�eiπ=4

ffiffiffi
π
N

p ¼ R dξeiNξ2þiðq1−q0Þξ, and then, after
a change of variables to N � 2ξ, the integral (44) can be
identified as a product of two Airy integrals. Thus, the
solution is given by the product of two Airy functions.
The choice of integration contour for the lapse determines
the type of Airy functions, where care is needed to ensure
that all integrals converge. We once again require the
resulting quantity to be real in order to interpret it as a
partition function, and, moreover, this time it must be
symmetric with respect to the inner and outer boundaries,
since we imposed Dirichlet conditions on both ends.
One possibility is to consider the real contour for the
lapse running above the origin; correspondingly, ξ runs
along the real axis, and the path integral is given

by Ψ ∝ Ai½ð3V3l2

8πGℏÞ
2=3�Ai½ð 3V3

8πGℏlÞ2=3ðR2
3 þ l2Þ�eði=ℏÞSct. This

choice would, however, give a vanishing result in the
limit where the boundary is pushed to infinity R3 → ∞.
The solution with the right asymptotic behavior is then
given by

Ψ∝Ai

��
3V3l2

8πGℏ

�
2=3
�
Bi

��
3V3

8πGℏl

�
2=3

ðR2
3þ l2Þ

�
eði=ℏÞSct

þBi

��
3V3l2

8πGℏ

�
2=3
�
Ai

��
3V3

8πGℏl

�
2=3

ðR2
3þ l2Þ

�
eði=ℏÞSct ;

ð45Þ

where we have also added the counterterms. Obtaining this
solution requires an integration contour for the lapse which
runs along the realN line but passes below the singularity at
N ¼ 0; cf. Fig. 4. This will become very clear when
considering the saddle point approximation below.

9As we have already mentioned, starting with a nonzero size
would superficially imply including another holographic QFT.
This is inconsistent with consideration of a partition function,
hence our prescription.

10The Dirichlet condition q0 ¼ 0 is special in the sense that the
surface term vanishes for this particular value [cf. Eq. (23)];
hence, one does not necessarily need the YGH term at r ¼ 0.
However, if one thinks of this calculation as integrating from
smaller and smaller initial sizes, then it makes sense to add the
YGH term in order to ensure a smooth limit when q0 → 0.
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In the result above, the second line is suppressed
compared to the first. In fact, in the infinite R3 limit, the
second line disappears completely, and in the first line
the counterterm compensates for the Bi function, leaving the
result

Ψ → Ai

��
3V3l2

8πGℏ

�
2=3
�

ðas R3 → ∞Þ: ð46Þ

Thus, the Dirichlet calculation reproduces the exact ABJM
result obtained in a superconformal field theory—see the
discussion around Eq. (36). This is rather surprising and is
likely a coincidence, as our AdS calculation included only
pure gravity and was restricted to minisuperspace metrics.
By comparison, theNeumann calculation in the same setting
reproduced only the leading semiclassical term, which is
truly all one could have hoped to recover in any case. As we
will see below, the interpretation of the Dirichlet calculation
is not entirely straightforward, as it does not reproduce the
canonical ensemble once black holes are included. Still, it is
interesting that it reproduces the associated CFT sphere
partition function so precisely. This was already noticed in
the work by Caputa and Hirano [29].
As in the Neumann case, we can gain a little more insight

into the Dirichlet calculation by evaluating the lapse
integral in the saddle point approximation. There are
now four saddle points, residing at the values

Nc1;c2 ¼ ilc1
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
3 þ l2

q
þ c2l

i
; c1; c2 ¼ �1: ð47Þ

Thus, all four saddle points reside on the imaginary axis.
Note that we started with a Lorentzian metric Ansatz in (5),
but the lapse function at the saddle points nevertheless ends
up being imaginary. Thus, the saddle point geometries are
Euclidean. In fact, these are the four saddle points that we
obtained in the calculation with Neumann conditions
α ¼ �i. Here they all appear together, because all four
saddle points respect qð0Þ ¼ 0. The two saddle points with
c2 ¼ 1 are the singular bouncing solutions with the scale
factor passing through zero. The two with c2 ¼ −1 are the
EAdS geometries. The action at the saddle points once
again reads

8πG
V3

SðNc1c2Þ ¼ þc1
2i
l
½ðR2

3 þ l2Þ3=2 þ c2l3�: ð48Þ

It is purely imaginary. The saddle points with c1 ¼ þ1 will
correspond to a suppressed weighting, while those with
c1 ¼ −1 will have an enhanced weighting, compared to a
classical solution which would have a real action.
To see which saddle points are relevant to the path

integral, we must analyze the upward or downward flow
lines, i.e., the steepest ascent or descent lines of the
weighting, and moreover we still have to specify the
contour of integration for the lapse function. The flow
lines are shown in Fig. 4. Even though we have obtained
the same saddle points as in the Neumann calculation,
the flow lines are different, not least because there is
now a singularity of the action at N ¼ 0, which acts as an
essential singularity from the point of view of path
integration.
All four saddle points are linked by steepest ascent or

descent lines. There are several options for the contour of
integration, though, as we have already stressed, one
cannot define a Euclidean path integral over the negative
imaginary axis, which would diverge due to the singularity
at N ¼ 0. One can, however, define integrals along
the Lorentzian line of real N values, but one must
choose whether to pass above or below the singularity
at the origin. Another option is to consider contours that
run from the region of convergence at negative imaginary
infinity out to the region of convergence between 0 and
π=3 rad or between 2π=3 and π. Then both saddle points
in the lower half plane would be relevant. Let us try to
figure out which contour is the most sensible by comparing
again to the expected QFT result (36) in the semiclassical
limit, which reduces to e−2V3l2=8πGℏ. Now recall that,
from Eq. (48), the saddle point approximation to the
path integral will be given by a sum over terms of
the form

e−ð2V3c1=8πGℏÞ½ðR2
3
þl2Þ3=2þc2l3�

≈ e−ðV3c1=lÞ½2c2l3þ2R3
3
þ3R3l2þOð1=R3Þ�; ð49Þ

FIG. 4. Flow lines in the complexified plane of the lapse
function, for Dirichlet boundary conditions. The saddle points
closer to the origin have c2 ¼ −1, while those two that are further
away have c2 ¼ þ1. The dashed line in the figure indicates the
preferred contour of integration. Note that the action contains a
singularity at N ¼ 0.
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where we have set q0 ¼ 0. The counterterm is eði=ℏÞSct ¼
e−ðV3=8πGℏlÞð2R3

3
þ3R3l2Þ. The divergence in the two saddle

points in the lower half plane is then canceled by the
counterterm. To match the expected Airy function result
(providing us with the correct leading-order results), we
must also have c2 ¼ −1. Thus, we have to pick the third
saddle from the top, i.e., the upper one in the lower half
plane, which we called N−−. Reproducing this result
requires using the contour over complexified metrics
passing below the origin. In Fig. 4, we denoted a sample
contour with a red dashed curve. Note that the contours
that originate at negative imaginary infinity cannot be
used, as they would also pick up the singular saddle point
N−þ, which moreover would lead to a mismatch with the
expected QFT result.

C. Comments

Before we move on to considering black hole spacetimes
in the next section, let us pause here and summarize the
most salient features encountered so far in our exploration.
To start with, if one were to trust the minisuperspace path
integral as an exact statement, then one is either naturally
(the Neumann case in Sec. III A) or necessarily (the
Dirichlet case in Sec. III B) led to integrate over complex
metrics, also in the case of AdS quantum gravity. Such
calculations require then an additional input regarding
which contours in the space of complexified metrics to
choose. These choices lead to different semiclassical limits,
and only some reproduce dual QFT expectations, such as
the reality of the Euclidean path integral in dual QFT
situations of interest or exact QFT results dictated by
symmetries. It would clearly be desirable to have an
entirely gravitational consistency criterion for a definition
of the gravitational path integral, but for the moment we do
not have one.
Regarding more detailed findings in the two cases we

consider, the results eventually gave rise to the same
relevant saddle point upon adjusting the integration con-
tours appropriately, but otherwise the two calculations
differ. For example, the path integration measure is differ-
ent in both cases; cf. Eq. (28) vs Eq. (44). While the
Dirichlet calculation can be made to match the exact ABJM
result [38,39] [see Eq. (36)], as noted earlier in Ref. [29],
we believe this agreement is accidental. In particular,
ambiguities in the integration measure, stemming from
our uncertainty about the fundamental definition of an
integration measure over metrics (which are the analog of
ordering ambiguities in the associated Wheeler-DeWitt
equations), alter the answer beyond the leading semi-
classical exponent. Still, there exists a rather close link
between the Neumann exponential (35) and the Dirichlet
Airy function (45), which stems from the fact that the
Fourier transform of the Airy function is indeed an
exponential with a cubic exponent. More precisely, we
have that [34]

Z
∞

−∞
dq0eiq0Π0=ℏAi

��
3V3

8πGℏl

�
2=3

ðq0 þ l2Þ
�

¼
�
8πGℏl
3V3

�
2=3

e−ðiΠ0l2=3ℏÞðð8πGl=3V3Þ2Π2
0
þ3Þ; ð50Þ

where the integral must be performed over all real q0, i.e.,
all the sizes of three-sphere at r ¼ 0, including also
possible changes in signature.11 Upon using the relation
(26) between Π0 and α and up to an overall normalization
that we were persistently ignoring throughout the text, we
recognize in the outcome the partition function for the
Neumann condition at r ¼ 0 given by Eq. (35). Note that
this relation applies only in the limit R3 → ∞, and at finite
R3 it can only be approximate.
Thus, implicitly extending the Dirichlet result to q0 ≠ 0,

this relation provides a link between (35) and (45) in the
limit where R3 → ∞, as in that limit the second line in (45)
disappears. In other words, in this limit the Neumann
calculation represents the momentum space wave function
compared to the position space Dirichlet case as indeed the
path integrals (35) and (45) satisfy the Wheeler-DeWitt
equations in momentum and position space, respectively.
These considerations show that the close agreement

between the Neumann and Dirichlet results is truly acci-
dental, as conceptually these two calculations are very
different. As we will argue below, the associated thermo-
dynamic interpretations must therefore also differ. It will be
interesting to understand the holographic interpretation of
these two conditions.
The calculations that we have presented so far have

direct analogues in early Universe cosmology. Before
exploring the implications of this correspondence in
Sec. V, we will, however, first deepen our results by
considering the addition of black holes with AdS asymp-
totics as saddles.

IV. S2 × S1 BOUNDARY AND BLACK HOLES
AS SADDLES

A. Preliminaries

In the previous section, we saw how to obtain Euclidean
AdS4 space from a path integral with a fixed three-sphere
boundary. In order to include black holes in our discussion
and to see how classic results such as the Hawking-Page
phase transition appear in our framework, we must change
the topology of the boundary to a direct product of a two-
sphere and a circle, as sketched in Fig. 1. We will proceed
in much the same way as in the previous section, but the
added complications of the metric Ansatzmake us focus on
the saddle point approximation and the choice of contour in
the underlying gravitational path integral. We will not
include counterterms, since we will use the empty AdS

11We want to remind the reader that the path integrals we
consider involve, in general, complexified metrics.
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solution as our reference solution in the partition function,
as is often the case in the holographic literature. Also, the
question of which conditions should be used on the inner
boundary of the integration range is rather subtle, and we
will discuss it in detail.
The metric Ansatz that we will use in the following is

given in Eq. (15) and in the context of minisuperspace
approaches appeared earlier starting from the work by
Halliwell and Louko [19]. We have adopted a convention
for the lapse function N such that for real N and b=c > 0
the coordinate r is timelike. However, in light of the black
hole solutions presented in Sec. II, we should expect the
saddle point values of the lapse to turn out imaginary, thus
rendering the metric Euclidean. There are two scale factors:
bðrÞ, which determines the size of the S2, and cðrÞ, which
determines the size of the Euclidean time direction τ.
Moreover, we will take the τ direction to be periodically
identified with period Δτ, such that it will have the
topology of a circle. We will once again assume a finite
range of the r coordinate, 0 ≤ r ≤ 1 with the inner
boundary at r ¼ 0 and the outer boundary at r ¼ 1.
Let us immediately discuss the required boundary

conditions. On the outer boundary at r ¼ 1, we will impose
Dirichlet boundary conditions, keeping the proper size of
the outer boundary fixed. If we denote the size of the
boundary circle by R1 and that of the boundary two-sphere
by R2, then that means that we will impose

bðr ¼ 1Þ≡ R2 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðr ¼ 1Þ
bðr ¼ 1Þ

s
Δτ≡ R1: ð51Þ

Note that both the form of the metric (15) and the above
boundary condition are preserved under a residual diffeo-
morphism and redefinition of functions defining metric
components:

τ → γτ; c → γ−2c; and N → γ−1N: ð52Þ

The easiest way to fix this gauge freedom is to fix the
periodicity of the τ coordinate to a convenient value, as we
will do below.
In order to obtain a variational problem consistent with

Dirichlet boundary conditions as given by Eq. (51), we will
have to add the usual YGH term at the outer boundary. As
we will mention in a little more detail below, imposing
Dirichlet boundary conditions on the inner boundary leads
to results that are inconsistent with the interpretation of the
gravitational path integral as the partition function. The
Hawking-Page calculation of black hole thermodynamics
in asymptotically AdS space, in fact, assumed that there
was no surface term on the inner boundary (which
coincides with the horizon location of the black holes)
and indeed on shell the geometry smoothly caps off at
r ¼ 0. This suggests that off shell we should impose
Neumann conditions at r ¼ 0, i.e., that we should fix

the momenta rather than the field values as we did before in
Sec. III A. In fact, we will view not including the YGH term
at r ¼ 0 and getting a well-defined path integral in the
minisuperspace approach as a covariant definition of
imposing there the Neumann condition.12

To get started, let us evaluate the extrinsic curvature that
enters the YGH term for the metric (15). To this end, at a
fixed radius r our Ansatz describes a S1 × S2 manifold with
a diagonal metric

hij ¼ diagij

�
c
b
; b2; b2 sin2 θ

�
: ð53Þ

The conjugate momenta are defined in terms of the
extrinsic curvature Kij via

Πij ≡ −
ffiffiffi
h

p

16πG
ðKij − hijKÞ; ð54Þ

which leads to

Πij ¼ −
1

16πG
diagij

�
2
b _b
N

;
1

2

�
_c
Nb

þ c _b
Nb2

�
;

1

2sin2θ

�
_c
Nb

þ c _b
Nb2

��
: ð55Þ

The total YGH surface term is given by the sum of the
products of momenta and fields:

Πijhij ¼
1

8πG

ffiffiffi
h

p
K ¼ −

1

16πG

�
b_c
N

þ 3
c _b
N

�
: ð56Þ

Based on these considerations, we write the action as

S¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ 6

l2

�
þ 1

8πG

Z
outer

d3y
ffiffiffi
h

p
K: ð57Þ

With these mixed Neumann conditions at r ¼ 0 and
Dirichlet conditions at r ¼ 1, the minisuperspace action
reduces to

SND ¼ Δτ
2G

Z
dr

�
−
_b _c
N

þ N

�
1þ 3b2

l2

��

−
Δτ
4G

�
b_c
N

þ 3
c _b
N

�				
r¼0

: ð58Þ

Varying the action with respect to b and c gives

12In dimensions other than four, a surface term is required to
obtain a Neumann boundary condition [40].
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δSND ¼ Δτ
2G

Z
dr

��
c̈
N
þ 6Nb

l2

�
δbþ

�
b̈
N

�
δc

�

−
Δτ
2G

�
_c1
N
δb1 þ

_b1
N

δc1

�

−
Δτ
4G

�
b20δ

�
_c0
Nb0

�
þ _b0δc0 þ 3c0δ _b0

�
: ð59Þ

Let us now explore possible boundary conditions that
render the variational problem well posed. As we antici-
pated, at r ¼ 1 we will impose Dirichlet boundary con-
ditions, which ensure (51) and make the respective
boundary terms disappear. The situation at r ¼ 0 is more
subtle. Canceling the last two terms at r ¼ 0 in Eq. (58) can
be achieved by setting

cð0Þ ¼ c0 ¼ 0: ð60Þ

Note that, despite the fact that it looks like a Dirichlet
condition for c, we view it as a Neumann condition from
the geometric point of view. Getting rid of the first term at
r ¼ 0 can be done with either

b0 ¼ 0 or
_c0Δτ
Nb0

¼ fixed: ð61Þ

In the following, we will encapsulate both conditions in the
form of the following single equation13:

_c0Δτ
4πiNb0

≡ ω ¼ fixed: ð62Þ

This equation has a simple interpretation when dealing with
Euclidean metrics for which b0, _c0, and iN are positive,
where ω is related to the deficit or excess angle spanned by
the S1 direction at r ¼ 0. When b0 ¼ 0, which corresponds
to ω → ∞, the S1 direction does not shrink to a zero size at
r ¼ 0. This is the case for the thermal AdS solution given
by Eqs. (14) and (16a) with rþ ¼ 0 and arbitrary perio-
dicity in τ. For ω ¼ 1, the geometry smoothly ends at r ¼ 0
without a conical singularity, as is the case for the
Euclidean AdS black hole. For any other value of ω, we
end up with a conical singularity at r ¼ 0.
With the variational problem well posed, we can proceed

to perform the path integrals over the scale factors. Since
the action is again quadratic in b and c, we may evaluate the

path integrals over these fields in analogy with the
integration over q in Sec. III, i.e., by shifting the variable
of integration to the sum of a solution of the equations of
motion plus a general fluctuation [19]. The fluctuation
integrals will be unimportant, since they will lead to an
overall numerical prefactor in front of the partition func-
tion; see the Appendix. The nontrivial physics lies in the
solutions of the equations of motion for b and c, given by

b̈ ¼ 0 and c̈ ¼ −
6

l2
N2b: ð63Þ

The solutions of Eqs. (63) subject to the conditions (51),
(60), and (62) take the form

bðrÞ ¼ ðR2 − b0Þrþ b0; ð64aÞ

cðrÞ¼
�
c1þ

ð2b0þR2ÞN2

l2

�
r−

3b0N2

l2
r2þðb0−R2ÞN2

l2
r3;

ð64bÞ

where

b0 ¼
Δτðl2c1 þ N2R2Þ
4πiωl2N − 2ΔτN2

; c1 ¼
R2
1R2

Δτ2
: ð65Þ

With these solutions at hand, we may now perform the
integrations over b and c, leaving us with an integral for the
lapse function only.

B. Evaluation of the gravitational path integral

The partition function once again reduces to an ordinary
integral over the lapse function, with two additional
features: First, we must include a suitable integral over
the boundary conditions on the inner boundary—i.e., we
must include a sum over ω—and, second, we will imple-
ment a background subtraction and use the AdS solution
given by Eqs. (14) and (16a) with rþ ¼ 0 as a reference.
Thus, the partition function is given by

ZðR1; R2Þ ¼
Z

dω
Z

dNeði=ℏÞðSNDðNÞ−SEAdSÞ ð66Þ

with

8Gl2

Δτ
SND ¼ ð3R2

2 þ 4l2ÞΔτN4 − 8πiωl2ðR2
2 þ l2ÞN3 − 6l2R2c1ΔτN2 þ 8πiωl4R2c1N − l4c21Δτ
N2ðΔτN − 2πiωl2Þ : ð67Þ

13There is a choice of sign on the right-hand side, which is analogous to the choice of sign we encountered with the momentum
condition (26) in Sec. III. We choose this sign such that the black hole solutions are dominant over singular saddle points, rather than
other way around (cf. the discussion below). This means that we will take ω to be a positive real number.
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The partition function is a sum over interior geometries
with the boundary at r ¼ 1 held fixed. When searching for
saddle points, the only smooth geometries correspond to
ω ¼ 1 (black holes) or the limit ω → ∞ (thermal AdS). We
restrict ourselves to geometries that on shell are smooth at
r ¼ 0, in which case the integral over ω thus reduces to a
sum over just two values:

ZðR1; R2Þ ¼
X

ω¼1;∞

Z
dNeði=ℏÞðSNDðNÞ−SEAdSÞ: ð68Þ

It would be very interesting to include geometries with
conical deficits in our framework, and we leave it for future
work.
We will analyze the full saddle point structure momen-

tarily, but first we may check explicitly that the black hole
and AdS solutions will arise from this action. It is not
possible to solve for the saddle points of the action
analytically, since the corresponding equation dSND

dN ¼ 0 is
a quintic. There are generally five distinct saddle points.
However, one may verify by direct substitution that two of
them are given by

Ns ¼ −iðR2 − rþÞ; ð69aÞ

bðrÞ ¼ rðR2 − rþÞ þ rþ; ð69bÞ

cðrÞ ¼ 1

l2
½b3ðrÞ þ l2bðrÞ − r3þ − l2rþ�; ð69cÞ

with rþ taking the two possible values that solve (13) for a
given β and where we have fixed the scaling ambiguity (52)
by choosing

Δτbh ¼ β: ð70Þ

These solutions satisfy the boundary condition ω ¼ 1.
Evidently, these are the sought after black hole solutions
presented in Sec. II. Their action is given by

Sbh ¼ −
i

4Gl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1R2

ðR2 − rþÞðR2
2 þ l2 þ R2rþ þ r2þÞ

s

× ð4R2ðR2
2 þ l2Þ − 3l2rþ − r3þÞ: ð71Þ

Note that the black hole solutions arise only on the negative
imaginary lapse action. This is because our boundary
condition (62) has broken the invariance of the action
under complex conjugation; cf. also footnote 13.
We expect to recover the pure AdS solution as the limit

where ω → ∞. In this limit the action reduces to

SND;ω→∞ ¼ Δτ
2Gl2

�
ðR2

2 þ l2ÞN −
R2c1l2

N

�
: ð72Þ

The saddle points are found to correspond to EAdS space,
as expected, with

Ns ¼�iR2; bðrÞ ¼ R2r;
cðrÞ
bðrÞ ¼ 1þR2

2r
2

l2
: ð73Þ

The scaling ambiguity (52) has been fixed in such a way
that the AdS solution corresponds to the limit rþ → 0 of the
black hole solution above. The periodicity in the τ direction
must then be chosen such that the circle size on the outer
boundary remains R1, namely,

ΔτAdS ¼ R1lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2 þ l2

p : ð74Þ

The action for these saddle points is

SAdS ¼ �i
R1R2

Gl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2 þ l2

q
: ð75Þ

The question now is, which saddle points contribute?
And what do the additional saddle points represent? We
will look at the saddle point structure, and the associated
paths of steepest descent, numerically.
We start with the limiting case where ω → ∞. As we

have just derived, there are two saddle points in this case,
which are complex conjugates of each other. They both
describe EAdS space but with different weightings. The
corresponding flow lines are shown in Fig. 5, where the
steepest descent paths emanating from the saddle points are
drawn. The saddle point with the enhanced weighting is the

FIG. 5. Flows in the AdS case, which corresponds to the limit
ω → ∞. Arrows indicate the direction of steepest descent from
the two saddle points. There is a singularity at N ¼ 0. The dashed
line indicates the required contour of integration which picks up a
contribution from the enhanced EAdS saddle point in the lower
half plane.
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one in the lower half plane. As in the case of the three-
sphere partition function with Dirichlet boundary condi-
tions, there is a singularity at N ¼ 0. We may interpret the
singularity in the action as a signal that the corresponding
geometry does not exist. A suitable contour of integration is
indicated by the dashed line in the figure. We must choose it
such that at large jNj it resides asymptotically in the upper
half plane (for convergence) and such that it passes below
the singularity so as to pick up a contribution from the
enhanced EAdS saddle point. It would have been possible
to define a Euclidean contour along the positive imaginary
lapse axis, but such a contour would have picked up only
the suppressed EAdS saddle point, which disappears in the
limit of a large boundary size. Thus, we are again forced to
integrate over complex metrics.
In the following figures, we will analyze the contribu-

tions from ω ¼ 1, at a fixed two-sphere radius R2 and for

increasing circle radii R1. The case of having a very small
R1 is shown in Fig. 6. Three additional saddle points appear
here: one near the origin and two complex conjugate saddle
points that move in from infinity (as R1 is increased from
zero) in the upper half plane. We will briefly describe the
saddle points, starting with the two that already existed
when ω → ∞, i.e., what were the enhanced EAdS and the
suppressed EAdS solutions. The enhanced EAdS solution
now turns into the small Euclidean black hole, with horizon
size rþ growing from zero as R1 is increased. Meanwhile,
what was the suppressed EAdS solution turns into a
geometry that starts out at a (small) negative value of b,
barely visible in Fig. 7. This means that the metric signature
is ð−;−;þ;þÞ near the origin and then turns Euclidean
after b has crossed zero. Since b crosses zero, we may
expect perturbations to blow up at that location. The most
important saddle point is the one that appeared near the
origin on the negative imaginary axis. This is the large
black hole, with rþ corresponding to the larger solution to
(13). This is the dominant saddle point, with the highest
weighting. In fact, the steepest descent line from this saddle
point moves down toward the singularity and, on the other
side of the saddle point, down toward the small black
hole and from there on to the Euclidean saddle point in the
upper half plane. The two remaining saddle points in the
upper half plane have a suppressed weighting, and their
geometry is shown in Fig. 8. Their metric is complex
throughout, with the exception of the final boundary at
r ¼ 1. A suitable contour of integration, capturing the large
black hole, is indicated by the dashed line in Fig. 6. It has
different characteristics than the one in the infinite ω case;
namely, it emanates from the origin in the negative
imaginary direction, then winds around the singularity,
and ends up shooting off to infinity in the upper half plane.
The contour has to start at the singularity in the direction of
the lower half plane in order to capture the large black hole.
This is possible because at finite ω the lapse integrand (67)
near N ¼ 0 behaves as eþ1=N2

, implying that there exists a
region of convergence in the wedge surrounding the
imaginary axis at �45°. A purely Euclidean contour is,
however, not possible, since the asymptotic region at large
negative imaginary values of the lapse is a region of

FIG. 6. Saddle points (in red) and steepest descent lines (in
blue) for R1 ¼ 5, R2 ¼ 10, and l ¼ 1. Arrows indicate directions
of steepest descent. There are two singularities, one at N ¼ 0 and
one on the positive imaginary N axis. In dashed orange is the
required contour of integration.
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FIG. 7. The geometry of the Euclidean saddle point on the positive imaginary axis. Both bðrÞ and cðrÞ are real valued. At the origin, b
has a small negative value and then passes through zero to reach the final value bð1Þ ¼ 10. Here we used the same parameter values
as in Fig. 6.
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divergence, and, hence, the contour must wind around
toward the upper half plane. Despite the fact that the
contour differs from the infinite ω case, a similarity is that
we are once again forced to integrate over complex metrics
in order to obtain sensible results.
As R1 is increased, there are few relevant changes at first.

The complex saddle points move toward the Euclidean
axis, merge there, and then separate again into two further
Euclidean solutions similar to the one shown in Fig. 7. The
saddle points and their flow lines are shown in Fig. 9. The
most important change occurs once R1 reaches the limiting
value R1;limit—this case is shown in Fig. 10. At this radius,
the two black hole solutions merge into a degenerate saddle
point, representing the black hole at the minimum temper-
ature (maximum radius) that is required for black holes to
exist. This limiting black hole geometry is shown in
Fig. 11. One may obtain an expression for the limiting
radius by combining Eqs. (13), (51), and (69a) withΔτ ¼ β
and inserting the maximum value for the periodicity
βmax ¼ 2πlffiffi

3
p , which leads to

R1;limit ¼
2πffiffiffi
3

p R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

R2
2

−
4l3

3
ffiffiffi
3

p
R3
2

s
: ð76Þ

Once the circle radius R1 is increased even further,
the degenerate black hole saddle point, as well as two of
the saddle points in the upper half plane, all move into the
complex plane—see Fig. 12 for a depiction of the saddle
point locations and the associated steepest descent flows.
At that stage there does not exist any Euclidean black hole
solution anymore. The complex saddle points possess a
fully complex geometry, which is shown in Fig. 13. In our
framework, this is the manifestation of the well-known
fact that there exists a minimum temperature required for
the existence of regular Euclidean black holes. The com-
plex saddle points have a suppressed weighting, smaller
in fact than the empty EAdS solution, as we will show
below.
In all cases, one is forced to choose a contour of

integration that starts at the singularity at N ¼ 0, then

FIG. 9. Saddle points (in red) and steepest descent lines
(in blue) for R1 ¼ 12, R2 ¼ 10, and l ¼ 1. Arrows indicate
directions of steepest descent. There are two singularities, one at
N ¼ 0 and one on the positive imaginary N axis. In dashed
orange is the required contour of integration.
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FIG. 8. The geometry of the complex saddle point in the first quadrant of Fig. 6. Both bðrÞ and cðrÞ are complex valued. Here we used
the same parameter values as in Fig. 6.

FIG. 10. Saddle points (in red) and steepest descent lines (in
blue) for the limiting case R1 ¼ R1;limit, R2 ¼ 10, and l ¼ 1.
Arrows indicate directions of steepest descent. In dashed orange
is the required contour of integration.
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follows the thimble associated with the large black hole
saddle point, curves around, and eventually flies off to
infinity in the upper half plane, as required for conver-
gence. Note that once again the integrand possesses the
symmetry that for N → −N� it changes to its complex

conjugate. Thus, in order to obtain a real partition function
picked around the black hole saddle points, one should
consider the contour described above together with its
reflection with respect to the imaginary lapse axis. As we
commented on already for the case of the S3 boundary,
this symmetric contour is as close as it can get to the
integral along the imaginary axis, i.e., the Euclidean path
integral, which in itself is divergent and thus ill defined.
The interesting point is that this contour corresponds to
neither a sum over Euclidean metrics nor a sum over
Lorentzian metrics—in order for the partition function to
be mathematically meaningful as a minisuperspace state-
ment, the sum must be defined over intrinsically complex
metrics.

C. Thermodynamics from saddles

Having discussed the saddle points and integration
contours, we may now sketch how the usual interpretation
in terms of thermodynamics is recovered. In all cases, we
saw that the contribution to the partition function from
ω ¼ 1 is dominated by the large black hole solution,
provided R1 is smaller than the limiting value (76).
Thus, when approximating the partition function, the
ω ¼ 1 contribution may be well approximated by the
action of the large black hole solution. The difference in
action between the black hole and AdS solution is given by
the difference between Eqs. (71) and (75) and as an
expansion at large two-sphere radius R2 is given by
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FIG. 11. The geometry of the limiting black hole, i.e., for the case where the small and large black holes have merged. Both bðrÞ and
cðrÞ are real valued, and the saddle point geometry is Euclidean. Here we used the same parameter values as in Fig. 10.

FIG. 12. Saddle points (in red) and steepest descent lines
(in blue) for R1 ¼ 50, R2 ¼ 10, and l ¼ 1. Arrows indicate
directions of steepest descent. There are two singularities, one at
N ¼ 0 and one on the positive imaginary N axis. In dashed
orange is the required contour of integration.

Re[b]

Im[b] r

0.2 0.4 0.6 0.8 1.0

2

4

6

8

10

Re[c]/10

Im[c]

r

0.2 0.4 0.6 0.8 1.0

40
20

20
40
60
80

100

FIG. 13. At low temperature, when R1 is large, the saddle points that used to correspond to black holes have moved into the complex
plane. The associated geometry is no longer Euclidean, as imaginary parts of bðrÞ and cðrÞ develop. Here we used the values R1 ¼ 50,
R2 ¼ 10, and l ¼ 1, just as in Fig. 12.
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ΔS ¼ −
iR1

4Gl

� ffiffiffiffiffiffi
R2

p ð4R3
2 þ 4l2R2 − 3l2rþ − r3þÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R3
2 þ l2R2 − l2rþ − r3þ

p
− 4R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2 þ l2

q �
ð77aÞ

¼ iR1

4GlR2

ðl2rþ−r3þÞ−
ilR1

8GR3
2

ðl2rþ−r3þÞþOðR−4
2 Þ:

ð77bÞ

At leading order in a large R2 expansion, we may identify
R1=R2 ≈ β=l, and with this substitution the leading-order
difference in actions at large R2 recovers the classic
Hawking-Page result [3]

ΔSHP ¼ −
iπ
G
r2þ

r2þ − l2

3r2þ þ l2
þOðR−1

2 Þ: ð78Þ

The weighting of the AdS solution dominates when
−Im½ΔS� < 0. At large R2 this is when rþ < l, and there
are corrections, implied by (77), to this relation when R2 is
small. The phase transition thus occurs at the approximate
radius R1;HP ≈ πR2. Thus, the complex saddle points
that replace the large black hole solutions at large R1 >

R1;limit ≈ 2πffiffi
3

p R2 never play a dominant role, since the AdS

solution has already become dominant by then.
The thermodynamic interpretation follows from an

analysis of the partition function, approximated here by
the difference in actions (77):

lnZ ¼ i
ΔS
ℏ

: ð79Þ

It is important to keep in mind that we are considering the
partition function as representing the canonical ensemble;
i.e., we are considering a system that is kept at a fixed
temperature T. At fixed boundary two-sphere with radius
R2, this temperature, which is redshifted as one moves
away from the black hole horizon, is given by

R1 ¼ β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

2

l2
−
2M
R2

s
¼ ΔτAdS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

2

l2

s
¼ 1

T
; ð80Þ

where we denoted the Euclidean time periodicity of the
EAdS solution by ΔτAdS. Thus, reintroducing the speed of
light c, we may usefully rewrite the partition function as

lnZ ¼ R2

Tl2P

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

2

l2
−
2M
R2

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

2

l2

s !
þ πr2þ

l2P
; ð81Þ

where lP ¼
ffiffiffiffiffi
Gℏ
c3

q
is the Planck length.

The expectation value of the energy is given by

hEi ¼ kBT2
∂ lnZ
∂T ¼ kBR2

l2P

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

2

l2

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

2

l2
−
2M
R2

s !

ð82aÞ

¼ kB
l2P

lM
R2

−
kB
l2P

Ml3

2R3
2

þOðR−4
2 Þ; ð82bÞ

and the entropy takes the form

S ¼ kB lnZ þ hEi
T

¼ kB
l2P

πr2þ ¼ kB
l2P

Area
4

: ð83Þ

Note that this explicitly verifies the quantum statistical
relation [22]

−kBT lnZ ¼ hEi − TS: ð84Þ

Furthermore, the results derived above are in agreement
with the Hamiltonian method employed by Brown,
Creighton, and Mann in Ref. [41]. In deriving the energy
(82), one may use the chain rule that ∂ lnZ=∂T ¼
∂ lnZ=∂rþð∂T=∂rþÞ−1, with M being thought of as a
function of rþ according to (12). The conserved mass
differs from the energy by a factor of the lapse at R2:

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

2

l2
−
2M
R2

s
hEi

¼ M þ l2

2R2
2

M −
l2

R3
2

M2 þOðR−4
2 Þ: ð85Þ

Note also that the entropy (83) is given precisely by a
quarter of the horizon area and that there are no corrections
to this relation at finite R2. The specific heat at fixed
boundary

C ¼ ∂hEi
∂T ð86Þ

is negative for small black holes (rþ < lffiffi
3

p ) and positive for

large black holes (rþ > lffiffi
3

p ), which implies that only large

black holes are thermodynamically stable. This fits well
with our flow diagrams, which demonstrate that the large
black hole always has a higher weighting than the small
black hole and is, thus, also more dominant in the canonical
ensemble.
One surprising aspect of our work is the appearance of

additional saddle points. These have a weighting that is
suppressed compared to the black hole saddle points, both
large and small. Thus, they do not play a large role. In fact,
if the outer boundary is moved all the way to infinity, these
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additional saddle points disappear altogether—see Fig. 14.
This implies that these extra saddles do not play any role in
the original AdS/CFT correspondence, and our study
reproduces the results of Refs. [3,7]. However, once the
boundary is moved to a finite radius, they will provide a
tiny additional contribution to the partition function. It
would be very interesting to try to figure out if one can use
the appropriate QFT description [24,25] to confirm their
existence or rule out the minisuperspace approach.
We emphasize that our choice of mixed boundary

conditions is crucial in obtaining an expression for the
canonical ensemble. The Dirichlet condition on the outer
boundary, which fixes the size of the Euclidean time circle,
effectively fixes the temperature. However, this turns out
not to be enough. Our premise that we wanted to sum over
saddle point geometries that cap off smoothly in the interior
led us to the Neumann boundary condition at the coordinate
location r ¼ 0. Had we used a Dirichlet condition on the
inner boundary, i.e., at the black hole horizon, we would
have obtained an additional boundary term of magnitude
πr2þ contributing to the black hole action. Our path integral
would then have been approximated by

−kB lnZ ≈
hEi
T

− S þ S ¼ hEi
T

; ð87Þ

which is reminiscent of the discussion in Ref. [42]. Thus,
with Dirichlet conditions on both ends, the “partition
function” would rather have looked like that of the micro-
canonical ensemble, where one sums over states of fixed
internal energy. This is surprising, as in gravitational
systems the energy is described by the asymptotic falloff
of the metric, and, thus, one would have expected the
microcanonical ensemble to be given by a path integral
with boundary conditions (at the outer boundary r ¼ 1) that
are of Neumann form, where derivatives of the metric may
be specified [40,43,44]. More precisely, one might have

expected that the canonical and microcanonical ensembles
would be related by a Legendre transform at the outer
boundary and not at the inner boundary. The extent to
which this correspondence is accidental deserves further
investigation.

V. IMPLICATIONS FOR COSMOLOGY

The no-boundary proposal can be formulated as a path
integral in a very similar fashion to the calculations
presented in this work (this analogy should already be
obvious by taking another look at Fig. 1 but rotating the
figure by 90° counterclockwise). In this context, the path
integral defines the wave function of the Universe, which
sets the initial conditions for the Universe. According to the
no-boundary proposal, the wave function is peaked around
a smooth semiclassical geometry where the big bang is
replaced by a Euclidean regular section and cosmological
fluctuations are suppressed [2,45].
The literature on no-boundary path integrals has a long

history. Various works, both old and recent [9,17,18,20,46],
point to the necessity of specifying the initial momentum in
the gravitational path integral in order to define a well-
behaved Hartle-Hawking wave function. This implies that
the path integral sums over geometries with all possible
initial sizes, while only the dominant Hartle-Hawking
geometry has no boundary and starts from “nothing.” As
a consequence, this requirement implies a radical change in
our interpretation of the Hartle-Hawking wave function as a
theory for the initial conditions of the Universe [9].
Another possibility is to consider an initial Robin

condition with the quantum uncertainty shared between
initial size and momentum, as recently proposed in
Ref. [21]. A covariant implementation of the initial
Robin condition requires an extra boundary term [47],
which was also discussed in Ref. [9].14

In this section we will review and elaborate on some of
the well-known results while highlighting the connections
with the original calculations of the previous sections
regarding the case of a negative cosmological constant.
Our aim is to see what one may learn about the no-
boundary proposal when viewed from the fresh perspective
offered by calculations performed with AdS asymptotics.
When the cosmological constant is positive, Λ ¼ 3H2,

the classical de Sitter solution with spatial sections that are
three-spheres is given by

ds2 ¼ −dt2 þ 1

H2
cosh2ðHtÞdΩ2

3: ð88Þ

Meanwhile, the Euclidean version of this solution is a
four-sphere:

R2

R1/R2=1/100

Im[S(Ns )] large b.h.

small b.h.

complex

singular
20 40 60 80 100

10000

10000

20000

30000

FIG. 14. Weighting of the saddle points −Im½SðNsÞ� with
constant ratio R1=R2 ¼ 1=100, as a function of the boundary
size and with 8πG ¼ 1 and l ¼ 1. One can see that in the limit of
infinite boundary size only the black hole saddle points will
remain.

14Note that also in this case all of the off-shell geometries do
have an initial boundary.
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ds2 ¼ dη2 þ 1

H2
sin2ðHηÞdΩ2

3; t ¼ −i
�
η −

π

2H

�
: ð89Þ

Hartle and Hawking’s idea was to consider a geometry
where the Lorentzian hyperboloid is glued at t ¼ 0 to half
of the Euclidean four-sphere [2]. In this way, the late
time Lorentzian spacetime well approximates an infla-
tionary universe which contains no big bang singularity
in the past.
The evaluation of the no-boundary path integral is in

one-to-one correspondence with the calculations in Sec. III
if one analytically continues the radius of curvature of
AdS to an imaginary value l ¼ i

H, whereH then denotes the
Hubble rate of the corresponding de Sitter spacetime. Thus,
in our coordinates, the correspondence is simply

Λ ¼ −
3

l2
¼ þ3H2: ð90Þ

It is now interesting to observe that, in the case of a negative
cosmological constant, evaluating the canonical ensemble
in the black hole case required us to impose Neumann
boundary conditions on the inner boundary. Not imposing a
boundary term resonates well with the philosophy of the
no-boundary proposal, as the name itself suggests. The
exact same condition, given here by Eq. (26), was also
recently studied in cosmology in Ref. [9]. Upon performing
the analytic continuation in (90), the saddle points (38)
come to reside at

N� ¼ −
i
H2

� 1

H2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2R2

3 − 1

q
; ð91Þ

with associated metrics [compare to Eq. (39)]

ds2 ¼ −
N2

�
qðrÞ dr

2 þ qðrÞdΩ2
3;

qðrÞ ¼ H2N2
�r

2 þ 2N�ir: ð92Þ

While the saddle points were purely Euclidean with a
negative cosmological constant, as studied in Secs. III and
IV, in the case of positive cosmological constant they are, in
general, complex. In order to understand their relation to
the Hartle-Hawking geometry given by the appropriate
gluing of (88) with (89), it is useful to measure the
comoving “distance” D traversed in the saddle point
geometry (92) as r varies from 0 to 1:

D ¼
Z

1

0

dr

ffiffiffiffiffiffiffiffiffiffiffi
−
N2

�
q

s
: ð93Þ

If R3 ≤ 1=H, thenD is real and positive, and one can check
that the geometry (92) is Euclidean and represents a portion
of the four-sphere (89). In the case when R3 > 1=H, one

obtains complex D. The real part of D is then always equal
to π

2H, which corresponds to the Euclidean distance trav-
ersed in the half-sphere part of the Hartle-Hawking
geometry (89). The imaginary part of D, which in the
absence of a real part of D would correspond to a timelike
separation in the Lorentzian signature, turns out to be
nothing else than the proper time elapsed in the de Sitter
geometry (88) between t ¼ 0 and t ¼ H−1arcoshðHR3Þ,
i.e., the time in which the three-sphere reaches proper size
R3. This implies that our complex saddle point geometry
(92) for R3 > 1=H interpolates “diagonally” in the com-
plex metric plane between the locus where q ¼ R2

3 > H−2

and the locus where q ¼ 0 with q in between these points
being a complex function of r. The Hartle-Hawking
geometry of (89) and (88) achieves the same end point
for q by first moving in the real direction of D (the four-
sphere part) and then in the imaginary direction ofD (the de
Sitter part), in such a way that q takes real values every-
where. This geometry, which may be seen as a gluing of
geometries with two different lapse values, is related to our
saddle point geometry by a complex diffeomorphism and
should be regarded as equivalent in our formalism.15

The lapse action can usefully be written in the form of
Eq. (29):

4G
π

S0ðNÞ ¼ H4

�
N þ i

H2

�
3

− 3ðH2R2
3 − 1Þ

�
N þ i

H2

�
−

2i
H2

: ð94Þ

At the saddle points it is complex, with value

S0ðN�Þ ¼
π

2GH2
½−i� ðH2R2

3 − 1Þ3=2�: ð95Þ

The imaginary part determines the weighting and, thus, the
relative probability of nucleation of a universe with this
value of the cosmological constant, while the real part is
associated with the classical growth of the Universe up to a
radius R3. This classical growth is seen as a phase in the
partition function. The fact that this phase grows fast as the
Universe expands, while the weighting remains constant, is
an indication that the Universe has become classical in a
WKB sense. Note that the “volume divergence” is thus a
welcome feature in the de Sitter case, as it is associated
with the classicality of the Universe. In the cosmological
context, we do not need, and would not want, to include
counterterms.

15It is only in the case of a cosmological constant or adiabatic
matter that the Hartle-Hawking geometry has a representation in
which the scale factor is everywhere real [11]. When more
general matter is added, such as a scalar field in a nonconstant
potential, it is necessarily complex [48].
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The saddle points and their steepest descent flow lines
are shown in Fig. 15, which should be contrasted with
Fig. 2. The asymptotic regions of convergence for the lapse
integral are unchanged, since they are determined by the
leading term in N, namely, eiN

3=l4 ¼ eiH
4N3

; cf. Eq. (94).
Choosing a contour running from negative imaginary
infinity to the first quadrant (which we called −C1) would
pick up only a single saddle point Nþ. This would yield a
perfectly acceptable wave function or partition function,
Z ≈ eiSðNþÞ=ℏ. The contour running from negative imagi-
nary infinity to the second quadrant (which we called C2)
would yield (minus) the complex conjugate result. By
combining these two contours, we have the possibility of
obtaining a real wave function, as originally advocated by
Hartle and Hawking. Just as for the AdS case, there exist
two options to do so. The first is to use the sum
−ðC1 þ C2Þ ¼ C0, which is equivalent to the Lorentzian
contour. Similar arguments to those presented in Sec. III A
imply that this yields the wave function

ZðR3ÞjC0 ¼ eV3=4πGℏH2

Ai

��
3V3

8πGℏH2

�
2=3

ð1 −H2R2
3Þ
�
:

ð96Þ

Meanwhile, summing C1;2 such that they both run toward
the upper half plane yields the result

ZðR3ÞjiðC2−C1Þ ¼ eV3=4πGℏH2

Bi

��
3V3

8πGℏH2

�
2=3

ð1−H2R2
3Þ
�
:

ð97Þ

Both of these results yield an acceptable no-boundary wave
function, the only difference being a shift in the phase,
given the asymptotic expansions for real x:

Aið−xÞ∼ cos

�
2

3
x3=2 −

π

4

�
; Bið−xÞ∼ cos

�
2

3
x3=2 þ π

4

�
:

ð98Þ

By contrast with the negative cosmological constant case,
here both options are equally viable. They both contain a
trigonometric factor that one can write as the sum of two
phases ∼ðeiR3

3 þ e−iR
3
3Þ, where the phases arise due to the

classical expansion at late times. One can then interpret
these two phases as two time-reversed universes which
would decohere quickly due to the cosmological expansion
[49]. It is noteworthy that with positive Λ a genuine
Lorentzian path integral is viable, while with negative Λ
it was not. It will be interesting to see if this remains the
case in more elaborate models and in the presence of more
general metrics.16

The most important conclusion that we can draw from
these observations is that the partition function in the
presence of negative Λ gives strong support to the recent
implementation of the no-boundary proposal in Ref. [9],
which used an equivalent momentum condition to (26). In
Ref. [9], this was called the “no-boundary term” proposal,
as the Neumann condition is obtained by not adding any
surface term to the Einstein-Hilbert action. Moreover, the
choice of sign in specifying the initial Euclidean expansion
rate is determined in the negativeΛ case by the requirement
of obtaining a sensible thermodynamic interpretation once
black holes are also included. On the cosmological side,
this sign choice translates into picking the Hartle-Hawking
no-boundary proposal rather than Vilenkin’s tunneling
proposal [51]. Expressed as a one-line conclusion, one
may say that black hole thermodynamics justifies the no-
boundary proposal.

VI. DISCUSSION

In this work, we have provided a minisuperspace
construction of gravitational partition functions in space-
times with a negative cosmological constant and with
either S3 or S1 × S2 boundaries. Such partition functions
are motivated both by classic results in black hole

FIG. 15. The figure shows the structure of the flow lines with a
Neumann boundary condition Π0 ¼ − 3π

4G i at the “big bang,” for
the case of a positive cosmological constant Λ ¼ 3H2 > 0. The
saddle points are complex in this case and have equal weight. The
real part of the saddle points is associated with the classical
expansion of the Universe, while the imaginary part determines
the probability of nucleation. An integration along the real N line,
corresponding to a Lorentzian path integral, can be deformed into
the sum of the two dashed lines, passing through both saddle
points. This implements the no-boundary proposal of Hartle and
Hawking in the form of a minisuperspace path integral.

16For S1 × S2 boundary conditions and positive Λ, the saddle
point geometries were already studied in Ref. [50]. It will be
interesting to study the associated flow lines and integration
contours.
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thermodynamics and by the AdS/CFT correspondence.
They also bear a close technical resemblance to studies
in quantum cosmology, in particular, in relation to the no-
boundary proposal, which was another motivation for
our study.
Our main findings are as follows. (i) In the minisuper-

space approach, partition functions cannot be seen as sums
over Euclidean metrics but rather must be defined as sums
over certain complex classes of metrics. Despite this
feature, the dominant saddle points representing AdS
spacetime and AdS black holes always turn out to be
Euclidean. In this way, the semiclassical thermodynamic
results are recovered, even though off shell we are forced to
sum over complex metrics. (ii) Guided by black hole
thermodynamics, we had to impose a Neumann boundary
condition at the horizon of black holes in order to represent
the canonical ensemble. A Dirichlet boundary condition
fixing the size of the horizon would have led to a different
interpretation of the partition function, more in line with
calculations of the microcanonical ensemble (although this
identification would require further justification). The
Neumann condition, which is a condition on the expansion
rate of the metric at the horizon, allows one to directly
impose a regularity condition at the horizon. Even though
our final result is expressed in terms of minisuperspace
variables, we emphasize that our imposition of a Neumann
condition is performed at the level of the full Einstein-
Hilbert action and is, thus, fully covariant. (iii) When the
outer boundary is sent to infinity, only the AdS and black
hole saddle points remain of relevance. However, when the
boundary resides at a finite radius, which is a scenario
recently understood in terms of a dual QFT description
[24,25], three additional saddle points appear in the
minisuperspace approach. Depending on parameters, these
subleading saddle points may be complex. As a result,
providing an interpretation of these saddles17 in the
language of corresponding QFTs or ruling them out would
add an element of falsifiability to the minisuperspace
approach.
The fact that we had to use a Neumann boundary

condition at the black hole horizons is noteworthy. In
comparing with the case of a positive cosmological con-
stant, this Neumann condition happens to be identical to the
one used in the no-boundary term implementation of the
no-boundary proposal in Ref. [9]. There also, Dirichlet
conditions proved unphysical, and a condition on the initial
expansion rate of the Universe was the key to obtaining
a well-defined definition of the Hartle-Hawking wave
function. As we wrote earlier, what we are finding here
is that black hole thermodynamics justifies this choice;
i.e., black holes thermodynamics supports the no-boundary

proposal.18 One consequence of this is that one should no
longer think of the no-boundary proposal as a sum over
compact, regular metrics. Rather, one should think of it as a
sum over metrics with an initial Euclidean expansion rate.
That the expansion rate must be Euclidean is then simply a
manifestation that we are describing the quantum origin of
the Universe, which cannot be represented by a classical
(real) solution.
Our work suggests many avenues for further study. One

of them would be to understand if additional saddle points
corresponding to complex geometries have any interpre-
tation in the language of dual QFTs [24]. If yes, this would
provide an AdS/CFT indication about the gravitational path
integral including complex geometries, as we were forced
to do in the minisuperspace approach. An important
generalization of our study would be to incorporate conical
defects in our studies of partition functions in Sec. IV.
Another very interesting direction to consider would be to
generalize our minisuperspace studies away from four
spacetime dimensions, in which case the Neumann con-
dition at r ¼ 0 would have to be imposed differently [40].
More on this front, general relativity in three and especially
in two spacetime dimensions does not contain dynamical
gravitons, and path integrals over asymptotically AdS
geometries might then be well defined. It would be very
interesting to see what support such studies would give for
including complexified metrics in the gravitational path
integral beyond the minisuperspace approach.
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APPENDIX: FLUCTUATION DETERMINANT
FOR MIXED NEUMANN-DIRICHLET

BOUNDARY CONDITIONS

In evaluating our path integrals, we could make use of
the fact that the actions were quadratic in the scale factors,
thus allowing a decomposition of the path into a classical

17In holography, providing an interpretation of subleading
saddle points in terms of dual QFT statements is challenging, yet
not impossible; see Ref. [52] for an example.

18Note that our setting is different from the “holographic
no-boundary measure” of Hertog and Hartle [53]. There they
propose to use AdS/CFT on EAdS sections inside of the
analytically continued saddle point geometries (which are the
saddle points corresponding to a positive cosmological constant).
By contrast, we start from AdS path integrals with a negative
cosmological constant and then simply let the cosmological
constant evolve to positive values. Thus, our expressions for
the wave function of the Universe involve a positive cosmological
constant, while the ones of Hertog and Hartle involve the opposite
value of the cosmological constant.
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solution q̄ and a fluctuation Q, i.e., qðrÞ ¼ q̄ðrÞ þQðrÞ,
with the resulting path integral over Q being of Gaussian
form:

FðNÞ ¼
Z

Qð1Þ¼0

_Qð0Þ¼0

D½Q�ei
R

1

0
drð _Q2=NÞ; ðA1Þ

where we have neglected an unimportant numerical factor
in the exponent. To ensure that the total scale factor q
satisfies the mixed Neumann-Dirichlet boundary condi-
tions, the fluctuation must satisfy _Qð0Þ ¼ 0 and Qð1Þ ¼ 0.
Here we would like to determine the dependence of the
above integral on the lapse N. To do so, we will use a
rescaled coordinate r̃ ¼ rN, with range 0 ≤ r̃ ≤ N. The
integral then becomes

FðNÞ ¼
Z

Qð1Þ¼0

Q;r̃ð0Þ¼0

D½Q�ei
R

N

0
dr̃Q2

;r̃

¼
Z

Qð1Þ¼0

Q;r̃ð0Þ¼0

D½Q�e−i
R

N

0
Q;r̃ðd2=dr̃2ÞQ;r̃

¼
ffiffiffiffiffi
2

πi

r �
det

�
−

d2

dr̃2

��−1=2
: ðA2Þ

With the assumed boundary conditions, the operator
− d2

dr̃2 satisfies the eigenvalue equation − d2

dr̃2 xn ¼ λnxn with
eigenfunctions xn and eigenvalues λn∶

xn ¼ an cos

�ð2nþ 1Þπ
2N

r̃

�
;

λn ¼
�ð2nþ 1Þπ

2N

�
2

; n ∈ N: ðA3Þ

The determinant is given by the product of all eigenvalues.
We can evaluate it using zeta function regularization (see,
e.g., Ref. [54]). Thus, in analogy with the zeta function
ζðsÞ ¼Pn∈N n

−s, we define

ζλðsÞ≡
X
n∈N

λ−sn ¼
�
2N
π

�
2sX

n∈N

1

ð2nþ 1Þ2s : ðA4Þ

The last term corresponds to the zeta function where one
would sum only over odd terms. We can obtain this sum by
subtracting the even terms:

1þ 1

32s
þ 1

52s
þ � � � ¼ 1þ 1

22s
þ 1

32s
þ � � �−

�
1

22s
þ 1

42s
þ � � �

�

¼ 1þ 1

22s
þ 1

32s
þ � � �

−
1

22s

�
1þ 1

22s
þ 1

32s
þ � � �

�
: ðA5Þ

Hence, we obtain

ζλðsÞ ¼
�
2N
π

�
2s
ð1 − 2−2sÞζðsÞ: ðA6Þ

The zeta function can be analytically continued to s ¼ 0,
where the derivative ζ0λð0Þ is related to the product of all λn
such that

�
det

�
−

d2

dr̃2

��
¼ e−ζ

0
λð0Þ ¼ 2; ðA7Þ

where we have made use of ζð0Þ ¼ − 1
2
. In the end, we find

the remarkably simple result that

FðNÞ ¼ 1ffiffiffiffiffi
πi

p : ðA8Þ

In particular, note that the fluctuation determinant for the
Neumann-Dirichlet problem does not contain any depend-
ence on the lapse N, unlike in the well-known pure
Dirichlet case, where the determinant is proportional to
N−1=2 [54].
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