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Black holes past their Page times should act as efficient scramblers and information mirrors. The
information of the infalling bits are rapidly encoded by the old black hole in the Hawking quanta, but it
should take time that is exponential in the Page time entropy to decode the interior. Motivated by the
features of fragmentation instability of near-extremal black holes, we construct a simple phenomenological
model of the black hole as a lattice of interacting nearly AdS, throats with gravitational hair charges
propagating over the lattice. We study the microstate solutions and their response to shocks. The energy of
the shocks are almost wholly absorbed by the total Arnowitt-Deser-Misner mass of the AdS, throats, but
the information of their locations and time ordering come out in the hair oscillations, which decouple from
the final microstate to which the full system quickly relaxes. We discuss the Hayden-Preskill protocol of
decoding infalling information. We also construct generalizations of our model involving a lattice of AdS,
throats networked via wormholes and their analogs in the form of tensor networks of Sachdev-Ye-Kitaev

spin states.
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I. INTRODUCTION

Black holes past their Page times are very intriguing
information processors. After the Page time, the entangle-
ment entropy of the Hawking radiation [1,2] should
decrease, implying that the information of the formation
of the black hole should gradually be revealed [3,4].
Assuming that the state of the old black hole is typical
and that the evaporation process is unitary, one is led to the
hypothesized Page curve [3,4] for the time dependence of
the entanglement entropy of the Hawking radiation, which
needs to be reconciled with Hawking’s original computa-
tion [1]. However, there are other information paradoxes,
discussed by Mathur [5], Braunstein, Pirandola and
Zyczkowski [6] and Almbheiri, Marolf, Polchinski and
Sully [7], which show that all the postulates of black hole
complementarity [8] cannot hold simultaneously (see [9]
for a review). One convincing way to avoid these without
requiring any breakdown of the local equivalence principle
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is to argue following Harlow and Hayden that the Hawking
radiation post Page time has sufficient quantum complexity
[10]. The information of the black hole interior embedded
in it must take timescales that are exponential in the entropy
(at the Page time) to be processed even if the most efficient
decoders are employed. The implication is that the black
hole interior information processing time has to be larger
than the evaporation time of the black hole which scales
polynomially with the entropy at Page time. This Harlow-
Hayden argument has been recently sharpened with rea-
sonable assumptions such as pseudorandomness in the post
Page time Hawking radiation [11].

Such models of information processing lead to a tanta-
lizing conclusion that the information of the bits infalling
into the black hole after the Page time should come out in
the Hawking radiation rather quickly [12]. The Hayden-
Preskill timescale, after which this information of an
infalling qubit can be decoded from the full radiation
Hilbert space including both the early and the late radiation,
should scale as r;log r; with r, the horizon radius at the
infall time. At this timescale, the infalling bit also gets
scrambled with the black hole’s interior. The act of an old
black hole revealing what falls in later first is called
information mirroring. As far as we are aware, quantum
information theory arguments alone cannot say much about
how easily the Hayden-Preskill protocol of decoding the
infalling information from the radiation can be done. An
outstanding challenge is to come up with a controlled
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calculation in quantum gravity which captures these fea-
tures of black hole dynamics. An elegant computational
model of the Hayden-Preskill protocol has been discussed
in [13].

Remarkable progress has been achieved recently via the
use of the AdS/CFT dictionary in two-dimensional Jackiw-
Teitelboim gravity [14,15] coupled to a conformal field
theory. Employing the quantum extremal surface [16] in the
semiclassical evaporating black hole spacetime, the entan-
glement entropy of the Hawking radiation has been
computed explicitly reproducing the Page curve in these
simple quantum gravity setups [17-19]. The geometric
location of the quantum extremal surface post the Page time
can be behind the black hole horizon. The Hayden-Preskill
time for the encoding of the infalling information into the
outgoing radiation is then captured precisely in the location
of the quantum extremal surface. However, the mechanism
of this encoding itself has not yet been addressed in this
context.

In this paper, with the motivation to understand the
underlying mechanisms behind the information processing
features of a higher-dimensional black hole, particularly
with respect to its scrambling and information mirroring
properties, we construct a simple phenomenological model
and study its dynamics. Our model is inspired by the
instability of near-extremal black hole horizons to fragment
into AdS, throats [20,21]. This fragmentation instability is
mediated by Brill instantons. Crucially a large number of
low-energy states appear at the boundaries of the instanton
moduli space where two or more centers of the AdS,
throats are mutually separated by sub-Planckian distances.
Without attempting a first-principle derivation, we take a
simple phenomenological approach to construct our model
based on two ingredients: (i) a lattice of nearly AdS, throat
geometries each described by Jackiw-Teitelboim (JT)
gravity and (ii) quantum hair carrying SL(2,R) charges
that propagate over the lattice. A schematic representation
can be seen in Fig. 1. We find that our model can indeed be
phenomenologically viable with a specific type of coupling
between the AdS, throats and the gravitational hair. It
captures the semiclassical features of a black hole, while
also providing an explicit realization of scrambling and
information mirroring. The Hayden-Preskill protocol is
realized explicitly.

We study our model by taking the large N limit
simultaneously in all the AdS, throats in which the
Hawking radiation becomes a semiclassical effect. We call
this the semiclassical limit although the gravitational hair
charges are described quantum mechanically in this limit.
Furthermore, if we consider coherent states of the hair
quanta, we can also describe them via classical dynamics.
In what follows, we show that a lot of the processing of the
infalling information by the black hole can be understood
from the interactions between the AdS, throats on the
lattice and the quanta of the hair charges. The interaction of

Mobile Gravitational
Charges

AdS, Black Hole

FIG. 1. Schematic representation of our model, comprised of a
lattice of AdS, black holes carrying SL(2, R) charges Q; and
interacting with mobile SL(2, R) charges Q; representing gravi-
tational hair. Although we have shown a two-dimensional lattice
in this figure, the lattice should actually have the dimensionality
of the black hole horizon (in this case it represents the horizon of
a four-dimensional black hole). In this paper, we will study a
chain with a periodic boundary condition explicitly.

the Hawking quanta and the gravitational hair can be
explicitly studied in our model; however, we defer this
to a future work. Although such interactions must be
studied and are bound to provide further insights into
quantum black hole dynamics via our model, they do not
directly bear on the realization of the Hayden-Preskill
protocol in the semiclassical limit. Since we focus primarily
on the information processing mechanisms, we postpone
the explicit computation of the Page curve in our model to
the future.

Our model captures only the near-horizon dynamics. As
such, it does not include the coupling of the hair to the
asymptotic region of the full black hole geometry. In fact,
we can easily argue that, except for a monopole charge, the
charges carried by coherent hair oscillations should not be
conserved once we couple them to the asymptotic region.
Such couplings can be included in our model without
affecting any of the underlying mechanisms which stem
from the interactions of the hair charges with the lattice of
AdS, throats.

Briefly, our key results are as follows.

1. Our model provides an explicit realization of black
hole microstates. These microstates can additionally
support hair charge oscillations which can freely
propagate without affecting them.

2. The total energy in our model (conserved in the
absence of perturbations) is simply the sum of the
Arnowitt-Deser-Misner (ADM) masses of the AdS,
throats giving the total black hole mass and the
energy in the hair charges.

3. When any microstate with or without hair oscilla-
tions is perturbed by infalling matter in the form of
shocks propagating through the AdS, throats, the
full system quickly relaxes to another microstate
with hair oscillations.
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4. Remarkably, the energy in the infalling matter is
almost completely absorbed by the total black hole
mass with the energy of the hair quanta remaining
almost unaffected. Except for the moments of shock
injection, the total black hole mass and the energy in
the hair quanta are separately conserved to a very
good approximation. Of course, the total energy is
conserved exactly.

5. Finally, the hair charge oscillations that decouple
from the final microstate carry the information about
the locations and time ordering of the infalling
shocks. This leads to an explicit Hayden-Preskill
protocol whose complexity scales only with that of
the infalling bits and not of the underlying black hole
dynamics. The information of the initial black hole
state microstate is not retrievable easily although the
dynamics is deterministic. A part of the hair charges
gets locked in with the final black hole microstate.

The plan of the paper is as follows. In Sec. II, we
introduce our model and discuss analogies with the color
glass condensate effective theory of saturated gluons in
perturbative QCD. In Sec. III, we discuss the black hole
microstate solutions and how they can support hair. We
also show that the arrow of time emerges spontaneously in
our model. In Sec. IV, we study the response of our model
to perturbations in the form of infalling shocks and show
that our model is phenomenologically viable. In Sec. V,
we discuss the Hayden-Preskill protocol of retrieving the
information of the shocks from the hair charge oscillations
that decouple from the final black hole microstate sol-
ution. In Sec. VI, we discuss some generalizations of our
model in which we can replace the disconnected AdS,
throats in the lattice by a network of AdS, throats
connected via wormholes. We also discuss analogous
models in condensed matter systems which can be built
out of tensor network of a lattice of Sachdev-Ye-Kitaev
(SYK) spin states (the latter states were first constructed in
[22]). Finally, in Sec. VII, we discuss some broader
implications of our work.

II. SL(2,R) LATTICE MODEL OF THE
FRAGMENTED BLACK HOLE HORIZON

The fragmentation instability of a near-extremal compact
AdS, x X black hole horizon refers to the instanton-
mediated decay amplitude for the horizon to split into
multiple AdS, x X throats [20,21] (for a more recent
discussion see [23]). The instanton moduli space diverges
when some of the throats produced by fragmentation
become coincident. Presently we do not know how one
can define a meaningful regularized amplitude for the
fragmentation process. It is quite likely that there will be
abundant new zero-energy states at the boundary of the
instanton moduli space where these coincident limits are
realized. These states can play a key role in understanding

the quantum black hole. We will refer to these gapless states
as hair."

Motivated by this, we construct a simple model for the
quantum black hole to study it as a quantum information
processor. Here our goal is not to have a precise quantitative
understanding of the black hole. Therefore, we will not
worry whether our model reproduces the entropy of the
quantum black hole except that in the semiclassical limit it
should be proportional to the area in an obvious way. In
fact, an exact model of a quantum black hole is stupen-
dously ambitious with our present understanding of quan-
tum gravity. As such, we will restrict ourselves to a simple
construction that realizes the essence of the fragmented
horizon picture and then investigate whether the model can
be phenomenologically viable.

The fragmented near-extremal horizon picture suggests a
model in the form of a lattice of nearly AdS, throats
representing a fragmented (higher-dimensional) space
coupled to delocalized gapless degrees of freedom repre-
senting the quantum hair. The lattice has the same
dimensionality as the black hole horizon. The key variables
are

1. the immobile SL(2,R) charges Q; of the nearly
AdS, throats described by JT gravity2 at the corre-
sponding lattice points i and

2. the propagating gapless SL(2,R) charges Q; that
satisfy a source-free Klein-Gordon equation when
they are decoupled from the immobile charges Q,’

Let us first describe each of variables succinctly and then
present our model which invokes a specific type of
coupling between these variables.

A. The SL(2,R) charges Q; and the corresponding
AdS, throats

The lattice SL(2, R) charges Q;(u) can also be thought
of as maps of the physical observer’s time u to a

"The role of soft hair in the resolution of the information loss
paradox has been discussed in [24] and elsewhere. Here we are
dealing with a fragmented horizon unlike the discussion in these
works. Although the mechanism is quite different in our model, it
does seem that the hair can play an important role in retrieving
infalling information as argued by these authors.

*We expect that the hard degrees of freedom, namely the
fragmented throats that accounts for almost all the energy (mass)
of the black hole, should form a lattice just like the ions in a
crystal. We do not account for disorder and other complications
here. The fragmentation process implies that mass and other
gravitational and nongravitational charges of the near-horizon
geometry will be split between the fragmented throats. We can
also add nongravitational charges such as electric and magnetic
charges in our model. However, here we refrain from doing so for
the sake of simplicity.

One can think of these delocalized hair degrees of freedom as
belonging to the yet-to-be fragmented near-extremal throat in the
instanton-mediated fragmentation process. These hair should be
naturally in the form of SL(2, R) charges corresponding to the
isometries of the unfragmented throat.
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site-dependent time variable #;(u) corresponding to the
Diff/SL(2, R) coset space of localized states. Thus each
SL(2,R) charge Q;(u) represent the time-dependent states
of a SYK-type quantum dot system [25,26] localized at the
corresponding lattice site.

We briefly review the unique map from Q; to #;(u). We
also review how the localized state at the ith site is
holographically dual to an AdS, black hole with time-
dependent mass M;(u), which is proportional to the
Schwarzian derivative of #;(u).

It is useful to first define a standard local thermal time
7;(u) at each site using the relation

t;(u) = tanh <%(u>> (1)

If we perform the Euclidean rotation #;(u) — it;(u), then
7;(u) — it;(u) and we readily see that the Euclidean z;(u)
has period f5. Concretely, the SL(2, R) charges are related to
(the Lorentzian) ¢;(u) via 7;(u) as follows:

p (7 12’2 2r
=L (5-T) -2y 2)

27\ 7 B

QF = emulb ﬁ ﬂ — ilz - T_;/ (3)
P e 2r\? ) )
1 1

i

" /12 1
- 2zt p (7 T 7
o (o)D) W

1

Above a prime denotes the derivative with respect to the
physical time u. To make the map Q;(u) — 7;(u) unique,
we can set the initial conditions at u = 0*:

7;(u =0) = 0. (5)
To see this note that
g= L (gremin y gfemmir 200 (0

This differential equation has a unique solution for 7;(u)
with the given initial condition once we specify the charges
Q;(u). In this discussion, f is simply an arbitrarily chosen
(site-independent) variable which will be useful for us later
to simulate the system. Its physical significance, as we will
see below, constitutes in simply choosing a reference state
with temperature ~! with which we can define the time
reparametrizations that define the (localized correlation
functions) of the lattice states. In fact, if we express the

*We will consider the most general possibility in the next
section. It will not be necessary that all these clocks are
synchronized.

SL(2, R) charges in (2) in terms of #;(u) instead of 7;(u) by
using (1), we can explicitly see that # disappears.
For future reference, we also note that (2) yields

1;2.’ = é (Qi—e2ﬂ7z/ﬂ + Qi*e—%fi/ﬂ _ ZQ?)

X (Qi—e2m'[/[}' _ Q;re—Zﬂr,/ﬂ)’

T:»” _ % (Qi—e27n'l-//3 + Qi+e—27r‘r,/[)’ _ ZQ?)

X ((Qi—2647n,-//)’ + Qlﬂ»2e—47rr,‘/f)’
- QUQy e/ + QF eI, (7)
Let us denote the SL(2, R) invariant dot product of two

charges A and B in the adjoint representation of SL(2, R)
as -, so that

A.Bi= B - % (A*B-+A-BY.  (8)

We can readily see that the Casimir of the SL(2, R) charge
vector Q; is simply proportional to the Schwarzian
derivative of #;(u) with respect to the physical time u.
Explicitly,

47?
Q.- Q,=-2Sch(t;(u),u) = =2Sch(z;(u),u) +—-77(u),

where we denote the Schwarzian as

senrw0 =it =3 (Fap) - 0

For later convenience, we define
Sch;(u) = Sch(z;(u), u). (11)

One can also verify these useful identities, which show that
the SL(2, R) charges Q; must be constant if the Schwarzian
derivatives of #;(u) with respect to u are constant:

P Schy

I
- L2, g = P praaspy SN

2 T

07
Qi

(12)

If JT gravity provides the dual gravitational description
[15,27-29], then the holographic dual of the localized state
at the ith site can be represented as an AdS, black hole with
a time-dependent mass M;(u) and thus also a time-
dependent horizon r(u) without loss of generality. In
the ingoing Eddington-Finkelstein gauge, the correspond-
ing metric takes the form
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2 1 1
d52 = —ﬁdrdu — <ﬁ—%)du2

Above, we have dropped the site index i. The ADM mass of
this AdS, black hole is

(13)

M(u) = K%,

where « is a site-independent parameter with mass dimen-
sion minus one. We will treat x simply as a parameter of our
phenomenological model. We will reserve a description of
the full JT gravity solution for Sec. IV.

It remains to identify M, (u) with the corresponding #;(u)
which identifies the dual localized state in the coset space
Diff /SL(2, R). To see this explicitly, we need to perform
the diffeomorphism

(14)

(15)

which preserves the Eddington-Finkelstein gauge but maps
the metric (13) to the pure AdS, vacuum

2

1
dS2 = ——2dpdf ——2d[2, (16)
p p

provided

— —2Sch(t(u). u). (17)

1
rs(u)
Similarly, replacing #(u) by z(u) in (15) we find that the
metric (13) dual to the localized state maps to the metric of an
AdS, black hole with 1/72 = 4z°/? and the corresponding
Euclidean black hole has time period . Also note that if
7(u) = u, then (2) implies that Q° = —2xz/f and Q* = 0o
that the Casimir is 4z° / #*. Therefore, 7(u) indeed is the map
to the black hole with fixed mass 4kz?/f3>.

To summarize, the SL(2,R) lattice charges Q;(u)
represent AdS, black holes at the corresponding sites with
masses

M;(u) = =2« Sch(t;(u), u) = kQ;(u) - Q;(u).  (18)
as seen in (17) and (14). Also t;(u) represents the dual
localized states at corresponding sites belonging to the
coset space Diff/SL(2,R). The JT gravity descriptions
elegantly portray #;(u) as the map of the physical time u
shared by all the localized states to the time #; of the
vacuum state of the theory at the ith site. The intrasite
correlation functions of the localized states are simply
given by the conformal transformations u — t;(u) of the
corresponding vacuum correlation functions.

B. The quantum hair

At each site we additionally have the quantized SL(2, R)
hair charges Q; which are propagating gapless excitations
on the lattice. When we switch off the coupling to
the localized lattice charges Q;, we simply assume that
the quantum hair charges follow the discrete version of the
Klein-Gordon equation

1

Q:»/ - ; (Qi_] + Qi+l - 201) =0. (19)

Above ¢ has mass dimension one.

Although the Q; are quantum variables, we can consider
coherent states of these hair quanta so that they can be
thought of as classical variables for practical purposes.

C. Coupling lattice charges to the quantum hair

Our model must involve a coupling between the
SL(2,R) lattice charges and the quantum hair. This
coupling should be such that at least these three basic
requirements are satisfied:

1. The full dynamics has only one overall SL(2,R)
symmetry and not SL(2,R) ® SL2,R)® --- ®
SL(2,R) symmetry with n factors where n corre-
sponds to the number of lattice sites. This global
SL(2, R) symmetry should correspond to that of the
isometry of the classical (unfragmented) near-
extremal horizon.

2. Causality must hold. In particular, if a specific site i
is shocked by an infalling bit, then #/(u) cannot
change before the time u = L|j — i|, where L is the
lattice spacing. [Note the equation of motion of 7;(u)
should be fourth order for it to be global SL(2, R)
invariant. |

3. The full system should have a conserved energy.

These criteria are insufficient to give us a unique model.
Therefore we will be guided by phenomenology. It turns
out that the simplest model with the desired phenomeno-
logical features can be described by these equations:

M, =-MQ; | + Qi1 —2Q;)-Q),
1
Qi = 2 Qi + Qi —2Q)

1

+/1_2(Qi—1 + Qi1 —29)). (20)

Above 4 is the parameter for the coupling between the
immobile lattice charges and the mobile gravitational
charges. It has the same mass dimension as . These
equations should be viewed as the dynamical equations that
determine the evolution of the lattice variables #;(u«) and the
Q; (u). We will later show that A must be positive. In order
to obtain the continuum limit of our model, we need to take
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the limit 2, the number of lattice sites, to infinity with nQ;,
nQ;, nM; and nx kept finite.

We can consider further generalizations in which we can
add higher derivative terms to the equation of motion for Q;
(along with necessary higher-order interactions with Q)
and also introduce higher-spin fields in the JT gravity
theories describing each throat. These can model stringy
effects. Furthermore, such modifications can be made such
that we generate black hole microstates (discussed in the
following section) with the same features. We will however
not concern ourselves with such stringy effects in the
present work.

We readily see that the model has a conserved total
energy £ given by

23 Lo
£= ZM,- +EZ:QI,.QI,
/13
+35> Q- Q) (@ - Q)
/13
=x)Q-Q+5).Q,-Q
» |
+2—UZZ(Qi+l -Q;)- (@i - Q). (21)

It is easy to see that our model retains a global SL(2, R)
symmetry which is also the isometry of the original
nonfragmented near-extremal black hole horizon.

Our model can be compared with color glass condensate
effective theory of saturation physics in QCD [30]. This
theory is an effective description for low-x gluons in a
hadron where x denotes the fraction of longitudinal
momentum carried by the gluon. Such gluons can be
described by classical chromoelectromagnetic flux tubes
with transverse widths of the order of Q7'(x). The
saturation scale Q(x) is the transverse virtual momentum
energy scale for a given x below which the gluons have
occupation numbers of the order of 1/a,(Q), the inverse of
the strong-coupling constant. Thus for x < x., where x. is a
suitably chosen cutoff, one may use classical Yang-Mills
equations to describe these saturated gluons. These field
equations however must have color sources generated by
the x > x. gluons which are frozen (static) at the timescales
of the effective theory and have a scale-dependent stochas-
tic distribution. This effective description of low-x gluons is
valid only at weak coupling and is applicable to the initial
stages of heavy-ion collisions.

In our model, we can think of the AdS, throats as the
analogs of the chromoelectromagnetic flux tubes which
admit classical description. Here we are assuming a large N
limit in the dual SYK-type quantum dots which allows us to
neglect quantum corrections in each of the holographic JT
gravity descriptions. The analogs of the high-energy gluons
are the mobile gravitational SL(2,R) hair charges. The

crucial difference is that the hair charges are time dependent
while the color charges of the high-x gluons are frozen in
the effective description. In fact accounting for redshift
immediately tells us that the dynamics of the interior of the
AdS, throats will appear to be frozen to the physical
observer. This naturally fits into the UV-IR-type duality in
the traditional AdS/CFT correspondence.5

One may note a further analogy here. The color glass
condensate effective theory has a natural stochastic
element, namely the color source distribution of the
high-x gluons. Recently it has been demonstrated that JT
gravity is dual to an ensemble of quantum-mechanical
Hamiltonians [31-33]. In fact the SYK model [25,26] itself
involves stochastic averaging over four-Majorana fermion
couplings. Our model is essentially the mobile gravitational
hair Q; interacting with an ensemble of Hamiltonians dual
to the JT gravity at each lattice site. In a way our model of a
near-extremal quantum black hole is the strong coupling
holographic analog of saturation phenomena in perturba-
tive QCD except that the roles of the UV and IR degrees of
freedom are inverted in terms of which provide stochastic
sources for the evolution of the other.® The IR in the form of
JT gravities provide stochastic sources (via their holo-
graphic interpretation) for the field equations of the UV
degrees of freedom described by the hair Q; rather than the
other way round. Unlike a traditional holographic descrip-
tion, our effective description involves a fragmented
spacetime and can be naturally a part of nonsupersym-
metric version of AdS/CFT with fragmentation instabil-
ities. Our discussion here is admittedly heuristic. The actual
physical description of a near-extremal quantum black hole
is likely to involve a more complex generalization of our
simple phenomenological model.

III. THE QUANTUM BLACK HOLE
MICROSTATES: HAIRY AND BALD

We need to first identify the solutions of our model
which can be naturally interpreted as the microscopic
states of the quantum black hole. We should rather call
these black hole mesoscopic states because we have
only a coarse-grained description in terms of the lattice
charges Q;, or equivalently only the time-reparametrization
modes #;(u) for the SYK-type quantum dots on the
lattice sites. Nevertheless, we will still use the word
microstates to denote these solutions. Before presenting

’In AdS /CFT, it is natural that redshift freezes the near-
horizon degrees of freedom from the viewpoint of the observer at
the boundary. These describe the IR of the dual theory. However,
in the dual theory the high-momentum gluons will be naturally
frozen due to time dilation from the point of view of the low-
energy theory.

At strong coupling and large N, it is natural that the saturation
scale will not be very separated from an effective thermal scale.
Large density accumulation in gravity is expected to trigger
formation of black hole microstates.
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the phenomenological features which justify the model, it
will be useful for us to understand these general solutions
representing the microscopic states. We will show that
each microstate can support hair in the form of decoupled
quanta of the Q; charges manifesting as coherent oscil-
lations which freely propagate over the lattice without
affecting it.

For the purpose of this discussion, it is useful to first
decompose the full conserved energy &£ in (21) into two
parts as below:

£=Eq+Ea

EQ = ZML',

23 23
€a=5D 0 Q+75> (A~ Q) (Qpyy — Q).
(22)

The solutions of (20) have the following properties:

1. The masses M; and the lattice charges Q; are time
independent.

2. The hair charges Q; are a linear superposition of two
parts: (i) a static part which is locked in with the Q;
lattice charges and (ii) a monopole (homogeneous)
part which is decoupled from Q;. Crucially, both £4
and &£q should be separately time independent.

Hair charge modes which are not monopoles (i.e., homo-
geneous) can be expected to be carried away to asymptotic
infinity via gravitational radiation and Hawking quanta
radiated from the AdS, throats which also interact with the
hair charges. Although we have not included any type of
coupling of our model of the quantum black hole to the
asymptotic region of spacetime or considered quantum
gravity effects in the AdS, throats (particularly the
Hawking radiation), we should expect that only the
monopole term can remain with the black hole. A micro-
state solution with hair will refer to a solution with
additional coherent states of Q; that are propagating freely
in the background of a particular microstate solution
without affecting it.

To find microstate solutions we recall the identities (12)
which imply that for the Q! to all vanish, it is sufficient that
M all vanish. Then we see from (20) that for M’ to vanish
we need Q] to be parallel to each other, i.e.,

Q; = qit.

where € is a constant site-independent SL(2,R) charge
vector of unit norm and also

g'Qi:Q

with Q a constant that does not depend on the lattice
site. Since our model has a global SL(2,R) symmetry,
we can always choose && = 0 and & = 1 without loss of

generality by a global SL(2,R) rotation.” Therefore, this
implies that
QY =g,

Q' =0, (23)

and

Q=0 (24)
Note that although we need Q? to take the same values at all
lattice points for all Q/ to vanish, Qii can take arbitrary
constant values. This implies that the AdS, black holes in
the lattice can have different (constant) masses M;. The
SL(2,R) charge vectors describing the black hole interior
are thus similar to disordered ferromagnets. While one of
the components of these charge vectors is homogeneous
representing order, the other components are stochastic and
uncorrelated. We will soon see that the consequence of
having Q? = Q will be that the arrows of time of the lattice
sites given by sgn(#;(u)) will be the same for all lat-
tice sites.

We also see from the second equation of (20) that all Q”
vanish if

2
Q, = Q= —j—z 9, +K. (25)

The hair charges QI°° are thus locked in with the Q;. Note
JC has no lattice site index. Since Q? = Q, it follows that
QY = —(6%/22)Q + K° and are thus homogeneous too.
However, we note that (23) and (24) also allow a monopole
term such that

4 = a (26)
with a being a site-independent constant implying

Q=Qr, (@O =qu,  (QPME=0. (27)

The masses M; and the Q; are then constant with (24)
satisfied while the hair charges are

Q, = Qf* + Q. (28)

"Note this also exhausts our utilization of the global SL(2, R)
symmetry. If the throats were connected by an unfragmented
spacetime such as in the case of the eternal black hole with two
asymptotic boundaries, then the choice of a global (Kruskal) time
coordinate would have achieved the same effect of exhausting the
overall SL(2, R) freedom. In our case, the choice of the direction
of the homogeneous component of the lattice SL(2, R) charges is
actually related to how we glue our model to the asymptotic
unfragmented geometry. Of course, this has no bearing on the
dynamics of our model. We thank Gautam Mandal for a
discussion on this issue.
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The energy in the hair charges £q is then given by the sum
of two parts

Eq = B 4 Emon,

2
o
& = =23 - 997 - Q).
mon 1 3.2
ey = i (29)

Note &' arises from QX and 2" is due to the
monopole Q"
To summarize, the microstate solutions are those with the
following configuration:
1. constant and homogeneous Q? = Q,

2. constant values of Q , so that the masses of the
AdS, black holes are

M; =x(Q* - Qf Q). (30)

We will set k = 1 from now on.
3. Hair charges which can be decomposed into two
pieces Q; = QI + Q°", where Q!¢ is locked in
with QY as in (25) and Q" is the monopole term (27).
It is also easy to see that since Q/ vanish and the equation
for Q; in (20) becomes source-free by virtue of (23) and
(24), each microstate can support hair oscillations of the
form
Qi - and,

@) =0. (@) =gq; (1)

with g; satisfying the free lattice Klein-Gordon equation:

1
q; = ) (Git1 + gi-1 — 2q;). (32)

We will call this the radiation component of the hair. These
coherent oscillations should exclude the monopole term to
avoid double counting, so that

> =) =0 (33)

for all time. [Note (32) implies ) ; ¢/ is constant which can
be set to zero.] These can freely propagate on any micro-
state solution background without affecting the latter.
Adding such coherent oscillations, we get

Q; = Q + Q" + Qi (34)

and such solutions are then microstate solutions with hair.

It is easy to see that for microstate solutions with hair

Eq =&Y + ERN 4 £,

62

ot —
5% :_ﬂ : ( i+1 Q+)( i+ Qi)’
gmon _ 1/13(12
Q 2 ’
d P 2
ad __ !
&gt = B Z +_Z(CIH»1 ql . (35)
Clearly, if 1 > 0, then
58d >0, 58"" > 0. (36)

This leads us to set A > 0. The restriction M; > 0 should be
imposed so that £g > 0 also. Only the Spm term in the
energy can be negative. However since Qli are randomly
chosen, averaging over microstates should give £X' = 0.
Therefore, the average total energy in the ensemble of
microstate solutions is positive definite. It is to be noted that
the split of £q into the three terms 5", EQoM and Sgd makes
sense only for the microstate solution with(out) hair and not
generally.

We can readily prove that the microstate solutions
discussed here are unique. Let us discuss the hairless
solutions first. In order to produce stationary solutions
we need the right-hand side of the second equation of our
model (20) to vanish. The latter are linear equations for Q;
and therefore (25) are the unique solutions. In order to
preserve the conditions (25) we need the components of Q;
to be vanishing in any given (internal) direction or to be
homogeneous and constant. Choosing an appropriate
global SL(2,R) frame, the nonvanishing homogeneous
components should satisfy (23) without loss of generality.
The rest of the construction, including the addition of hair
oscillations, then follows.

We can readily note that for physical viability, the lattice
charges Q; in the black hole microstate solutions need to
satisfy further restrictions. We need #;(u) and therefore
7;(u) to be real at each site in the entire range of the
physical observer’s time, —co < u < oo. Itis also necessary
that 7;(u) and therefore z;(u) are sufficiently smooth (these
and their first and second derivatives must be continuous)
as dictated by our equations (20). Furthermore we will also
require that we can synchronize the clocks at the lattice
sites at time u = 0 via (5). The justification is that there is a
preferred global time coordinate in which we can do this
synchronization, which is the moment when the quantum
black hole is formed. However, this is not crucial for what
follows and we can readily generalize our initial conditions
(5) to
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7i(u=0) = 7p. (37)
Once we perturb an initial microstate satisfying the initial
conditions (5) for z;(u), the final microstate to which the
system will relax to will satisfy the above initial conditions
for 7;(u) actually.

Setting Q? = (Q and using (6) and (5) we readily see that
the solutions for 7;(u) given the data for constant Q and QF
in these black hole microstate solutions are as follows. If
Q7 #0 and M, > 0, then

i)~ Liog[ € - (Y,
l Q9 9 2
+ arctanh(Q\/_Q’_>>] (38)
and
_ 1 Q0 VM, VM,
ti(u) = tanh( log [Q_ o tanh( S U
Q-9
+ arctanh( NiZr ))]) (39)
If 97 =0, then
20 - QF +
7;i(u) = 2%—10‘% [(%) e~ Qu +2Q—’Q] (40)
and
_ L 20-97\ ou &
t;(u) = tanh <§log KT>6 + E} ) (41)
Finally, if M; =0 and QY = Q = Q7 /p; = Q. p;, then

2_5
7;(u) :ﬁl()g B‘Fh}

t:(u) = tanh( log[p Qu__2)2D (42)

Note for p; = 1, the above reduces to 7;(u) = ;(u) = 0.

Requiring 7;(u) and #;(u) to be real and have continuous
first and second derivatives for —oco < u < oo implies two
possibilities for M; > 0. The first is that

0<-M;, Qf<0, Qf+Qr>20 (43
The second possibility is that
oM, Qf=20, Qf +Q;<20. (44

Remarkably the first p0531b111ty implies that 7} > 0, while
the second implies that 7z; <0 for all i and for

—00 < u < oo. Thus, there has to be a strict arrow of time
at every site in our model (20) and all these arrows of time
have to be aligned in the same direction (future or past) in
the black hole microstate solutions with(out) hair. A global
(uniform) arrow of time is therefore emergent in our model.
Given that we have fractionalized space into several
quantum dots spread over a lattice and that we have an
independent time #;(u) for each lattice state, it is reassuring
to see this feature. We note that it is important to invoke the
positivity of energy that requires M; > 0 for this global
arrow of time to emerge.

Our conclusions do not change for more general initial
conditions (37). In (38), etc., we simply need to replace u
by u —wv; with a suitably chosen constant v; for the
corresponding site.

We will choose the first possibility (43) since we want
our global arrow of time to point toward the future. This
implies the following parametrization of the SL(2,R)
lattice charges with Q >0 and 0 < M; < Q (note we
have redefined Q below with a minus sign for future

convenience):
Q? =-0, Qr —Pi\/ Q2 -M;,
2 _
R (45)
such that
VO -M, VO + M,
=< S = 46
VO +M,; ™ \ VO - M, (46)

We note that, when Q approaches M;, the range of possible
values of p; extends over the entire positive real axis. On the
other hand, when Q is very large, the possible range of
values of p; extends only over a tiny interval which
collapses to 1 eventually. For examples of z(u), see
Fig. 2. It is natural to associate a black hole macrostate
with a given value of the total mass £, := M and the order
parameter Q. The counting of the microstates mainly
involves taking into account the partitioning of M into
M, subject to the restriction 0 < M; < O, as well as the

| — o= 3.0="1.0=45
— Q'=-3,0'=-2,0=-2
0'=-3,0"=-45,0"= -1

—4 2 0 2 4
u

FIG. 2. Plot of z(u) vs u given by (38) for various choices of
values of the SL(2, R) charges allowed by (43) and = 2x.
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possible values of Q; as in (45) with each p; subject to the
restriction given by (46).

A pertinent question is whether a hairy microstate with
lattice charges parametrized via (45) subject to the restric-
tions (46) and 0 < M; < Q will relax to another hairy
microstate with lattice charges subject to these same restric-
tions after a perturbation. This is indeed borne out—we will
discuss this soon.

Finally, we note that z;(u) is physically the map of the
time of the lattice state to that of an AdS, black hole with
mass M = 4x°/f%. Since this is an arbitrarily chosen
standard black hole clock we can set f = 2z so that this
standard black hole has unit mass. We will discuss the full
JT gravity solutions in the next section.

IV. SHOCKS REVEAL PHENOMENOLOGICAL
VIABILITY

The obvious question is whether our SL(2,R) lattice
model walks and talks like a black hole. We can specifically
ask what happens if one or more compact objects fall(s) into
one of our typical black hole microstate solutions. Since we
have fragmented the horizon geometry into a lattice of AdS,
throats, compact infalling objects are simply infalling
shocks in these throats. The masses and the SL(2, R) charges
of the corresponding throats jump instantaneously at these
moments of shock injections. For phenomenological viabil-
ity, we will expect the following features:

1. After all the shocks fall into the initial black hole
microstate solution with or without decoupled hair
charge oscillations, the full system should relax to
another such black hole microstate eventually.

2. The energy injected via the shocks should almost go
fully toward increasing the overall mass M := Eq.

3. During the course of time evolution, the sum of the
black hole masses £y and the energy in the
gravitational hair charges £q should be conserved
separately to a very good approximation.

These features, if validated, will ensure that if we are looking
at the system from afar, it will seem to behave like an
ordinary black hole particularly when we are taking the large
N limit at each lattice point simultaneously. Note none of
these features are built into the construction of our model—
these have to emerge from the equations of motion.
Nevertheless, both the initial and final microstate solutions
will have inhomogeneities at the subhorizon scale.

The equations governing the full system in the presence
of shocks take the form

M= =A(Qisy + Qi1 —2Q0) - QU+ Y e;a(u—u;0),
A
1
Qf = ;(Qi—l +Q; —2Q)
1

+/1_2(Qi—1 + Qi1 —29)). (47)

where e; 4 is the amount of energy injected into the ith
throat at u = u; 5. We refer the reader to Appendix A for the
derivation of the solution of the JT gravity in each AdS,
throat. A brief summary is as follows. In the locally AdS,
geometry (13) of the ith throat, the interthroat coupling and
the shocks in (47) invoke a specific form of 7,
composed of ingoing or outgoing null matter:

T iy (1 u) = fi(u), T (iyur(ryu) = T3y (r,u) =0

(48)

with
filu) =-AQi_ + Qi1 —2Q;) - Qi + Zei,A5(” —Uia)s
A
(49)

the right-hand side of the first set of equations in (47). It is
easy to check that the em tensor (48) is conserved locally in
the background metric (13). This em tensor has a piece that
involves dilute (continuous) infalling or outgoing energy
due to interthroat coupling and the pieces proportional to
delta functions involving energy injection via the shocks
which infall along null geodesics u = u; 4. The dilaton
takes a remarkably simple form

®;(r,u)=2/r (50)

in each throat as explicitly shown in Appendix A. One may
readily note from our previous discussion that in the
microstate solutions with or without hair charge oscillations
T i) = 0 because the right-hand side of (47) vanishes in
these solutions. These get turned on only after the injection
of the first shock.

Clearly at the moment of injection, u; 4, the mass of the
corresponding black hole jumps by

5Mi(ui,A) = €A (51)

while the SL(2, R) charges jump by

1
6Q?(ui,A) = _mei,A,
n eirl(ui.A)
0Q; (”i,A) = —mem (52)

as evident from the identities (12) where we have set f§ =
27 (recall M; = —2Sch;). Note 6Q; - 6Q; = 0 as 6Q,; is the
SL(2, R) charge vector of an ingoing null shock. It is easy
to see from (6) and (7) that the above discontinuities in the
SL(2,R) charges imply that 7i(u) and 7}(u) remain
continuous at u = u; , while 7/"(u) is generically discon-
tinuous then. This is consistent with (47) being fourth order
in 7;(u;). Furthermore, using (6) we readily see that for (51)
and (52) we get
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oM; =2Q;-0Q; (53)
as should follow by varying M; = Q,- Q, and using
0Q,;-69Q,; =0. Finally it is also easy to see that if Q;
satisfy the restrictions given by (43), then so will Q; + 6Q;
(since e* + ¢™* > 2 for real x) and therefore can be para-
metrized using (45) in terms of M; satisfying 0 < M; < O
and p; restricted to the range prescribed in (46).

Before the shock, we assume that the system is in a
typical black hole microstate described in the previous
section. The full configuration is macroscopically charac-
terized by the total mass M and Q. The AdS, black holes
have time-independent masses 0 < M; < Q such that they
sumto M, ie., Y ;M; = M = Eg. The SL(2, R) charge at
each lattice site is parametrized by (45) and (46) in terms of
M, M;, Q and p,. Furthermore, the hair charges Q; assume
the configuration (28) which is a linear superposition of the
static component Qi»"c in (25) locked to the Q; (we choose
the additional parameter }C randomly—it has no bearing on
the dynamics), and the monopole term Q™" in (27)
parametrized by a. To choose a typical microstate for fixed
M and Q, we will need to randomly allocate M; and p; to
the lattice sites subject to the restrictions mentioned.®
Furthermore, we will need to specify a.

We consider the initial microstate to be hairless, i.e., with
Q% = (0 with the expectation that these hair charge
oscillations will decay via their coupling to the asymptotic
region of the geometry. The phenomenological features of
response to shocks are unaffected anyway in the presence
of hair in the initial microstate. The Hayden-Preskill
protocol however will become more complicated—we will
return to this issue later.

It is evident from (47) that

> Q/=o,

1

(54)

implying that

ZQ?/ =aq,

L

(55)

This time-independent monopole parameter a remains
unaltered even when shocks are injected into the system.
It is determined by the formation of the black hole. It turns
out that we obtain the desired phenomenological features
mentioned at the beginning of this section provided a > 0
when 4 > 0. We also recall from the discussion in the
previous section that we must set 4 > 0 in order that the
average energy of a microstate in the ensemble with fixed
M and Q is positive.

We will restrict ourselves here to a one-dimensional
lattice (chain) with periodic boundary conditions. We can

8If we choose initial conditions for 7; using (37), then we have
to randomly choose 7;, for the initial microstate also.

readily simulate our model following the method of [34].
Noting that the first set of equations in (47) are actually
fourth-order equations for z; (u) [i.e., ¢;(u)] we rewrite these
as four first-order equations for Q;(u) and z;(u) as below
using (12) and (6) (we set f = 2x):

1
Q) = 27 (MQio1 + Qi1 —2Q,) - Q) — e;6(u — u;)),
Q' = % (MLt + Qi1 —29,) - Q) — ¢;6(u — u;)),
Q' = (UQiy + Qiy —2Q)) - Q) — eid(u — ).

27;

¢ =3 (Qre + Qe ~2Q0) (56)
With initial values for Q; chosen randomly (thus picking a
typical microstate) and initial value of z; set by (5) or (37)
as discussed before, we can readily simulate these equa-
tions together with the second set of equations in (47). The
initial values of Q; and Q! are also chosen randomly such
that the initial conditions describe a typical initial hairless
microstate solution (with Q™! = 0) as discussed above.
Note we can compute 7/ and 7/ using (7) from Q; and z;
also at any given instant.

We report our results for a five-site chain with periodic
boundary conditions which hold also for smaller or larger
number of sites. We choose initial conditions describing a
typical initial microstate solution and set 41 =1 and
o = 0.01. The phenomenology does not depend on these
choices provided a > 0. We can readily observe from the
right-hand side of the first equation in (47) that Aa acts like
a diffusion constant which needs to be non-negative. Since
A is positive, a has to be non-negative. The features listed
below hold even if the microstate that we shock is hairy.

1. We note that, even after the shock, the total mass
M = £, and the energy in the hair quanta £q are
separately conserved to a very good degree of
approximation as shown in Fig. 3 although the full
system has a very complicated time evolution (see
Fig. 4). Although €5 and £q look constant on the
scale of Fig. 3, actually there are tiny fluctuations of
O(107*) which eventually decay away. Note at each
site there is exchange of energy between the two
sectors—each M; varies significantly with time as
shown in Fig. 4(d). It is only the sum of the ADM
masses given by £g = M which remains almost
approximately unperturbed. We have checked that if
we increase the number of lattice sites (n) and take
the continuum limit keeping mass and charge
densities finite, then the ratio of the amplitude of
these fluctuations AM to the total mass existing in
the transition time goes to zero, i.e., AM/M — 0, in
the continuum limit. Therefore, the separate con-
servation of £5 and £q becomes an increasingly
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FIG. 3. Evolution of £4 and Eq after a shock in a lattice with
five sites (AdS, black holes). Here 1 =1 and ¢ = 0.01. The
shock with e = 0.4 has been injected into the first site at u = 0.
The variables M; and Q; of the initial microstate solution have
been chosen randomly as described in the text with the total initial
mass M = 20 and Q ~ 5.05. Also a = 1. Note that £ = M, the
sum of the ADM masses of the AdS, throats, and £q, the energy
in the hair charges, are separately conserved (except at the
moment of shock injection) to a very good approximation. Also
approximately all the energy injected in the shock goes to E.

better approximation as we approach the con-
tinuum limit.

2. Itis also clear from Fig. 3 that the energy of the shock
is almost fully absorbed by £, the sum of the ADM

-5.1

52
53

54 ol

55

5.6 -52

0.0 05 1.0 15 0.0 05 1.0 15
u u

(a) Evolution of Q? after the (b) Evolution of Q:r after the
shock. shock.

T o

0.0 05 10 15 0.0 05 1.0 1.5

(C) Evolution of O~ after the (d) Evolution of M; after the
shock. ‘ shock.

FIG. 4. The evolution of the SL(2, R) charges Q; and M in our
five-site model after the first site is shocked at u = 0. Here A, o, a
and e (the shock energy) are set as in Fig. 3. We have chosen the
initial conditions randomly corresponding to a typical initial
microstate as exhibited above. The corresponding evolution of
the energies £ and £q are as in Fig. 3. It is clear from the above
plots that all M; and thus Q; relax eventually to constant values
with Q? converging to the same value at each lattice site. This
implies that the full system relaxes to a final microstate solution.

masses of the black hole. The ratio of the increase in
the total mass to the energy in the injected shock
approaches unity in the continuum limit.

3. Finally, it is clear from Fig. 4 that the full system
relaxes to another microstate solution since all M;
(and therefore Q,) relax to constant values. Particu-
larly, as evident from Fig. 4(a), QY converge to the
same value at each lattice site giving the value of Q
for the final microstate that is different from the
corresponding initial value.” The final microstate
also supports coherent hair oscillations Q4 along
with QI locked with the final SL(2, R) charges as
in (25) and the monopole term Q™" with the same o
as in (27). The hair oscillations Qf“d are freely
propagating, i.e., satisfy (31)-(33). They are thus
decoupled from the final microstate solution back-
ground. Note the full energy £q in the hair charges
in the final microstate solution is then composed of
three pieces as shown in (35) which include the
contribution Eré‘d from the coherent inhomogeneous
oscillating terms.

Thus we find that our model is phenomenologically
viable with the monopole parameter o > 0. It has the
crucial property of relaxation like a black hole; i.e., an
initial black hole microstate evolves to a final black
hole microstate after a perturbation by a shock with the
energy in the shock absorbed almost entirely by M, the sum
of the ADM masses of the AdS, throats. This also holds if
we also perform multiple shocks. Furthermore, M remains
approximately constant even during the transitory period
between two microstates except for the moment of
shock injections. These features become exact in the
continuum limit if we consider appropriate ratios as
mentioned above.

It is easy to see that the approximate conservation of &4
implies that if we sum over all the throats at any instant u,
then

ZT(i)uu(r’ u)~ Zei.A‘S(” —Uia),
A

i

ZT(i)ur(rv M) = ZT(i)rr(r7 u) =0. (57)

i

The above is also borne out in our numerical solutions to an
excellent approximation even in the presence of multiple
shocks. Therefore, the total inflow or outflow of energy in
the throats due to interthroat coupling alone should approx-
imately vanish at intermediate times. (Of course, for both
initial and final microstate solutions the inflow or outflow of
energy vanishes exactly for each throat individually.)

The SL(2,R) frame given by the direction along which Q;
takes the same value in the final microstate solution cannot
change as it is determined by the monopole component of Q}
which as noted above is a constant of motion with magnitude a.
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We note that our claim is that these phenomenological
features hold for a typical (randomly chosen) initial micro-
state solution even if it supports hair. However, it is possible
that these features actually hold for all microstate solutions
since we have not encountered any exception so far.

It is important to note that our model has inherent
pseudorandomness. Given an initial state and perturba-
tions in the form of a few shocks, it is quite hard to
determine analytically the details of the final microstate,
except for the total mass M approximately (since it is
approximately the sum of the initial total mass and the
energy injected by the shocks) and the monopole param-
eter @ which is a constant of motion. Even the final value
of the macroscopic order parameter Q is hard to predict as
it depends on the details of the initial microstate, i.e., not
on the initial values of Q and M and « alone. The value of
Q in the final microstate varies by at least 1% for different
choices of initial microstates (with same values of Q
and M and a). The Hawking radiation emitted from the
final microstate can be expected to inherit the pseudor-
andomness of the background semiclassical black hole
dynamics.

One can also explore the quantum chaotic features in our
model via the study of the differences in 7;, parameters in
7;(u) between the initial and final microstates. We leave it
to a future study as the out-of-equilibrium out-of-time-
order correlators merit a separate study on their own right.

The transit time between microstates depends on the
macroscopic parameters O, M and « of the initial macro-
state and not significantly on the energy injected by the
shock. We define the relaxation time as the time when the
SL(2, R) charges attain 99% of their final values. Note that
only the combination A« is significant for the dynamics so
we can set A = 1. It also turns out that ¢ does not influence
the relaxation time significantly.

In Fig. 5(a), we have studied the relaxation time in the
continuum limit for different mass densities and with fixed
unit Q density and @ = 2. There are statistical fluctuations
of about 1%—2%. The relaxation time does not vary much
over the range of mass densities studied. We find that if we
increase Q keeping M and a fixed, then the relaxation time
decreases rapidly and goes to 0.004 for large QO density
when the mass density is 0.8 and @ = 2. In Fig. 5(b), we
present the dependence of the relaxation time on Q for
fixed M and a. We conclude that the relaxation time is
small compared to the mass density if we allow Q to vary
over the ensemble of microstates with fixed mass density
and o."" In the next section, we will identify the relaxation
time with the Hayden-Preskill time by showing that the
information of the infalling shocks is encoded by the black
hole dynamics in the coherent hair oscillations Q¢ which

"We choose a by assuming equipartitioning of energy
between the black hole masses and the monopole radiation via
quantum fluctuations.
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(a) The relaxation time as a function of the mass density when
@ density is 1 and o« = 2.
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(b) The relaxation time as a function of @ when M density is 0.8
and @ = 1 in a five-site model. The fitted line is 0.004+0.365¢~0-624Q.

FIG. 5. The dependence of the relaxation time on M and Q.
Note there is about 1%-2% variation over choice of initial
microstates. This is not shown above.

decouples from the final microstate to which the full system
relaxes.

V. THE HAYDEN-PRESKILL PROTOCOL

Suppose Alice wants to erase some top secret informa-
tion. She thinks that the best way to do this would be to
throw it into a black hole."" Alice would like to know if she
throws the information into our model black hole, then
whether Bob, who is outside the black hole, can decode the
message after some time has passed or not. This is exactly
the question that we will answer in this section.

We assume that Alice’s message is in the form of one or
two compact classical bits going into one or two of our
(nearly) AdS, throats. We restrict ourselves to studying the
decoding of the classical information encoded in these
shocks via their positions and time ordering. We ask a very
concrete question: Can Bob eventually decode the locations

""The Landauer principle [35] suggests that it is a good idea
since the entropy of the black hole increases in this procedure.
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FIG. 6. Mixing indicates the dynamics of our model which
mixes up all the degrees of freedom with the external shocks and
decoding is the procedure that Bob uses to extract information
about the shocks. We will consider the situation where the hair
oscillations (Q%9) are initially zero to simplify our decoding
protocol. After the model relaxes to a new microstate with some
hair oscillations on top, Bob applies his decoding procedure on
the decoupled hair Q¢ and recovers some classical information
about the shocks, namely their positions and time ordering.

and time ordering of these shocks which carry Alice’s
message? We have seen in Sec. IV that after all the shocks
have gone in, the system relaxes to another microstate
solution with decoupled hair oscillations on top. In what
follows, we will show that the black hole dynamics encodes
the classical information of the positions and time ordering
of the shocks in the hair charge oscillations Q¢ that
decouple from the final microstate solution to which the
system relaxes. Although the information is classical, the
quantum-circuit-like diagram in Fig. 6 is a good schematic
representation of the decoding process. We expect that this
information will be further encoded into the gravitational or
Hawking radiation which interacts with Q?4. However,
Bob can choose to decode the information from Qi
directly by probing these gapless degrees of freedom that
live on the surface of the horizon.

To simplify the decoding procedure, we will assume that
the initial black hole microstate is not hairy. This
assumption is justified on the grounds that the hair charge
oscillations Q5 should decay by virtue of their coupling to
the asymptotic region of the geometry in the form of
gravitational radiation, etc. Otherwise, we should think of
the preexisting hair oscillations as early radiation (not to be
confused with early Hawking radiation) and the decoding
procedure, which has to extract information for the full
Q"4 that decouples from the final microstate, will depend
on the details of this early radiation which should be
known to the decoder a priori. We will not consider this
complexity here since we have physical mechanisms of hair
removal anyway.

A. Decoding a single shock

We assume that Alice shocks only one site in a five-site
chain and ask what Bob must do in order to recover the
position of the single shock from the hair oscillations. We
recall from (31) that the hair charge oscillations Q™ are
parametrized by ¢; and these follow the free lattice Klein-
Gordon equation (32). For the case of a five-site lattice, we
can readily obtain the normal mode frequencies for these

0.0030F
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0.0015+

Amplitude

0.0010-
0.0005

0.0000 |-=

Frequency

FIG. 7. Amplitudes of the Fourier transform of ¢; for each site
obtained after the full system relaxes to the final microstate. The
peaks coincide with the numerically computed normal mode
frequencies to a very good approximation. The finite width of
these peaks is due to finiteness of the time window and also
numerical noise.

coupled oscillators ¢g; (that are decoupled from the lattice
charges). With the same parameters as those chosen in the
context of Figs. 3 and 4, the normal mode frequencies turn
out to be (+£30.2731, +18.7098, 0). Each of these frequen-
cies are doubly degenerate so that we have ten normal
modes. The zero-frequency modes are monopoles and cannot
appear in the final ¢} due to conservation of the monopole
term (see the discussion in the previous section). We performa
Fourier transform of the numerical data for ¢} for each site
after the system relaxes to the final microstate and plot the
amplitudes in Fig. 7. We only plot the positive frequencies
because the amplitudes of the corresponding negative
frequencies have to be the same (and the phases should be
just reversed in sign). From the Fourier transformed data, we
observe that peaks coincide with the analytically computed
frequencies to a very good approximation.

Remarkably, Bob can extract the position of the shock by
looking at the phase differences between these two fre-
quency modes at each site. The phase differences when the
first site is shocked are found in Table I. We define the
phases modulo 2z.

A clear pattern is visible. Sites 2 and 5 which are
equidistant from the shocked site 1 have the same phase
difference within our numerical accuracy. Similarly, sites 3
and 4 which are equidistant from the shocked site 1 also
have nearly the same phase difference within our numerical

TABLE I. Decoding a single shock at site 1.

Site Phase difference

4.159
3.187
2.356
2.347
3.185

(O S I S
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accuracy. This symmetry clearly tells Bob that site 1 was
shocked. This symmetric pattern repeats when any other
site is shocked and also for any randomly chosen initial
microstate. It generalizes as well if we have a higher
number of sites—the symmetry in the site-dependent phase
difference between the two largest positive frequency
modes reveals which site has been shocked.

This is a very nontrivial result because both the initial
and final microstates are highly asymmetric. If some
features of the decoupled hair oscillations are insensitive
to the lattice charges but sensitive to the shock, then the
decoding is possible. Otherwise the decoder needs to have
access to the initial black hole microstate, which is
forbidden in the Hayden-Preskill protocol. We conclude
that the mentioned phase difference is a feature of the
mentioned type that decodes the position of the shock. The
energy of the shock, of course, can be obtained simply from
the difference between the final and initial black hole
masses to a very good approximation.

B. Decoding two shocks

If Alice throws in two shocks with equal energies at two
distinct lattice sites in our model, Bob can decode the
position and time ordering of the shocks by using a
procedure similar to that described before. After the model
relaxes to a new microstate, Bob should again study the
Fourier transform of the decoupled radiation g;. The pattern
of phase differences will tell him where the shocks
happened and also which shock happened first. For a
five-site chain there are exactly two possibilities; the shocks
are either nearest neighbor or they are separated by one site.
For example we consider two nearest neighbor shocks first
at site 1 and then at 5. The time difference between the two
shocks is less than the time it takes for the model to relax to
a microstate after a single shock. The phase differences are
shown in Table II.

Keeping the shock size and time difference the same, we
now reverse the time ordering of the shocks. That is, site 5
is shocked first followed by site 1. The phase differences
are shown in Table III.

A pattern can be easily noticed. In order to determine the
position of the two shocks, Bob simply needs to determine
the maxima and minima of the phase differences. The sites
with the largest and smallest phase differences are the two

TABLE III. Decoding a shock at site 5 followed by a shock at
site 1.

Site Phase difference

1 4.982

2 4.531

3 3.634

4 2.858

5 0.926

sites that were shocked. If these two sites are nearest
neighbor, then the site with the smallest phase difference
was shocked first and the site with the largest phase
difference was shocked later. This pattern holds for any
randomly chosen initial microstate.

The only other possibility for a five-site model is when
the shocks are separated by a single site. For example, we
consider shocking first site 1 and then site 3, which is
shown in Table IV. Similarly, the phase differences when
site 3 is shocked first, followed by site 1 are shown in
Table V.

In this case as well, the sites with maximum and
minimum phase differences are the locations of the two
shocks. However, when these locations are separated by
one site, the site with the maximum phase difference was
shocked first. This feature once again holds for an arbi-
trarily chosen initial microstate.

A natural question to ask next would be if the decoding
procedure holds for two shocks with unequal shock
energies. This is indeed the case if the differences between
the shock energies is small (< 0.3). The decoding pro-
cedure fails for larger differences in the shock energies.
This could be a limitation of the classical approximation. In
principle, we should treat the hair charge sector as an open
quantum system interacting with the bath in the form of the
lattice of AdS, throats. We leave this to a future study.

C. Algorithm

We can combine the discussion from the previous two
subsections into a unified algorithm that Bob can utilize to
extract information about the shock position(s) and time
ordering. It is assumed that Alice only shocks either one or
two sites in the five-site chain. The decoding algorithm is
then as follows:

TABLE II. Decoding a shock at site 1 followed by a shock at TABLE IV. Decoding a shock at site 1 followed by a shock at
site 5. site 3.

Site Phase difference Site Phase difference

1 1.599 1 5.837

2 2.747 2 3.639

3 3.783 3 1.986

4 4.844 4 4.852

5 5.994 5 2.709
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TABLE V. Decoding a shock at site 3 followed by a shock at
site 1.

Site Phase difference
1 2.374
2 3.553
3 6.166
4 2.824
5 4.591

—_—

Compute the Fourier transform of the ¢/ at each site.

2. From the Fourier transform data, compute the phase

difference between the two positive frequency
modes at each site.

3. If these phase differences are symmetric about a
specific site, then this site has been shocked once
or twice.

4. If the phase differences are not symmetric, then
determine the maximum and minimum phase
differences. These are the locations of the shocks.

5. If these two sites are nearest neighbors, then the site
with the smallest phase difference was shocked first.

6. Ifthese two sites are separated by one site, then the site
with the largest phase difference was shocked first.

The above algorithm for decoding the locations and time
orderings of the shocks is likely to generalize to the case of
higher number of sites—we will need to note the phase
differences of the three or more positive frequency normal
modes. Unfortunately, there are several numerical issues in
performing the Fourier transforms of ¢;. For a higher
number of sites, the procedure for the noise correction
discussed in Appendix B to get reliable Fourier transforms
becomes harder to implement. These issues have made it
difficult for us to generalize our algorithm for six or more
sites. In Appendix C, we discuss the case for a lower
number of sites.

In the case of multiple shocks with not large differences
between their energies (and which all happen within the
relaxation time of the system), we can also look into
intersite phase differences in the Fourier modes of the
highest frequencies, etc. It is quite likely that if the number
of shocks are not too many, a generalized decoding
protocol for the locations and time ordering of the shocks
exists. However, we have not been able to find a simple
decoding procedure to tell us if the same site has been
shocked once or twice. Understanding the mechanism that
makes our protocol work better can help us to address this
issue. We also expect that one can set up a more efficient
protocol with the quantized hair charges and its complexity
will be commensurate with that of the information in the
infalling bits and not of the black hole interior as in the
algorithm discussed above.

We also need to address if one can construct the Hayden-
Preskill protocol for infalling qubits instead of infalling
classical bits. This can be studied by introducing infalling

quantum degrees of freedom inside the AdS, throats.
Together with the quantized hair charges, they will form
an interacting open quantum system exchanging energy
and SL(2,R) charges with the classical geometries of the
AdS, throat lattice. This setup merits a separate study.

It is interesting to point out that in [34] a semiholo-
graphic model of an impurity interacting with a strongly
coupled quantum dot was considered. The displacement of
the impurity from the confining dot was coupled to a scalar
operator in the localized theory whose dual description was
JT gravity coupled to a scalar field. It was found that if the
total system energy was positive, the impurity attained a
terminal velocity extracting energy from the quantum dot.
At a late time, the ADM mass of the AdS, throat decayed
while the SL(2, R) charges grew as ¢““, and the exponent a
was related to the initial impulse given to the impurity. The
impurity here was not infalling but still was an external
impulse extracting work from the quantum dot. This
indicates there is scope for asking how our model may
process such external stimuli which instead of falling into
the throats simply interact with them via appropriate
couplings.

VI. A DISCUSSION ON SL(2,R) NETWORKS

A crucial question to ask is whether the phenomeno-
logical properties of information processing could hold for
a more general class of SL(2, R) lattice models than the one
so far considered. The crucial element of our model (20)
which leads to the Hayden-Preskill scenario of information
mirroring is the coupling between the lattice charges and
the gravitational hair.

We can readily generalize our model such that the
coupling between the two charge sectors is exactly as
shown in (20) and thus the total energy remains of the form
(21) in the absence of perturbations. The only difference is
that instead of coupling the AdS, throats only at their
boundaries via nearest neighbor lattice couplings, we can
also form Lorentzian wormhole networks as shown in
Fig. 8. In the simplest version, each AdS, throat in a chain
ends on two geodesics carrying SL(2, R) charges Q,,; and
Q,.;, respectively, such that

Qa,i + Qb,i = Qi’ (58)

the charge at the boundary of the throat. Furthermore, we
require that

Qui= pi-1» (59)

and thus Q,; = Q, ;1. Aside from these geodesics and
the asymptotic boundary, the throats are bounded by
lightlike geodesics forming pantlike structures. We glue
these AdS, pants along the geodesics as follows: We glue
the edge with the Q,, ; and Q,, ; charges at the i site with the
edge carrying Q,,;_; charge in the (i — 1) neighboring site
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Glue

FIG. 8. AdS, throats in a three-site chain can be networked via
wormholes as depicted above. Each AdS, throat has a pantlike
structure bounded by two geodesics carrying charges Q,,; and
Q,;atthe ithsitesuchthat @; = Q,; + Q;;and Q,; = Q,;_,
(also for Q,; = Q,;1) for i =1, 2, 3. The other edges are
simply lightlike geodesics—the red dotted lines mark light rays
also. The pants are glued across the geodetic junctions with equal
SL(2,R) charges. It is clear that any lightlike geodesic starting
from a boundary can traverse the entire network—note that the
time shifts while traversing the geodetic junctions—the impact
point at the other edge is marked with a cross. Here we show an
example of the transmission of a shock through the network with
perfectly transmitting conditions at the junctions and perfectly
reflecting conditions at the boundaries.

and the edge carrying Q,, ;. charge in the (i 4 1) neigh-
boring site, respectively.12 This has been illustrated on a
chain with three lattice sites in Fig. 8. We will soon discuss
how this network can be the dual of as a matrix-product-
state (MPS) type network of a chain of SYK-pure spin
states as shown in Fig. 9.

The explicit details of the trajectory of the geodetic edges
specified via the respective SL(2, R) charges are available
in the literature (see [36] for instance). In fact, our networks
also share some features with replica wormholes discussed
in [37].13 ‘We do not discuss further details here because we
will relegate a complete study of the dynamics of such
networks in response to external perturbations to the future.
Nevertheless, it is easy to point out a trivial case where the
equations of motion (47) remain completely unaffected in

We can take the asymptotic boundaries to be sufficiently
large by embedding the physical patch in global AdS, and cutting
out a large portion of it. This can ensure that the edges being
glued have same proper lengths. This is however not necessary as
will be clear from the discussion below. We prefer to keep the
boundary to be the domains of the maps u — #;(u).

An important difference is that we do not have the island
regions which allows us to have a pantlike structure with two end-
of-the-world branes. The physical interpretation of our network is
very different from that of replica wormholes.

SYK DOT 1

Entangle Entangle

N /Hﬂ W\/
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FIG. 9. A tensor network of a chain of SYK spin states with
periodic boundary conditions is illustrated above. We partition
the N; spins into two blocks N, ; and N, ; such that N,; = N;,;_;
(and thus N,; =N, ;) for i =1, 2, 3. We then maximally
entangle the blocks of spins with the corresponding blocks of the
neighboring sites as shown above. Finally, Euclidean evolution
by the SYK Hamiltonians over each site (see text) symmetrizes
over the N; spins at each site and different ways of pairing 2N;
Majorana fermions (with appropriate sign factors) at each site
into N; pairs each of which is projected onto a spin state.

the presence of external shocks. This happens if we allow
complete transmission of the shocks as they pass across the
geodetic junctions from one throat to another and also
perfect reflecting conditions at the boundaries of each
throat. It is then possible for the shocks to traverse the full
network multiple times (see Fig. 8) without affecting the
SL(2,R) charges at the glued edges or at the boundaries,
except at the moment of entry into the network as in (47).
There is just one inconsequential complication. When the
shock traverses a junction, it enters the new throat at a
shifted time [28,38] as shown in Fig. 8—this simply
follows from the Israel junction conditions. If this shift
is sufficiently large, then the shock cannot exist in the
network any more. In this case, for the sake of energy
conservation, we can prescribe a complete absorption of the
shock at the glued edge [and then 69, the SL(2, R) charge
of the shock, should be added to the SL(2, R) charge of the
junction postabsorption.] In any case, this also does not
affect the boundary dynamics of Q; and thus Eq. (47)
remain completely unaffected.

For other transmission coefficients of the junctions and
reflection coefficients of the boundaries, Eq. (47) will be
modified. When the shock impacts the boundaries while
traversing through the network, the SL(2, R) charges of the
impacted boundaries are modified—the corresponding
masses M, can be either reduced or enhanced. Note the
network has a self-consistent causal structure which is to be
determined by the full dynamics. The full system is likely
to relax to a microstate after extinction of the shocks
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propagating through the networks (which can be arranged
by ensuring appropriate transmission and reflection coef-
ficients mentioned). It will be challenging and intriguing to
understand the dynamics of such networks. Instead of
pursuing this here, let us describe analogous networks
involving chains of SYK spin states.

The MPS-type ansatz [39] of SYK spin states on a chain
can be constructed as follows. At each site, we assume that
there are 2/N; Majorana fermions ‘I’;c with k =1,2,...,2N;
evolving via the SYK Hamiltonian. As discussed in [22],
we can project any pure state of the SYK dot at each site to
a state of N; spins. The Majorana fermions satisfy the
anticommutation algebra

{5, W]} = 515y
For any pair of Majorana fermions y; and y,, we readily
note that the algebra formed by wy, w, and 2wy, is
similar to that of the Pauli matrices. We can consider the
two-dimensional Hilbert space spanned by the |+) state
satisfying
2iyynl+) = [+), (1 — iyo)|+) =0,

and the |—) state satisfying
2iprynl=) ==[=). (w1 +iyn)l-) =0.
Let us define
Sp =21y Py
with £ = 1,2, ..., N;. We note that
[SL,S]=0 ifi#j or i=jk#L

So we can consider simultaneous eigenstates of Si at a
given site satisfying

Si|B') = s;|B')

with sj'( = +1. The MPS network state can be constructed
out of a chain of these SYK spin states as illustrated in
Fig. 9. We bipartition the N; spins at each site into N, ; and
N,,; spins such that

Nyi+Np; =N, (60)

Also
Na,i = Nb,i—l’ (61)
and thus N,; = N, ;. ;. We then maximally entangle the

corresponding blocks spins with those at the nearest
neighbors.

For a concrete example, consider a chain of only two
sites and with two spins (four Majorana fermions) at each
site. Our construction then results in the following (non-
normalized) MPS state if we maximally entangle via
forming Bell pairs:

B, B%)) = |+ +—=) = [+ = +-)

=+t +[-=++).  (62)
After partitioning the two spin qubits at each site into one
spin qubit each above, we have formed Bell pairs as
prescribed. We note that we can maximally entangle two
qubits also without forming Bell pairs:

BB, = | ++—=) + |+ = 4-)

F =+ =)+ == ++),
|B:B?); = |+ +i4++) + | +——4)
+l-++)+[—=—),
B B*)y = |+ +4++) = [+ = —+)
— |-+ =) (63)

For more sites with more spin qubits at each site, we can
similarly form many possible network states with a given
set of {N,,;, N} satisfying (60) and (61). We label each
such possibility by a and consider the following ensemble
of such states:

P} = D leal?e™ S {BIY) (B} e
(64)

with ¢, being the coefficient of normalization. Also H; is
the SYK Hamiltonian at the ith site given by

H= >

1<a<b<c<d<2N;
2
, 3,
=—.
Ni

Jpea PR PLWIWE, with

{Jabea) (65)

Following [22] we evolve each |{B'}), in (64) with the
local Euclidean Hamiltonian so that we can lower the
energy of these states.'* We consider an ensemble of such
states simply because we want to consider a macroscopic
state specified by the set of entanglement parameters
{N,;, N, ;} and the local temperatures f3;.

"“Note that the Euclidean evolution by the SYK Hamiltonian
also symmetrizes over the N; spins at any given site and different
ways of pairing 2N; Majorana fermions at each site (with
appropriate sign factors) into N; pairs, each of which is projected
onto a spin state.
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We note that the set {N,; N,;} is analogous to
{Q..: Qi Qp; - Q;}. We can readily evolve the network
state (64) of the chain of SYK spin states along with the
mobile SL(2, R) charges Q; using the quantum evolution
equations (47) where we need to replace M; with H;, the
SYK Hamiltonian (65) at each site. These evolution
equations thus take the form"

Hi=-AQi1 + Qi1 —2Q,) - Qi + Zei,A5(M —uia),
)

1
Q= ) Q- + Q1 —2Q))
1

T (Qin1 + Qit1 —2Q)). (66)
It is also obvious that the conserved energy is
<ZHi + 5Q> (67)

in the absence of perturbations and e; 4, can be promoted to
specific operators. In the future, we would like to study the
dynamics of such a MPS tensor network of SYK spin
states. Irrespective of whether there is a precise duality
between the MPS network of SYK spin states and the AdS,
throat network, the dynamics of both need to be understood
individually.

VII. CONCLUSIONS AND OUTLOOK

We conclude that our simple model of a lattice of nearly
AdS, throats coupled with gravitational hair in the form of
SL(2, R) charges has desirable phenomenological features
which give insights into the quantum black hole as an
information processor.

Our phenomenological model reproduces the energy-
absorbing and relaxation properties of a semiclassical black
hole. Infalling shocks on any microstate in our model drive
the transition to another microstate. Crucially, a part of the
hair oscillations decouple from the black hole interior. The
information in the infalling bits are encoded rapidly in these
decoupled hair oscillations by the black hole interior
demonstrating the phenomenon of information mirroring.
In the continuum limit, the latter absorbs almost all the
energy in the infalling bits while the energy in the hair
charges is conserved on its own to a very good approxi-
mation. A part of the hair charge energy, which is stored in
the form of potential energy of the configuration locked
with the preexisting black hole interior state, is unlocked by
the dynamical evolution to produce the decoupled oscil-
lations in which the information in the infalling bits is
mirrored.

To find the Q; explicitly in the SYK system we need to map
it to a CFT. See e.g., [40] for a discussion.

We emphasize that information mirroring is a highly
nontrivial feature of our model as we can decode the
classical information encoded in the impact locations and
time ordering of the infalling bits in the decoupled hair
oscillations without requiring access to any information
about the black hole interior. Although the knowledge of
the preexisting and final black hole interior microstates is
not necessary, the decoding does require the knowledge of
the preexisting monopole charge of the decoupled early
hair radiation. The phase differences of the normal modes
of the final decoupled hair oscillations at each site turn out
to be precisely the measurements that we need to perform
(defining the code subspace) in order to get all the
information necessary for the decoding. Thus our model
provides a precise realization of the Hayden-Preskill
protocol.

We have discussed how our model can be generalized
such that the disjointed AdS, throats can be connected via
wormholes to form networks and how the latter can be
interpreted as the dynamics of a tensor network of a chain
of SYK spin states.

The Page curve of our quantum black hole model can be
computed in the semiclassical limit, i.e., the limit in which
N is large in all the AdS, throats. Particularly, it should be
interesting to explicitly compute the Hawking radiation in
the semiclassical limit in the networked version of our
model and check if it has the features of quantum
pseudorandomness as postulated by Kim, Tang and
Preskill [11]. The latter can then ensure resolution of the
AMPS-type paradoxes. We also need to address some other
basic questions like thermodynamic properties of our
models. These, of course, require substantial work which
we defer to the future.

Our models also point in an interesting direction of
fragmented holography, a phenomenologically oriented
holographic framework in which instead of considering
a smooth (d 4 1)-dimensional spacetime as a dual of state
in a d-dimensional strongly interacting quantum theory, we
build a lattice of two-dimensional spacetimes which inter-
act with each other by degrees of freedom propagating on
the lattice and can be additionally networked via worm-
holes. It will be necessary to glue the two-dimensional
spacetimes on the d-dimensional lattice to a (d + 1)-
dimensional regular asymptotic geometry via appropriate
boundary conditions to get the right features of the dual
quantum theory in the ultraviolet holographically. Since the
fragmentation instability of the near-extremal horizon'®
which motivates our models is part of the usual holographic
framework, fragmented holography can be relevant for the
application of holography to the physics at thermal scales
or at scales larger than the typical interparticle separation.
Similarly, one can consider fragmented semiholography in

"For a review on other kind of instabilities of nonsupersym-
metric horizons see [23].
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which the asymptotic region of the geometry beyond the
fragmented horizon is replaced by weakly coupled pertur-
bative physics; see e.g., [41-45].

There are independent phenomenological motivations
for our models particularly if the physics of the quantum
system is strongly interacting only locally. This is actually a
feature of semilocal non-Fermi liquids where the equal-
time correlation functions can have the usual structure as in
perturbative systems but the spectral function and other
unequal time correlation functions do not have quasipar-
ticle characteristics. The instanton liquid of QCD has been
also been argued to have similar features—the instantons in
a certain range of temperatures appear to be strongly
correlated on the thermal circle but not along the spatial
directions [46]. A variation of our model may capture
some features of real-time thermal QCD in a range of
temperatures.'’

It has been pointed out in [48] that we can map the t — J
model describing a strange metal to a lattice of SYK
quantum dots. Furthermore, since a global SL(2, R) sym-
metry is preserved, the time-reparametrization mode gives
us resistivity linear in temperature at arbitrarily low temper-
atures [49]. This crucial aspect of a global SL(2,R)
symmetry is also shared by our network constructions.
We can add freely propagating electrons to our lattice
which hybridize with a bulk fermion at each AdS, throat as
discussed in [41,42,50,51]. In the future we would like to
understand thermodynamics and electronic transport prop-
erties of such systems.

For most of the directions mentioned here, we should
couple pure JT gravity to matter in each nearly AdS, throat.
The study of the behavior of quantum fields in the AdS,
throats networked via wormholes is a fascinating problem,
relevant for a better understanding of semiclassical quan-
tum gravity.
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APPENDIX A: JT DILATON GRAVITY
AND THE AdS, THROATS

The action of two-dimensional JT gravity is

1 2
S = e [ / d?x,/—g® <R + l—2> + Smmer] . (A1)

The equations of motion of ® and g,, are

2
R+—=5=0

2 (A2)

and

1 . T
VV,®-g,V®+ =g, 0+ T =0. (A3)

12
Note the conservation of the matter em tensor, i.e.,
V”TW =0, leads to the Bianchi identity (the above
equation being divergence-free) provided R = —2/1>. We
choose T',. Therefore, the above tensor equation is really
one equation in disguise.
In the ingoing Eddington-Finkelstein coordinates, the
metric takes the following form, setting x = 1:

12 12
ds? = —Zpdudr - <ﬁ - M(u)lz> du®.  (A4)

It is easy to see that the metric is locally AdS,; i.e., it
satisfies (A2).

For application to the shock wave geometry we choose
T,, of the form

TMLt = f(u)7 Tur = Tru = Trr = 0' (AS)
It is easy to check that V#T,, = 0 identically.
The rr component of (A3) then yields
5 2
0;®+ -0, =0. (A6)
r
The solution to the above is
o= . (A7)
r

With the above form of @, the ru component of (A3) yields
b(u) = d'(u). (A8)

Substituting both (A7) and (A7) in the uu component of
(A3) yields
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1
a"(u) = d'(u)M(u) =5 a(u)M'(u) + f(u) = 0. (A9)
We set the Dirichlet boundary condition: a(u) = ¢, is a
constant. We also realize that setting x = 1 amounts to

setting ¢, = 2 so that a(u) = ¢,. This implies that
(A10)

This equation holds for each AdS, throat. In order to
match with (47), we need to set

Mi(u) = fi(u) (A11)

with

filu) = =A(Qi1 (u) + Qi (u) —2Q;(u)) - Qi(u)

+ Zei,Aé(u —Uja). (A12)
A

The interthroat coupling thus gives rise to a time-dependent
infalling or outgoing dilute null matter in each throat along
with the ingoing shocks. As clear from (A5) we must have
T(i)uu = fi(u)’

Tliyur = Ty = Tyrr = 0. (Al3)

The above em tensor is conserved in each throat metric:

2 2
ds? = —Zﬁdudr - <—2 - Mi(u)lz)duz. (A14)

r

Remarkably, the dilaton in each throat takes the simple
form

(A15)

In this discussion, we have skipped the details of holo-
graphic interpretation of JT gravity. We refer the reader to
[15,27-29] for these details and also to [52,53] for a
broader discussion on two-dimensional quantum gravities
with a dilaton.

APPENDIX B: DRIFT AND PHASE SHIFT

Below we present some numerical details pertaining to
the removal of numerical noise essential for extracting the
phases in the Fourier transforms discussed in Sec. V. We
will first discuss the numerical drift that is present in the
data for ¢/, its origin and how we subtract it. We then
present some details about how we compute the phase
differences that are used in the decoding procedure and
discuss why computing these accurately becomes harder
for six or more sites due to numerical noise.

Sitel Site2
013F 0.10}
0.10 [
005}
005 i
000 0.00
-005 ~00}
-0.10 [
| -o10}
-0.1
05 0 15 20 05 10 K] pX
Site3 Site4
0.04 004}
0.02 { 002}
0.00 1 ooof
-0.02 1 -002f
-0.04 1 -004f
05 10 15 20 ' 05 10 15 20
) _ Site5
0.10
005}
0.00
-005
-0.10

05 0 1S 20

FIG. 10. Plot of the g} after a single shock at site 1. The
amplitude of the oscillations can be clearly seen to grow with time.

1. Correcting the drifts

The decoding procedure involves studying the ¢} care-
fully, computing their Fourier transform and then extracting
the phase differences between the two frequency modes
present at each site. The ¢ are shown in Fig. 10.

The ¢} are oscillating functions with an amplitude that
grows in time. This growth in amplitude is a consequence
of the fact that all the Q') in the right-hand side of (20) are
not exactly equal due to numerical noise. Thus the right-
hand side of the equation for Q*) has an extra term because
of numerical error. This extra term results in the growth of
the amplitude of ¢/ seen in Fig. 10 via resonant feedback.
We can remove this growth of amplitude by fitting the
envelope of the ¢! functions to an exponential. We then
multiply ¢} with the inverse of this exponential to eliminate
this growth. This process is illustrated in Fig. 11 for one site

005 +

& 0.00

AW

-0.05

02 04 0.6 0.8 1.0 12 14 1.6
u

FIG. I1. The envelope of ¢ is fit to an exponential (red curve).
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FIG. 12. ¢; after the drift is subtracted out.

in the model. The data for ¢/ after correcting for this drift is
plotted in Fig. 12.

2. Compensating for the jumps

After correcting for the drift in amplitude of ¢/, the next
step in our decoding procedure is to compute the Fourier
transform of ¢ to extract the phase differences between the
two frequency modes present at each site. The interpolated
data for the phase vs frequency is shown for site 1
in Fig. 13.

Recall that the ¢} obey the discrete Klein-Gordon
equation given in (32) and the normal mode frequencies
for this equation if ¢ = 0.01 are 30.2731 and 18.7098. In
Fig. 13 one can clearly see that the phase jumps by
approximately 7 at the values of the normal mode frequen-
cies. This can be explained by recalling that there is a small
forcing term on the right-hand side of (32) due to numerical
noise. This in turn should cause a jump in the phases by 7 at
the normal mode frequencies due to resonant feedback. The
jumps are sharp due to the absence of damping. When
computing the phases for the decoding protocol, we need to
be careful about these 7z discontinuities in the phases. One
simple way to compensate for these discontinuities is to
measure the phases on the correct side of the discontinuities
which are exhibited in Fig. 13. The phase difference should
be computed between a point slightly to the left of the jump
at the first mode and a point slightly to the right of the jump
at the second mode ensuring that the 7 discontinuities have
no effect on the phase differences we are computing.

As we increase the number of sites, we expect the
number of normal modes to grow. For instance, in a chain
with six sites we will have three distinct normal mode
frequencies. For ¢ = g x 0.01, the normal mode frequen-
cies are (26.526, 22.972, 13.263). In this case the frequen-
cies are much closer together compared to the five-site case.
Since the highest normal mode frequencies are close to
each other, the numerical noise can cause the z disconti-
nuities to overlap. It is then hard to compute the phases of
these normal modes accurately, which meant that we were

Phase
[ S ]

0 10 20 3 40 50
Frequency
FIG. 13. Plot of the phase against the frequency for site 1. The

gaps in the plot are due to interpolation. Note that the phase is
computed modulo 27.

unable to check if our decoding generalizes to higher
number of sites.

APPENDIX C: DECODING FOR THREE-
AND FOUR-SITE MODELS

Here we briefly discuss the decoding procedure for a
chain model with lower number of sites than the five-site
model discussed in Sec. V. For a chain with three sites we
expect only one distinct normal mode frequency for the
discrete Klein-Gordon equation (32). We can decode the
position and time ordering of the shocks by studying
the phase of this frequency mode for each site. In the case
of a single shock to a single site we observe the same
symmetry pattern we have seen before for the five-site case.
If Alice shocks two distinct sites in a three-site chain, the
positions of the shocks are given by the positions of the
extrema of the phases. The site with the minimum phase
was shocked first and the site with the maximum phase was
shocked second.

The decoding for a chain with four sites is slightly
different from the three- and five-site cases. We have two
distinct normal mode frequencies just like the five-site
model. For a single shock to a four-site chain we again
observe the same symmetry pattern we have seen before.
For two shocks to antipodal lattice points (1,4 or 2,3) we
observe the same symmetry pattern as a single shock. For
instance the pattern for a single shock to site 1 is the same
as the pattern for shocks to sites 1 followed by 4. We do not
know how to distinguish between these two cases. To
decode two shocks to two nearest neighbor sites in a four-
site chain we need to study the ordering of the phase
differences. The information about the position and time
ordering is not encoded in the extrema of the phase
differences. This information is instead encoded in the
ordering of the phase differences. When phases are listed in
ascending order, there is a one-to-one map from each such
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ordering to the position and time ordering of two shocks.
For instance if site 1 is shocked first followed by site 2, then
the phases are ordered as ¢, < ¢3 < ¢, < 1. If the time
ordering of the shocks is reversed, then the phases are
ordered as ¢, < ¢p; < ¢p, < ¢p3. For two shocks, these

orderings always form a closed loop in the four-site chain.
Note that the number of possible loops is eight (two
possible directions and four possible starting points) and
the number of possible nearest neighbor shocks is
also eight.
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