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Using a Lorentz invariant deformed string/gauge duality model at finite temperature we calculate the
thermal fluctuation and the corresponding linear response, verifying the fluctuation-dissipation theorem.
The deformed AdS5 is constructed by the insertion of an exponential factor expðk=r2Þ in the metric. We
also compute the string energy and the mean square displacement in order to investigate the ballistic and
diffusive regimes. Furthermore, we have studied the dissipation and the linear response in the zero
temperature scenario.
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I. INTRODUCTION

Brownian motion is a rather universal phenomenon first
observed occurring for pollen grains suspended in liquids
[1]. Such particles in this environment exhibit an apparently
random motion. The description of this kind of system is
given by the Langevin equation that shapes the force acting
on the particle as being composed by a dissipative part and
a component related with the random fluctuations [2].
Usually the Langevin equation is written as [3]

dp⃗
dt

¼ −γp⃗þ R⃗ðtÞ þ F⃗ðtÞ; ð1Þ

where the first term on the right-hand side quantifies the
dissipative force acting on the particle and γ is the
(constant) friction coefficient. The second part, R⃗ðtÞ, is
related with the random fluctuations affecting the motion of
the particle. It is a stochastic variable with zero average and
white noise:

hRiðtÞi ¼ 0; hRiðtÞRjðt0Þi ¼ κδijδðt − t0Þ: ð2Þ

The third part of the Langevin equation (1) is a possibly
involved external force. It can be generalized considering
the friction force dependent on the history of the motion

and a more general correlation for the noise. For a more
complete discussion see, for example, [4].
A cornerstone on the study of the Brownian motion and

statistical systems in general was given by Kubo [3] in
which he analyzed the Langevin equation and the linear
response theory. One of his most interesting results is the
well-known fluctuation-dissipation theorem (FDT) which
relates quantities linked with fluctuation in an equilibrium
state with others concerning the dissipation process. It is a
major result because it puts together those two important
parts of the description of a thermal system. In fact, any
system in a thermal bath will experience those two effects.
What this theorem tells us is that such processes are not
independent (see also [4]).
This theorem applies to a large class of systems as, for

instance, in the description of the Johnson-Nyquist noise in
electric circuits where thermal fluctuations of the electrons
give rise to potential differences between the components
[5,6]. Arguments related with the FDT are also used in the
analysis of the dynamical Casimir effect. In that case one
can calculate the Casimir dissipative force on objects in
motion from the fluctuations of the force acting on them at
rest. One example is the computation of a dissipative force
on a perfectly reflecting moving sphere in Ref. [7]. Another
interesting application of FDT is, for instance, in the theory
of lasers involving the admittance of optical cavities and
their absorption of thermal radiation [8–10].
The AdS=CFT correspondence was formulated as

a duality between a IIB superstring theory living in
AdS5 × S5 space and a superconformal N ¼ 4 Yang-
Mills theory, with symmetry group SUðN → ∞Þ, defined
in a Minkowski spacetime on the boundary of the AdS5
space [11–15]. One of the main achievements of the
AdS=CFT correspondence is to describe a weak coupled
theory living in AdS5 space bulk as a strongly coupled
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theory on the boundary. Such a duality is appropriate to
deal with thermodynamic features of some systems as the
quark-gluon plasma (QGP) [16,17]. The QGP is a very
useful system for our purpose since the hadronic matter at
extremely high temperatures and densities seems to exhibit
random walks due to their collision with each other just as a
Brownian motion. In other words, one can use QGP at a
finite temperature within holographic approaches to study
Brownian motion, quantum fluctuations, dissipation, linear
response, etc.
Many works were done in this direction within holo-

graphic contexts, for example, dealing with Brownian
motion [18–25], fluctuation or dissipation [26–32], drag
forces [33–40], and related topics [41–47]. In particular, de
Boer et al. studied the Brownian motion in a CFT described
from AdS black holes [18]. Tong and Wong [26] discussed
quantum fluctuations in a Lifschitz spacetime breaking
Lorentz symmetry. Edalati et al. [27] considered a hyper-
scale violation in quantum and thermal fluctuations. These
works were extended by Giataganas et al. [32] dealing with
Brownian motion, fluctuation, and dissipation in a general
context for a polynomial metric.
In order to describe fluctuations in QCD-like theories

from the AdS=CFT correspondence one has to introduce an
infrared scale breaking conformal invariance. In hadronic
physics there are basically two approaches to do that known
as top-down [48–54] and bottom-up [55–69]. In the
bottom-up approach, the first proposal is known as the
hardwall model which introduces a hard cutoff in AdS
space [55–61]. The second proposal is known as the
softwall model, and it introduces a dilaton field in the
action playing the role of soft cutoff [62–69]. An alternative
for the softwall model is to introduce a warp factor
deformation in the metric instead of the dilaton in the
action. Within this approach one can calculate quark-
antiquark potential at zero and finite temperature, hadronic
spectra, etc. [70–79].
Then, one can use some of these ideas from the

AdS=CFT approach to hadronic physics in order to inves-
tigate Brownian motion, fluctuations, dissipation, etc. For
instance, Ref. [47] studied heavy quark diffusion in the
presence of a magnetic field introducing an exponential
factor in the Nambu-Goto action. In Ref. [40] they
calculated the drag force in a moving heavy quark using
the deformed AdS space proposed in [70].
The main goal of this work is to study zero and finite

temperature string fluctuations using a deformed AdS space
with the introduction of an exponential factor exp k=r2 in
the metric, motivated by the success of this approach to
hadronic physics [70–79]. We calculate thermal fluctua-
tions, the admittance from linear response, and two-point
functions, and we show explicitly that the fluctuation-
dissipation theorem holds in this setup. Notice that the
analysis of Ref. [32] can be applicable up to certain orders
also for the boundary and horizon expansions of generic
form metric fields. We complete our study with the zero

temperature response function calculating the correspond-
ing admittance.
This work is organized as follows. In Sec. II we

introduce our geometric setup at finite temperature, calcu-
late the energy of the string, find the equations of motion
and their solutions in different regions in the deformed AdS
black hole space, and impose matching conditions among
these solutions. In Sec. III we compute the admittance
through the linear response theory, the thermal two-point
functions, and the mean square displacement. From this
result we obtain the ballistic and diffusive regimes of the
Brownian motion of the particle described holographically
by the end of the open string. From the relation between the
imaginary part of the admittance and the two-point func-
tions we verify the fluctuation-dissipation theorem. In
Sec. IV, we reconsider the previous setup for the case of
zero temperature and calculate the corresponding admit-
tance from the linear response theory. Finally, in Sec. V, we
present our last comments and conclusions.

II. STRING/GAUGE SETUP AT FINITE
TEMPERATURE

In this section, we are going to introduce our string/gauge
setup at finite temperature to investigate the holographic
Brownian motion. Since we are interested in a Lorentz-
invariant scenario, instead of a scaling violation [26,27,32],
here the conformal invariance is broken by introducing an
exponential factor in AdS5 metric following Ref. [71]:

ds2 ¼ e
k
r2

�
−r2fðrÞdt2 þ r2ðηijdxidxjÞ þ

dr2

r2fðrÞ
�
; ð3Þ

where ηij ¼ diagð−1;þ1;þ1;þ1Þ, the AdS radius was set
to 1, r is the holographic coordinate, fðrÞ is called the
horizon function which is given by

fðrÞ ¼
�
1 −

r4h
r4

�
; ð4Þ

and rh is the horizon radius. In Refs. [70–76,78] this metric
was used to study many aspects of holographic high energy
physics. In these references, k is a constant that can be
related to ΛQCD. It is important to mention that the algebraic
sign of k is not a consensus in the literature (see, for instance,
[62,71,80]), and we will comment on this in further sections.
The corresponding Hawking temperature is given by

T ¼ KH

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gttðrhÞ
grrðrhÞ

s
; ð5Þ

where KH is the surface gravity given by KH ¼
ð1=2Þf0ðrhÞ. So, for the metric (3) the temperature is related
to the horizon radius:
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T ¼ rh
π
: ð6Þ

One of the main features of our model is to get, at the same
time, the breaking of the conformal invariance and to be
Lorentz invariant, such that we can obtain correctly the
fluctuation-dissipation theorem. Besides such a deformation
reproduces the AdS5 space close to the UV region ðr → ∞Þ.
According to string/gauge duality a massive particle can

be understood as the end point of an open string. This end
point is attached to a probe brane located at r ¼ rb close to
the boundary ðr → ∞Þ. The string extends itself to the
entire bulk; hence, its other end point is placed at the IR
region with r → rh, where rh is the horizon of the black
hole, as can be seen in Fig. 1.
The Brownian motion of the massive particle at the brane

is explained as the vibration of the string end point near the
horizon which interacts with the Hawking radiation. Once
we established our geometric setup, the string dynamics is
described by the Nambu-Goto action, so that

SNG ¼ −
1

2πα0

Z
dτdσ

ffiffiffiffiffiffi
−γ

p
; ð7Þ

where α0 is the string tension, γ ¼ detðγαβÞ, and γαβ ¼
gmn∂αXm∂βXn is the induced metric on the world sheet
with m, n ¼ 0, 1, 2, 3, 5.
As done in Refs. [27,32] we also choose a static gauge,

where t ¼ τ, r ¼ σ, and X ¼ Xðτ; σÞ. By using the metric,
Eq. (3), and expanding the Nambu-Goto action, Eq. (7), in
order to keep the quadratic terms _X2, X02, we get

SNG ≈ −
1

4πα0

Z
dτdσ

�
_X2 e

k
r2

fðrÞ − X02r4fðrÞe k
r2

�
; ð8Þ

where _X ¼ ∂τ¼tX and X0 ¼ ∂σ¼rX.

Following [26,32], we can compute the energy to create
the string described above as

E ¼ 1

2πα0

Z
rb

rh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g00grr

p ¼ 1

2πα0

Z
rb

rh

e
k
r2 : ð9Þ

For k > 0, one finds that

Ek>0 ¼
1

2πα0

�
rbe

k
r2
b − rhe

k
r2
h

þ
ffiffiffiffiffi
πk

p �
Erfi

� ffiffiffi
k

p

rh

�
− Erfi

� ffiffiffi
k

p

rb

���
; ð10Þ

where Erfi is the imaginary error function, defined as
ErfiðzÞ ¼ ErfðizÞ=iwhere ErfðzÞ is the error function given
by ErfðzÞ ¼ ð2= ffiffiffi

π
p Þ R z

0 e
−t2dt [81]. The energy for k < 0

reads

Ek<0 ¼
1

2πα0

�
rbe

−jkj
r2
b − rhe

−jkj
r2
h

þ
ffiffiffiffiffiffiffiffi
πjkj

p �
Erf

� ffiffiffiffiffijkjp
rh

�
− Erf

� ffiffiffiffiffijkjp
rb

���
: ð11Þ

The AdS limit can be obtained for jkj ≪ rh ≪ rb, for both
signs of k as given by Eqs. (10) and (11) so that

EAdS ¼ ðrb − rhÞ
2πα0

≈
rb
2πα0

; ð12Þ

and the energy of the string is proportional to its length
which is approximated by rb as expected.
The equation of motion for the string described by

Xðt; rÞ can be derived from the approximate Nambu-Goto
action, Eq. (8):

∂
∂r ðr

4fðrÞe k
r2X0ðr; tÞÞ − e

k
r2

fðrÞ Ẍðt; rÞ ¼ 0: ð13Þ

Performing the following ansatz Xðt; rÞ ¼ eiωthωðrÞ,
one gets

d
dr

ðr4fðrÞe k
r2h0ωÞ þ

ω2e
k
r2

fðrÞ hω ¼ 0: ð14Þ

Changing the variable r to the tortoise coordinate r� defined
as

r� ¼
Z

dr
r2fðrÞ ¼

1

4rh
log

�
r − rh
rþ rh

�
þ 1

2rh
tan−1

�
r
rh

�
;

ð15Þ

one obtains

FIG. 1. The string/gauge setup for the holographic Brownian
motion.
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r2e
k
r2
d2hω
dr2�

þ d
dr�

ðr2e k
r2Þ dhω

dr�
þ ω2r2e

k
r2hω ¼ 0; ð16Þ

where r ¼ rðr�Þ and hω ¼ hωðr�Þ. The substitution

hω ¼ eBðr�Þψðr�Þ; ð17Þ

where Bðr�Þ ¼ −k=ð2r2Þ − logðrÞ, gives the following
Schrödinger-like equation:

d2ψðr�Þ
dr2�

þ ðω2 − VðrÞÞψðr�Þ ¼ 0; ð18Þ

where

VðrÞ ¼ 2r2 − kþ k2

r2
−
2kr4h
r4

−
�
2k2r4h þ 2r8h

r6

�

þ 3kr8h
r8

þ k2r8h
r10

: ð19Þ

Notice that VðrhÞ ¼ 0, as expected. Near the horizon, the
potential can be expanded in Taylor series as

VðrÞ ≈ 16

�
−

k
rh

þ rh

�
ðr − rhÞ: ð20Þ

The Schrödinger-like equation (19) cannot be analytically
solved; hence, one seeks for solutions within certain
regions. For our purposes we will choose three regions:
A, B, C, and explore their solutions.
The first region, dubbed as A, is near the event horizon,

i.e., r ≈ rh. In this case, VðrÞ ≪ ω2, and the Schrödinger-
like equation reads

d2ψðr�Þ
dr2�

þ ω2ψðr�Þ ¼ 0; ð21Þ

which has the ingoing solution

ψðr�Þ ¼ A1e−iωr� : ð22Þ

Near the horizon (r ≈ rh), we can assume that for low
frequencies we have ωr� ≪ 1. Then one can expand
Eq. (22) as

ψðr�Þ ¼ A1 − iA1ωr�: ð23Þ

Using this equation and Eq. (17), we can compute hωðr�Þ in
this region:

hAωðr�Þ ¼
e
− k
2r2
h

rh
ðA1 − iωA1r�Þ; ð24Þ

where r� is given by (15). In the limit r ≈ rh, we find

r� ¼
1

4rh
logðr − rhÞ −

logð2rhÞ
4rh

þ π

8rh
: ð25Þ

Substituting this equation into Eq. (24) we get

hAωðrÞ ¼
e
− k
2r2
h

rh

�
Ã1 −

iωA1

4rh
logðr − rhÞ

�
; ð26Þ

where

Ã1 ¼ A1 þ
iωA1

4rh
logð2rhÞ −

iπωA1

8rh
: ð27Þ

Following Ref. [18], one has to impose a regularization
procedure by introducing a cutoff at r ¼ rh þ ϵ near the
horizon, i.e., ϵ ≪ 1. The complete solution in this region
comprises the ingoing and outgoing modes:

fAωðt; rÞ ¼ Aω

�
e

k
r2

r
e−iωr� þ Bω

e
k
r2

r
eiωr�

�
e−iωt: ð28Þ

Imposing the Neumann boundary condition at r ¼ rh þ ϵ,
one finds

dfAω
dr

				
r¼rhþε

¼ 0 ⇔ Bω ¼ e2iωð
π
8h−

logð2rhÞ
4rh

Þe
−iω
2rh

logð1ϵÞ: ð29Þ

The above condition implies that the possible frequencies
are now discrete:

Δω ¼ 4πrh
logð1εÞ

: ð30Þ

The region B corresponds to ω2 ≪ VðrÞ, which implies
ω2 ≪ fðrÞ. In this regime, Eq. (14) has the following form:

dhω
dr

¼ B1

r4fðrÞek=r2 ; ð31Þ

where fðrÞ is given by Eq. (4) and B1 is a constant. This
equation can be integrated to

hBωðrÞ ¼ B1

Z
r e−k=r

2

r4 − r4h
drþ B2; ð32Þ

where B1 and B2 are integration constants. In the IR limit,
i.e., for r ∼ rh, one has

r4 − r4h ¼ ðr − rhÞðr3 þ rhr2 þ r2hrþ r3hÞ; ð33Þ

and hence for r ∼ rh, our integral can be approximated by
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hBωðIRÞðrÞ ≈ B1

e−k=r
2
h

4r3h

Z
r dr
r − rh

drþ B2

≈ B1

e−k=r
2
h

4r3h
logðr − rhÞ þ B1

e−k=r
2
h

4r3h
bþ B2; ð34Þ

where b is an integration constant. Now, we are going to
obtain the UV limit in region B. In this case, the integral of
Eq. (32), in the limit r ≫ rh, becomes

hBωðUVÞðrÞ ≈ B1

Z
r

∞

e−k=r
2

r4
drþ B2

≈ B1

Z
r

∞

dr
r4

þ B2 ¼ −
B1

3r3
þ B2: ð35Þ

The third region, C, that we will analyze corresponds to
r → ∞ meaning that the horizon function fðrÞ → 1. In this
case, Eq. (14) has the following solution:

hCωðrÞ ¼ C1Φ
�
ω2

4k
;−

1

2
;−

k
r2

�

þ C2

ð−kÞ3=2
r3

Φ
�
3

2
þ ω2

4k
;−

5

2
;−

k
r2

�
; ð36Þ

where Φða; b; cÞ is the confluent hypergeometric function
of the first kind [81]. In the limit r → ∞ its asymptotic
expression is given by

hCωðrÞ ¼ C1 þ
C1ω

2

2r2
þ C2ð−kÞ3=2

r3
þO

��
1

r

�
4
�
: ð37Þ

For small frequencies ω → 0, it reads

hCωðrÞ ¼ C1 þ
C2ð−kÞ3=2

r3
: ð38Þ

In order to relate these constants, one has to connect the
solutions found for each region A, B, and C. Let us start
matching the solutions in region A and the IR limit of
region B, meaning hAωðrÞ ¼ hBωðIRÞðrÞ, so that

e
− k
2r2
h

rh

�
Ã1 −

iωA1

4rh
logðr − rhÞ

�

¼ B1

e−k=r
2
h

4r3h
logðr − rhÞ þ B1

e−k=r
2
h

4r3h
bþ B2; ð39Þ

and then one gets

Ã1

e
− k
2r2
h

rh
¼ B1

e−k=r
2
h

4r3h
bþ B2 ð40Þ

and

B1 ¼ −iA1rhωe
k

2r2
h : ð41Þ

Now, the matching between the UV limit for region B
and region C implies that hBωðUVÞðrÞ ¼ hCωðrÞ; therefore,

−
B1

3r3
þ B2 ¼ C1 þ

C2ð−kÞ3=2
r3

; ð42Þ

and then one gets

C1 ¼ B2 ¼ Ã1

e
− k
2r2
h

rh
− B1

e
− k
r2
h

4r3h
b ¼ Ã1

e
− k
2r2
h

rh
þ iA1ω

4r2h
e
− k
2r2
hb

ð43Þ

and

C2 ¼ −
1

3
ð−iA1rhωe

k
2r2
hÞ 1

ð−kÞ3=2 : ð44Þ

Substituting these constants in Eq. (37) one gets

hCωðrÞ ¼ Ã1

e
− k
2r2
h

rh
þ iA1ω

4r2h
e
− k
2r2
hbþ

Ã1
e
− k
2r2
h

rh
ω2

2r2

þ − 1
3
ð−iA1rhωe

k
2r2
hÞ

r3
; ð45Þ

where

Ã1 ¼ A1 þ
iωA1

4rh
logð2rhÞ −

iπωA1

8rh
: ð46Þ

Then, we will compute the constant A1. In order to do
this, let us first rewrite the solutions in regions A and C as

hAωðrÞ ¼ A1

e
−k
2r2

r
e−iωr� ; ð47Þ

hCωðrÞ ¼ A1

�
C1 þ iω

�
C2 þ

C3
r3

��
; ð48Þ

where

C1 ¼
e
− k
2r2
h

rh
; C2 ¼

e
− k
2r2
h

rh

�
logð2rhÞ þ b

4rh
−

π

8rh

�
;

C3 ¼
1

3
e

k
2r2
hrh: ð49Þ

The inner product between the solutions of Eq. (13) can
be calculated by
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ðXωðr; tÞ; Xωðr; tÞÞ

¼ −i
2πα0

Z
rb

rh

dr
ffiffiffiffiffiffiffiffi
grr
−gtt

r
gxxðhωðr; tÞ∂th�ωðr; tÞ

− ð∂thωðr; tÞÞh�ωðr; tÞÞ

¼ ω

πα0

Z
rb

rh

dr
e

k
r2

fðrÞ jhωðrÞj
2 ¼ 1: ð50Þ

In order to find an approximate solution for the above
integral, note that the integrand is dominated by its
behavior near the horizon where there is a logarithm
divergence. Close to the horizon the blackening function,
Eq. (4), is given by

fAðrÞ ¼
�
1−

r4h
r4

�
¼ ðr4 − r4hÞ

r4
≈
4r3h
r4h

ðr− rhÞ ¼
4ðr− rhÞ

rh
:

ð51Þ

Then one gets

πα0

ω

�
1

4rh

Z
rhþϵ

dr
ðr − rhÞ

�
−1

¼ jA1j2; ð52Þ

where we disregarded the subleading term near the brane
which depends explicitly on rb. Performing the above
integral, one obtains the normalization factor A1:

A1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πα0rh
ωj log ϵj

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πα0rh
ω logð1ϵÞ

s
: ð53Þ

Then, the solution hCω is finally written as

hCωðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πα0rh
ω logð1ϵÞ

s �
C1 þ iω

�
C2 þ

C3
r3

��
; ð54Þ

where C1, C2, and C3 are given by Eq. (49).

III. FLUCTUATION-DISSIPATION
THEOREM AT T ≠ 0

A. The linear response function

In this section we will compute the admittance χðωÞ. Let
us consider a particle under the action of an external force
in an arbitrary direction, xi, given by

FðtÞ ¼ Ee−iωtFðωÞ; ð55Þ

where E is the electric field on the brane. In order to deal
with the electric field E ¼ EðAt; A⃗Þ one has to take into
account it is in the approximate Nambu-Goto action.
Explicitly,

S ≈ −
1

4πα0

Z
dτdσ

�
_X2 e

k
r2

fðrÞ − X02r4fðrÞe k
r2

�

þ
Z

dtðAt þ A⃗ · ⃗_xÞ
			
r¼rb

: ð56Þ

From the above equation one can see that the second term,
corresponding to an electric energy density, is just a surface
term, chosen in an arbitrary direction, and does not
contribute to the bulk dynamics.
To compute the response function, we assume that the

external force FðtÞ, given by Eq. (55), is linearly coupled to
X0ðt; rÞ on the brane. Rewriting the surface term in a
convenient way we have

S ≈ −
1

4πα0

Z
dtdr

�
_X2 e

k
r2

fðrÞ − X02r4fðrÞe k
r2

�

−
Z

dtFðtÞ
�∂Xðt; rÞ

∂r
�				

r¼rb

; ð57Þ

where we choose τ ¼ t and σ ¼ r. On the brane, the
equation of motion, δS=δX0 ¼ 0 implies

FðtÞ ¼ 1

2πα0
h
X0ðt; rbÞðr4b − r4hÞe

k
r2
b

i
: ð58Þ

Hence, the Neumann boundary condition on the brane
reads

X0ðt; rbÞ ¼
2πα0

ðr4b − r4hÞ
e
− k
r2
bFðtÞ: ð59Þ

As we have chosen the ingoing boundary condition at
r ¼ rh, we can find directly X0ðω; rbÞ, using Eq. (45)

X0ðω; rbÞ ¼
∂hðCÞω

∂r
				
r¼rb

¼ −iωA1

rhe
k

2r2
h

r4b
: ð60Þ

So FðωÞ reads

FðωÞ ¼ −
iωA1

2πα0

�
rh
r4b

ðr4b − r4hÞe
k
r2
b

þ k
2r2
h

�
: ð61Þ

In order to find the admittance, one notices that

hxðωÞi ¼ hðCÞω ðrbÞ; therefore,

χðωÞ ¼ hðCÞω ðrbÞ
FðωÞ ¼

Ã1
e
− k
2r2
h

rh
þ iA1ω

4r2h
e
− k
2r2
hbþ

−1
3



−iA1rhωe

k
2r2
h

�
r3b

− iωA1

2πα0

h
rh
r4b
ðr4b − r4hÞe

k
r2
b

þ k
2r2
h

i :

ð62Þ

Using the expression for Ã1, Eq. (46), one can expand χðωÞ
in the hydrodynamic limit ω ≪ 1 as

CALDEIRA, CAPOSSOLI, ZARRO, and BOSCHI-FILHO PHYS. REV. D 102, 086005 (2020)

086005-6



χðωÞ ¼
A1

�
e
− k
2r2
h

rh
þ iω

�

logð2rhÞþb

4rh
− π

8rh

�
e
− k
2r2
h

rh
þ


rhe

k
2r2
h

�
3r3b

��
−A1

iω
2πα0

h
rh
r4b
ðr4b − r4hÞe

k
r2
b

þ k
2r2
h

i

≈
1

−iω

"
2πα0e

−k



1

r2
b

þ 1

r2
h

�
r2hfðrbÞ

#
⟶
rb→∞ 1

−iω

"
2πα0e

− k
r2
h

r2h

#
: ð63Þ

By the definition of the temperature, Eq. (6), our admit-
tance can be written as

χðωÞ ≈ 1

−iω

�
2α0e

−k 1

r2
b

fðrbÞ
�
e−

k
π2T2

πT2
⟶
rb→∞ 1

−iω
2α0

πT2
e−

k
π2T2 : ð64Þ

In order to recover the pure AdS case, one has to con-
sider the limit k → 0. Then, we obtain that the AdS
admittance is

χðωÞAdS ≈
1

−iω
2α0

πT2
; ð65Þ

in accordance with [32]. One can proceed with the analysis
of the admittance as a function of the sign of k. From
Eq. (64), one finds that the ratio between the imaginary
parts of the negative and positive signs of k in the
admittance is given by

Imχðk<0ÞðωÞ
Imχðk>0ÞðωÞ ¼ e

2jkj
π2T2 : ð66Þ

Notice that the sign of k is not important in the high
temperature limit T2 ≫ jkj. However, for the low temper-
ature regime T2 ≪ jkj, the sign of k is relevant. This can be
seen in Fig. 2 where the imaginary part of the admittance is
plotted as a function of the temperature for the two different
signs of k.
The diffusion constant can be obtained as

D ¼ T lim
ω→0

ð−iωχðωÞÞ ¼
�
2α0e

−k 1

r2
b

fðrbÞ
�
e

−k
π2T2

πT
⟶
rb→∞ 2α0

πT
e

−k
π2T2 :

ð67Þ

Interestingly this result was obtained in [47] within a
different model, where the dilaton field is introduced
directly in the Nambu-Goto action. Moreover, they
obtained this result from the relation between the mean
square displacement and the diffusion constant for the
Brownian motion instead of the procedure performed here,
where D is obtained from the admittance. Indeed, in
Sec. III C we also obtain the diffusion constant D by this
method.

The AdS limit of the diffusion constant reads

DAdS ¼ lim
k→0

2α0e
−k

π2T2

πT
¼ 2α0

πT
: ð68Þ

This is the diffusion constant for the AdS with T ≠ 0
already obtained in Refs. [18,47].
Following Ref. [32], it is interesting to expand χðωÞ up to

order ω. From Eq. (63), we find

χðωÞ ¼ 2πα0

−iω
h
r2hfðrbÞe

k
r2
b

þ k
r2
h

i

−

2πα0
"


logð2rhÞþb
4rh

− π
8rh

�
e
− k
2r2
h

rh
þ


rhe

k
2r2
h

�
3r3b

#
h
rhfðrbÞe

k
r2
b

þ k
2r2
h

i þOðωÞ:

ð69Þ

Notice that in Ref. [32], it was proposed that the
admittance in the low frequency expansion limit and
rb → ∞, in a general metric, can be written as

χðωÞ ¼ 2πα0

−iωgxxðrhÞ
: ð70Þ

Indeed, this expression is recovered by our result Eq. (69)
where we identify gxxðrhÞ ¼ r2h expðk=r2hÞ.
Further, comparing Eq. (69) to the general expansion of

χðωÞ presented in [32]

χðωÞ ¼ 2πα0
�

i
γω

−
m
γ2

þOðωÞ
�
; ð71Þ

k 0

k 0

2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

FIG. 2. The imaginary part of admittance χðωÞ, for a fixed ω, as
a function of the temperature for both k ¼ �1 in arbitrary energy
units from Eq. (64). The vertical line represents the approximate
value for the temperature (T ≈ 5.8). From this temperature
forward (high temperatures) the sign of k is no longer relevant.
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one finds that the self-energy of the particle is

γ ¼ r2hfðrbÞe
k
r2
b

þ k
r2
h ¼ π2T2e

k
r2
bfðrb; TÞe

k
π2T2 ⟶

rb→∞
π2T2e

k
π2T2 :

ð72Þ

The inertial mass reads

m ¼
��

logð2rhÞ þ b
4rh

−
π

8rh

�
e
− k
2r2
h

rh
þ ðrhe

k
2r2
hÞ

3r3b

�

× ðr3hfðrbÞe
k
r2
b

þ 3k
2r2
hÞ

⟶
rb→∞

�
logð2rhÞ þ b

4
−
π

8

�
rhfðrbÞe

k
r2
b

þ k
r2
h

¼
�
logð2πTÞ þ b

4
−
π

8

�
πTe

k
π2T2 : ð73Þ

To conclude this subsection it is interesting to compare
our results with Refs. [26,27,32]. As can be seen in hCω,
Eq. (54), in the admittance, Eq. (64), and in the transport
coefficient D, Eq. (67), these quantities cannot be obtained
from a polynomial metric as in Refs. [26,27,32]. However,
in the asymptotic limit they are related by a regular

exponential factor e
k
r2
h.

B. Thermal two-point function for the string
end point at the brane

In this subsection the thermal two-point function for the
end point of the string located at the brane will be obtained
by using a Fourier decomposition, such as

Xðt; rÞ ¼
Z

∞

0

dωðhCωðrÞe−iωtaω þ hC�ω ðrÞeiωta†ωÞ; ð74Þ

where aω and a†ω are the annihilation and creation oper-
ators, respectively. Recalling that, for T ≠ 0, one has

ha†ωaωi ¼ Trðe−β
P

ωna†ωaω0 Þ ¼ δωω0

eβω − 1
;

ha†ωna
†
ωi ¼ Trðe−β

P
ωna†ωa

†
ω0 Þ ¼ 0;

haωaωi ¼ Trðe−β
P

ωnaωaω0 Þ ¼ 0; ð75Þ

which represent the expected values of the product between
the creation and annihilation operators with a Bose-Einstein
factor. Identifying xðtÞ ¼ Xðt; rbÞ, one gets

hxðtÞxð0Þi ¼ hXðt; rbÞXð0; rbÞi

¼
�X

ω>0

X
ω0>0

ðhCωðrbÞe−iωtaω

þ hC�ω ðrbÞeiωta†ωÞðhCω0 ðrbÞaω0 þ hC�ω0 ðrbÞa†ω0 Þ


¼
X
ω>0

jhCωðrbÞj2
�
2 cosðωtÞ
eβω − 1

þ e−iωt
�

¼ 4πrhα0

logð1ϵÞ
X
ω>0

1

ω
ðC21 þ ω2C22Þ

×

�
2 cosðωtÞ
eβω − 1

þ e−iωt
�
; ð76Þ

where we used the solution hCωðrÞ given by Eq. (54). Using
Eq. (30), this discrete sum can be approximated by an
integral

X
ω>0

Δω →
Z

∞

0

dω ⇔
X
ω>0

4πrh
logð1ϵÞ

→
Z

∞

0

dω: ð77Þ

Therefore the correlation function at the brane reads

hxðtÞxð0Þi ¼ α0
Z

∞

0

dω
ω

ðC21 þ ω2C22Þ
�
2 cosðωtÞ
eβω − 1

þ e−iωt
�
:

ð78Þ

This is the thermal two-point function for the string end
point at the brane.

C. The mean square displacement

From the thermal two-point function for the end point of
the string at the brane, Eq. (78), one can compute the mean
square displacement:

s2ðtÞ≡ h½xðtÞ − xð0Þ�2i ¼ hxðtÞ2i þ hxð0Þ2i
− hxðtÞxð0Þ þ xð0ÞxðtÞi: ð79Þ

Each term will be computed separately

hxðtÞ2i ¼
X
ω>0

X
ω0>0

h½ðhCωðrbÞe−iωtaω

þ hC�ω ðrbÞeiωta†ωÞðhCω0 ðrbÞe−iω0taω0

þ hC�ω0 ðrbÞeiω0ta†ω0 Þ�i

¼ 4πrhα0

logð1ϵÞ
X
ω>0

1

ω
ðC21 þ ω2C22Þ

�
2

eβω − 1
þ 1

�

¼ α0
Z

∞

0

dω
ω

ðC21 þ ω2C22Þ
�

2

eβω − 1
þ 1

�
: ð80Þ
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By the same token one finds

hxð0Þ2i ¼ α0
Z

∞

0

dω
ω

ðC21 þω2C22Þ
�

2

eβω − 1
þ 1

�
¼ hxðtÞ2i:

ð81Þ

We have already computed hxðtÞxð0Þi in Eq. (76). The last
two-point correlation function is

hxð0ÞxðtÞi ¼
�X

ω>0

X
ω0>0

A1ωA1ω0 ðhCωðrbÞaω

þ hC�ω ðrbÞa†ωÞðhCω0 ðrbÞe−iω0taω0

þ hC�ω0 ðrbÞeþiω0ta†ω0 Þ


¼ 4πrhα0

logð1ϵÞ
X
ω>0

1

ω
ðC21 þ ω2C22Þ

�
2 cosðωtÞ
eβω − 1

þ eiωt
�

¼ α0
Z

∞

0

dω
ω

ðC21 þ ω2C22Þ
�
2 cosðωtÞ
eβω − 1

þ eiωt
�
:

ð82Þ

Collecting these results together one obtains

s2ðtÞ ¼ hxðtÞ2i þ hxð0Þ2i − hxðtÞxð0Þi − hxð0ÞxðtÞi

¼ α0
Z

∞

0

dω
ω

ðC21 þ ω2C22Þ

×

�
4ð1 − cosðωtÞÞ

eβω − 1
þ ð2 − eiωt − e−iωtÞ

�

¼ α0
Z

∞

0

dω
ω

ðC21 þ ω2C22Þ coth
�
βω

2

�
sin2

�
ωt
2

�
:

ð83Þ

This expression for the mean square displacement diverges.
Hence, by using the normal ordering one can write a
regularized mean square displacement as

s2regðtÞ ¼ h∶½xðtÞ − xð0Þ�2∶i ¼ h∶½Xðt; rbÞ − Xð0; rbÞ�2∶i:
ð84Þ

Note that, in the normal ordering, one has ha†ωaω0 i ¼
haωa†ω0 i ¼ δωω0 ðeβω − 1Þ−1.
Repeating the steps performed to obtain Eq. (83), the

regularized mean square displacement is obtained:

s2regðtÞ ¼ α0
Z

∞

0

dωC21
ω

�
2

eβω − 1

�
sin2

�
ωt
2

�

þ α0
Z

∞

0

dωC22ω
�

2

eβω − 1

�
sin2

�
ωt
2

�
; ð85Þ

or in a more compact way

s2regðtÞ ¼ α0½I1ðtÞ þ I2ðtÞ�; ð86Þ

where

I1 ¼
Z

∞

0

dωC21
ω

�
2

eβω − 1

�
sin2

�
ωt
2

�
; ð87Þ

I2 ¼
Z

∞

0

dωC22ω
�

2

eβω − 1

�
sin2

�
ωt
2

�
: ð88Þ

The integral (87) can be cast in the form

I1ðtÞ ¼ 2α0C21
X∞
n¼1

Z
∞

0

dω
ω

e−βωn sin2
�
ωt
2

�
; ð89Þ

where we have used the following identity:

1

eβω − 1
¼ e−βω

1 − e−βω
¼

X∞
n¼0

e−βωðnþ1Þ: ð90Þ

Equation (89) can be integrated:

I1ðtÞ ¼
2α0C21
4

�X∞
n¼1

log

�
1þ t2

n2β2

��

¼ α0C21
2

log

�Y∞
n¼1

�
1þ t2

n2β2

��
: ð91Þ

Using the identity

sinh z
z

¼
Y∞
n¼1

�
1þ z2

π2n2

�
; ð92Þ

one gets

I1ðtÞ ¼
α0C21
2

log

�sinhðtπβ Þ
tπ
β

�
: ð93Þ

Now we have to deal with the second integral, I2, in
Eq. (88), and by using the identity (90), one finds

I2 ¼ 2α0C22

Z
∞

0

dωω

�
sin2ðωt

2
Þ

eβω − 1

�

¼ 2α0C22
X∞
n¼1

Z
∞

0

dωωeβωnsin2
�
ωt
2

�

¼ 2α0C22
X∞
n¼1

t4 þ 3n2t2β2

2n2β2ðt2 þ n2β2Þ2 : ð94Þ

Now, one can investigate whether our deformed string/
gauge setup has ballistic as well as diffusive regimes. Then,
one has to consider the appropriate limits for very short and
long times.
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From Eq. (93) one can analyze the short time limit,
t ≪ β=π, for I1ðtÞ:

sinh

�
tπ
β

�
≈
tπ
β
þ t3π3

3!β3
; ð95Þ

and then

I1ðtÞ ≈
α0C21
2

log
�
1þ t2π2

3!β2

�
≈
α0π2C21
12β2

t2: ð96Þ

For the long time limit, t ≫ β=π, the expression (93) can be
approximated by

log
�sinhðtπβ Þ

tπ
β

�
¼ log

�
sinh

�
tπ
β

��
− log

�
tπ
β

�

≈
tπ
β
− log

�
tπ
β

�
≈
tπ
β
: ð97Þ

Therefore in this limit, one obtains

I1ðtÞ ≈
α0πC21
2β

t: ð98Þ

For I2ðtÞ, one can analyze the regimes t ≪ β=π and
t ≫ β=π. For the short time limit, Eq. (94) becomes

I2 ¼ 2α0C22
X∞
n¼1

3t2

2n4β4
¼ 3α0C22

β4
t2
X∞
n¼1

1

n4
¼ 3α0C22ζð4Þ

β4
t2;

ð99Þ

where ζðsÞ is the Riemann zeta function [81]. On the other
side, for the long time limit, t ≫ β=π, Eq. (94) reads

I2 ≈ 2α0C22
X∞
n¼1

1

2n2β2
¼ const: ð100Þ

The importance of those limits, t ≪ β=π and t ≫ β=π,
relies upon that for the Brownian motion where the short
time limit represents the ballistic regime and the long time
limit represents the diffusive one. First, to study the ballistic
regime one has to take into account the contribution from
I1 and I2 for t ≪ β=π,

s2regðtÞ ¼ I1 þ I2 ¼
α0π2C21
12β2

t2 þ 3α0C22ζð4Þ
β4

t2; ð101Þ

where ζð4Þ ¼ π4=90, C1 and C2 are given by Eq. (49), and
β ¼ 1=T ¼ π=rh. Then one can write Eq. (101) for the
ballistic regime as

s2regðtÞ ¼
α0e

−k
T2π2

6

�
1

2
þ 1

80

�
logð2πTÞ − π

2

�
2
�
t2: ð102Þ

Notice that, for the short time limit, one recovers the
ballistic regime, s2regðtÞ ∼ t2. On the other hand, the long
time limit is given by the contribution from I1 and I2 for
t ≫ β=π. But in this regime only the contribution coming
from I1 is relevant, so that

s2regðtÞ ¼ I1 ¼
α0πC21
2β

t ¼ α0e
−k

π2T2

2πT
t ∼Dt: ð103Þ

Then, we recovered the diffusive regime, s2regðtÞ ∼Dt,
where D is the diffusion constant given by Eq. (67).
Therefore, in this deformed string/gauge setup, we find
the expected ballistic and diffusive regimes for the
Brownian motion.

D. Fluctuation-dissipation theorem

In our setup, one can check explicitly the fluctuation-
dissipation theorem. In Fourier variables, this theorem can
be stated as

hxðωÞxð0Þi ¼ ð2nBðωÞ þ 1ÞImχðωÞ; ð104Þ

where nBðωÞ ¼ ðeβω − 1Þ−1 is the Bose-Einstein distribu-
tion, related to thermal noise effects. Then one gets

hxðtÞxð0Þi ¼ 1

2π

Z
∞

0

dωhxðωÞxð0Þie−iωt: ð105Þ

Comparing the above equation with Eq. (78), one gets for
small frequencies

hxðωÞxð0Þi ¼ 2πα0C21
ω

ð2nBðωÞ þ 1Þ

¼ 2πα0e
− k
r2
h

ωr2h|fflfflfflffl{zfflfflfflffl}
ImχðωÞ

ð2nBðωÞ þ 1Þ: ð106Þ

From the imaginary part of the admittance, Eq. (63), we
therefore have verified the fluctuation-dissipation theorem
in our setup. This result could be expected within our
conformally deformed theory (asymptotically AdS) as also
captured with the polynomial metric of Ref. [32].
Finally, note that in the finite temperature scenario our

results are smooth in the limit k → 0 recovering the pure
AdS case.

IV. ZERO TEMPERATURE SCENARIO

In this section we will present the linear response
function at zero temperature. In this case the metric is
given by

ds2 ¼ e
k
r2r2

�
ημνdxμdxν þ

dr2

r4

�
; ð107Þ
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and Regge-Wheeler radial coordinate r� can be defined by

dr2� ¼
dr2

r4
⇒

dr�
dr

¼ � 1

r2
⇒ r� ¼ ∓ 1

r
; ð108Þ

where we disregarded an integration constant and we
choose the positive sign, r� ¼ r−1. Now the region r ∼ 0
is mapped to r� ∼∞while r → ∞ is identified with r → 0.
This r� coordinate is equivalent to the z coordinate of the
Poincaré patch which is extensively used in the context of
AdS=CFT correspondence.
Using this coordinate, the line element is

ds2 ¼ ekr
2�

r2�
ðημνdxμdxν þ dr2�Þ: ð109Þ

Thus, the equation of motion in Fourier space analogous to
Eq. (14) is

ekr
2�

r2�
ω2hωðr�Þ þ

d
dr�

�
ekr

2�

r2�

dhωðr�Þ
dr�

�
¼ 0: ð110Þ

Here we are interested in the low frequency regime, and
then we will expand the solution of this equation in powers
of the frequency ω (hydrodynamic expansion), so we can
write

hωðr�Þ ¼ h0ðr�Þ þ ωh1ðr�Þ þOðω2Þ: ð111Þ

Substituting the above equation into Eq. (110), one finds at
each order

d
dr�

�
ekr

2�

r2�

dh0ðr�Þ
dr�

�
¼ 0; ð112Þ

d
dr�

�
ekr

2�

r2�

dh1ðr�Þ
dr�

�
¼ 0: ð113Þ

These equations can be solved promptly but separately for
the cases k > 0 and k < 0.

A. The case k < 0

In the case k < 0, we can solve Eqs. (112) and (113) to
find

h0ðr�Þ ¼ C1 þ C0

�
r�er

2�jkj

2jkj −
ffiffiffi
π

p
erfiðr�

ffiffiffiffiffijkjp Þ
4jkj3=2

�
;

h1ðr�Þ ¼ Cð1Þ
1 þ Cð1Þ

0

�
r�er

2�jkj

2jkj −
ffiffiffi
π

p
erfiðr�

ffiffiffiffiffijkjp Þ
4jkj3=2

�
; ð114Þ

where C0, C1, C
ð1Þ
0 , and Cð1Þ

1 are independent of ω and r�.
Therefore the solution for Eq. (110) up to the second

order in ω is

hωðr�Þ ¼ C1 þ C0

�
r�er

2�jkj

2jkj −
ffiffiffi
π

p
erfiðr�

ffiffiffiffiffijkjp Þ
4jkj3=2

�

þ ω

�
Cð1Þ
1 þ Cð1Þ

0

�
r�er

2�jkj

2jkj −
ffiffiffi
π

p
erfiðr�

ffiffiffiffiffijkjp Þ
4jkj3=2

��
þOðω2Þ: ð115Þ

Using the Bogoliubov transformation

hωðr�Þ ¼ eBðr�Þψðr�Þ ¼
e−

kr2�
2

r�
ψðr�Þ; ð116Þ

the ψðr�Þ part of the mode will satisfy the Schrödinger
equation

d2ψðr�Þ
dr2�

þ ðω2 − Vðr�ÞÞψðr�Þ ¼ 0; ð117Þ

with the potential

Vðr�Þ ¼ −kþ 2

r2�
þ k2r2�: ð118Þ

This potential has a minimum at r� ¼ r�min, as sketched
in Fig. 3, where

r�min ¼
ffiffiffi
24

pffiffiffiffiffijkjp ; ð119Þ

and its value for k < 0 is given by

Vmin ¼ ð2
ffiffiffi
2

p
þ 1Þjkj: ð120Þ

Since we are interested in the hydrodynamic limit of
small ω we will consider the approximation Vðr�Þ ∼ Vmin.

FIG. 3. Sketch of the potential Vðr�Þ. Notice that this sketch is
valid for both signals of k.

FLUCTUATION AND DISSIPATION FROM A DEFORMED … PHYS. REV. D 102, 086005 (2020)

086005-11



Then, the Schrödinger equation (117) in this limit becomes

d2ψðr�Þ
dr2�

þ ðω2 − VminÞψðr�Þ ¼ 0: ð121Þ

Therefore in the vicinity of r� ∼ r�min, the solution is

ψðr�Þ ¼ A1eir�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−Vmin

p
þ A2e−ir�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−Vmin

p
: ð122Þ

Here we are going to work in the approximation
ω2 ≫ Vmin. That approximation is good if jkj=ω2 ≪ 1

and therefore for energies bigger than
ffiffiffiffiffijkjp

. This is
expected since the value

ffiffiffiffiffijkjp
can be seen as the natural

energy scale of our setup. Thus ψðr�Þ can be written as

ψðr�Þ ¼ A1eiωr� þ A2e−iωr� : ð123Þ

Now we can write the general expression for hωðr�Þ,
Eq. (116), as the solution close to the minimum r�min of the
potential, as

hωðr�Þ ¼ eB
−ðA1eiωr� þ A2e−iωr� Þ; ð124Þ

where we used the approximation

eB
− ≡ eBðr�minÞjk<0 ≈

e
1ffiffi
2

p ffiffiffiffiffijkjpffiffiffi
24

p : ð125Þ

The first term of the solution (124) is the ingoing mode
which can be approximated for small frequencies as

hðinÞω ðr�Þ ≈ A1eB
−ð1þ iωr�Þ: ð126Þ

On the other hand, the hydrodynamic expansion
Eq. (115) near the minimum of the potential is given by

hωðr�Þ ¼ C1 þ C0

�
Z−

4jkj3=2 þ
ffiffiffi
2

p
e

ffiffi
2

p
r�

jkj
�

þ ω

�
Cð1Þ
1 þ Cð1Þ

0

�
Z−

4jkj3=2 þ
ffiffiffi
2

p
e

ffiffi
2

p
r�

jkj
��

þOðω2Þ; ð127Þ

where Z− ¼ ð2 ffiffiffi
24

p
− 4 23=4Þe

ffiffi
2

p
−

ffiffiffi
π

p
erfið ffiffiffi

24
p Þ ≈ −22.08.

Matching this equation with Eq. (126) we obtain

C0 ¼ 0; C1 ¼ A1eB
−
; ð128Þ

Cð1Þ
0 ¼ A1

i
2
k2e−B

−
; Cð1Þ

1 ¼ −A1

iZ−

8

ffiffiffiffiffi
jkj

p
e−B

−
: ð129Þ

Thus we can express the general solution for hωðr�Þ,
Eq. (116), as

hωðr�Þ ¼ A1

�
eB

− −
iωe−B

−

2

�
Z−

ffiffiffiffiffijkjp
4

− k2
�
r�er

2�jkj

2jkj −
ffiffiffi
π

p
erfiðr�

ffiffiffiffiffijkjp Þ
4jkj3=2

���
þOðω2Þ:

ð130Þ

Considering the region near the boundary and changing the
coordinate r� to r ¼ 1

r�
, this solution can be rewritten as

hωðrÞ ¼ A1

�
eB

− −
iωe−B

−

2

�
Z−

ffiffiffiffiffijkjp
4

− k2
� jkj
5r5

þ 1

3r3

���
þOðω2Þ; ð131Þ

and its derivative with respect to r is

h0ωðrÞ ¼ −A1

iωe−B
−

2
k2
�jkj
r6

þ 1

r4

�
þOðω2Þ: ð132Þ

Using the expression for the force given by (58) in the
zero temperature case (rh ¼ 0), one has

FðtÞ ¼ 1

2πα0
½X0ðrb; tÞr4be

k
r2
b �; ð133Þ

where Xðr; tÞ ¼ hωðrÞe−iωt.
Therefore the admittance for k < 0 is found to be

χðωÞ− ¼ 2πα0

k2


1þ jkj

r2b

�
e
−jkj
r2
b

�
2ie2B

−

ω

þ
�
Z−

ffiffiffiffiffijkjp
4

− k2
� jkj
5r5b

þ 1

3r3b

���
: ð134Þ

This means that the string has an effective tension 2πα0=jkj.
We will comment more on this at the end of the next
subsection.

B. The case k > 0

Here, we are going to solve Eqs. (112) and (113) in the
case k > 0. So the minimum of the potential (118) is now

Vmin ¼ ð2
ffiffiffi
2

p
− 1Þjkj: ð135Þ

The hydrodynamic expansion analogous to Eq. (115) is

hωðr�Þ ¼ C1 þ C0

� ffiffiffi
π

p
erfðr�

ffiffiffiffiffijkjp Þ
4jkj3=2 −

r�e−r
2�jkj

2jkj
�

þ ω

�
Cð1Þ
1 þ Cð1Þ

0

� ffiffiffi
π

p
erfðr�

ffiffiffiffiffijkjp Þ
4jkj3=2 −

r�e−r
2�jkj

2jkj
��

þOðω2Þ: ð136Þ
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Close to the minimum of the potential this becomes

hωðr�Þ ¼ C1 þ C0

�
Z0

4jkj3=2 þ
ffiffiffi
2

p
e−

ffiffi
2

p
r�

jkj
�

þ ω

�
Cð1Þ
1 þ Cð1Þ

0

�
Z0

4jkj3=2 þ
ffiffiffi
2

p
e−

ffiffi
2

p
r�

jkj
��

þOðω2Þ; ð137Þ

where Zþ ¼ e−
ffiffi
2

p
ðe

ffiffi
2

p ffiffiffi
π

p
erfð ffiffiffi

24
p Þ − 2ð ffiffiffi

24
p þ 223=4ÞÞ≈

−0.605. In this region we can make the approximation

eB
þ ≡ eBðr�minÞjk>0 ¼

e−
kr2�
2

r�
≈
e−

1ffiffi
2

p ffiffiffiffiffijkjpffiffiffi
24

p : ð138Þ

Following the discussion on the k < 0 case of the
previous subsection, the ingoing mode in the low frequency
regime here can be written as

hðinÞω ðr�Þ ≈ A1eB
þð1þ iωr�Þ: ð139Þ

Matching this expression with Eq. (137) we can write

C0 ¼ 0; C1 ¼ A1eB
þ
; ð140Þ

Cð1Þ
0 ¼ A1

ik2

2
e−B

þ
; Cð1Þ

1 ¼ −A1

1

8
i

ffiffiffiffiffi
jkj

p
Zþe−Bþ

: ð141Þ

Therefore, near the boundary with the r ¼ 1=r� coor-
dinate we have

hωðrÞ¼A1

�
eB

þ −
iωe−B

þ

2

�
1

4

ffiffiffiffiffi
jkj

p
Zþ−k2

�
1

3r3
−
jkj
5r5

���
;

ð142Þ

and the derivative of this mode with respect to r is

h0ωðrÞ ¼ A1

iωe−B
þ
k2

2

�jkj
r6

−
1

r4

�
: ð143Þ

Following the steps of the case k < 0 the admittance is
given by

χðωÞþ ¼ 2πα0

k2


1 − jkj

r2b

�
e

k
r2
b

�
2ie2B

þ

ω

þ
�
1

4

ffiffiffiffiffi
jkj

p
Zþ − k2

�
1

3r3b
−

jkj
5r5b

���
: ð144Þ

This implies that the string has an effective tension coupled
to the particle on the brane. This result is analogous to the
case k < 0 obtained in the previous subsection. In the limit
jkj ≪ r2b both results can be written as

χðωÞ� ¼ 2πα0

k2

�
2ie2B

�

ω
þ
�
1

4

ffiffiffiffiffi
jkj

p
Z� − k2

�
1

3r3b
∓ jkj

5r5b

���

≈
2πα0

jkj
2i
ω
: ð145Þ

Note that these expressions for the admittance behave as a
power law of jkj instead of an exponential law as in the
finite temperature case, discussed in Sec. III A. These
expressions are singular in the limit jkj → 0. So, this case
will be considered separately in the next subsection.

C. The case k= 0

It is now interesting to analyze the limit k → 0 to recover
the pure AdS case. Since Eqs. (134) and (144) are singular
in this limit, we should go back to Eq. (110), which for
k ¼ 0 becomes

d2hωðr�Þ
dr2�

−
2

r�

dhωðr�Þ
dr�

þ ω2hωðr�Þ ¼ 0: ð146Þ

The general solution to this equation can be written as

hωðr�Þ ¼ r
3
2�ðD1H

ð1Þ
3
2

ðωr�Þ þD2H
ð2Þ
3
2

ðωr�ÞÞ; ð147Þ

where D1 and D2 are constants and Hð1Þ
a and Hð2Þ

a are the
Hankel functions of first and second kinds, respectively, of
order a. Then, the admittance χðωÞ ¼ XðωÞ=FðωÞ can be

calculated from the ingoing mode Hð1Þ
3
2

ðωr�Þ at the IR

(r → 0) so that

χðωÞ¼−
4παHð1Þ

3
2

ðωrbÞ
r2bðωHð1Þ

1
2

ðωrbÞþ3rbH
ð1Þ
3
2

ðωrbÞ−ωHð1Þ
5
2

ðωrbÞÞ
; ð148Þ

which in the low frequency regime becomes

χðωÞ ¼ 2πα0

r2b

�
i
ω
−

rb
ω2

�
: ð149Þ

This expression agrees with [26,27,32] for the pure AdS
space with T ¼ 0.
Comparing the imaginary parts of the admittances at zero

temperature and k ≶ 0, Eq. (145), we see that the role
played by r2b in the pure AdS case is played by the constant
jkj in our deformed metric setup. Interestingly, rb is a UV
scale, while k is an IR one.

V. CONCLUSIONS

Here, in the Conclusions, we will summarize our
achievements and results obtained within our deformed
string/gauge model, by the introduction of an exponential
factor exp ðk=r2Þ in the AdS5 metric to study a holographic
description of the Brownian motion. Our choice is based on
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the idea of breaking the conformal invariance but keeping
the Lorentz symmetry for the boundary theory instead of a
Lifshitz scale or a hyperscaling violation as was done, for
instance, in Refs. [26,27,32]. Our geometric setup is
interesting because it may help the description of random
motion of a massive quark in the quark-gluon plasma [47].
Within our model we started studying the finite temper-

ature scenario. In order to do this we have included a
horizon function in the AdS5 metric dealing with a
deformed AdS-Schwarzschild black hole which is dual
to a boundary field theory at finite temperature. In this
scenario we computed the string energy for positive and
negative k, as can be seen in Eqs. (10) and (11), in
agreement with Refs. [18,27], which also reproduce the
pure AdS behavior (without deformation), as showed in
Eq. (12). In Sec. III we have computed the admittance or
linear response χðωÞ, Eq. (64), and soon after, computing
the diffusion constant, presented in Eq. (67). Both results
are compatible with the literature [32,47]. It is worthwhile
to mention that the sign of the constant k seems to be
irrelevant for the admittance behavior at high temperatures,
as can be seen in Fig. 2.
In Sec. III B we have computed the mean square

displacement s2regðtÞ, from which we have obtained the
ballistic and diffusive regimes of Brownian motion. In the
short time limit from our deformed string/gauge model we
find s2regðtÞ ∼ t2, Eq. (102), which is the ballistic regime, as
expected. For the long time limit we find s2regðtÞ ∼Dt,
Eq. (103), which is the diffusive regime [3]. Going further
in the finite temperature scenario within our model, in

Sec. III D, we have checked the fluctuation-dissipation
theorem, as one can see in Eq. (106).
Our last discussion is related to the zero temperature

scenario. In this study, the horizon function in Eq. (4) is
reduced to fðrÞ ¼ 1. Thus, the AdS deformed metric for
T ¼ 0 can be written as in Eq. (107) and the equation of
motion (EOM), given by Eq. (110), was solved in the
hydrodynamic approximation. We obtained the solutions
for k ≶ 0 and the corresponding admittances, Eqs. (134)
and (144). It is important to mention that the admittances
for T ¼ 0 behave as a power law of jkj while for the finite
temperature case it is an exponential law. It is also
worthwhile to note that the admittances found here in
the deformed AdS space are singular in the limit jkj → 0 in
opposition to the finite temperature case where this limit is
smooth.
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