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Fluctuation and dissipation from a deformed string/gauge duality model
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Using a Lorentz invariant deformed string/gauge duality model at finite temperature we calculate the
thermal fluctuation and the corresponding linear response, verifying the fluctuation-dissipation theorem.
The deformed AdSs is constructed by the insertion of an exponential factor exp(k/r?) in the metric. We
also compute the string energy and the mean square displacement in order to investigate the ballistic and
diffusive regimes. Furthermore, we have studied the dissipation and the linear response in the zero

temperature scenario.
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I. INTRODUCTION

Brownian motion is a rather universal phenomenon first
observed occurring for pollen grains suspended in liquids
[1]. Such particles in this environment exhibit an apparently
random motion. The description of this kind of system is
given by the Langevin equation that shapes the force acting
on the particle as being composed by a dissipative part and
a component related with the random fluctuations [2].

Usually the Langevin equation is written as [3]

D+ R+ FO) (1)
where the first term on the right-hand side quantifies the
dissipative force acting on the particle and y is the

(constant) friction coefficient. The second part, ﬁ(t) is
related with the random fluctuations affecting the motion of
the particle. It is a stochastic variable with zero average and
white noise:

(R(OR,(1)) = k8,81~ 7). (2)
The third part of the Langevin equation (1) is a possibly

involved external force. It can be generalized considering
the friction force dependent on the history of the motion
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and a more general correlation for the noise. For a more
complete discussion see, for example, [4].

A cornerstone on the study of the Brownian motion and
statistical systems in general was given by Kubo [3] in
which he analyzed the Langevin equation and the linear
response theory. One of his most interesting results is the
well-known fluctuation-dissipation theorem (FDT) which
relates quantities linked with fluctuation in an equilibrium
state with others concerning the dissipation process. It is a
major result because it puts together those two important
parts of the description of a thermal system. In fact, any
system in a thermal bath will experience those two effects.
What this theorem tells us is that such processes are not
independent (see also [4]).

This theorem applies to a large class of systems as, for
instance, in the description of the Johnson-Nyquist noise in
electric circuits where thermal fluctuations of the electrons
give rise to potential differences between the components
[5,6]. Arguments related with the FDT are also used in the
analysis of the dynamical Casimir effect. In that case one
can calculate the Casimir dissipative force on objects in
motion from the fluctuations of the force acting on them at
rest. One example is the computation of a dissipative force
on a perfectly reflecting moving sphere in Ref. [7]. Another
interesting application of FDT is, for instance, in the theory
of lasers involving the admittance of optical cavities and
their absorption of thermal radiation [§—10].

The AdS/CFT correspondence was formulated as
a duality between a IIB superstring theory living in
AdSs x § space and a superconformal N =4 Yang-
Mills theory, with symmetry group SU(N — ), defined
in a Minkowski spacetime on the boundary of the AdSs
space [11-15]. One of the main achievements of the
AdS/CFT correspondence is to describe a weak coupled
theory living in AdSs space bulk as a strongly coupled
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theory on the boundary. Such a duality is appropriate to
deal with thermodynamic features of some systems as the
quark-gluon plasma (QGP) [16,17]. The QGP is a very
useful system for our purpose since the hadronic matter at
extremely high temperatures and densities seems to exhibit
random walks due to their collision with each other just as a
Brownian motion. In other words, one can use QGP at a
finite temperature within holographic approaches to study
Brownian motion, quantum fluctuations, dissipation, linear
response, etc.

Many works were done in this direction within holo-
graphic contexts, for example, dealing with Brownian
motion [18-25], fluctuation or dissipation [26-32], drag
forces [33—40], and related topics [41-47]. In particular, de
Boer et al. studied the Brownian motion in a CFT described
from AdS black holes [18]. Tong and Wong [26] discussed
quantum fluctuations in a Lifschitz spacetime breaking
Lorentz symmetry. Edalati ef al. [27] considered a hyper-
scale violation in quantum and thermal fluctuations. These
works were extended by Giataganas et al. [32] dealing with
Brownian motion, fluctuation, and dissipation in a general
context for a polynomial metric.

In order to describe fluctuations in QCD-like theories
from the AdS/CFT correspondence one has to introduce an
infrared scale breaking conformal invariance. In hadronic
physics there are basically two approaches to do that known
as top-down [48-54] and bottom-up [55-69]. In the
bottom-up approach, the first proposal is known as the
hardwall model which introduces a hard cutoff in AdS
space [55-61]. The second proposal is known as the
softwall model, and it introduces a dilaton field in the
action playing the role of soft cutoff [62—-69]. An alternative
for the softwall model is to introduce a warp factor
deformation in the metric instead of the dilaton in the
action. Within this approach one can calculate quark-
antiquark potential at zero and finite temperature, hadronic
spectra, etc. [70-79].

Then, one can use some of these ideas from the
AdS/CFT approach to hadronic physics in order to inves-
tigate Brownian motion, fluctuations, dissipation, etc. For
instance, Ref. [47] studied heavy quark diffusion in the
presence of a magnetic field introducing an exponential
factor in the Nambu-Goto action. In Ref. [40] they
calculated the drag force in a moving heavy quark using
the deformed AdS space proposed in [70].

The main goal of this work is to study zero and finite
temperature string fluctuations using a deformed AdS space
with the introduction of an exponential factor exp k/r? in
the metric, motivated by the success of this approach to
hadronic physics [70-79]. We calculate thermal fluctua-
tions, the admittance from linear response, and two-point
functions, and we show explicitly that the fluctuation-
dissipation theorem holds in this setup. Notice that the
analysis of Ref. [32] can be applicable up to certain orders
also for the boundary and horizon expansions of generic
form metric fields. We complete our study with the zero

temperature response function calculating the correspond-
ing admittance.

This work is organized as follows. In Sec. I we
introduce our geometric setup at finite temperature, calcu-
late the energy of the string, find the equations of motion
and their solutions in different regions in the deformed AdS
black hole space, and impose matching conditions among
these solutions. In Sec. IIl we compute the admittance
through the linear response theory, the thermal two-point
functions, and the mean square displacement. From this
result we obtain the ballistic and diffusive regimes of the
Brownian motion of the particle described holographically
by the end of the open string. From the relation between the
imaginary part of the admittance and the two-point func-
tions we verify the fluctuation-dissipation theorem. In
Sec. IV, we reconsider the previous setup for the case of
zero temperature and calculate the corresponding admit-
tance from the linear response theory. Finally, in Sec. V, we
present our last comments and conclusions.

II. STRING/GAUGE SETUP AT FINITE
TEMPERATURE

In this section, we are going to introduce our string/gauge
setup at finite temperature to investigate the holographic
Brownian motion. Since we are interested in a Lorentz-
invariant scenario, instead of a scaling violation [26,27,32],
here the conformal invariance is broken by introducing an
exponential factor in AdS5 metric following Ref. [71]:

ds? = 7 {—rzf(r)dz‘2 + 2 (n;;dx'dx’) + —r;j‘r(zr)} . (3)

where #;; = diag(—1, 41,41, +1), the AdS radius was set

to 1, r is the holographic coordinate, f(r) is called the
horizon function which is given by

= (1-%)

and ry, is the horizon radius. In Refs. [70-76,78] this metric
was used to study many aspects of holographic high energy
physics. In these references, k is a constant that can be
related to Agep. It is important to mention that the algebraic
sign of k is not a consensus in the literature (see, for instance,
[62,71,80]), and we will comment on this in further sections.
The corresponding Hawking temperature is given by

(4)

2r

gtt(rh)
grr<rh)’

(5)

where Ky is the surface gravity given by Ky =
(1/2)f'(ry). So, for the metric (3) the temperature is related
to the horizon radius:
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Brane (r =rb >> rh)

Black Hole

FIG. 1.
motion.

The string/gauge setup for the holographic Brownian

Th
T= g (6)
One of the main features of our model is to get, at the same
time, the breaking of the conformal invariance and to be
Lorentz invariant, such that we can obtain correctly the
fluctuation-dissipation theorem. Besides such a deformation
reproduces the AdSs space close to the UV region (r — o).

According to string/gauge duality a massive particle can
be understood as the end point of an open string. This end
point is attached to a probe brane located at r = r;, close to
the boundary (r — o). The string extends itself to the
entire bulk; hence, its other end point is placed at the IR
region with r — rj,, where r;, is the horizon of the black
hole, as can be seen in Fig. 1.

The Brownian motion of the massive particle at the brane
is explained as the vibration of the string end point near the
horizon which interacts with the Hawking radiation. Once
we established our geometric setup, the string dynamics is
described by the Nambu-Goto action, so that

drdo/=y, (7)

Sng = =

where o is the string tension, y = det(y,s), and y,5 =
GnnOaX™"0pX" is the induced metric on the world sheet
with m, n =20, 1, 2, 3, 5.

As done in Refs. [27,32] we also choose a static gauge,
where t = 7, r = 6, and X = X(z, 6). By using the metric,
Eq. (3), and expanding the Nambu-Goto action, Eq. (7), in
order to keep the quadratic terms X2, X2, we get

k

where X = 9,_,X and X' = 9,_,X.

Following [26,32], we can compute the energy to create
the string described above as

Tp

k.
Zﬂ'a —9009rr = ' a/ er. (9)
For k > 0, one finds that
1 5 %
Ek>0 Zﬂ'a {rbeb—rhel
7k {Erﬁ (i%) — Erfi <ﬁ)] } (10)
' rp

where Erfi is the imaginary error function, defined as

Exfi(z) = Erf(iz)/i where Erf(z) is the error function given
by Exf(z) = (2/\/7) [ e dt [81]. The energy for k < 0
reads

—IK ]
1 e )
E, o= il rpe'’s —rpe’n

a4 () ).

Ip

The AdS limit can be obtained for |k| < r;, < ry, for both
signs of k as given by Egs. (10) and (11) so that

(rp = 11) I
- -, ~
2o 2’

EAdS = (12)

and the energy of the string is proportional to its length
which is approximated by r;, as expected.

The equation of motion for the string described by
X(t, r) can be derived from the approximate Nambu-Goto
action, Eq. (8):

9 f(eEx (r 1)) -

g SX(1r)=0.  (13)

Performing the following ansatz X(t,r) = e/ ®h,(r),
one gets

ol

a)zer

F(r)

Changing the variable r to the tortoise coordinate r, defined
as

/ dr 1 ) r—ry, n 1 tan-! r
r,= | ——=—1lo —tan~' [ — |,
rf(r)  4n, g r+r, 2r, r

one obtains

AR + 2, =0, (14)
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td’h d i dh &
e drﬁw + ar (r2erk2) d—r(: + a)zrzerkzhw =0, (16)
where r = r(r,) and h,, = h,(r.). The substitution
hy = Sy(r,), (17)

where B(r,) = —k/(2r%) —log(r), gives the following
Schrodinger-like equation:

f%%ﬁ+ww2‘VUWﬂm):0, (18)
where
V(r)=2r"—k+ ]j_j _ 2];:2 _ <2k2r‘)lr6+ 2r§>

3f§2 5;%?. (19)

Notice that V(r;,) = 0, as expected. Near the horizon, the
potential can be expanded in Taylor series as

V(r) ~ 16<—5+ rh>(r— ). (20)

T'n

The Schrodinger-like equation (19) cannot be analytically
solved; hence, one seeks for solutions within certain
regions. For our purposes we will choose three regions:
A, B, C, and explore their solutions.

The first region, dubbed as A, is near the event horizon,
i.e., r ~ ry,. In this case, V(r) < w?, and the Schrodinger-
like equation reads

d*y(r,
V) 4 () =0, 21)
drs
which has the ingoing solution
w(r) = Ao (22)

Near the horizon (r = r,), we can assume that for low
frequencies we have wr, < 1. Then one can expand
Eq. (22) as

w(r,) =A, —iAor,. (23)
Using this equation and Eq. (17), we can compute A, (7, ) in
this region:

WA (r) = S (A, — iwA,r.), (24)

I'n

where r, is given by (15). In the limit r = r;, we find

1 log(2ry) =7

r*:_10g<r_rl’l)_ 4rh

4rh (25)

8rh'

Substituting this equation into Eq. (24) we get

e [~ iwA
w0 = (A= Sogtr =) ). (9

where

iwA iTwA
4rh1 log(2r,) — !

A] :A]+

(27)

h

Following Ref. [18], one has to impose a regularization
procedure by introducing a cutoff at r = rj, 4+ ¢ near the
horizon, i.e., ¢ < 1. The complete solution in this region
comprises the ingoing and outgoing modes:

S LS

A _ e’ —iwr, e’ iwr, | ,—iwt
far)=A4A,|—e + B, —e" e (28)
r r

Imposing the Neumann boundary condition at r = rj, + €,
one finds

dA

[0}

dr

. log(2ry,)
z 71
2io(g; ar, )

=0oB,=c¢ eﬁlog(%)
P .

r=rp+e

(29)

The above condition implies that the possible frequencies
are now discrete:

477,'1";1

Aw = .
log($)

(30)

The region B corresponds to @* < V/(r), which implies
@? < f(r). In this regime, Eq. (14) has the following form:

dh, B

& AR Y

where f(r) is given by Eq. (4) and B, is a constant. This
equation can be integrated to

—k/r?

hB(r) = B, /rﬁdr—FBz, (32)
r-— rh

where B; and B, are integration constants. In the IR limit,
i.e., for r ~ rj, one has
i—rh=(r=n)(P e +n). (33)

and hence for r ~ r, our integral can be approximated by

086005-4



FLUCTUATION AND DISSIPATION FROM A DEFORMED ...

PHYS. REV. D 102, 086005 (2020)

“kin e dr
B ~
ha)(IR)( ) ~B1 4}% / I dr+Bz

—k/r e—k/r

1 - B,
4rh Og(r rh) + 4r 2

~ B, b+B,, (34)

where b is an integration constant. Now, we are going to
obtain the UV limit in region B. In this case, the integral of
Eq. (32), in the limit r > r,, becomes

5 re_k/r
]’leV)( )%Bl/ 7]‘4 dr—|—32

B
~ B, —+BQ:—§+BZ. (35)

[Se]

The third region, C, that we will analyze corresponds to
r — oo meaning that the horizon function f(r) — 1. In this
case, Eq. (14) has the following solution:

o 1k
Holr) = €1 <4k 5’_?>

(k)32 (3 w* 5 k
O+ - ——
6 T Ty 2) 9

where ®(a, b, ¢) is the confluent hypergeometric function
of the first kind [81]. In the limit » — oo its asymptotic
expression is given by

Czla’: +c2<;§<)3/2+0<<%>4>, (37)

For small frequencies @ — 0, it reads

Cy(=k)*?

=

hg(”) =C +

ho(r) = Ci + (38)

In order to relate these constants, one has to connect the
solutions found for each region A, B, and C. Let us start
matching the solutions in region A and the IR limit of
region B, meaning h4(r) = h gy (), so that

e i [ - iwA,
A — 1 -
" ( 1 4r, og(r rh))
—k/r e—k/r
= B, 43 log(r — ry) + B, 43 b+ B, (39)
and then one gets
= /
e e_k Th
Al - Bl 3 b + Bz (40)
ry rh

and

k

B, = —iA,r,we”. (41)

Now, the matching between the UV limit for region B
and region C implies that hJ\,(r) = h{(r); therefore,

B Cy(—k)3/?
32+B2 CI+Z(T>, (42)
and then one gets
_L _k —k_
2,2 2 212 iA k
Ci=By=A— B o b=4 "+ L)
h ry 4rh
(43)
and
1 o3 1
C2:—3( lAlrha)e h)w (44)
Substituting these constants in Eq. (37) one gets
e iAo -5 14
h€ =A 4 Th
ol7) _ + 4r2 ¢ 2r?
k
— L (—iA rwe*)
: - : (45)
where
~ A
A =4, log(2rh) _ oAy (46)

Then, we will compute the constant A;. In order to do
this, let us first rewrite the solutions in regions A and C as

=k
ex?

hg(r) = Ay —e™", (47)
r
C . C3
hw(r):Al Cl+lw Cz‘i‘F 5 (48)
where
¢ = i ’ e, = Ui (log(2r,) +b & ’
I I'n 4ry, 8ry
1 5
C3 = gezr" ry. (49)

The inner product between the solutions of Eq. (13) can
be calculated by

086005-5



CALDEIRA, CAPOSSOLI, ZARRO, and BOSCHI-FILHO

PHYS. REV. D 102, 086005 (2020)

(X7 0): Xar.1)
—i "b Grr

=— d he,(r, 1)0hg, (1, t
2ﬂ'6¥/[h r _gttQXX( w(r ) t (r )

= (Orho(r. 1)) 5, (r. 1))

k

o [ e’
=2 dr |, (1) =1.
n,al [h rf(r) | {1)(r)|

(50)

In order to find an approximate solution for the above
integral, note that the integrand is dominated by its
behavior near the horizon where there is a logarithm
divergence. Close to the horizon the blackening function,
Eq. (4), is given by

4 4_ 4 3
B AN (r*—ry) ~4rh B 4(r—rp)
(51)
Then one gets
/ -1
ﬂ L/ L — |A1 2’ (52)
o |4ry [y se (r—1y)

where we disregarded the subleading term near the brane
which depends explicitly on r,. Performing the above
integral, one obtains the normalization factor A;:

A = dra'r, [ 4nad'r,
'\ ofloge] | wlog(d)

Then, the solution AS is finally written as

(53)

/
dra'ry,

ECTN P ) | I

where C;, C,, and C5 are given by Eq. (49).

hiy(r) =

III. FLUCTUATION-DISSIPATION
THEOREM AT T # 0

A. The linear response function
In this section we will compute the admittance y(w). Let
us consider a particle under the action of an external force
in an arbitrary direction, x’, given by
F(t) = Ee7'F(w), (55)
where E is the electric field on the brane. In order to deal

with the electric field E = E(A,, A) one has to take into
account it is in the approximate Nambu-Goto action.
Explicitly,

k

/ drdo {Xz% - X’2r4f(r)er%

4o

+/dz(A,+A’-§é)

(56)

r=ry,

From the above equation one can see that the second term,
corresponding to an electric energy density, is just a surface
term, chosen in an arbitrary direction, and does not
contribute to the bulk dynamics.

To compute the response function, we assume that the
external force F(¢), given by Eq. (55), is linearly coupled to
X'(t,r) on the brane. Rewriting the surface term in a
convenient way we have

k

1 ., er K
~——— [ dtdr|X* —— = X"*r*f(r)e”
$% g | { TCRRE W]

- / dtF (1) (6)(;’ r)>

where we choose 7=t and o = r. On the brane, the
equation of motion, §S/6X" = 0 implies

, (57)

r=ry

1

2na

&
F(1) X(r)0f-et]. (58)
Hence, the Neumann boundary condition on the brane

reads

/ k

2 —k
T E®).

(r5 = 73)

As we have chosen the ingoing boundary condition at
r = ry,, we can find directly X'(w, r},), using Eq. (45)

X'(t,ry) = (59)

k

22

on'®

. rpe-n
X (w, = = —iwA . 60
(@,713) or . lwAy r;‘; (60)
So F(w) reads
WA [y, 4\ Fhe
Flo) = =520 5 = et 2| (1)
b

In order to find the admittance, one notices that
(x(w)) = h((,)c)(rb); therefore,

k

: i 22
(0) A e 2’%1 iAjw _Z%b _5(—1Alrhwe h)
Chy(ry) AT T g e T Sk
@) = Flw)

oA Aty
— 4 50 - e ]
(62)

Using the expression for A, Eq. (46), one can expand y (o)
in the hydrodynamic limit @ < 1 as
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k

-k o - le/z
2ry 27 ne h
e h ; log(2ry)+b _ z Ve n
Al { ry +io |:< 4ry, 8ry, rn + 3rf7

(63)

—_— 5
—lw ry,

—k (L+_) _k
1 lZﬂa’ e Vi ‘|rb—>oo 1 lZﬂa’ e %]

By the definition of the temperature, Eq. (6), our admit-
tance can be written as

kb ke
1 [2de "] e #7r—-0 1 2d
e tleronme 4
f(ry) | aT? —iw nT?

k
N — A, 64
o)~ e (64
In order to recover the pure AdS case, one has to con-
sider the limit k£ — 0. Then, we obtain that the AdS

admittance is

1 2d
—iwnT?’

X(0) pgs (65)

in accordance with [32]. One can proceed with the analysis
of the admittance as a function of the sign of k. From
Eq. (64), one finds that the ratio between the imaginary
parts of the negative and positive signs of k in the
admittance is given by

(k<0) ok
Imy™=(@) _ 34 (66)
Im;((k>0) (

Notice that the sign of k is not important in the high
temperature limit 72 > |k|. However, for the low temper-
ature regime 72 < |k|, the sign of k is relevant. This can be
seen in Fig. 2 where the imaginary part of the admittance is
plotted as a function of the temperature for the two different
signs of k.

The diffusion constant can be obtained as

k% —k
2d e ’b} e21? 1y 200 -k

—_— er*r?,
f(ry) | =T aT

D = Tlin-ioy () = |
(67)

Interestingly this result was obtained in [47] within a
different model, where the dilaton field is introduced
directly in the Nambu-Goto action. Moreover, they
obtained this result from the relation between the mean
square displacement and the diffusion constant for the
Brownian motion instead of the procedure performed here,
where D is obtained from the admittance. Indeed, in
Sec. III C we also obtain the diffusion constant D by this
method.

0.7 T T T T

Im(y(w))
N
O VR O VN

(=]
—

e
=

FIG.2. The imaginary part of admittance y(w), for a fixed w, as
a function of the temperature for both k = £1 in arbitrary energy
units from Eq. (64). The vertical line represents the approximate
value for the temperature (7 ~5.8). From this temperature
forward (high temperatures) the sign of & is no longer relevant.

The AdS limit of the diffusion constant reads

k.
2d e”? 2o
xT’

D = lim
Ads = M=

(68)
This is the diffusion constant for the AdS with 7 # 0
already obtained in Refs. [18,47].

Following Ref. [32], it is interesting to expand y(w) up to
order w. From Eq. (63), we find

2ra

“ol —iw [r%lf(rb)eé+é}

87,

- ko, k + O(w)
otz

et

k
k 22
22 (r,,e' h)
21 l(log(i::)-&—b =z ) e h + :

[E——)

(69)

Notice that in Ref. [32], it was proposed that the
admittance in the low frequency expansion limit and
r, — 00, in a general metric, can be written as

2na

_ia)gxx(rh) ‘ (70)

x(w) =

Indeed, this expression is recovered by our result Eq. (69)
where we identify g, (r,) = r; exp(k/r3).

Further, comparing Eq. (69) to the general expansion of
(@) presented in [32]

086005-7



CALDEIRA, CAPOSSOLI, ZARRO, and BOSCHI-FILHO

PHYS. REV. D 102, 086005 (2020)

one finds that the self-energy of the particle is

Lk 4 rp—>00 _k_
y = r2f(rp)es = 22T f(ry, T)e?r =5 22727,
(72)
The inertial mass reads
=5 5
I log(2r,) +b @ \e ™  (rye’)
4rh 8rh ry SrZ
&y
X (rf(rp)es )
gk
e log(2r,) + b 7 rhf(rb)e’iJr’i
4 8
log(22T) + b ke
- (PR Dt 73)

To conclude this subsection it is interesting to compare
our results with Refs. [26,27,32]. As can be seen in hS,
Eq. (54), in the admittance, Eq. (64), and in the transport
coefficient D, Eq. (67), these quantities cannot be obtained
from a polynomial metric as in Refs. [26,27,32]. However,
in the asymptotic limit they are related by a regular

k

. 2
exponential factor ei.

B. Thermal two-point function for the string
end point at the brane

In this subsection the thermal two-point function for the
end point of the string located at the brane will be obtained
by using a Fourier decomposition, such as

X(t,r) = / " do(hS(r)e='a, + hC*(r)ei'al),  (74)
0

where a, and a}, are the annihilation and creation oper-
ators, respectively. Recalling that, for 7" # 0, one has

. 0,
i —p w, waw'
<awaw> ( Z awa ) /Jm -1 ’
(ab,ab) = Tr(e™ 2 alal,) = 0.
<awaw> = Tr(e_ﬂzw” awaw’) =0, (75)

which represent the expected values of the product between
the creation and annihilation operators with a Bose-Einstein
factor. Identifying x(¢) = X(¢, r;), one gets

(X(2,r5)X(0,r4))

- (X X0

>0 >0

—la)[

+ hS* (ry )e”‘”al,)(hg,(rb)aw/ + hfj‘(rb)a;/)>
_ Z|hc (2 cos(wt) N e_l.wt)

w>0 -1

dzr,o 1
= Z P (CF + a?C3)

- IOg(%) >0
+ e—iwl) ,

y 2 cos(wr)

P —1
where we used the solution 4S(r) given by Eq. (54). Using
Eq. (30), this discrete sum can be approximated by an

(76)

integral
47rrh o0
> Ao - " dw o Z > [ do. (77)
>0 0 a)>0 0

Therefore the correlation function at the brane reads

e—za)t) .

(78)

2 cos(wt)
T +
e’ —1

O

0

@+#@<

This is the thermal two-point function for the string end
point at the brane.

C. The mean square displacement

From the thermal two-point function for the end point of
the string at the brane, Eq. (78), one can compute the mean
square displacement:

s2(1) = ([x(1) = x(0)]?) = (x(1)?) + (x(0)?)
— (x(1)x(0) 4 x(0)x(7)). (79)
Each term will be computed separately
Z Z hC e—ivty
>0 o' >0
+ hS*(ry )ei‘”’az,)(hg,(rb)e"""/‘aw/
+ hG (ry)e ay)])
_ ‘I‘Zg’gf; ;5(6% + &?C2) <eﬁw —+ 1)
, [~ do 2
=a A ;(c% + 0*C3) <eﬁw —+ 1). (80)
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By the same token one finds

07 = [“ L@ )

+ 1> = (x(1)?).
(81)

We have already computed (x(#)x(0)) in Eq. (76). The last
two-point correlation function is

(x(0)x( <Z > AvAry (hS(ry)a,

>0 o'>0

G (ry)al) (S (ry )™ a,

+ hC*( )e+lwtaT/)>

w @

_Aand 1, o (2e0s(wtf)
~ log(d) ;w(cl Tl oy T
[ wdo o [2c0s(wt)
QA ;(Cl+a)cz)(e‘[}m7_1+g t).
(82)
Collecting these results together one obtains
s2(1) = (x(1)*) + (x(0)*) — (x(1)x(0)) — (x(0)x(1))
— o /°° + 22
0 ()
" [4 (1- cos(wt)) L@ e — e—i(ot):|
= ’/mw(02+w262)coth po sin? [ ).
o @ ! : 2 2
(83)

This expression for the mean square displacement diverges.
Hence, by using the normal ordering one can write a
regularized mean square displacement as

Steg (1) = (:[x(1) = x(0)]7 1) = (:[X(r. 1)) = X(0.7)]*:).

(84)
Note that, in the normal ordering, one has (aI,awr> =
<awaz,’> = 5wm’(eﬂw - 1)_1

Repeating the steps performed to obtain Eq. (83), the
regularized mean square displacement is obtained:

© dwC? 2 wt
Siall) = “% v Lﬂw . J s’ < > >
o0 2
+d A doCiw Lﬂw — J sin? (%) . (89)

or in a more compact way

Sieg (1) = /(T4 (1) + (1)), (86)

© dwC? 2 ., [wt
e P s (5) @)
o 2 wt
_ 2 o (@1
I, = A doCsw Lﬂw — 1] sin (2) (88)

The integral (87) can be cast in the form

©. [wdw wt
_ 2 —pon 32
1) =2d'Cy ;1A V¢ pon gin (—2>, (89)

where we have used the following identity:

where

1 —//’w

—/)’w Z e—/)a) n+1 (90)

e/}w _ 1

Equation (89) can be integrated:

203 [& r?
= e (155
1,2 00

- azcl log [H (1 + fﬁzﬂ (91)

n

Z(1)

Using the identity

one gets

o C? inh(Z
7,00 = “Ciog("5 7). 93)

p

Now we have to deal with the second integral, 7,, in
Eq. (88), and by using the identity (90), one finds

% sin? (%)

7, = 20/0%/0 da)a)Lﬂw _21]
t
=2 /CQ d pwn @
a 2,,2/ w we’"sin <2

= A+ 3n?Pp
=20} . 94
2 22022 (12 + n2fP)? (94)

Now, one can investigate whether our deformed string/
gauge setup has ballistic as well as diffusive regimes. Then,
one has to consider the appropriate limits for very short and
long times.
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From Eq. (93) one can analyze the short time limit,
t < /=, for Z,(1):

tr\ tn £
Slnh(/})%E—i‘T’m, (95)
and then
adC? 72 a7 C?
() m—tlog (1 +—— | ~ Ly

For the long time limit, 7 > f/, the expression (93) can be
approximated by

sinh(%) tn in
og ( % og | sin 5 —log i

1#/3 1#/3 i
~— —log <—> N— (97)
p p p
Therefore in this limit, one obtains
o nC?
7,(t) ~ 1
(0~ (98)

For Z,(t), one can analyze the regimes 7 < f3/n and
t > p/x. For the short time limit, Eq. (94) becomes

/2 N 3t2
1.2:2(16’ Z 4/}4

El

/ o /2
30:C2 22% 3aC C( )t

(99)
where (s) is the Riemann zeta function [81]. On the other
side, for the long time limit, > f/xz, Eq. (94) reads

Iz ~ 26(/6% Z
n=1

1
— 2n*

= const. (100)

The importance of those limits, r < f/z and t > f/x,
relies upon that for the Brownian motion where the short
time limit represents the ballistic regime and the long time
limit represents the diffusive one. First, to study the ballistic
regime one has to take into account the contribution from
7, and Z, for t < /=,

30'C3L(4) ,
ﬁ4
where ¢(4) = 7*/90, C, and C, are given by Eq. (49), and

p=1/T = xn/r,. Then one can write Eq. (101) for the
ballistic regime as

/22
anCy ,

I,+1,= 125

Steg (1) = 2, (101)

o T 1 2
S%eg(t) 6 |:§ —+ % <10g(27[T) — g) :| l2. (102)

Notice that, for the short time limit, one recovers the
ballistic regime, s%,(7) ~ 2. On the other hand, the long
time limit is given by the contribution from Z; and 7, for
t > f/x. But in this regime only the contribution coming
from 7, is relevant, so that

—k
a/ e21?

2 anCi
- 2T

sreg(l) =1,= 28

Then, we recovered the diffusive regime, srzeg(t) ~ Dt,
where D is the diffusion constant given by Eq. (67).
Therefore, in this deformed string/gauge setup, we find
the expected ballistic and diffusive regimes for the
Brownian motion.

t~ Dt.

(103)

D. Fluctuation-dissipation theorem

In our setup, one can check explicitly the fluctuation-
dissipation theorem. In Fourier variables, this theorem can
be stated as

(x(@)x(0)) = (2np(w) + 1)Imy (),

where ng(w) = (e — 1)7! is the Bose-Einstein distribu-
tion, related to thermal noise effects. Then one gets

(104)

1

(w(o)x(0)) = 5. |

Comparing the above equation with Eq. (78), one gets for
small frequencies

27/ C3
w

(x(@)x(0)) =

(2ng(w) + 1)

:‘NI»

27rae
a)rh

(106)

Imy(w)

From the imaginary part of the admittance, Eq. (63), we
therefore have verified the fluctuation-dissipation theorem
in our setup. This result could be expected within our
conformally deformed theory (asymptotically AdS) as also
captured with the polynomial metric of Ref. [32].

Finally, note that in the finite temperature scenario our
results are smooth in the limit & — O recovering the pure
AdS case.

IV. ZERO TEMPERATURE SCENARIO

In this section we will present the linear response
function at zero temperature. In this case the metric is
given by

x dr?
ds? = er P2 (n}wdx”dx" + —’; ), (107)
r
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and Regge-Wheeler radial coordinate r, can be defined by

dr’ _dr 1 1
where we disregarded an integration constant and we
choose the positive sign, r, = r~!. Now the region r ~ 0
is mapped to r, ~ oo while r — oo is identified with » — 0.
This r, coordinate is equivalent to the z coordinate of the
Poincaré patch which is extensively used in the context of
AdS/CFT correspondence.

Using this coordinate, the line element is

ekrf

ds? (n,, dx*dx” + dr?). (109)

2

Thus, the equation of motion in Fourier space analogous to
Eq. (14) is

kr? kr?
 wh(r) + o ( "hw<r*>):o.

72 dr, \ r2 dr,

(110)

Here we are interested in the low frequency regime, and
then we will expand the solution of this equation in powers
of the frequency @ (hydrodynamic expansion), so we can
write

ho(r.) = ho(r,) + why(r.) + O(@?).  (111)
Substituting the above equation into Eq. (110), one finds at
each order

d (e dhy(r,)

=0, 112
dr*<r£ dr, ) (112)
d (e dhy(r,)

=0. 11
dr*<r3 dr*) 0 (113)

These equations can be solved promptly but separately for
the cases k > 0 and k < 0.

A. The case k < 0

In the case k < 0, we can solve Egs. (112) and (113) to
find

A ertir /TR
r.e werfi(r,
ho(r.) = Ci + Co( 20K] - EE )

ri k| fi(r.+/|k

(1) (1) [ I«€ Vrerfi(r.\/|k|)

h =C,’'+C - , (114
l(r*) 1 0 < 2|k| 4|k|3/2 ( )

where Cy, Cy, Cél), and C%” are independent of @ and r,.
Therefore the solution for Eq. (110) up to the second
order in w is

re rerfi(r, /K]
h(u(r*) = Cl + CO 2|k| - 4|k|3/2

" w<c<,1> ) (' _ reri(r, \/_lkl)»

2|k] Alk[*/2

+ O(a?). (115)

Using the Bogoliubov transformation

ho(r.) = By (r) = <Zy(r,),  (116)

the w(r,) part of the mode will satisfy the Schrodinger
equation

d*y(r,
VO 4 @ Vi) =0, (1)
with the potential
2 2
V(r,) =—k+—=+k r. (118)
r

*

This potential has a minimum at r, = 7, ,;,, as sketched
in Fig. 3, where

4
2
r*minzi’ (119)
VI
and its value for k < 0 is given by
Vinin = (V2 + 1)[&]. (120)

Since we are interested in the hydrodynamic limit of
small @ we will consider the approximation V(r,) ~ V..

V(rs) i

|
|
|
[
|
I
|
I
[
[

V2 Ty

VIkl

FIG. 3. Sketch of the potential V(r,). Notice that this sketch is

valid for both signals of k.
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Then, the Schrédinger equation (117) in this limit becomes

dy(r.)
dr?

+ (0? -

Vmin)l//(r*) =0. (121)

Therefore in the vicinity of r, ~ r, ., the solution is

w(r,) = A Ve —Van 4 Ay e=in Ve Vi (122)
Here we are going to work in the approximation
@? > V... That approximation is good if |k|/w? <1
|k|. This is
expected since the value \/TH can be seen as the natural
energy scale of our setup. Thus w(r,) can be written as

and therefore for energies bigger than

w(r,) = A + Aye™", (123)

Now we can write the general expression for ,(r,),
Eq. (116), as the solution close to the minimum r, ;, of the
potential, as

hy(r,) = €8 (Ae® + Aje™i@r), (124)
where we used the approximation
. 2/ k]
el = eBrumin ~EVIM 125
k<o 7 (125)

The first term of the solution (124) is the ingoing mode
which can be approximated for small frequencies as

By (r) & AgeP (1 + ior.). (126)

On the other hand, the hydrodynamic expansion
Eq. (115) near the minimum of the potential is given by

zZ~ \/ie‘/ir*
h,(r,) = C; +C +
=t o g+ )
- V2
(1) m( Z V2eV2r,
C C
sl e o (gEm S5 ))
+ O(a?), (127)
where Z~ = (2/2 — 423/4)eV2 — \/zerfi(V/2) ~ —22.08.
Matching this equation with Eq. (126) we obtain
CO :O, Cl :AleB_, (128)
] - 7~ -
) = Az ) =-a e (129)

Thus we can express the general solution for h,(r,),
Eq. (116), as

_ iwe ™ (Z7\/|k
h(u(r*) :Al |:eB - D) ( 4| ‘

()] v

4|k|3/?
Considering the region near the boundary and changing the

coordinate r, to r = rl this solution can be rewritten as

_ iwe ™8 (Z7\/|k| k 1
oreaf o (E4E 1)

+ O(a?), (131)

(130)

and its derivative with respect to r is

h;,(r):-Alia’z k2<|k| )+O() (132)

Using the expression for the force given by (58) in the
zero temperature case (r, = 0), one has

F() = = Xy 1)), (133)

2ral

where X(r,t) = h,(r)e™".
Therefore the admittance for k < 0 is found to be

/ ZieZB‘
)((w)_ = Al {
2

) o

This means that the string has an effective tension 2za’/|k|.
We will comment more on this at the end of the next
subsection.

B. The case k > 0

Here, we are going to solve Eqgs. (112) and (113) in the
case k > 0. So the minimum of the potential (118) is now

The hydrodynamic expansion analogous to Eq. (115) is

Verf (r./|k]) B r*e_’ﬂk)

ha)(r*) = Cl +C0<

4[R2 2k
) (Ve (ro/Ik]) eIk
+w<C +C ( 4|k|3/2 2k
+ O(w?). (136)
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Close to the minimum of the potential this becomes

A \/Ee_ﬁr
hy(r,) = C, + C :
o) =1+ g+ )

Y

W, 2 N2V
cVtc

ralel+ e (g g

where  ZT = e™V2(eV2 /merf(¥/2) — 2(¥/2 4 223/4)) »
—0.605. In this region we can make the approximation

2

e‘kTNe_ﬁ k]
r. W2
Following the discussion on the k <0 case of the

previous subsection, the ingoing mode in the low frequency
regime here can be written as

e = Bl = (138)

B (r) ~ AeB (1 + iwr,). (139)
Matching this expression with Eq. (137) we can write
Cy =0,

C,=A e, (140)

+ 1. +
G =A5 e O =-agiVikzre

5 (141)

Therefore, near the boundary with the r = 1/r, coor-

dinate we have
= (jviiz - (-2
5r ’

(142)

h(l)(r) :A

. lwe”
1 [63

and the derivative of this mode with respect to r is

iwe BTk (k| 1
he,(r) —A1f<—6——4>-

r r

(143)

Following the steps of the case k < 0 the admittance is
given by

2rna 2ieB”
()" = {

o o)) o

5
5ry,

w

This implies that the string has an effective tension coupled
to the particle on the brane. This result is analogous to the
case k < 0 obtained in the previous subsection. In the limit
|k| << r? both results can be written as

o 02 o e )

Srh
N27ra’2i
Tk @

(145)

Note that these expressions for the admittance behave as a
power law of |k| instead of an exponential law as in the
finite temperature case, discussed in Sec. III A. These
expressions are singular in the limit |k| — 0. So, this case
will be considered separately in the next subsection.

C. The case k=0

It is now interesting to analyze the limit k — 0 to recover
the pure AdS case. Since Eqs. (134) and (144) are singular
in this limit, we should go back to Eq. (110), which for
k = 0 becomes

d*h,(r,) 2 dh,(r.)
dr? r, dr,

@*h,(r,) =0. (146)

The general solution to this equation can be written as

ho(r.) = ~A(DHY (wr,) + DHY (0r,)),  (147)
2 2

where D, and D, are constants and Hg,l) and H, 512) are the

Hankel functions of first and second kinds, respectively, of

order a. Then, the admittance y (@) = X(w)/F(w) can be

calculated from the ingoing mode Hél)(a)r*) at the IR
2

(r = 0) so that

4naH" (2)
x(w)=- - . (148)
r(wH) (2) 4 3r,H (2) -0l (2))
which in the low frequency regime becomes
2z (i 1y
= ———. 149
o) =25 (2 24) (149)

This expression agrees with [26,27,32] for the pure AdS
space with 7 = 0.

Comparing the imaginary parts of the admittances at zero
temperature and k S 0, Eq. (145), we see that the role
played by r7 in the pure AdS case is played by the constant
|k| in our deformed metric setup. Interestingly, r;, is a UV
scale, while k is an IR one.

V. CONCLUSIONS

Here, in the Conclusions, we will summarize our
achievements and results obtained within our deformed
string/gauge model, by the introduction of an exponential
factor exp (k/r?) in the AdSs metric to study a holographic
description of the Brownian motion. Our choice is based on
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the idea of breaking the conformal invariance but keeping
the Lorentz symmetry for the boundary theory instead of a
Lifshitz scale or a hyperscaling violation as was done, for
instance, in Refs. [26,27,32]. Our geometric setup is
interesting because it may help the description of random
motion of a massive quark in the quark-gluon plasma [47].

Within our model we started studying the finite temper-
ature scenario. In order to do this we have included a
horizon function in the AdSs metric dealing with a
deformed AdS-Schwarzschild black hole which is dual
to a boundary field theory at finite temperature. In this
scenario we computed the string energy for positive and
negative k, as can be seen in Egs. (10) and (11), in
agreement with Refs. [18,27], which also reproduce the
pure AdS behavior (without deformation), as showed in
Eq. (12). In Sec. III we have computed the admittance or
linear response y(w), Eq. (64), and soon after, computing
the diffusion constant, presented in Eq. (67). Both results
are compatible with the literature [32,47]. It is worthwhile
to mention that the sign of the constant k seems to be
irrelevant for the admittance behavior at high temperatures,
as can be seen in Fig. 2.

In Sec. IIIB we have computed the mean square
displacement sz4(¢), from which we have obtained the
ballistic and diffusive regimes of Brownian motion. In the
short time limit from our deformed string/gauge model we
find s%,(7) ~ 1%, Eq. (102), which is the ballistic regime, as
expected. For the long time limit we find sf4(f) ~ Dt,
Eq. (103), which is the diffusive regime [3]. Going further
in the finite temperature scenario within our model, in

Sec. I D, we have checked the fluctuation-dissipation
theorem, as one can see in Eq. (106).

Our last discussion is related to the zero temperature
scenario. In this study, the horizon function in Eq. (4) is
reduced to f(r) = 1. Thus, the AdS deformed metric for
T = 0 can be written as in Eq. (107) and the equation of
motion (EOM), given by Eq. (110), was solved in the
hydrodynamic approximation. We obtained the solutions
for k = 0 and the corresponding admittances, Eqs. (134)
and (144). It is important to mention that the admittances
for T = 0 behave as a power law of |k| while for the finite
temperature case it is an exponential law. It is also
worthwhile to note that the admittances found here in
the deformed AdS space are singular in the limit |k| — 0 in
opposition to the finite temperature case where this limit is
smooth.
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