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In this work we study unpolarized spin 1/2 baryonic deep inelastic scattering (DIS) in the regime of

large Bjorken parameter x. We calculate the corresponding structure functions F 5 (x, g). Our approach is
based on an AdS/QCD model with a deformed background, where we consider an exponential factor in the
AdSs metric. Such a deformation implies the introduction of an anomalous dimension in the model. Our
results for the structure functions are consistent with those found in the literature from experimental data.
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I. INTRODUCTION

Since the beginning of the study of elementary particle
under high energy processes the usage of the deep inelastic
scattering (DIS) became one of the most iconic experiments
in this field, allowing us to probe the proton and neutron
internal structures. The canonical way to study DIS is based
on a non-Abelian gauge field theory known as QCD. In its
fundamental works [1-4], it has been shown that the
canonical dimension A, of an operator O should be
modified by the introduction of an anomalous contribution
Y, which implies that [O] = A, + 7. In particular, in
Refs. [1,3,4] the authors addressed the anomalous dimen-
sion in the context of DIS. Note however the QCD
perturbative techniques are not reliable at low energies.

An alternative way to deal with this problem is based on
the anti—de Sitter/conformal field theory (AdS/CFT) cor-
respondence which relates a conformal N = 4 super Yang-
Mills theory (SYM) with symmetry group SU(N), for
N — o0, living in 3 + 1 dimensional Minkowski spacetime
to a superstring theory in a 10-dimensional curved space-
time (for a review see for instance [5]).
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After breaking conformal invariance one has a phenom-
enological holographic approach known as AdS/QCD.
In this context many important works dealt with DIS
providing interest results as can be seen for instance in
Refs. [6-38]. Most of these references studied DIS for
scalar particles and some of them for vector mesons and
baryons. In particular, the pioneer work presented in
Ref. [6], treated holographic DIS within hardwall model
for scalars and fermions taking into account the regimes of
large, small and exponentially small for the Bjorken
parameter x. In Refs. [24,26] the authors studied DIS for
vector particles, while in Refs. [9,14,23,25,38] for bar-
yonic DIS.

Regarding the anomalous dimension, many works dealt
with it within the holographic context, for instance, [39—47].
In particular, in Ref. [41] the authors have argued about a
possible introduction of an anomalous dimension for
DGLAP and BFKL regimes. In Ref. [43] the authors used
such anomalous dimension to fit the masses for mesons and
baryons. In Ref. [25], the authors considered anomalous
dimensions in the holographic description of DIS. In
Refs. [44,46] the authors have used the anomalous dimen-
sion related to the QCD beta function in order to compute
even and odd glueball masses. Interestingly, in Refs. [42,47]
the anomalous dimension decreased the value of the
conformal dimension, without violating the Breitenlohner-
Freedman bound.

Here in this work we will use a holographic model to
compute the baryonic DIS structure functions, F| =
F\(x,q*) and F, = F,(x,g*) for the proton, which are
dependent on the photon virtuality ¢, and the Bjorken
parameter x. In particular our focus is on the large x regime.

Published by the American Physical Society
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To perform our computation we will use an AdS/QCD
model with a deformed AdSs background. This deforma-
tion of the AdSs space breaks the conformal invariance and
generates a mass scale for the fermionic fields. Such a
deformation was considered before in a wide range of AdS/
QCD studies, as can be seen in Refs. [48—62]. Our DIS
structure functions are compared with experimental data
showing good agreement for large x.

This work is organized as follows: in Sec. II we review
briefly the main properties of DIS. In Sec. III we present
our deformed AdS space model which describes the
interaction between a vector and spinor fields. In particular
we compute holographically the wave functions for these
fields. In Sec. IV we compute the DIS interaction action
and extract the expressions for the structure functions
F (g% x) and F,(g?, x). In Sec. V we present our numeri-
cal analysis for the structure functions and compare them
with available experimental data. In Sec. VI we present our
conclusion and discussions.

II. BRIEF REVIEW OF DIS

Scattering processes play an essential role in particle
physics since they allow us to explore most of the hadronic
properties. In particular, deep inelastic scattering (DIS) is
the tool that probes the inner hadronic structure. This
process consists of a lepton scattered off a proton target,
causing its fragmentation into other hadronic states. In
Fig. 1, we depict the Feynmann diagram for the process. It
is the next most straightforward reaction involving strong
interactions, after the e"e~ — hadrons.

In a schematic point of view, DIS is an electromagnetic
scattering off a charged parton, i.e., a quark, inside the
proton by the incident lepton, which can be an electron or a
muon. If the four-momentum transferred by the lepton to
the proton target is large, the inner quark is expelled out
from the target. In the process, the quark radiates gluons
and quark-antiquark pairs that will hadronize soon after.

4

oy

FIG. 1. Deep inelastic scattering between a hadron and a lepton
through the exchange of a virtual photon.

To consider the DIS process quantitatively, we will
discuss the following reaction: /p — IX, where the final
hadronic state X will label all of the produced hadrons by
the proton fragmentation. We can determine from the
fragmentation the inner structure of the target proton.
The so-called Bjorken variable parametrizes this fragmen-
tation according to:

x=—d (1)

where ¢ is the transferred momentum from the lepton to
the proton by a virtual photon and P is the initial proton
momentum, with mass defined as P> = —M?. After setting
the kinematical frame, now we can write the scattering
amplitude as:

Mipoin = Q)i (5 ) i) [ e (X )1P)
o)

where J,(x) is the quark electromagnetic current. The
crucial step in this analysis is how to connect the proton
fragmentation with the emergence of highly energetic
hadrons in the final state. This information is encoded
into the hadronic tensor, constructed from the current
between the proton and the X final state. Since the virtual
photon is responsible for breaking the proton, we can use
the optical theorem

Z/JHX|MV17—>X|2 = 2ImM,,,,p (3)
X

to write the hadronic transition amplitude W**, in terms of
the forward matrix element of two proton currents averaged
over the spin:

e = LS [ e P STOPOHPS). (4

This expression for the hadronic tensor is known as the
Sforward Compton scattering amplitude. Notice that |P, s)
represents a normalizable proton state with spin s, J* is the
electromagnetic quark current introduced before (for a
review see [63]) and 7{O,O,} means that the operators
product is temporally ordered.

For the imaginary part of this amplitude, we can write, in
the Fourier space, as

ImWH
= ISTsm - (P + 9P s P OX) (X1 O) . 5).

4
(5)

X
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where the final state |X) is characterized by the total
invariant mass My, constrained by the energy conservation,
ie., My > M.

To go further into this analysis, we have to address the
form of the hadronic tensor. To do so, the Ward-Takahashi
identity requires that

q,W = q,W" = 0. (6)

This condition allows us to write the hadronic tensor as a
decomposition into scalar functions F, = F,(x, ¢*),
defined in terms of invariant quantities, as follows:

M v 2 u v

W = F, ”ﬂv_q;] _|__)26F2 Pﬂ+q_ pv+q_ )
q q 2x 2x

(7)

We have just written the symmetric terms that will remain
after the contraction with the leptonic tensor, which is
symmetric. Notice also that for spin-1/2 targets, the
hadronic tensor decomposed as in Eq. (7) is independent
on the final hadron spin. The spin dependence is encoded
into the antisymmetric terms of W#¥, relevant only for the
nonphysical region x > 1. This particularity makes the
hadronic DIS cross-section dependent on combinations that
have both hadron and lepton spins or none of them. For our
purposes, we are going to consider only unpolarized
leptons and target protons.

III. THE DEFORMED AdS SPACE MODEL
AND THE DIS

We start this section discussing the deformed AdS/QCD
model which will be used to calculate the DIS structure
functions for fermionic targets. The action for the fields can
be written as:

S = / d5x\/=gL (8)

where L is the Lagrangean density, ¢ is the determinant of
the metric g,,, of the deformed AdSs space, given by:

ds? = gpdx™dx" = e (dz? + n,,dy*dy”).  (9)

Here we have considered the AdS radius R = 1, z is the
holographic coordinate and

Az) = —logz—i—gzz. (10)
The constant k& has dimension of mass squared and is
associated with a QCD mass scale. In this work we use
indices m,n,--- to refer to the 5-dimensional space,
separating into y, v, - - - for the Minkowski spacetime and
the holographic z coordinate. The coordinates x* have

signature (—, 4,4+, +) and also describe the boundary of
the deformed AdS space where the gauge theory lives.

Note that the metric given by Egs. (9) and (10) represent
a deformed AdS space since we introduced the warp factor
¢ into its definition. The present model is inspired by
Refs. [48,49] where this warp factor was introduced in the
AdS metric to obtain the quark-antiquark potential. This
model was used recently to obtain the hadronic spectrum of
particles with various spins including spin 1/2 fermions
[59], which is relevant to the present discussion of DIS with
baryonic target (see our discussion in Sec. III B).

This deformed AdS background formulation can be
compared with the original softwall model [64]. Actually,
they produce different equations of motion despite that both
imply linear confinement. In the particular case of the
fermionic sector, the dilaton in the action of the softwall
does not couple to bulk fermions, meaning that one can not
get a discrete spectrum.

In order to get a discrete spectrum for the fermionic
sector, one needs to modify the softwall model introducing
a hardwall as in Ref. [9], producing a hybrid model, or
introducing a z coordinate dependent mass term as in
Refs. [25,65]. On the other hand, in our deformed back-
ground model, the fermionic discrete spectrum emerges
naturally due to the geometry of the AdS space modified by
the introduction of a quadratic exponential warp factor.

At this point let us briefly discuss the holographic
approach to DIS, inspired by Ref. [6] in the supergravity
approximation for string theory in the large x regime.

Following the holographic dictionary we will connect
the matrix element of canonical DIS given by Eq. (7) with
the supergravity interaction action in AdS space, S,.
Considering that the baryonic particle was scattered off
by a virtual photon with polarization 7,, one can write:

1u(P + ¢, 5x/7*(0)

P7S> = Sint (11)

where the interaction action is given by:
Sint = gv / dzd*y /=g ¥xT, ¥, (12)

with gy a coupling constant related to the electric charge of
the baryon and I', are Dirac gamma matrices in curved
space. The spinors ¥; and Wy are the initial and final states
for the baryon and ¢* is the electromagnetic gauge field.
All those quantities will be computed in the following
sections.

A. Computing the electromagnetic field

Since DIS also involves an electromagnetic interaction,
in this section we will describe the photon in the deformed
AdS space.

Let us to introduce the action for a five dimensional
massless gauge field ¢" given by:
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1
S = —/dsx\/—_gZF’""an, (13)

where F™ = 0"¢" — 0"¢™. This action leads to the
following equations of motion

Oplv/—9gF™] = 0. (14)
Using the gauge fixing
Q" + e 40 (e*p,) =0, (15)
where A = A(z) is given by Eq. (10), one has
O, + A0, + 02, =0 (16)
O¢, - 0.(9,¢") = 0, (17)

where prime denotes derivative with respect to z.

Just before we present the solutions for Egs. (16) and
(17) it is worthy to mention that we will consider, for the
sake of simplicity, and without loss of generality, a photon
with a particular polarization such that 77,¢* = 0. In this
sense only the electromagnetic field component ¢* will
contribute in the scattering process as discussed, e.g., in
Refs. [6,9,25].

The general solution to Eq. (16) has the following form:

1 20 kz? %4—1
¢M(ZvCI):C;4()’)G1,2 B3
0,1
1 7 kz?
——C*(Wk F [ 1=-2=;2,—— 1
2Cﬂ(y) 7 1( 2k> 5 ) ), ( 8)
where
m,n al-“al’
Gpqlz b b and | Fi(a;b;z)
b,

are the Meijer G function and the Kummer confluent
hypergeometric function, respectively. By imposing the
boundary condition ¢,(z.y)|._, = n,e"?, that implies
Cu(y) =0, and considering normalizable (square inte-
grable) solutions, one can write:

nﬂeiq-y 5 q2 q2 kZ2
= gr|i-Llu(1-L -

nﬂeiq‘y
2

B(z,q), (19)

where I'[a] is the Gamma function and U(a, b, z) is the
Tricomi hypergeometric function [66]. This equation rep-
resents the solution for the electromagnetic field that will be
used to compute interaction action in Eq. (12).

B. Computing the baryonic states

In order to obtain the interaction action S;,;, Eq. (12), one
needs to compute the initial and final baryonic states. The
action for the fermionic fields in the deformed AdS space
can be written as

S = / dPx\/qP (D — ms)?, (20)

with the operator P defined as:

1
D = gmnez}/a (am + szfzbc)

_ e-A(z)ySaS + e—A(Z)yﬂaﬂ + 2A’(Z)75, (21)

where 7, = (7, 75), {Va: 75} = 20ap, and s = 7 [7,..5]-
This prescription follows from the pure AdS space given in
Refs. [67-70]. The Dirac’s gamma matrices are represented
by v, and we will use a, b, c to represent indexes in flat
space, m, n, p, q to represent indexes in the deformed AdSs
space, and y, v to represent the Minkowski space. Thus, the
vielbein are given by:

et = eAga ,

with m=0,1,2,3,5. (22)

e = e AR gmema — =Al2)yma

For the spin connection ), , one has:
0 = 40, e" + eﬁe”bl";m, (23)

where the Christoffel symbols are written as:

1
Liin=59"(0nGmg +Onng=OgGmn)» With gnn = A,
(24)

The only nonvanishing I}, for the deformed AdS space are

l"fw = A" ()N l"gS =-A'(z) and Ty =-A'(2)8,

(25)
so that
wy = —w? = 0.A(2)8, (26)

and all other components of the spin connection vanish.
From the action Eq. (20) one can derive the EOM:

(D —ms5)¥ =0, (27)
which can be written as:

(e_A(Z)]/Sas + e_A(Z>]/"3” + 2A/(Z)}’5 _ ms)‘{’ =0, (28)

086004-4



PROTON STRUCTURE FUNCTIONS FROM AN AdS/QCD MODEL ...

PHYS. REV. D 102, 086004 (2020)

where 05 = 0, and mj is the baryon bulk mass. Assuming
that the spinor ¥ can be decomposed into right- and left-
handed chiral components, one has:

1—p° 1+y
. 0) = |5 i) + o el P, (29)
where W) (x) satisfies the usual Dirac equation

(@ — M)¥ (4)(x) = 0 on the flat four-dimensional boundary
space. For the left and right modes, one has y°f, /R =
Ffrrand y*0,fr = Mf, and M is the four-dimensional
fermionic mass.

Considering that the Kaluza-Klein modes are dual to the
chirality spinors one can expand:

Wi /r(¥,2) = ZfZ/R(X”))(E/R(Z)- (30)

By using (30) with (29) in (28) one gets the coupled
equations:

(0, + 24 (2)e*® + mse* )i (2) = +Mrp(z)  (31)
and
(0 +24'(2)e*D) — mse* D)y (2) = ~Myyf (2). (32)

Performing a Bogoliubov transformation

1 r(2) =y (2)e ), (33)

and decoupling Eqgs. (31) and (32), one gets a Schrodinger
equation written for both right and left sectors, given by:

— Wi (2) + [m3e*A) + mse A (2)]wg/L (2)
= My (2). (34)

where M, is the four-dimensional baryon mass for each
mode yj /L and the corresponding potentials are given by:

Vi/(z) = m2e*A@) £ msetDA'(z). (35)

One should note that this equation can be applied to any
warp factor A(z). The pure AdS space is recovered if one
uses A(z) = —log(z), which leads to analytical solutions.
In our case, with A(z) = —logz + kz?/2, Eq. (10), we
need to resort to numerical methods.

From the solutions of Eq. (34) one can read the final
spinor state Wy and the initial spinor state ¥; as linear
combinations of the chiral solutions g/, , as follows:

wmerz2e | () 0+ (5 ko), )

(36)
Wy = efPxyz2ehe K#) wi(z) + (1 _27/5>l//5§(2)]
x g (Py), (37)

where s; and sy are the spin of the initial and final states,
respectively.

Let us comment here about the relation between ms and
the conformal dimension A. In pure AdS space, the bulk
mass m{95, according the AdS/CFT dictionary, is related
to the canonical conformal dimension (A,,) of a boundary
operator O as

|m5AdS| = Acan — 2. (38)

In its fundamental works [1-4], it has been shown that
the canonical dimension A_,, of an operator O should be
modified by the introduction of an anomalous contribution
v, which implies an effective scaling dimension that
Ags = Ay + 7. Then ms could be changed by

|m5| = Acan +v- 2. (39)

Hence, we will take into account this anomalous dimension
in our model to compute the structure functions in baryonic
DIS, as described in Fig. 1. We choose the initial state to be
a proton, and for our purpose, it will be considered as a
single particle (disregarding the internal constituents), as
was done in Ref. [25], with A, = 3/2, which is the usual
fermionic dimension. This could be justified looking at the
proton’s parton distribution functions (PDFs) as presented
in PDG [71]. In those PDG plots one can see that the PDFs
go to zero for x — 1.

Solving numerically Eq. (34) for the ground state
(n=1) we obtain the target proton wave function ¥,
shown in Fig. 2 for both left and right chiralities.

In Fig. 3 we also present the numerical wave functions
for both left and right chiralities, obtained by using our
model, from Egs. (34) and (37), for some final hadronic
states (n = 2, 3, 4, 5).

In Fig. 4, we present the potentials considered in the
Schrodinger equation (34) for left and right chiralities,
defined by Eq. (35). The choice of the different values for
ms used in this section will be clarified in Sec. V, together
with our numerical results for the structure functions F ,.

IV. THE DIS INTERACTION ACTION

In this section we will compute explicitly the DIS
interaction action. In order to do this, let us recall
Egs. (11) and (12), so that:

086004-5
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FIG.2. Chiral wave functions from Eqgs. (34) and (36) (left with
solid line and right with dashed line) for the target proton
M, =M, =0.938 GeV) using k= 0.443% GeV? and ms =
0.878 GeV.

’7,u<P + q’sX|Jﬂ(Q)|va> = Sint
= gv/dzd4y\/—g¢”‘ijxrﬂ‘~f’i.
(40)

Using the definitions given by Eqgs. (22) and (24), one can
write the interaction action S;,, as:

Wx2[2]
0.6
0.4

0.2

0.2

0.4

0.6

0.2

0.4

-0.6

FIG. 3.

S = g / dzd*y /=G5, Pyey, ¥,
=gy / dzd*y/=ge ™ n" ¢, Yx e’ 5%, ¥,
=gy / dzd*y /=g e, Pxy,¥;

eZkzz
=gy / dzd*y

Z4 ¢ﬂli’X7ﬂ\Pi' (41)

The initial and final spinors states, ¥; and Wy, are given
by Eqgs. (36) and (37). One should note that:

_ —iPyy 2 -k E
Py = e xVz%e™ n, (Py)

« [(1 +275>w§(z) 4 (%)wis(z)} (42)

With these results and the gauge field ¢, given by Eq. (19),
using B = B(z,q), we can write the interaction term as
follows:

Wx3(2)
0.6
04

0.2

-0.2

0.4

-0.6

0.2

-0.4

-0.6

Chiral wave functions from Egs. (34) and (37) for some final excited states with n = 2, 3, 4, 5, using k = 0.4432 GeV? and

ms = 0.878 GeV. In each panel, the left chirality is represented by a solid line and the right chirality by a dashed line.
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g V
Sint = ZV/d4ydze i(Po=P=a)yyp [ (PL‘//L +PRII/R>7/4(PL‘//L +PRWR) ]B

g
— 7‘/(271)454( —P—qg)n* /dZ[ Sx}/ﬂPRuv wiw B+ ”?xyﬂPL“Y VW B

g _ N _ N
- 4 (2ﬂ>454(PX -P- Q)'I” [usxnyRus,-IL + usx}/uPLus,-IR]7

2

where the 7/, are defined in terms of the solutions of the
chiral fermions and the solution of the field B, so that:

TriL = /dZB<Z7Q)W)Ig/L(Z’PX)W;Q/L(Z’P)' (44)
From Egs. (40) and (43), one gets:

n,(Px|J*(q)|P) = (27)*8*(Px — P — q)n, (P + q|J*(0)|P)

=85 (Py—P—q)
Xnﬂ[usxyﬂﬁRusiIL +ﬁsx}/ﬂPLux,-IR]

(45)

70T
60} ; i 1
: k=(0.443) GeV?, M5=0.878 GeV :

k=(0.583)? GeV?, M5=0.565 GeV
rrrrrrrr k=(0.612) GeV?, M5=0.505 GeV

50

40

~N
=
> 30
20 B
10
0 -
0 1 2 3 4 5 6
z
.
60
k=(0.443)? GeV?, ms=0.878 GeV
k=(0.583)% GeV?, ms=0.565 GeV
o k=(0.612)? GeV?, ms=0.505 GeV
20
N
o
>

-20

—40 ) i
0 1 2 3 4 5 6
z

FIG. 4. Chiral potentials given by (35) for the target proton and
the final hadronic state X for some values of k and ms.

(43)

n.(P1J*(q)|Px) = (27)*6*(Px — P = q)n,(P|J*(0)|P + q)

Geft
:%54(PX_P_‘])
X nv[uxiyﬂPRu.\'XIL + u‘v;yﬂﬁ)Lu.\'XIRL
(46)
where g 1s an effective coupling constant related to gy.

Contracting the photon polarization with the hadronic
tensor, Eq. (7), one has:

M, W = ’7’” ZngffS M5~ (P +4q)%)

M2 SisSx
x [ J’”PRM YyPRM I%
+ uSXy"PRusiuSiy PLuSXILIR
+ iy, y"i)Lus i, y”PRuS TRL;

+us y”PLus v}/ PLus ZR] (47)

As we are interested in a spin independent scenario, by
using the following property

D (o) (@)(p) =

s

(F'pu+ M)y (48)

we perform a summation over the initial and final spin
states, s; and sy, respectively, and then applying trace
engineering, one gets:

o, Wi — i S S(My = (P +q)%)
M2

o {(I%w%o {(P-n)Z—én-nqu-q)

where we have used p=y*p,, {rs.7,} =0, and
PR/LY” = }’”PL/R-

In order to get the expressions for the structure functions
we need to sum over the outgoing states Py, as presented in
Eq. (5). Carrying on this sum to the continuum limit we
can evaluate the invariant mass delta function. Following
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Ref. [6], this integration will be related to the functional
form of the mass spectrum of the produced particles with
the excitation number 7,

oM2\ !
on )

oM~ (P + 4) o

that for the soft and hard wall models accounts for the
lowest state produced at the collision, since the spectrum is
linear with n [6,9]. In our case, this delta will account
for 1/M%.

Taking into account our choice of transversal polariza-
tion (17 - ¢ = 0), the hadronic tensor has the following form:

2x
nm,W* = n*F (g%, x) + p (n-P)*F3(¢*.x). (50

From this equation one can construct explicitly the bar-
yonic DIS structure functions, such as:

2 gesz 2 of1-x
F](Q,X)ZT Mo\ | M+ q — I,Zg

2
Fy(q% x) :?;(I%JFI%)— (52)

where My = My (g, x) is mass of the effective final
hadron related to the mass of the initial hadron:

1 —x
wien =M (P o)

Note that the two structure functions are related by:

2
G M

Fi(q* x) :%Mg
X

1 —x
M%+qz< X >ILIR

1 2xM?
syrn (14 250), (54

so that, in the limit of My > M, ¢ > M, and x — 1, one
finds

1
Fl(qz,x)%ze(qz,x), (55)

which behaves like the Callan-Gross relation 2xF; = F»,
for x — 1.

TABLE 1. This table summarizes our numerical fit of exper-
imental data. These parameters provide the proton mass as
0.938 GeV and the structure F,(x, g*) shown in Fig. 5.

X ms (GeV) k (GeV?) ggff y

0.85 0.878 0.4432 1.83 0.378
0.75 0.565 0.5832 1.65 0.065
0.65 0.505 0.6122 3.65 0.005

V. NUMERICAL RESULTS FOR THE
STRUCTURE FUNCTIONS

In this section we will present our numerical setup and
results for the structure functions F (x, ¢*) and F, (x, ¢?) for
some specific values of the Bjorken parameter x = 0.65,
0.75, 0.85. These values were chosen since they correspond
to the highest value of x available experimental data [72,73].

In Table I, we present our fit which comes from the
numerical solution of Eqgs. (34) and (52). As discussed
before, the bulk mass ms is a function of A, = 3/2 and
the anomalous dimension y, given by Eq. (39). In order to
fit the proton mass (m, = 0.938 GeV) and the experimen-
tal data for F,(x, ¢*) we have obtained the values for ms, k,
% and y for each value of x.

The Fig. 5 presents our main results. It shows the
structure function F,(x,q?) against ¢*> for x = 0.65,
0.75, 0.85, compared with available experimental data
from SLAC [72] and BCDMS [73] collaborations. One
can notice that for x = 0.65, 0.75 our model deviates from
experimental data for very large ¢°. As expected, our model
works better for large x.

In Fig. 6 we show our results for the ratio F,/2F; versus
g, where one can see that this ratio is approximately equal to
one, especially for large ¢> and x — 1, as anticipated by

0.100

0.050 | e

% o010}
=

w

x=0.65 SLAC

0.005 x=0.65 BCDMS

a
v

*  x=0.75 SLAC
+ x=0.75BCDMS
*

x=0.85 SLAC

0.001

9%(GeV?)

FIG.5. Comparison between experimental data [72,73] and our
results for F,(x, ¢*) as a function of ¢* for x = 0.65, x = 0.75,
and x = 0.85 from top to bottom. The dotted, dot-dashed, and
solid lines represent our theoretical fits for x = 0.65, x = 0.75,
and x = 0.85, respectively. The numerical parameters of the fits
are given in Table L.
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Fa (x,qz)
2F (x q2

0.8

0.7

0.6

0 50 100 150 200 250
q%(GeV?)

FIG. 6. Ratio between F,(x, ¢?) and 2F(x, ¢*) from Egs. (51)
and (52) as a function of ¢ for x = 0.65, x = 0.75 and x = 0.85.
The dotted, dashed, and dot-dashed lines represent our results.
The solid line represents the ratio equal to 1.

Eq. (55). It is worthwhile to mention that this is an
approximately Callan-Gross relation F, = 2xFy, forx — 1.

VI. CONCLUSIONS

In this section we present our conclusions regarding the
results achieved within our holographic description for the
baryonic DIS structure functions F;(x, ¢*) and F,(x, g*).
Our AdS/QCD model is characterized by a deformation in
AdS space with the introduction of an exponential factor in
its metric. One feature of this is that it generates a mass gap
for the baryonic sector contrary to the original softwall
model. In this approach, the photon has analytical solution
while the baryonic fields are numerical. Besides, our model
takes into account an anomalous contribution to the
canonical scaling dimension of a boundary operator.

In order to compare with experimental data, we have
chosen the target particle as a single proton. Due to the

kinematical region and the large x regime we considered
the proton to be punctual. This assumption has support on
data from PDG showing that the parton distribution
functions (PDF) go to zero in the limit of x — 1. Our
model captures the lepton-proton DIS phenomenology for
the range 7 < g*> < 40 Gev?, as can be seen in Fig. 5, for
x = 0.65, 0.75, 0.85. As expected, our model produces
better results for large x.

We also found the numerical results for F (x, ¢*) as can
be seen in Fig. 6, presented through the ratio F,/2F; as a
function of g. This ratio is similar to the Callan-Gross
relation considering x — 1.

As a final comment, let us mention that the technique
developed here for spin 1/2 baryons could be well extended
to baryons with higher spins like 3/2, 5/2, etc., despite one
does not have experimental data for comparison.
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