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In this work we study unpolarized spin 1=2 baryonic deep inelastic scattering (DIS) in the regime of
large Bjorken parameter x. We calculate the corresponding structure functions F1;2ðx; q2Þ. Our approach is
based on an AdS/QCD model with a deformed background, where we consider an exponential factor in the
AdS5 metric. Such a deformation implies the introduction of an anomalous dimension in the model. Our
results for the structure functions are consistent with those found in the literature from experimental data.
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I. INTRODUCTION

Since the beginning of the study of elementary particle
under high energy processes the usage of the deep inelastic
scattering (DIS) became one of the most iconic experiments
in this field, allowing us to probe the proton and neutron
internal structures. The canonical way to study DIS is based
on a non-Abelian gauge field theory known as QCD. In its
fundamental works [1–4], it has been shown that the
canonical dimension Δcan of an operator O should be
modified by the introduction of an anomalous contribution
γ, which implies that ½O� ¼ Δcan þ γ. In particular, in
Refs. [1,3,4] the authors addressed the anomalous dimen-
sion in the context of DIS. Note however the QCD
perturbative techniques are not reliable at low energies.
An alternative way to deal with this problem is based on

the anti–de Sitter/conformal field theory (AdS=CFT) cor-
respondence which relates a conformalN ¼ 4 super Yang-
Mills theory (SYM) with symmetry group SUðNÞ, for
N → ∞, living in 3þ 1 dimensional Minkowski spacetime
to a superstring theory in a 10-dimensional curved space-
time (for a review see for instance [5]).

After breaking conformal invariance one has a phenom-
enological holographic approach known as AdS/QCD.
In this context many important works dealt with DIS
providing interest results as can be seen for instance in
Refs. [6–38]. Most of these references studied DIS for
scalar particles and some of them for vector mesons and
baryons. In particular, the pioneer work presented in
Ref. [6], treated holographic DIS within hardwall model
for scalars and fermions taking into account the regimes of
large, small and exponentially small for the Bjorken
parameter x. In Refs. [24,26] the authors studied DIS for
vector particles, while in Refs. [9,14,23,25,38] for bar-
yonic DIS.
Regarding the anomalous dimension, many works dealt

with it within the holographic context, for instance, [39–47].
In particular, in Ref. [41] the authors have argued about a
possible introduction of an anomalous dimension for
DGLAP and BFKL regimes. In Ref. [43] the authors used
such anomalous dimension to fit the masses for mesons and
baryons. In Ref. [25], the authors considered anomalous
dimensions in the holographic description of DIS. In
Refs. [44,46] the authors have used the anomalous dimen-
sion related to the QCD beta function in order to compute
even and odd glueball masses. Interestingly, in Refs. [42,47]
the anomalous dimension decreased the value of the
conformal dimension, without violating the Breitenlohner-
Freedman bound.
Here in this work we will use a holographic model to

compute the baryonic DIS structure functions, F1 ¼
F1ðx; q2Þ and F2 ¼ F2ðx; q2Þ for the proton, which are
dependent on the photon virtuality q2, and the Bjorken
parameter x. In particular our focus is on the large x regime.
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To perform our computation we will use an AdS/QCD
model with a deformed AdS5 background. This deforma-
tion of the AdS5 space breaks the conformal invariance and
generates a mass scale for the fermionic fields. Such a
deformation was considered before in a wide range of AdS/
QCD studies, as can be seen in Refs. [48–62]. Our DIS
structure functions are compared with experimental data
showing good agreement for large x.
This work is organized as follows: in Sec. II we review

briefly the main properties of DIS. In Sec. III we present
our deformed AdS space model which describes the
interaction between a vector and spinor fields. In particular
we compute holographically the wave functions for these
fields. In Sec. IV we compute the DIS interaction action
and extract the expressions for the structure functions
F1ðq2; xÞ and F2ðq2; xÞ. In Sec. V we present our numeri-
cal analysis for the structure functions and compare them
with available experimental data. In Sec. VI we present our
conclusion and discussions.

II. BRIEF REVIEW OF DIS

Scattering processes play an essential role in particle
physics since they allow us to explore most of the hadronic
properties. In particular, deep inelastic scattering (DIS) is
the tool that probes the inner hadronic structure. This
process consists of a lepton scattered off a proton target,
causing its fragmentation into other hadronic states. In
Fig. 1, we depict the Feynmann diagram for the process. It
is the next most straightforward reaction involving strong
interactions, after the eþe− → hadrons.
In a schematic point of view, DIS is an electromagnetic

scattering off a charged parton, i.e., a quark, inside the
proton by the incident lepton, which can be an electron or a
muon. If the four-momentum transferred by the lepton to
the proton target is large, the inner quark is expelled out
from the target. In the process, the quark radiates gluons
and quark-antiquark pairs that will hadronize soon after.

To consider the DIS process quantitatively, we will
discuss the following reaction: lp → lX, where the final
hadronic state X will label all of the produced hadrons by
the proton fragmentation. We can determine from the
fragmentation the inner structure of the target proton.
The so-called Bjorken variable parametrizes this fragmen-
tation according to:

x ¼ −
q2

2P · q
; ð1Þ

where q2 is the transferred momentum from the lepton to
the proton by a virtual photon and P is the initial proton
momentum, with mass defined as P2 ¼ −M2. After setting
the kinematical frame, now we can write the scattering
amplitude as:

iMlp→lX ¼ ðiQÞūγμu
�

i
q2

�
ðieÞ

Z
d4yeiq·yhXjJμðyÞjPi;

ð2Þ

where JμðxÞ is the quark electromagnetic current. The
crucial step in this analysis is how to connect the proton
fragmentation with the emergence of highly energetic
hadrons in the final state. This information is encoded
into the hadronic tensor, constructed from the current
between the proton and the X final state. Since the virtual
photon is responsible for breaking the proton, we can use
the optical theorem

X
X

Z
dΠXjMγp→Xj2 ¼ 2ImMγp→γp ð3Þ

to write the hadronic transition amplitude Wμν, in terms of
the forward matrix element of two proton currents averaged
over the spin:

Wμν ¼ i
4π

X
s

Z
d4yeiq:yhP; sjT fJμðyÞJνð0ÞgjP; si: ð4Þ

This expression for the hadronic tensor is known as the
forward Compton scattering amplitude. Notice that jP; si
represents a normalizable proton state with spin s, Jμ is the
electromagnetic quark current introduced before (for a
review see [63]) and T fO1O2g means that the operators
product is temporally ordered.
For the imaginary part of this amplitude, we can write, in

the Fourier space, as

ImWμν

¼ 1

4

X
X

δðM2
X − ðPþ qÞ2ÞhP; sjJμð0ÞjXihXjJνð0ÞjP; si;

ð5ÞFIG. 1. Deep inelastic scattering between a hadron and a lepton
through the exchange of a virtual photon.
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where the final state jXi is characterized by the total
invariant massMX, constrained by the energy conservation,
i.e., MX > M.
To go further into this analysis, we have to address the

form of the hadronic tensor. To do so, the Ward-Takahashi
identity requires that

qμWμν ¼ qνWμν ¼ 0: ð6Þ

This condition allows us to write the hadronic tensor as a
decomposition into scalar functions F1;2 ≡ F1;2ðx; q2Þ,
defined in terms of invariant quantities, as follows:

Wμν ¼ F1

�
ημν −

qμqν

q2

�
þ 2x

q2
F2

�
Pμ þ qμ

2x

��
Pν þ qν

2x

�
:

ð7Þ

We have just written the symmetric terms that will remain
after the contraction with the leptonic tensor, which is
symmetric. Notice also that for spin-1=2 targets, the
hadronic tensor decomposed as in Eq. (7) is independent
on the final hadron spin. The spin dependence is encoded
into the antisymmetric terms of Wμν, relevant only for the
nonphysical region x > 1. This particularity makes the
hadronic DIS cross-section dependent on combinations that
have both hadron and lepton spins or none of them. For our
purposes, we are going to consider only unpolarized
leptons and target protons.

III. THE DEFORMED AdS SPACE MODEL
AND THE DIS

We start this section discussing the deformed AdS/QCD
model which will be used to calculate the DIS structure
functions for fermionic targets. The action for the fields can
be written as:

S ¼
Z

d5x
ffiffiffiffiffiffi
−g

p
L ð8Þ

where L is the Lagrangean density, g is the determinant of
the metric gmn of the deformed AdS5 space, given by:

ds2 ¼ gmndxmdxn ¼ e2AðzÞðdz2 þ ημνdyμdyνÞ: ð9Þ

Here we have considered the AdS radius R ¼ 1, z is the
holographic coordinate and

AðzÞ ¼ − log zþ k
2
z2: ð10Þ

The constant k has dimension of mass squared and is
associated with a QCD mass scale. In this work we use
indices m; n; � � � to refer to the 5-dimensional space,
separating into μ; ν; � � � for the Minkowski spacetime and
the holographic z coordinate. The coordinates xμ have

signature ð−;þ;þ;þÞ and also describe the boundary of
the deformed AdS space where the gauge theory lives.
Note that the metric given by Eqs. (9) and (10) represent

a deformed AdS space since we introduced the warp factor
ekz

2

into its definition. The present model is inspired by
Refs. [48,49] where this warp factor was introduced in the
AdS metric to obtain the quark-antiquark potential. This
model was used recently to obtain the hadronic spectrum of
particles with various spins including spin 1=2 fermions
[59], which is relevant to the present discussion of DIS with
baryonic target (see our discussion in Sec. III B).
This deformed AdS background formulation can be

compared with the original softwall model [64]. Actually,
they produce different equations of motion despite that both
imply linear confinement. In the particular case of the
fermionic sector, the dilaton in the action of the softwall
does not couple to bulk fermions, meaning that one can not
get a discrete spectrum.
In order to get a discrete spectrum for the fermionic

sector, one needs to modify the softwall model introducing
a hardwall as in Ref. [9], producing a hybrid model, or
introducing a z coordinate dependent mass term as in
Refs. [25,65]. On the other hand, in our deformed back-
ground model, the fermionic discrete spectrum emerges
naturally due to the geometry of the AdS space modified by
the introduction of a quadratic exponential warp factor.
At this point let us briefly discuss the holographic

approach to DIS, inspired by Ref. [6] in the supergravity
approximation for string theory in the large x regime.
Following the holographic dictionary we will connect

the matrix element of canonical DIS given by Eq. (7) with
the supergravity interaction action in AdS space, Sint.
Considering that the baryonic particle was scattered off
by a virtual photon with polarization ημ, one can write:

ημhPþ q; sXjJμð0ÞjP; si ¼ Sint ð11Þ

where the interaction action is given by:

Sint ¼ gV

Z
dzd4y

ffiffiffiffiffiffi
−g

p
ϕμΨ̄XΓμΨi; ð12Þ

with gV a coupling constant related to the electric charge of
the baryon and Γμ are Dirac gamma matrices in curved
space. The spinors Ψi and ΨX are the initial and final states
for the baryon and ϕμ is the electromagnetic gauge field.
All those quantities will be computed in the following
sections.

A. Computing the electromagnetic field

Since DIS also involves an electromagnetic interaction,
in this section we will describe the photon in the deformed
AdS space.
Let us to introduce the action for a five dimensional

massless gauge field ϕn given by:
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S ¼ −
Z

d5x
ffiffiffiffiffiffi
−g

p 1

4
FmnFmn; ð13Þ

where Fmn ¼ ∂mϕn − ∂nϕm. This action leads to the
following equations of motion

∂m½
ffiffiffiffiffiffi
−g

p
Fmn� ¼ 0: ð14Þ

Using the gauge fixing

∂μϕ
μ þ e−A∂zðeAϕzÞ ¼ 0; ð15Þ

where A ¼ AðzÞ is given by Eq. (10), one has

□ϕμ þ A0∂zϕμ þ ∂2
zϕμ ¼ 0 ð16Þ

□ϕz − ∂zð∂μϕ
μÞ ¼ 0; ð17Þ

where prime denotes derivative with respect to z.
Just before we present the solutions for Eqs. (16) and

(17) it is worthy to mention that we will consider, for the
sake of simplicity, and without loss of generality, a photon
with a particular polarization such that ημqμ ¼ 0. In this
sense only the electromagnetic field component ϕμ will
contribute in the scattering process as discussed, e.g., in
Refs. [6,9,25].
The general solution to Eq. (16) has the following form:

ϕμðz; qÞ ¼ C1
μðyÞG2;0

1;2

�
kz2

2

���� q
2

2k þ 1

0; 1

�

−
1

2
C2
μðyÞkz21F1

�
1 −

q2

2k
; 2;−

kz2

2

�
; ð18Þ

where

Gm;n
p;q

�
z

���� a1 � � � apb1 � � � bq

�
and 1F1ða; b; zÞ

are the Meijer G function and the Kummer confluent
hypergeometric function, respectively. By imposing the
boundary condition ϕμðz; yÞjz¼0

¼ ημeiq·y, that implies
C1
μðyÞ ¼ 0, and considering normalizable (square inte-

grable) solutions, one can write:

ϕμðz; qÞ ¼ −
ημeiq·y

2
kz2Γ

�
1 −

q2

2k

�
U
�
1 −

q2

2k
; 2;−

kz2

2

�

≡ −
ημeiq·y

2
Bðz; qÞ; ð19Þ

where Γ½a� is the Gamma function and Uða; b; zÞ is the
Tricomi hypergeometric function [66]. This equation rep-
resents the solution for the electromagnetic field that will be
used to compute interaction action in Eq. (12).

B. Computing the baryonic states

In order to obtain the interaction action Sint, Eq. (12), one
needs to compute the initial and final baryonic states. The
action for the fermionic fields in the deformed AdS space
can be written as

S ¼
Z

d5x
ffiffiffi
g

p
Ψ̄ðD −m5ÞΨ; ð20Þ

with the operator D defined as:

D≡ gmneanγa

�
∂m þ 1

2
ωbc
m Σbc

�
¼ e−AðzÞγ5∂5 þ e−AðzÞγμ∂μ þ 2A0ðzÞγ5; ð21Þ

where γa ¼ ðγμ; γ5Þ, fγa; γbg ¼ 2ηab, and Σμ5 ¼ 1
4
½γμ; γ5�.

This prescription follows from the pure AdS space given in
Refs. [67–70]. The Dirac’s gamma matrices are represented
by γμ and we will use a, b, c to represent indexes in flat
space,m, n, p, q to represent indexes in the deformed AdS5
space, and μ, ν to represent the Minkowski space. Thus, the
vielbein are given by:

eam ¼ eAðzÞδam; ema ¼ e−AðzÞδma ema ¼ e−AðzÞηma;

with m ¼ 0; 1; 2; 3; 5: ð22Þ

For the spin connection ωμν
m , one has:

ωab
m ¼ ean∂menb þ eanepbΓn

pm; ð23Þ

where the Christoffel symbols are written as:

Γp
mn¼1

2
gpqð∂ngmqþ∂mgnq−∂qgmnÞ; with gmn¼e2AðzÞηmn:

ð24Þ

The only nonvanishing Γp
mn for the deformed AdS space are

Γ5
μν ¼ A0ðzÞημν; Γ5

55 ¼ −A0ðzÞ and Γμ
ν5 ¼ −A0ðzÞδμν ;

ð25Þ

so that

ω5ν
μ ¼ −ων5

μ ¼ ∂zAðzÞδνμ ð26Þ

and all other components of the spin connection vanish.
From the action Eq. (20) one can derive the EOM:

ðD −m5ÞΨ ¼ 0; ð27Þ

which can be written as:

ðe−AðzÞγ5∂5 þ e−AðzÞγμ∂μ þ 2A0ðzÞγ5 −m5ÞΨ ¼ 0; ð28Þ
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where ∂5 ≡ ∂z, and m5 is the baryon bulk mass. Assuming
that the spinor Ψ can be decomposed into right- and left-
handed chiral components, one has:

Ψðxμ; zÞ ¼
�
1 − γ5

2
fLðzÞ þ

1þ γ5

2
fRðzÞ

�
Ψð4ÞðxÞ; ð29Þ

where Ψð4ÞðxÞ satisfies the usual Dirac equation
ð=∂ −MÞΨð4ÞðxÞ ¼ 0 on the flat four-dimensional boundary
space. For the left and right modes, one has γ5fL=R ¼
∓fL=R and γμ∂μfR ¼ MfL, andM is the four-dimensional
fermionic mass.
Considering that the Kaluza-Klein modes are dual to the

chirality spinors one can expand:

ΨL=Rðxμ; zÞ ¼
X
n

fnL=RðxμÞχnL=RðzÞ: ð30Þ

By using (30) with (29) in (28) one gets the coupled
equations:

ð∂z þ 2A0ðzÞeAðzÞ þm5eAðzÞÞχnLðzÞ ¼ þMnχ
n
RðzÞ ð31Þ

and

ð∂z þ 2A0ðzÞeAðzÞ −m5eAðzÞÞχnRðzÞ ¼ −Mnχ
n
LðzÞ: ð32Þ

Performing a Bogoliubov transformation

χnL=RðzÞ ¼ ψnðzÞe−2AðzÞ; ð33Þ

and decoupling Eqs. (31) and (32), one gets a Schrödinger
equation written for both right and left sectors, given by:

− ψ 00
R=LðzÞ þ ½m2

5e
2AðzÞ �m5eAðzÞA0ðzÞ�ψR=LðzÞ

¼ M2
nψ

n
R=LðzÞ; ð34Þ

where Mn is the four-dimensional baryon mass for each
mode ψn

R=L and the corresponding potentials are given by:

VR=LðzÞ ¼ m2
5e

2AðzÞ �m5eAðzÞA0ðzÞ: ð35Þ

One should note that this equation can be applied to any
warp factor AðzÞ. The pure AdS space is recovered if one
uses AðzÞ ¼ − logðzÞ, which leads to analytical solutions.
In our case, with AðzÞ ¼ − log zþ kz2=2, Eq. (10), we
need to resort to numerical methods.
From the solutions of Eq. (34) one can read the final

spinor state ΨX and the initial spinor state Ψi as linear
combinations of the chiral solutions ψR=L, as follows:

Ψi¼eiP·yz2e−kz
2

��
1þγ5
2

�
ψ i
LðzÞþ

�
1−γ5
2

�
ψ i
RðzÞ

�
usiðPÞ

ð36Þ

ΨX ¼ eiPX ·yz2e−kz
2

��
1þ γ5

2

�
ψX
LðzÞ þ

�
1 − γ5
2

�
ψX
RðzÞ

�
× usXðPXÞ; ð37Þ

where si and sX are the spin of the initial and final states,
respectively.
Let us comment here about the relation between m5 and

the conformal dimension Δ. In pure AdS space, the bulk
mass mAdS

5 , according the AdS=CFT dictionary, is related
to the canonical conformal dimension (Δcan) of a boundary
operator O as

jmAdS
5 j ¼ Δcan − 2: ð38Þ

In its fundamental works [1–4], it has been shown that
the canonical dimension Δcan of an operator O should be
modified by the introduction of an anomalous contribution
γ, which implies an effective scaling dimension that
Δeff ¼ Δcan þ γ. Then m5 could be changed by

jm5j ¼ Δcan þ γ − 2: ð39Þ

Hence, we will take into account this anomalous dimension
in our model to compute the structure functions in baryonic
DIS, as described in Fig. 1. We choose the initial state to be
a proton, and for our purpose, it will be considered as a
single particle (disregarding the internal constituents), as
was done in Ref. [25], with Δcan ¼ 3=2, which is the usual
fermionic dimension. This could be justified looking at the
proton’s parton distribution functions (PDFs) as presented
in PDG [71]. In those PDG plots one can see that the PDFs
go to zero for x → 1.
Solving numerically Eq. (34) for the ground state

(n ¼ 1) we obtain the target proton wave function Ψi
shown in Fig. 2 for both left and right chiralities.
In Fig. 3 we also present the numerical wave functions

for both left and right chiralities, obtained by using our
model, from Eqs. (34) and (37), for some final hadronic
states (n ¼ 2, 3, 4, 5).
In Fig. 4, we present the potentials considered in the

Schrödinger equation (34) for left and right chiralities,
defined by Eq. (35). The choice of the different values for
m5 used in this section will be clarified in Sec. V, together
with our numerical results for the structure functions F1;2.

IV. THE DIS INTERACTION ACTION

In this section we will compute explicitly the DIS
interaction action. In order to do this, let us recall
Eqs. (11) and (12), so that:
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ημhPþ q; sXjJμðqÞjP; si ¼ Sint

¼ gV

Z
dzd4y

ffiffiffiffiffiffi
−g

p
ϕμΨ̄XΓμΨi:

ð40Þ

Using the definitions given by Eqs. (22) and (24), one can
write the interaction action Sint as:

Sint ¼ gV

Z
dzd4y

ffiffiffiffiffiffi
−g

p
gμνϕμΨ̄XeανγαΨi

¼ gV

Z
dzd4y

ffiffiffiffiffiffi
−g

p
e−2AημνϕμΨ̄XeAδαμγαΨi

¼ gV

Z
dzd4y

ffiffiffiffiffiffi
−g

p
ημνe−AϕμΨ̄XγμΨi

¼ gV

Z
dzd4y

e2kz
2

z4
ϕμΨ̄XγμΨi: ð41Þ

The initial and final spinors states, Ψi and ΨX, are given
by Eqs. (36) and (37). One should note that:

Ψ̄X ¼ e−iPX ·yz2e−kz
2

ūsXðPXÞ

×
��

1þ γ5
2

�
ψX
LðzÞ þ

�
1 − γ5
2

�
ψX
RðzÞ

�
: ð42Þ

With these results and the gauge field ϕμ given by Eq. (19),
using B≡ Bðz; qÞ, we can write the interaction term as
follows:

FIG. 3. Chiral wave functions from Eqs. (34) and (37) for some final excited states with n ¼ 2, 3, 4, 5, using k ¼ 0.4432 GeV2 and
m5 ¼ 0.878 GeV. In each panel, the left chirality is represented by a solid line and the right chirality by a dashed line.

FIG. 2. Chiral wave functions from Eqs. (34) and (36) (left with
solid line and right with dashed line) for the target proton
(Mp ≡M1 ¼ 0.938 GeV) using k ¼ 0.4432 GeV2 and m5 ¼
0.878 GeV.

EDUARDO FOLCO CAPOSSOLI et al. PHYS. REV. D 102, 086004 (2020)

086004-6



Sint ¼
gV
2

Z
d4ydze−iðPx−P−qÞ·yημ½ūsXðP̂Lψ

X
L þ P̂Rψ

X
RÞγμðP̂Lψ

i
L þ P̂Rψ

i
RÞusi �B

¼ gV
2
ð2πÞ4δ4ðPX − P − qÞημ

Z
dz½ūsXγμP̂Rusiψ

X
Lψ

i
LBþ ūsXγμP̂Lusiψ

X
Rψ

i
RB�

¼ gV
2
ð2πÞ4δ4ðPX − P − qÞημ½ūsXγμP̂RusiIL þ ūsXγμP̂LusiIR�; ð43Þ

where the IR=L are defined in terms of the solutions of the
chiral fermions and the solution of the field B, so that:

IR=L ¼
Z

dzBðz; qÞψX
R=Lðz; PXÞψ i

R=Lðz; PÞ: ð44Þ

From Eqs. (40) and (43), one gets:

ημhPXjJμðqÞjPi¼ ð2πÞ4δ4ðPX−P−qÞημhPþqjJμð0ÞjPi
¼ geff

2
δ4ðPX −P−qÞ

×ημ½ūsXγμP̂RusiILþ ūsXγ
μP̂LusiIR�

ð45Þ

ημhPjJμðqÞjPXi ¼ ð2πÞ4δ4ðPX − P − qÞημhPjJμð0ÞjPþ qi
¼ geff

2
δ4ðPX − P − qÞ

× ην½ūsiγμP̂RusXIL þ ūsiγ
μP̂LusXIR�;

ð46Þ

where geff is an effective coupling constant related to gV .
Contracting the photon polarization with the hadronic
tensor, Eq. (7), one has:

ημηνWμν ¼ ημν
4

X
M2

x

X
si;sX

g2eff
4

δðM2
X − ðPþ qÞ2Þ

× ½ūsXγμP̂Rusi ūsiγ
νP̂RusXI

2
L

þ ūsXγ
μP̂Rusi ūsiγ

νP̂LusXILIR

þ ūsXγ
μP̂Lusi ūsiγ

νP̂RusXIRIL

þ ūsXγ
μP̂Lusi ūsiγ

νP̂LusXI
2
R�: ð47Þ

As we are interested in a spin independent scenario, by
using the following propertyX

s

ðusÞαðpÞðūsÞβðpÞ ¼ ðγμpμ þMÞαβ; ð48Þ

we perform a summation over the initial and final spin
states, si and sX, respectively, and then applying trace
engineering, one gets:

ημηνWμν ¼ g2eff
4

X
M2

X

δðM2
X − ðPþ qÞ2Þ

×

�
ðI2

L þ I2
RÞ
�
ðP · ηÞ2 − 1

2
η · ηðP2 þ P · qÞ

�

þ ILIRM2
XM

2
0η · η

	
; ð49Þ

where we have used p ¼ γμpμ, fγ5; γμg ¼ 0, and
PR=Lγ

μ ¼ γμPL=R.
In order to get the expressions for the structure functions

we need to sum over the outgoing states PX, as presented in
Eq. (5). Carrying on this sum to the continuum limit we
can evaluate the invariant mass delta function. Following

FIG. 4. Chiral potentials given by (35) for the target proton and
the final hadronic state X for some values of k and m5.
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Ref. [6], this integration will be related to the functional
form of the mass spectrum of the produced particles with
the excitation number n,

δðM2
X − ðPþ qÞ2Þ ∝

�∂M2
n

∂n
�−1

that for the soft and hard wall models accounts for the
lowest state produced at the collision, since the spectrum is
linear with n [6,9]. In our case, this delta will account
for 1=M2

X.
Taking into account our choice of transversal polariza-

tion (η · q ¼ 0), the hadronic tensor has the following form:

ημηνWμν ¼ η2F1ðq2; xÞ þ
2x
q2

ðη · PÞ2F2
2ðq2; xÞ: ð50Þ

From this equation one can construct explicitly the bar-
yonic DIS structure functions, such as:

F1ðq2; xÞ ¼
g2eff
4

�
M0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 þ q2
�
1 − x
x

�s
ILIR

þ ðI2
L þ I2

RÞ
�
q2

4x
þM2

0

2

��
1

M2
X

ð51Þ

F2ðq2; xÞ ¼
g2eff
8

q2

x
ðI2

L þ I2
RÞ

1

M2
X
; ð52Þ

where MX ≡MXðq2; xÞ is mass of the effective final
hadron related to the mass of the initial hadron:

M2
Xðq2; xÞ ¼ M2

0 þ q2
�
1 − x
x

�
: ð53Þ

Note that the two structure functions are related by:

F1ðq2; xÞ ¼
g2eff
4

M0

M2
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 þ q2
�
1 − x
x

�s
ILIR

þ 1

2
F2ðq2; xÞ

�
1þ 2xM2

0

q2

�
; ð54Þ

so that, in the limit ofMX ≫ M0, q ≫ M0, and x → 1, one
finds

F1ðq2; xÞ ≈
1

2
F2ðq2; xÞ; ð55Þ

which behaves like the Callan-Gross relation 2xF1 ¼ F2,
for x → 1.

V. NUMERICAL RESULTS FOR THE
STRUCTURE FUNCTIONS

In this section we will present our numerical setup and
results for the structure functionsF1ðx; q2Þ andF2ðx; q2Þ for
some specific values of the Bjorken parameter x ¼ 0.65,
0.75, 0.85. These values were chosen since they correspond
to the highest value of x available experimental data [72,73].
In Table I, we present our fit which comes from the

numerical solution of Eqs. (34) and (52). As discussed
before, the bulk mass m5 is a function of Δcan ¼ 3=2 and
the anomalous dimension γ, given by Eq. (39). In order to
fit the proton mass (mp ¼ 0.938 GeV) and the experimen-
tal data for F2ðx; q2Þ we have obtained the values form5, k,
g2eff and γ for each value of x.
The Fig. 5 presents our main results. It shows the

structure function F2ðx; q2Þ against q2 for x ¼ 0.65,
0.75, 0.85, compared with available experimental data
from SLAC [72] and BCDMS [73] collaborations. One
can notice that for x ¼ 0.65, 0.75 our model deviates from
experimental data for very large q2. As expected, our model
works better for large x.
In Fig. 6 we show our results for the ratio F2=2F1 versus

q2, where one can see that this ratio is approximately equal to
one, especially for large q2 and x → 1, as anticipated by

TABLE I. This table summarizes our numerical fit of exper-
imental data. These parameters provide the proton mass as
0.938 GeV and the structure F2ðx; q2Þ shown in Fig. 5.

x m5 (GeV) k (GeV2) g2eff γ

0.85 0.878 0.4432 1.83 0.378
0.75 0.565 0.5832 1.65 0.065
0.65 0.505 0.6122 3.65 0.005

FIG. 5. Comparison between experimental data [72,73] and our
results for F2ðx; q2Þ as a function of q2 for x ¼ 0.65, x ¼ 0.75,
and x ¼ 0.85 from top to bottom. The dotted, dot-dashed, and
solid lines represent our theoretical fits for x ¼ 0.65, x ¼ 0.75,
and x ¼ 0.85, respectively. The numerical parameters of the fits
are given in Table I.
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Eq. (55). It is worthwhile to mention that this is an
approximately Callan-Gross relation F2 ¼ 2xF1, for x → 1.

VI. CONCLUSIONS

In this section we present our conclusions regarding the
results achieved within our holographic description for the
baryonic DIS structure functions F1ðx; q2Þ and F2ðx; q2Þ.
Our AdS/QCD model is characterized by a deformation in
AdS space with the introduction of an exponential factor in
its metric. One feature of this is that it generates a mass gap
for the baryonic sector contrary to the original softwall
model. In this approach, the photon has analytical solution
while the baryonic fields are numerical. Besides, our model
takes into account an anomalous contribution to the
canonical scaling dimension of a boundary operator.
In order to compare with experimental data, we have

chosen the target particle as a single proton. Due to the

kinematical region and the large x regime we considered
the proton to be punctual. This assumption has support on
data from PDG showing that the parton distribution
functions (PDF) go to zero in the limit of x → 1. Our
model captures the lepton-proton DIS phenomenology for
the range 7 < q2 < 40 Gev2, as can be seen in Fig. 5, for
x ¼ 0.65, 0.75, 0.85. As expected, our model produces
better results for large x.
We also found the numerical results for F1ðx; q2Þ as can

be seen in Fig. 6, presented through the ratio F2=2F1 as a
function of q2. This ratio is similar to the Callan-Gross
relation considering x → 1.
As a final comment, let us mention that the technique

developed here for spin 1=2 baryons could be well extended
to baryons with higher spins like 3=2, 5=2, etc., despite one
does not have experimental data for comparison.
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