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Different approaches to quantum gravity generally predict that the dimension of spacetime at the
fundamental level is not 4. The principal tool to measure how the dimension changes between the IR and
UV scales of the theory is the spectral dimension. On the other hand, the noncommutative-geometric
perspective suggests that quantum spacetimes ought to be characterized by a discrete complex set—the
dimension spectrum. We show that these two notions complement each other and the dimension spectrum
is very useful in unraveling the UV behavior of the spectral dimension. We perform an extended analysis
highlighting the trouble spots and illustrate the general results with two concrete examples: the quantum
sphere and the κ-Minkowski spacetime, for a few different Laplacians. In particular, we find that the
spectral dimensions of the former exhibit log-periodic oscillations, the amplitude of which decays rapidly
as the deformation parameter tends to the classical value. In contrast, no such oscillations occur for either of
the three considered Laplacians on the κ-Minkowski spacetime.
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I. INTRODUCTION

The concept of spacetime, understood as a differentiable
manifold, has proven to be extremely fruitful in modeling
gravitational phenomena. However, it is generally sup-
posed that the smooth geometry breaks down at small
scales or high energies, due to the quantum effects.
Consequently, many of the familiar notions, such as
causality, distance or dimension, have to be refined within
the adopted new mathematical structure.
An essential property of the hypothetical quantum theory

of gravity, as well as a useful input for constructing it, is the
ability to provide meaningful and testable predictions
concerning deviations of physics from general relativity.
The first step in this direction can be done by characterizing
the structure of (static) quantum spacetime, which replaces
the classical differentiable manifold, but can be seen as a
certain tangible generalization of the latter. This is possible
only if an unambiguous notion of a spacetime could be
provided. In some of the approaches, such a notion is

preserved only at the intermediate—semiclassical—level,
while in the full theory spacetime breaks down into discrete
elements, determined either by the fundamental length
scale or a regularization cutoff (see [1] for a conceptual
discussion). In analogy to systems in condensed matter
physics, configurations of the underlying “atoms of space-
time” may form different phases, while (classical) continu-
ous spacetime should emerge in the limit in at least one of
them. Other phases will naturally share some features
with the classical phase. Let us stress in this context the
distinction between the continuum limit, which is a
transition from a discrete protospacetime to the continuous
(but still quantum) spacetime, and the classical limit, in
which we completely recover familiar manifolds of general
relativity.
In the recent years, calculations of the effective number

of spacetime dimensions have become an ubiquitous
method to characterize the quantum spacetime. This is
one of only a few tools allowing us to find some order in the
diverse landscape of quantum gravity models [2], whose
predictions are notoriously difficult to compare. The
dimension can be defined in many different ways, some
of which are based on mathematical assumptions and some
on physical concepts, such as thermodynamics [3]. The
most popular notion remains the spectral dimension, which
can be seen as determined by the mathematical properties
of spectral geometry or by a physical (fictitious) diffusion
process. The advantage of the spectral dimension in the
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latter context is its dependence on a parameter (auxiliary
diffusion time) that can be identified with the length scale at
which the geometry is probed. Therefore, it is naturally
interpreted as a measure of how the dimension of spacetime
changes with scale.
Starting with the seminal paper [4] (updated in [5]),

belonging to the causal dynamical triangulations approach
to quantum gravity, the spectral dimension has been calcu-
lated for Hořava-Lifshitz gravity [6], asymptotic safety
scenario [7], nonlocal quantum gravity [8], spin foammodels
[9] (and kinematical states of loop quantumgravity in general
[10]), causal sets [11,12] andmultifractional spacetimes [13].
The almost universal prediction is the dimensional reduction
at the smallest scales (theUV limit) to thevalueof2, forwhich
general relativity would actually become power-counting
renormalizable. On the other hand, in some cases values
different from 2 are obtained in the UV limit, especially in
nonclassical phases of models with a nontrivial phase
diagram. The situation is similar for quantum gravity in less
than 3þ 1 topological dimensions [6,7,13,14] (see also [15]).
Quantum spacetime often turns out to be described in

terms of broadly understood noncommutative geometry,
which is also sometimes treated as a stand-alone approach to
quantum gravity. A particular example is the κ-Minkowski
spacetime [16], associated with κ-Poincaré algebra [17,18]
andwidely considered in doubly/deformed special relativity
and relative locality. As it was shown in [19], the small-scale
behavior of the spectral dimension of κ-Minkowski space-
time (first calculated in [20]) depends on the Laplacian,
which can be chosen according to several distinct principles.
For 3þ 1-dimensional κ-Minkowski spacetime, there are at
least three possibilities in the UV: the dimension decreasing
to 3, growing to 6 or diverging. However, as we will discuss
in Sec. IV D, there may be a way to reconcile these
contrasting results. Let us also note that [21] presents
an example of a noncommutative toy model [with Uð1Þ ×
SUð2Þ momentum space] that exhibits the dimensional
reduction to 2, i.e., the value obtained in the approaches
to quantum gravity mentioned before.
Recently, it has also been suggested [22,23], in the

context of multifractional theories [24], that the dimension
of quantum spacetimes can acquire complex values. These,
on the other hand, result in log-periodic oscillations in
various physical quantities [25] and can possibly affect the
cosmic microwave background spectrum [23], introduce a
stochastic noise to gravitational waves [26] or modify the
thermodynamics of photons [27]. More generally, complex
dimensions (or complex critical exponents) and the corre-
sponding log-periodic oscillations can also arise in the
systems with discrete scale invariance, which is observed in
many contexts, including some particular cases of holog-
raphy [28], as well as condensed matter physics, earth-
quakes and financial markets, see, e.g., [29].
Meanwhile, it has already been recognized byConnes and

Moscovici in 1995 [30] that quantum spaces—understood

as spaces determined by noncommutative algebras of
observables—ought to be characterized by a discrete subset
of the complex plane—the dimension spectrum, rather than
a single number. More precisely, in noncommutative geom-
etry the dimension spectrum is defined as the set of poles
of the spectral zeta functions of geometrical provenance.
These, on the other hand, are intimately connected with the
celebrated heat trace expansion via the Mellin functional
transform (see [31,32] and also [33]). Both spectral zeta
functions and heat trace expansions are indispensable tools
in quantum field theory [34–36], also in its noncommutative
version [37]. The heat trace can be utilized to compute
the one-loop effective action and allows one to study
the short-distance behavior of propagators, along with
quantum anomalies and some nonperturbative effects
[38]. Consequently, it is justified to expect that the structure
of the entire dimension spectrumof a given noncommutative
geometry is relevant for physics.
Among the noncommutative spaces with known dimen-

sion spectra an interesting example is provided by the
Podleś quantum sphere [39]. For a particular choice of
geometry [40], the dimension spectrum turns out to have
surprising features [41]: First, it exhibits the dimension
drop (also called the dimensional reduction) from 2 to 0.
Secondly, the associated spectral zeta function contains
poles outside the real axis, suggesting self-similarity.
Thirdly, these poles are of second order, which is character-
istic for spaces with conical singularities [42]. Finally,
the corresponding heat trace expansion turns out to be
convergent—in sharp contrast to the case of smooth
manifolds, where it is only asymptotic. As we will show,
the above features are shared by two other geometries (i.e.,
other Laplacians) on the quantum sphere but the fine details
of their heat trace expansions are different. The latter fact
strengthens the observation made in [19] by one of us in the
case of κ-Minkowski space that the spectral dimension
characterizes a given quantum space equipped with a
specific Laplacian.
Let us note that the effective dimensionality of spaces

with a topological dimension lower than 4 is relevant
not only from the perspective of toy models of lower-
dimensional (quantum) gravity but also in the context of the
problem of entanglement entropy [43]. The reason is that
the latter can be derived from the heat trace over the
boundary of some region of space [44].
The purpose of this work is to revisit the concept of the

spectral dimension from the perspective of the dimension
spectrum. We show that the latter is a valuable rigorous tool
to study the UV behavior of the spectral dimension. To this
end, we first provide, in Sec. II, the definitions of both
concepts and highlight the trouble spots. Then, in Sec. III,
we compute the dimension spectra and spectral dimensions
of three Laplacians on the Podleś quantum sphere [39]. We
show that the dimension drop observed by Benedetti [20]
has a finer structure with the square-logarithmic decay and
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log-periodic oscillations. For values of the deformation
parameter q close to the classical value 1 the amplitude
of these oscillations becomes very small and they are
invisible in numerical plots. On the other hand, their
presence is clearly attested for any q by nonreal numbers
in the dimension spectrum. Next, in Sec. IV, we study the
dimension spectra of three different Laplacians on the
κ-Minkowski spacetime in 2, 3 and 4 topological dimen-
sions. We utilize these to identify the leading and
subleading short-scale behavior of the spectral dimensions
obtained in [19]. This example uncovers an ambiguity in
the definition of the spectral dimension related to the order
of the “Laplacian-like” operator. We summarize our find-
ings in Sec. V and discuss their consequences for model
building in quantum gravity.

II. TWO FACES OF DIMENSIONALITY

A. Spectral dimension of a diffusion process

The usual perspective in quantum gravity is to introduce
the spectral dimension as a characteristic of the fictitious
diffusion (or random walk) process on a given configura-
tion space. Let us first consider a diffusion process on a
Riemannian manifold ðM; gÞ of topological dimension d,
which is described by the heat equation

∂
∂σKðx; x0; σÞ þ ΔKðx; x0; σÞ ¼ 0; ð1Þ

with a second-order differential operatorΔ in variable x and
an auxiliary time variable σ ≥ 0 (playing the role of a scale
parameter). In general, the operator Δ does not need to be
the standard Laplacian −gμν∇μ∇ν, μ; ν ¼ 1;…; d—it can
be a Laplace-type operator [38] or even a pseudodifferential
one (see [45]).
In order to solve Eq. (1) one needs to impose appropriate

initial/boundary conditions. Typically, one chooses the
initial condition of the form

Kðx; x0; σ ¼ 0Þ ¼ δðdÞðx − x0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det gðxÞjp : ð2Þ

In particular, in the case of d ¼ 4 and the flat Euclidean
metric, the solution to Eq. (1) can be expressed as an
(inverse) Fourier transform

Kðx; x0; σÞ ¼
Z

d4p
ð2πÞ4 e

ipμðx−x0Þμe−σLðpÞ; ð3Þ

where L is the momentum space representation of Δ.
To characterize the diffusion process (1) we may use the

return probability

PðσÞ ¼ 1

volV

Z
V
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
Kðx; x; σÞ; σ > 0; ð4Þ

where we integrate over a fiducial volume V. (It factorizes
in the leading term and therefore can be taken to infinity if
needed). PðσÞ is the probability that after the time σ the
diffusion will return to the same point x ∈ V ⊂ M. The
spectral dimension is now taken to be a function of the scale
parameter σ defined as

dSðσÞ ≔ −2
∂ logPðσÞ
∂ log σ ¼ −

2σ

PðσÞ
∂PðσÞ
∂σ : ð5Þ

In the case of M being a flat Euclidean space of
topological dimension d, we have dSðσÞ ¼ d for all σ.
Therefore, in general, if dSðσÞ ∈ N for a given value of σ, it
can be interpreted as the effective dimension such that the
ordinary diffusion process in dSðσÞ-dimensional Euclidean
space would approximately behave as the Δ-governed
diffusion on M. If we choose the appropriate Laplacian,
small values of σ allow us to probe the ultraviolet structure
of M, while large ones correspond to its infrared geometry.
However, for sufficiently large σ the function (5) becomes
sensitive to the finite size of M and the curvature of g.
The original definition (5) applies solely in the context of

Riemannian manifolds. The departure from smooth geom-
etry requires a suitable generalization.
Within the framework of deformed relativistic sym-

metries, the noncommutative geometry of spacetime is
accompanied by a curved momentum space. Typically, the
latter is a non-Abelian Lie group, equipped with an
invariant Haar measure μ. This suggests a natural gener-
alization of formula (3) to (cf. [15,19,21])

Kðx; x0; σÞ ¼
Z

dμðpÞ
ð2πÞ4 e

ipμðx−x0Þμe−σLðpÞ; ð6Þ

representing the noncommutative Fourier transform
(i.e., inverse of the group Fourier transform) of the function
e−σL.
More generally, one can adopt the definition of a heat

operator e−σT, which applies for any closed, possibly
unbounded, operator T acting on a separable Hilbert space
H (cf. [45] and Appendix A of [33]). If T is bounded from
below and e−σT is trace class, one defines the heat trace (or
the “return probability”) of an abstract operator T as

PðσÞ ≔ TrHe−σT ¼
X∞
n¼0

e−σλnðTÞ; ð7Þ

where λnðTÞ are the eigenvalues of T counted with their
multiplicities.
For a compact Riemannian manifold M and T ¼ Δ,

the trace can be computed via the standard integral kernel
methods and one obtains (from now on we drop the
normalization)
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TrL2e−σΔ ¼
Z
M
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
Kðx; x; σÞ ¼ PðσÞ;

for any σ > 0.
Formula (7) allows us to extend the notion of the spectral

dimension (5) beyond the realm of smooth manifolds. For
an abstract operator T one has

dSðσÞ ¼ 2σ
TrHTe−σT

TrHe−σT
¼ 2σ

P∞
n¼0 λnðTÞe−σλnðTÞP∞

n¼0 e
−σλnðTÞ : ð8Þ

Let us now point out a few trouble spots with usage of (7)
and hence the spectral dimension:
(1) First, one needs to make sure that formula (7) is well

defined. The trace-class property of e−σT for all
σ > 0 is guaranteed on general grounds if T is a
classical pseudodifferential operator on a compact
manifold M [31,32], but it may fail, for instance, on
infinite-dimensional spaces [46].

(2) If the spacetime manifold M is not compact, then
e−σT is typically not trace class (actually, not even
compact) even if T is an honest classical pseudo-
differential operator. Consequently, to define the
heat trace one needs an IR cutoff in the form of a
trace-class operator F

Pðσ; FÞ ≔ TrHFe−σT: ð9Þ

On a manifold, one can simply take F to be a
function projecting on a compact fiducial volume V,
as done in formula (4). Then, after restoring the
normalization, V can eventually be taken to infinity,
showing the independence of the spectral dimension
on the IR regularization. On the other hand, there is
no reason to assume that a similar factorization
would take place outside of the realm of manifolds.
Although it can be demonstrated for specific exam-
ples, such as the κ-Minkowski spacetime which
we consider in Sec. IV, in general one should
expect to encounter the notorious IR/UV mixing
problem [47].

(3) The multiplicative factor 2 in Eq. (5) originates from
the fact that the Laplacian is a second-order differ-
ential operator. This can be easily adapted if T is the
(pseudo)differential operator of any order η > 0 by
redefining

dSðσÞ ≔ −η
∂ logPðσÞ
∂ log σ : ð10Þ

However, beyond the safe realm of smooth mani-
folds, the order of T is not a priori defined and
Eq. (10) becomes ambiguous. We shall illustrate this
problem in Sec. IV.

(4) The direct computation of the spectral dimension
from formula (8) requires full knowledge about the
spectrum of T, which is seldom granted. One could
resort to asymptotic formulas for heat traces
[cf. Eq. (11)] to unveil the small-σ behavior of the
spectral dimension, but the result can be very
misleading if one quits the UV sector [48].

(5) A consistent interpretation of dSðσÞ as a scale-
dependent dimension of spacetime requires it to
reach the “classical value” in the IR sector. However,
the latter is equal to 4 only in the very specific
instance of R4, in which case actually dSðσÞ ¼ 4
independently of the value of σ. If the classical
spacetime has compact topology or nontrivial cur-
vature, then either dSðσÞ tends to 0 or grows to
infinity as σ → ∞, depending on whether the oper-
ator T has a trivial kernel or not (cf. Δsc versus Δsp

on Fig. 7). As for the latter, one can use the notion of
the spectral variance [49] to remove the zero mode.
In either case, in order to recover the correct
dimension in the IR, one has to match the large-
scale behavior of dSðσÞ of the quantum model with
the corresponding classical spacetime manifold, as
was done for causal dynamical triangulations
in [14].

(6) Finally, in order to study the spectral dimension of
spacetime, which is characterized by a Lorentzian
metric, one first has to perform the Wick rotation of
it, i.e., an analytic continuation to the Euclidean
signature. This is a rather cumbersome procedure
even in the case of curved pseudo-Riemannian
manifolds and it is likely to be even more problem-
atic in quantum spacetime models (see, however,
[50]). We shall not explore this issue here since the
considered examples are either Euclidean from the
start (quantum spheres) or have the well-defined
Euclidean counterparts (κ-Minkowski momentum
spaces [19]).

B. Dimension spectrum from asymptotic expansion

Let us now restart with the spacetime modeled by a
Riemannian manifold M and turn toward the notion of the
dimension spectrum.
Abundant information about the geometry of M can

be learned from the celebrated heat kernel expansion
[31,32,38]:

PðσÞ ∼
σ↓0

X∞
k¼0

akðTÞσðk−dÞ=η þ
X∞
l¼0

blðTÞσl log σ; ð11Þ

where η is the order of the pseudodifferential operator T. A
few comments about formula (11) are in order.
First, the infinite series in formula (11) are asymptotic

series, which are in general divergent for any σ > 0.
Nevertheless, the formula has a precise meaning as an
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asymptotic expansion (cf. [51] and Sec. 2.5 of [33]).
It provides accurate information about the small-σ asymp-
totic behavior of PðσÞ, but in general it fails for larger
values of σ [48].
Secondly, if T is a differential operator, the coefficients

blðTÞ ¼ 0 and akðTÞ are locally computable quantities of
geometrical origin—that is, they can be expressed as
akðTÞ ¼

R
M αTk ðxÞ. On the other hand, if T is only pseu-

dodifferential, then akðTÞ for ðk − dÞ ∈ ηN are not locally
computable [52].
Thirdly, one sees thatd ¼ dimM is encoded in Eq. (11) as

the leadingsmall-σ behavior,whilea0ðTÞ ∝ volðMÞ. IfT is a
scalarLaplace-typeoperatorandM hasnoboundary, then the
odd coefficients a2nþ1ðTÞ vanish. The second coefficient
reads a2ðTÞ ¼ 1

6
ð4πÞ−d=2 RM ddx

ffiffiffiffiffiffiffiffiffi
gðxÞp

RðxÞ, where R is
the scalar curvature, whereas a2nðTÞ for n ≥ 2 involve
higher-order invariants constructed fromtheRiemann tensor.
IfT acts on avector bundleEoverM, thenanðTÞ involve also
the curvature of E—see [38] for a complete catalog.
Finally, Eq. (11) extends to the noncompact setting.

As mentioned earlier, this requires an IR regularizing
operator—typically, a compactly supported smooth func-
tion f on M. In such a case, Pðσ; fÞ still admits an
asymptotic expansion of the form (11) but its coefficients
now depend on f.
Let us now leave the domain of smooth manifolds and

trade the pseudodifferential operator for a positive
unbounded operator acting on a separable Hilbert space
H. In this context, one expects a more general form of the
heat trace expansion (cf. [33]):

PðσÞ ¼ TrHe−σT

∼
σ↓0

X∞
k¼0

X
m∈Z

Xp
n¼0

azðk;mÞ;nðlog σÞnσ−zðk;mÞ; ð12Þ

for a (discrete, but possibly infinite) set of complex
numbers zðk;mÞ. We define the dimension spectrum of
the operator T as the collection of exponents (i.e., a set of
numbers):

SdðTÞ ≔ ∪
k;m

zðk;mÞ ⊂ C; ð13Þ

whence the number (pþ 1), capturing the maximal power
of log σ terms in Eq. (12), is called the order of the
dimension spectrum ord SdðTÞ. It is also useful to define
the maximal (real) dimension in the spectrum

dSd ≔ sup
z∈Sd

ReðzÞ: ð14Þ

From Eq. (7) one immediately reads out that if T is
a classical pseudodifferential operator, then SdðTÞ ⊂
1
η ðd − NÞ ¼ fðd − kÞ=ηjk ∈ Ng and ord SdðTÞ ≤ 2, where
η ¼ ηðTÞ is the order of T and d is the dimension of the

underlying manifold. In particular, if T is a differential
operator, then ord SdðTÞ ¼ 1. In either case we have
dSd ¼ d=η, as expected.
Dimension spectra of higher order can be found

beyond the realm of classical pseudodifferential operators
[33,42,53,54]. In particular, dimension spectra of order 3
were found for Fuchs-type operators on manifolds with
conical singularities [42]. Surprisingly enough, the same
feature was discovered in the very different context of the
quantum sphere [41,55] (see Sec. III). Meanwhile, the
presence of complex numbers in Sd, typical for fractal
spaces [56], is interpreted as a signature of the self-similar
structure [57]. In view of formula (12) this implies in turn
that the heat trace exhibits oscillations [25,27].
The above definition of dimension spectrum is borrowed

from noncommutative geometry à la Connes [58]. The
central notion of the latter is a spectral triple ðA;H;DÞ
consisting of a noncommutative algebra A of space(time)
observables represented onH and an unbounded operatorD
acting on H, all tied together with a set of axioms. In this
context, one talks about the dimension spectrum of a spectral
triple SdðA;H;DÞ [30] (cf. also Sec. 1.4 of [33]), which is
the union of dimension spectra of a family of operators.1

These originate from the fluctuations of the bare operatorD.
On the physical side, considering fluctuatedD amounts to

dressing it with all gauge potentials available for a given
spectral triple. Thus, one could say that SdðDÞ refers to
the “pure gravity” scenario. The internal fluctuations of
geometry caused by the gauge fields will in general change
the dimension spectrum, including its order. They will
not, however, change the maximal dimension dSd (see
Proposition 4.11 of [33]). Observe that the spectral dimen-
sion will also change in presence of other “nongravitational”
fields as the bare Laplacian will get dressed by a potential.
It is also worth noting (see [33,59] for the full story) that

if a positive operator T admits an expansion of the form
(12), then the associated spectral zeta function ζT defined as

ζTðsÞ ≔ TrT−s; for ReðsÞ ≫ 0; ð15Þ

admits a meromorphic extension to the whole complex
plane. This enjoyable interplay is revealed with the help of
the Mellin transform:

Z
∞

0

Tre−σTσs−1dσ ¼ ΓðsÞζTðsÞ; for ReðsÞ ≫ 0: ð16Þ

Formula (16) allows us furthermore to retrieve the
complete structure of poles of ζT . In particular, the set
SdðTÞ coincides with the set of poles of the function Γ · ζT
and, moreover,

1The precise statement is: If ðA;H;DÞ is a spectral triple and
jDj admits an expansion of the form (12), then SdðjDjÞ ⊂
SdðA;H;DÞ and ordSdðjDjÞ ≤ ordSdðA;H;DÞ.
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∀ z ∈ Sd Res
s¼z

ðs − zÞnΓðsÞζTðsÞ ¼ ð−1Þnn!az;n: ð17Þ
Recall that the Gamma function has simple poles at
nonpositive integers with Ress¼−lΓðsÞ ¼ ð−1Þl=l!. In
summary, a term of order ðlog σÞn−1σ−z in the small-σ
expansion ofPðσÞ corresponds to a pole of Γ · ζT of order n
at z ∈ C.
Let us now discuss the properties and problems of

the dimension spectrum, as compared with the spectral
dimension:
(1) On top of the problem of checking whether, for a

given operator T, Eq. (7) is well defined, one needs
to prove the existence of an asymptotic expansion of
the form (12). This is guaranteed if T is a classical
elliptic pseudodifferential operator [52] (cf. also
Appendix A of [33]). On the other hand, beyond
this realm it is a formidable task and no general
results are available (see, however, [33,59]).

(2) In the noncompact case, the dimension spectrum
would suffer from the same problems with the
IR/UV mixing. Both the coefficients az;n and the
set Sd, as well as its order, would in general depend
upon the choice of the IR regularization (9).

(3) As in the case of the spectral dimension, the
dimension spectrum depends on the order η of the
operator at hand. This may result in the ambiguous
interpretation of dSd as the dimension of the under-
lying space (see Sec. IV).

(4) Because the exponents zðk;mÞ are in general com-
plex numbers, the heat trace PðσÞ will exhibit
oscillations as σ tends to 0 and hence so will the
spectral dimension dS. This oscillatory behavior
of dS in the UV may be hard to detect in the
numerical plots, as we illustrate in Sec. III. Within
the dimension spectrum it is, however, well sepa-
rated from the leading divergence rate in the UV,
which is naturally given by dSd. Moreover, we have
dSð0Þ ¼ ηdSd, provided that the limit dSð0Þ exists.

(5) The dimension spectrum has no issues with the zero
modes of T.2 Also, in contrast to the spectral
dimension, the curvature does not affect the expo-
nents zðk;mÞ contained in the spectrum but instead
only the coefficients az;n.

(6) As in the case of the spectral dimension, the dimen-
sion spectrum is not formally defined for spaces with
Lorentzian signature (unless they are Wick rotated).
This is because the relevant operators are wave
operators, which are hyperbolic and not elliptic
[cf. Sec. 2.3 of [38] and Problem (4) in Chap. 5 of
[33] ]. Whereas the formal heat kernel expansion
(11) does not exist, an analog of ak ’s—called the
Hadamard coefficients—can be defined (see [60]).

In the next section, we illustrate the (dis)similarities of
the two notions of dimensionality via a careful analysis of
two classes of examples.

III. QUANTUM SPHERE

A quantum sphere was first introduced by Podleś [39] as
a quantum homogeneous space of the deformed group
SUqð2Þ. As a topological space it is described via the
complex �-algebra Aq generated by A ¼ A�; B and B�

subject to the relations

AB ¼ q2BA; AB� ¼ q−2B�A;

BB� ¼ q−2Að1 − AÞ; B�B ¼ Að1 − q2AÞ; ð18Þ

for a deformation parameter 0 < q < 1. In the limit q → 1,
one recovers the classical algebra of continuous functions
on the unit two-sphere. This abstract algebra is faithfully
represented on a Hilbert spaceHq spanned by orthonormal
vectors jl; mi�, with m∈f−l;−lþ1;…;lg and l ∈ Nþ 1

2
,

mimicking the chiral spinors on S2 [40].
The geometry of quantum spheres has been extensively

studied within the framework of spectral triples [40,41,
61–64]. Among the known geometries particularly inter-
esting is the one equivariant under the action of the Hopf
algebra Uqðsuð2ÞÞ [40]. Its dimension spectrum and heat
trace were computed analytically in [41]. These turned out
to exhibit a number of surprising features:
(a) The maximal dimension in the dimension spectrum

dSd is equal to 0.
(b) The spectrum Sd is of order 3 and the leading term in

the expansion (12) is log2 σ.
(c) Sd is a regular lattice on the complex plane, which

corresponds to log-periodic oscillations of the heat
trace and suggests a self-similar structure of the
quantum sphere.

(d) The expansion (12), expected to be only asymptotic, is
actually convergent for all σ.

The quantum sphere served in [20] as a toy example to
illustrate the phenomenon of dimension drop in quantum
spacetimes. The operator determining the geometry
employed in [20] originates from the Casimir operator
on the Hopf algebra Uqðsuð2ÞÞ. It could be regarded as a
“scalar Laplacian,” which differs slightly from the “spinor
Laplacian” derived from the “Dirac operator” introduced in
[40]—see Sec. III D.
Below we present the computations of both the dimen-

sion spectrum and the spectral dimension for the above-
mentioned two Laplacians on the quantum sphere and a
third—“simplified”—one. The latter allows for explicit
analytic computations while capturing the essential
small-σ behavior of heat traces for both scalar and spinor
Laplacians.

2If ker T is nontrivial, the spectral zeta function ζT is not
well defined, but this can be easily circumvented—see Eq. (1.1)
of [33].
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A. Simplified Laplacian

The simplified Dirac operator DS
q on a quantum sphere

was introduced in [41]. Together with the algebra Aq and
the Hilbert space Hq, it satisfies all of the axioms of a
spectral triple. Its square—the simplified Laplacian—acts
on basis vectors of Hq as

Δsm
q jl; mi� ¼ uq−ð2lþ1Þjl; mi�;

with u ¼ uðqÞ ≔ ðq−1 − qÞ−2. The simple exponential
form of eigenvalues implies a self-similarity relation
Δsm

q ≔ ðDS
qÞ2 ¼ ujDS

q2
j. Note that Δsm

q has no zero modes

and does not have a well-defined classical limit q → 1.
The heat trace associated with Δsm

q reads

Psm
q ðσÞ ¼ TrHq

e−σΔ
sm
q

¼
X
þ;−

X
l∈Nþ1=2

Xl

m¼−l
�hl; mje−σΔsm

q jl; mi�

¼ 2
X

l∈Nþ1=2

ð2lþ 1Þ exp ð−σuq−ð2lþ1ÞÞ

¼ 4
X∞
n¼1

n exp ð−σuq−2nÞ: ð19Þ

When σ tends to infinity, Psm
q ðσÞ decays as e−σuq

−2
.

However, the small-σ behavior of Psm
q ðσÞ cannot be easily

deduced from the doubly exponential series in Eq. (19).
On the other hand, the associated zeta function is a

simple geometric series:

ζΔsm
q
ðsÞ ¼ TrHq

ðΔsm
q Þ−s ¼ 4u−s

X∞
n¼1

nq2ns

¼ 4u−sq2sð1 − q2sÞ−2; ð20Þ

which is meromorphic on the entire complex plane. It has
double poles located solely on the imaginary axis, for
s ¼ πij= log q with j ∈ Z.
In this specific case one can deduce, via (the inverse of)

Eq. (16), the explicit “nonperturbative” formula for the heat
trace (Theorem 4.13 of [41]):

Psm
q ðσÞ ¼ 1

4 log2 q
½2 log2ðuσÞ þGðlogðuσÞÞ logðuσÞ

þ FðlogðuσÞÞ� þ RsmðuσÞ; ð21Þ

where F and G are periodic bounded smooth functions on
R, defined as

GðxÞ ≔ 4γ − 4
X
j∈Z�

Γ
�

πi
log q

j

�
eπijx= log q;

FðxÞ ≔ 1

3
ðπ2 þ 6γ2 − 4 log2 qÞ

þ 4
X
j∈Z�

Γ
�
−

πi
logq

j

�
ψ

�
πi

log q
j

�
eπijx= log q;

with Z� ¼ Znf0g and

RsmðxÞ ≔ 4
X∞
k¼1

ð−1Þkq2k
k!ð1 − q2kÞ2 x

k:

The symbol γ denotes the Euler-Mascheroni constant
and ψ ¼ Γ0=Γ—the digamma function. All of the series
invoked in the above formulas are absolutely convergent
on R.
From Eq. (21) we can quickly read out the dimension

spectrum [see Fig. 1(b)]:

SdðΔsm
q Þ¼ πi

logq
Z∪ð−NÞ

¼
�

πi
logq

kjk∈Z

�
∪f−njn∈Ng; with ordSd¼3:

ð22Þ

It coincides with the set of poles of the function Γ · ζΔsm
q
, as

expected from general theorems discussed around Eq. (16).
The third-order pole at s ¼ 0 yields the leading log2 σ term,
the second-order purely imaginary poles of ζΔsm

q
result in

the oscillating behavior captured by F and G, whereas the
simple poles of Γ at negative integers give rise to the
remainder Rsm.
Let us emphasize that Eq. (21) is indeed a genuine

equality valid for any σ > 0. This is in sharp contrast with a
typical situation of heat trace expansion on a manifold
where one has only an asymptotic formula at one’s
disposal. We can thus compute explicitly the corresponding
spectral dimension:

dq;smS ðσÞ ¼ −2
½G0ðlogðuσÞÞ þ 4� logðuσÞ þ F0ðlogðuσÞÞ þ GðlogðuσÞÞ þ uσR0

smðuσÞ
2 log2ðuσÞ þ GðlogðuσÞÞ logðuσÞ þ FðlogðuσÞÞ þ RsmðuσÞ

: ð23Þ

This function is plotted and analyzed in Sec. III D.
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B. Spinor Laplacian

Let us now turn to the spinor Laplacian Δsp
q . It arises as

the square of the Dirac operatorDq, introduced in [40]. The
latter is a unique Uqðsuð2ÞÞ-equivariant operator, which
renders a real spectral triple. The spinor Laplacian acts on
basis vectors of Hq as

Δsp
q jl; mi� ¼ uðq−ðlþ1=2Þ − qðlþ1=2ÞÞ2jl; mi�;

with u ¼ ðq−1 − qÞ−2, as previously. The operator Δsp
q also

does not have a zero mode. In the limit q → 1 it tends
(strongly) to the spinor Laplacian on S2 [cf. Eq. (30)].
The spectral zeta function associated with Δsp

q can easily
be computed (cf. Propositions 1 and 2 of [41] and also the
Appendix):

ζΔsp
q
ðsÞ ¼ TrHq

ðΔsp
q Þ−s ¼ TrHq

jDqj−2s ¼ ζjDqjð2sÞ

¼ 4u−2s
X∞
k¼1

k
q2ks

ð1 − q2kÞ2s

¼ 4u−2sq2s
X∞
n¼0

Γðnþ 2sÞ
n!Γð2sÞ

q2n

ð1 − q2ðnþsÞÞ2 : ð24Þ

The last formula provides a valid meromorphic extension
to the entire complex plane.
The full asymptotic expansion of Psp

q ðσÞ could again
be deduced from formula (24) via the inverse Mellin
transform, along the lines of [41]. The rather tedious
computations can be bypassed by noting that Δsp

q and
Δsm

q commute and differ by a bounded perturbation
Δsp

q − Δsm
q ¼ −2þ ðΔsm

q Þ−1. Consequently, we can write

Psm
q ðσÞ − Psp

q ðσÞ ¼ Trðe−σΔsm
q − e−σΔ

sp
q Þ

¼ Tre−σΔ
sm
q ð1 − e−σðΔ

sp
q −Δsm

q ÞÞ
≤ k1 − e−σðΔ

sp
q −Δsm

q ÞkPsm
q ðσÞ

¼ Oðσlog2σÞ:
The last equality follows from an operatorial inequality

limt→0
1
t k1 − e−tXk ≤ kXk (see Remark 4.12 of [41]) and

Eq. (21). This means that

Psp
q ðσÞ ¼ 1

4 log2 q
½2 log2ðuσÞ þGðlogðuσÞÞ logðuσÞ

þ FðlogðuσÞÞ� þ RspðuσÞ: ð25Þ
Hence indeed the leading small-σ behavior of Psp

q ðσÞ is
captured by Eq. (21) for the simplified Laplacian. This
harmonizes with the fact that the n ¼ 0 term in the last
formula in Eq. (24) is nothing but ζΔsm

q
.

The structure of the remainder RspðσÞ can be inferred
from Eq. (24) for the zeta function, in close analogy with
Theorem 4.4 of [41]. Observe that ζΔsp

q
has poles located on

a regular lattice in the left complex half-plane [see
Fig. 1(c)]. Consequently, Γ · ζΔsp

q
has third-order poles at

negative integers—yielding σn log2 σ contribution and
double poles elsewhere—giving rise to σπij= log qσn log σ
oscillatory terms. In total,

RspðxÞ ∼
σ↓0

X∞
n¼1

½hn log2 xþ Gnðlog xÞ log xþ Fnðlog xÞ�xn;

ð26Þ
where hn ∈ R and Fn, Gn are periodic bounded functions
of a form similar to that of F and G. Let us stress that the
sum over n need not a priori be convergent, which is just a
restatement of the fact that asymptotic expansions of heat
traces are generically divergent.

(a) (b) (c)

FIG. 1. (a) A comparison of dimension spectra for different Laplacians on two-sphere SdðΔspÞ ¼ SdðΔscÞ and on quantum sphere
(b) SdðΔsm

q Þ, (c) SdðΔsp
q Þ ¼ SdðΔsc

q Þ. The symbols ×, � and • denote points in Sd, corresponding to poles of the function Γ · ζ of order 1,
2 and 3, respectively, while φ ¼ π=ðlog qÞ. An nth-order pole of the function Γ · ζ yields a term proportional to ðlog σÞn−1 in the
asymptotic expansion of PðσÞ [recall Eq. (17)].
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This analysis leads to the conclusion about the dimen-
sion spectrum:

SdðΔsp
q Þ ¼ πi

logq
Z−N

¼
�

πi
logq

k−njk∈Z;n∈N

�
; with ordSd¼ 3:

Observe the difference with respect to Eq. (22), illustrated
in Fig. 1.
Even though we only have an asymptotic formula for

Psp
q , we can deduce the leading behavior of the spectral

dimension associated with the spinor Laplacian. This is
because formula (26) grants us an explicit control on the
remainder. We thus have

dq;spS ðσÞ ¼ −2
½G0ðlogðuσÞÞ þ 4� logðuσÞ þ F0ðlogðuσÞÞ þ GðlogðuσÞÞ

2 log2ðuσÞ þ GðlogðuσÞÞ logðuσÞ þ FðlogðuσÞÞ þOðσÞ ¼ dq;smS ðσÞ þOðσÞ:

Hence, also the spectral dimensions associated with the
spinor and simplified Laplacians on the quantum sphere
share the same leading behavior for small σ—see Fig. 2.

C. Scalar Laplacian

The scalar Laplacian Δsc
q , introduced in [20], originates

from the Casimir operator on the Hopf algebra Uqðsuð2ÞÞ.
It acts on a Hilbert space H0

q (on which the algebra Aq can
also be faithfully represented) spanned by orthonormal
vectors jj; mi, with m ∈ f−j;−jþ 1;…; jg and j ∈ N as

Δsc
q jj; mi ¼ coshð1

2
ð2jþ 1Þ log qÞ − coshð1

2
logqÞ

2 sinh2ð1
2
log qÞ jj; mi

¼ uð ffiffiffi
q

p Þq−1=2ðq−j − 1 − qþ qjþ1Þjj; mi: ð27Þ

In the limit q → 1 the operatorΔsc
q tends (strongly) to the

standard scalar Laplacian on S2 [cf. (31)]. In contradis-
tinction with Δsp

q , it does have a zero mode, which means
that Psc

q ðσÞ tends to dimKerΔsc
q ¼ 1 as σ goes to infinity.

The small-σ behavior of the heat trace can be deduced by
singling out the unbounded part of Δsc

q , as in the case of
Δsp

q . Namely, we have

Psc
q ðσÞ ¼ TrH0

q
e−σΔ

sc
q ¼

X∞
j¼0

ð2jþ 1Þ expf−σuð ffiffiffi
q

p Þq−1=2ðq−j − 1 − qþ qjþ1Þg

¼ 1þ
X∞
n¼1

ð2nþ 1Þ expf−σuð ffiffiffi
q

p Þq−1=2ðq−n − 1 − qþ qnþ1Þg

¼ 1þ
X∞
n¼1

ð2nþ 1Þ expf−σuð ffiffiffi
q

p Þq−1=2q−ng þOðσ log2 σÞ

¼ 1þ 1

2
Psmffiffi

q
p ðσq−1=2Þ þ

X∞
n¼1

expf−σuð ffiffiffi
q

p Þq−1=2q−ng þOðσ log2 σÞ:

FIG. 2. Left panel: the dark blue line is the spectral dimension for the Laplacian Δsm
q , computed numerically from Eq. (8) up to the

100th eigenvalue. The leading behavior in the UV is determined from Eq. (33) as −4=ðlog σÞ (light green line). Right panel: the function
dq;smS after subtraction of the leading behavior −4=ðlog σÞ clearly shows the log-periodic oscillations.

SPECTRAL DIMENSIONS AND DIMENSION SPECTRA OF … PHYS. REV. D 102, 086003 (2020)

086003-9



The last series can be evaluated explicitly (Proposition
12 of [59]) using the inverse Mellin transform
technique:

X∞
n¼1

e−xq
−n ¼ 1

logq

�
logxþ γ−

1

2
logqþHðlogxÞ

�
þOðxÞ;

with

HðxÞ ≔ −
X
k∈Z�

Γ
�
−

2πi
logq

k

�
e2πikx= log q:

This yields

Psc
q ðσÞ ¼

1

2
Psmffiffi

q
p ðσq−1=2Þ þ 1

log q
½logðσuð ffiffiffi

q
p ÞÞ þ γ

þHðlogðσuð ffiffiffi
q

p Þq−1=2ÞÞ� þOðσ log2 σÞ: ð28Þ

Similarly as in the spinor case, one can unfold the
structure of the remainder by an inspection of the zeta
function ζΔsc

q
—see the Appendix. Its meromorphic struc-

ture is very similar to that of ζΔsp
q
. The conclusion is thatΔsc

q

and Δsp
q have identical dimension spectra, both of order 3.

Formula (28) allows us also to compute the spectral
dimension associated with ζΔsc

q
up to the terms of order

OðσÞ at σ ¼ 0,

dq;scS ðσÞ ¼
1
2
σq−1=2ðPsmffiffi

q
p Þ0ðσq−1=2Þ þ 1

log q ½1þH0ðlogðσuð ffiffiffi
q

p Þq−1=2ÞÞ�
1
2
Psmffiffi

q
p ðσq−1=2Þ þ 1

log q ½logðσuð
ffiffiffi
q

p ÞÞ þ γ þHðlogðσuð ffiffiffi
q

p Þq−1=2ÞÞ� þOðσÞ

¼ d
ffiffi
q

p
;sm

S ðq−1=2σÞ þOððlog σÞ−2Þ; ð29Þ

where the last equality follows from the exact formula (23).
It shows that the leading small-σ behavior of the spectral
dimension for the scalar Laplacian is captured by the
rescaled spectral dimension for Δsm

q .

D. Comparison

We now compare the results obtained for the three
Laplacians and contrast them with their classical
counterparts.
Recall that the spinor Laplacian3 acts on spinor harmon-

ics over the unit two-sphere as follows [66,67]:

Δspjl; mi� ¼
�
lþ 1

2

�
2

jl; mi�: ð30Þ

In turn, for the scalar Laplacian (also known as the Laplace-
Beltrami operator) we have [45]

Δscjj; mi ¼ jðjþ 1Þjj; mi: ð31Þ

Let us first have a look at the dimension spectra at Fig. 1.
Both Δsp and Δsc are classical differential operators of
second order acting over a two-dimensional manifold.
Consequently, we have [32] (see also [48] for a direct
computation)

SdðΔspÞ ¼ SdðΔscÞ ¼ 1 − N; with ord Sd ¼ 1: ð32Þ

In the classical case we have dSd ¼ 1, in agreement with
the general formula dSd ¼ d=η, as d ¼ 2 and η ¼ 2. In
contrast, for all three operators on the quantum sphere we
have dSd ¼ 0. In order to interpret this fact as the dimension
drop, i.e., d ¼ 0, we need to argue that the “quantum
Laplacians” are of order η > 0.
In the framework of spectral triples, the operator Dq

verifies the so-called first-order condition [40], which
mimics the demand for a classical Dirac operator to be a
first-order differential operator [58,68]. On the physical
side, this condition limits the admissible fluctuations of an
operator D by gauge fields [69] and thus it is pertinent in
building particle physics models from noncommutative
geometry [70,71]. Since Dq is a first-order operator, for
Δsp

q ¼ D2
q we should set η ¼ 2. The operator DS

q does not
meet the first-order condition [41] and Δsc

q does not come
from a “Dirac” operator at all. Nevertheless, Δsm

q differs
from Δsp

q by a bounded perturbation and so does Δsc
q after a

suitable rescaling and reparametrization q↝
ffiffiffi
q

p
. We can

thus safely assume that ηðΔsc
q Þ ¼ ηðΔsm

q Þ ¼ 2 and conclude
that indeed the dimension of the quantum sphere is 0. The
issue of the order of an operator over a quantum space is
more subtle for the κ-Minkowski space, as we will see in
the next section.
The existence of nonpositive numbers in the dimension

spectra of the two classical Laplacians on the two-sphere
certify the impact of the nontrivial Riemann tensor on the
heat trace [recall Eq. (11)]. The dimension spectra of
quantum Laplacians also contain negative numbers, which

3In the mathematical literature [65] the spinor Laplacian ΔS is
slightly different from Δsp, which is the square of the Dirac
operator =D2. The two operators are related through the Schrö-
dinger-Lichnerowicz formula =D2 ¼ ΔS þ 1

4
R, with R being the

scalar curvature. On the unit two-sphere with a round metric the
difference amounts to a trivial shift Δsp ¼ =D2 ¼ ΔS þ 2.
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suggest that quantum spheres are “curved” in some sense
(see, e.g., [46,72–76] for a discussion of curvature of
quantum spaces). On top of that, these dimension spectra
contain points outside of the real axis, which hint at some
kind of self-similar structure of the quantum sphere [41,57]
(see also [25,27]). Note also that, excluding the simplified
case of Δsm

q , the nonreal points appear all over the left
complex half-plane. This suggests that the curvature and
self-similar structure of a quantum sphere are deeply
interwoven.
Finally, the dimension spectra of quantum Laplacians are

of order 3, which means that they are already beyond the
realm of classical pseudodifferential operators, as the latter
can only have ord Sd ¼ 2. Third-order poles in the dimen-
sion spectra have been detected in the context of manifolds
with conical singularities [42]. They occur when one
studies the conical singularities (and, more generally,
stratified spaces) from the perspective of manifolds with
boundary [77]. Concretely, specific nonlocal boundary
conditions related to the singularity coerce the use of

Fuchs-type operators [54]. Although the mathematical
context here is very different, one might take it as a (not
so surprising) indication that the geometry of the quantum
sphere is not smooth.
We now turn to the analysis of the spectral dimensions.
Let us first have a look at the small-σ behavior of dSðσÞ

for the simplified Laplacian Δsm
q . From Eq. (23) one

deduces the leading behavior in the UV:

dq;smS ðσÞ ¼ −4
log σ

�
1þ πi

log q

X
j∈Z�

jΓ
�

πi
logq

j

�
σ−πij= log q

�

þOððlog σÞ−2Þ: ð33Þ

The function dq;smS for q ¼ 1=2 is illustrated in Fig. 2.
Formula (33) shows that the spectral dimension of Δsm

q
drops to zero in the UV. Observe that the slope −4=ðlog σÞ
does not depend on q. On the other hand, the amplitude of
oscillations exhibits strong dependence on the value of q.
Concretely, for the leading frequency [j ¼ 1 in the sum in
Eq. (33)] we have

AðqÞ ¼
				 π

log q
Γ
�

πi
log q

�				: ð34Þ

The amplitude of oscillations tends to 1 as q → 0 and
decays very rapidly, as eπ

2=ð2ðq−1ÞÞ, when q goes to 1—
see Fig. 3.
In the previous sections we have shown that the leading

UV behavior of the spectral dimension for the spinor
Laplacian is captured by dq;smS . The same is true, after
suitable rescaling, also for the scalar Laplacian, though
with worse precision. The situation is illustrated in Fig. 4
through the numerical summation in Eq. (8) up to the 100th
eigenvalue.
A comparison of the spectral dimension associated with

the operators Δsp
q ;Δsc

q and their classical counterparts Δsp,
Δsc, respectively, is presented in Figs. 5 and 6. The main

FIG. 4. A comparison of the UV behavior of the spectral dimensions for three Laplacians on the quantum sphere for q ¼ 1=3. In the
left panel the dark blue line corresponds to dq;smS ðσÞ and the light green one to dq;spS ðσÞ. In the right panel the dark blue line is dq;smS ðσÞ,
whereas the light red one shows dq

2;sc
S ðqσÞ.

FIG. 3. The q dependence of the amplitude of (leading
frequency) oscillations in the spectral dimension for Δsp

q (dark
blue) andΔsc

q (light red). The former is given by the function AðqÞ
defined in Eq. (34), whereas the latter is Að ffiffiffi

q
p Þ, because of the

relation (29).
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conclusion is that the spectral dimensions of both quantum
Laplacians on the quantum sphere exhibit log-periodic
oscillations in UV. The amplitude of these oscillations
drops very rapidly when q tends to the classical value 1 (see
Fig. 3). In particular, for Δsc

q the value q ¼ e−0.01 ≈ 0.99
adopted in Fig. 1 in [20], we have Að ffiffiffi

q
p Þ ∼ 10−430, which

explains why the oscillations have been overlooked in
that paper.

IV. κ-MINKOWSKI SPACETIME

The κ-Minkowski space was introduced [16] in the
context of quantum groups that describe deformed relativ-
istic symmetries—it is the spacetime that is bicovariant
under the action and coaction (the former is determined by
the algebraic and the latter by the coalgebraic structure) of

the κ-Poincaré Hopf algebra. Both these mathematical
objects can be defined in any number of dimensions
[78] but κ-Poincaré algebra was first derived [17,18] in
the ð3þ 1Þd case, as a contraction of the quantum-
deformed anti–de Sitter algebra Uqðsoð3; 2ÞÞ, obtained
by taking the limit of the (real) deformation parameter
q → 1 and anti–de Sitter radius R → ∞, while their ratio
R log q ¼ κ−1, κ > 0 is kept fixed. Hence the new defor-
mation parameter κ has the dimension of inverse length
(in contrast to the dimensionless q), which allows for
the geometrization of the Planck mass mP ¼ ℏc−1λP,
expressed in terms of Planck length λP. This peculiar
feature enabled application of κ-Poincaré algebra in the
construction of models of so-called doubly special rela-
tivity, which was subsequently recast as the relative locality
framework and serves as an important source for the
quantum gravity phenomenology [79]. The interest in κ-
Poincaré and κ-(anti–)de Sitter algebras is also motivated
by results for the (2þ 1)-dimensional gravity, where it is
known that they may arise from the structure of classical
theory, at least in certain special cases (see [80] and
references therein).
The (nþ 1)-dimensional κ-Minkowski noncommutative

space is the dual of the subalgebra of translations of the
[(nþ 1)-dimensional] κ-Poincaré algebra, since the latter is
naturally interpreted as the algebra of spacetime coordi-
nates. The time X0 and spatial coordinates Xa, a ¼ 1;…; n
satisfy the following commutation relations:

½X0; Xa� ¼
i
κ
Xa; ½Xa; Xb� ¼ 0: ð35Þ

As a vector space, the κ-Minkowski space is isomorphic to
the ordinary Minkowski space in nþ 1 dimensions, which
can be recovered in the classical limit κ → ∞. The Lie
algebra generated by X0; Xa is usually denoted anðnÞ,
where the notation refers to n Abelian and nilpotent
generators Xa.
The corresponding Lie group ANðnÞ has the geometry of

(nþ 1)-dimensional elliptic de Sitter space [81,82]. Group
elements can be written as ordered exponentials, whose
ordering is equivalent to the choice of coordinates on the
group manifold. For example, in the time-to-the-right
ordering a group element has the form

g ¼ e−iP
aXaeiP0X0 ð36Þ

and P0; Pa ∈ R are coordinates in the so-called bicross-
product basis. It is easy to notice that we can interpret
ANðnÞ as momentum space if such exponentials are treated
as plane waves on (nþ 1)-dimensional κ-Minkowski
space. ANðnÞ is equipped with the structure of the algebra
of translations and is related with spacetime co-
ordinate algebra via the group Fourier transform [83,84].
Furthermore, the geometry of momentum space becomes

FIG. 5. The spectral dimension dSðσÞ for Δsc
q (continuous

decaying curve) and Δsp
q (continuous diverging) with q ¼ 0.15,

and for S2 with the scalar (dashed decaying curve) and spinorial
(dashed diverging) Laplacians.

FIG. 6. The spectral dimension dSðσÞ for Δsc
q , with q ¼ 0.1

(bottom continuous curve), q ¼ 0.5 (middle continuous) and
q ¼ 0.9 (top continuous), and for S2 with the scalar Laplacian
(dashed).
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evident in the classical basis (the name refers to the
classical form of expression for the dispersion relation in
this case), which can be introduced via the transformation

p0 ¼ κ sinh

�
P0

κ

�
þ 1

2κ
eP0=κPaPa;

pa ¼ eP0=κPa;

p−1 ¼ κ cosh

�
P0

κ

�
−

1

2κ
eP0=κPaPa: ð37Þ

The above relations lead to the constraints on fp0; pa; p−1g,
−p2

0þpapaþp2
−1¼κ2 and p0 þ p−1 > 0, which describe

the embedding of ANðnÞ as half of an ðn; 1Þ-hyperboloid in
[ðnþ 1Þ þ 1]-dimensional Minkowski space. p−1 is just an
auxiliary coordinate, diverging in the κ → þ∞ limit.
In order to consider the diffusion process (i.e., study the

heat trace) determined byaLaplacianon κ-Minkowski space,
one first has to perform the Wick rotation ðp0↦ ip0;
p−1↦ ip−1;κ↦ iκ;P0↦ iP0Þ. This leads to the Euclidean
momentum space, which has the hyperbolic geometry [19].
The Euclidean version of κ-Minkowski space has also

been studied from the perspective of spectral triples
[85–87] via the star-product realizations [88–90]. In this
framework the algebra (35) is faithfully represented on
the Hilbert space L2ðRnþ1Þ through a left regular group
representation.
As mentioned in the Introduction, there are several

possible choices for a Laplacian on (Euclidean) κ-
Minkowski space. All of them have continuous spectra,
which reflects the noncompactness of the underlying space.
Therefore, in order to define the corresponding heat traces,
one first needs to choose an IR cutoff. A natural choice is a
function f compactly supported on Rnþ1 and promoted to
an operator on L2ðRnþ1Þ through the Weyl-like quantiza-
tion (cf. [86,89]). Fortunately, it turns out that the regu-
larizing function factors out in trace formulas and
contributes just a multiplicative factor kfkL2 [86,87].
This means that the return probability does not depend
on the choice of the IR regularization and can be computed
via the heat kernel formula (6). In the classical basis it
reads [19]4

PðσÞ ¼
Z

dnþ1p
κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
0 þ papa þ κ2

p e−σLðp0;fpagÞ; ð38Þ

where L is the (Euclidean) momentum space representation
of a Laplacian.
In Secs. IVA–IV C we will calculate the spectral

dimensions of κ-Minkowski space equipped with three
distinct Laplacians, in 2, 3 and 4 topological dimensions for

each of them. In this way we improve and extend the results
obtained by one of us in [19]. Furthermore, we compute the
complete dimension spectra of the relevant Laplacians.

A. Bicovariant Laplacian

Let us first consider the Laplacian determined by the
bicovariant differential calculus on the κ-Minkowski space
[91,92], which we call the bicovariant Laplacian. In terms
of bicrossproduct coordinates, the Euclidean momentum
space representation of this Laplacian is given by

LcvðP0;fPagÞ¼ 4κ2 sinh2
�
1

2κ
P0

�
þeP0=κPaPa

þ 1

4κ2

�
4κ2 sinh2

�
1

2κ
P0

�
þeP0=κPaPa

�
2

;

ð39Þ

while in classical coordinates it acquires the familiar
standard form

Lcvðp0; fpagÞ ¼ p2
0 þ papa: ð40Þ

The return probability in 3þ 1 dimensions reads [19]

Pð3þ1ÞðσÞ

¼ π2

2σ3=2
ð2κ2 ffiffiffi

σ
p

−
ffiffiffi
π

p
eκ

2σð2κ2σ − 1Þð1 − erfðκ ffiffiffi
σ

p ÞÞÞ;
ð41Þ

where erfð·Þ is the error function, while in 2þ 1 dimen-
sions we have

Pð2þ1ÞðσÞ ¼
π3=2κ

σ
U

�
1

2
; 0; κ2σ

�
; ð42Þ

where Uða; b; ·Þ is a Tricomi confluent hypergeometric
function. Furthermore, we may also consider the case of
1þ 1 dimensions (not discussed in [19]),

Pð1þ1ÞðσÞ ¼
π3=2κffiffiffi

σ
p eκ

2σð1 − erfðκ ffiffiffi
σ

p ÞÞ: ð43Þ

The exact formulas (41)–(43) for heat traces can be
directly developed into series around σ ¼ 0,

Pð3þ1ÞðσÞ¼
κπ5=2

2
ffiffiffi
σ

p
3
−
κ3π5=2

2
ffiffiffi
σ

p þ4κ4π2

3
−
3κ5π5=2

4

ffiffiffi
σ

p þOðσÞ;

Pð2þ1ÞðσÞ¼
2κπ

σ
þκ3π logσþκ3π

�
1þγþ2log

κ

2

�
þOðσÞ;

Pð1þ1ÞðσÞ¼
κπ3=2ffiffiffi

σ
p −2κ2πþκ3π3=2

ffiffiffi
σ

p þOðσÞ; ð44Þ
4The factor κ in the numerator was missing in [19] but it did

not affect results for the spectral dimension; here we have also
rescaled the integrand by 2.
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where γ is the Euler-Mascheroni constant. From these expansions one can immediately read out the corresponding
dimension spectra

Sdð3þ1Þ ¼
n
3
2

o
∪
n
1−n
2
jn ∈ N

o
¼

n
3
2
; 1
2
; 0;− 1

2
;−1;− 3

2
;…

o
; ord Sd ¼ 1;

Sdð2þ1Þ ¼ 1 − N ¼ f1; 0;−1;−2;…g; ord Sd ¼ 2;

Sdð1þ1Þ ¼ 1
2
ð1 − NÞ ¼

n
1
2
; 0;− 1

2
;−1;…

o
; ord Sd ¼ 1:

ð45Þ

Let us recall that in the 2þ 1 dimensional case the dimension
spectrum is of the second order because of the presence of
logarithmic terms in the expansion of Pð2þ1ÞðσÞ.
We will now turn to results for the spectral dimensions.
From Eq. (41) one finds that in 3þ 1 dimensions the

spectral dimension is given by the expression

dð3þ1Þ
S ðσÞ

¼ 3þ 2κ2σ
2κ

ffiffiffi
σ

p
−

ffiffiffi
π

p
eκ

2σð2κ2σþ 1Þð1− erfðκ ffiffiffi
σ

p ÞÞ
−2κ

ffiffiffi
σ

p þ ffiffiffi
π

p
eκ

2σð2κ2σ − 1Þð1− erfðκ ffiffiffi
σ

p ÞÞ ;

ð46Þ

which has the IR and UV limits limκ
ffiffi
σ

p
→∞ dð3þ1Þ

S ðσÞ ¼ 4

and limκ
ffiffi
σ

p
→0 d

ð3þ1Þ
S ðσÞ ¼ 3, respectively. Analogously, in

2þ 1 dimensions one uses Eq. (42) to get

dð2þ1Þ
S ðσÞ ¼ 2þ κ2σUð3

2
; 1; κ2σÞ

Uð1
2
; 0; κ2σÞ ; ð47Þ

whose IR and UV limits are limκ
ffiffi
σ

p
→∞ dð2þ1Þ

S ðσÞ ¼ 3 and

limκ
ffiffi
σ

p
→0 d

ð2þ1Þ
S ðσÞ ¼ 2, respectively. In 1þ 1 dimensions

(43) leads to

dð1þ1Þ
S ðσÞ ¼ 1þ 2κ2σ

�
1ffiffiffi

π
p

κ
ffiffiffi
σ

p e−κ
2σ

1 − erfðκ ffiffiffi
σ

p Þ − 1

�
; ð48Þ

with the IR and UV limits limκ
ffiffi
σ

p
→∞ dð1þ1Þ

S ðσÞ ¼ 2 and

limκ
ffiffi
σ

p
→0 d

ð1þ1Þ
S ðσÞ ¼ 1, respectively.

B. Bicrossproduct Laplacian

Another possible Laplacian on κ-Minkowski space,
called the bicrossproduct Laplacian, corresponds to the
simplest mass Casimir of κ-Poincaré algebra [18] (let us
stress that any function of this Casimir that has the correct
classical limit is also a Casimir). More precisely, it is the
Euclidean version of the momentum space representation
of the Casimir and has the form

LcpðP0; fPagÞ ¼ 4κ2 sinh2
�
1

2κ
P0

�
þ eP0=κPaPa: ð49Þ

In classical coordinates it becomes

Lcpðp0; fpagÞ ¼ 2κ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 þ papa þ κ2

q
− κ

�
: ð50Þ

It turns out that the corresponding return probability in
3þ 1 dimensions is given by a simple rational function

Pð3þ1ÞðσÞ ¼ π2
2κ2σ þ 1

2κ2σ3
; ð51Þ

while in 2þ 1 dimensions we obtain ([19] in this case had
only numerical results)

Pð2þ1ÞðσÞ ¼
4πκ

σ
e2κ

2σK1ð2κ2σÞ; ð52Þ

where Kαð·Þ is a modified Bessel function of the second
kind. Finally, in 1þ 1 dimensions we have just

Pð1þ1ÞðσÞ ¼
π

σ
: ð53Þ

Observe that in the latter case there is no dependence on the
parameter κ.
The dimension spectra can again be obtained directly

from the expansions around σ ¼ 0 of the exact formulas
(51) and (52) [and the trivial equation (53)]:

Pð3þ1ÞðσÞ ¼
π2

2κ2σ3
þ π2

σ2
;

Pð2þ1ÞðσÞ ¼
2π

κσ2
þ 4κπ

σ
þ 4κ3π log σ

þ 2κ3πð1þ 2γ þ 4 log κÞ þOðσÞ: ð54Þ

Consequently, we have

Sdð3þ1Þ ¼ f3;2g; ordSd¼ 1;

Sdð2þ1Þ ¼ 2−N¼f2;1;0;−1;−2;…g; ordSd¼ 2;

Sdð1þ1Þ ¼ f1g; ordSd¼ 1:

ð55Þ

If we use the standard formula (5), Eq. (51) leads to the
spectral dimension
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dð3þ1Þ
S ðσÞ ¼ 6 −

4κ2σ

2κ2σ þ 1
; ð56Þ

with limκ
ffiffi
σ

p
→∞ dð3þ1Þ

S ðσÞ ¼ 4 and limκ
ffiffi
σ

p
→0 d

ð3þ1Þ
S ðσÞ ¼ 6;

and Eq. (52) leads to

dð2þ1Þ
S ðσÞ ¼ 4 − 4κ2σ

�
1 −

K0ð2κ2σÞ
K1ð2κ2σÞ

�
; ð57Þ

with limκ
ffiffi
σ

p
→∞ dð2þ1Þ

S ðσÞ ¼ 3 and limκ
ffiffi
σ

p
→0 d

ð2þ1Þ
S ðσÞ ¼ 4.

In both cases we observe the dimension growing at small
scales above the classical value (see, however, Sec. IV D),
which—from the perspective of a random walk process
(1)—is the pattern of superdiffusion. Finally, the case of
1þ 1 dimensions is trivial—with no dimensional flow.

C. Relative-locality Laplacian

The last Laplacian that is of our interest has been
proposed in the framework of relative locality. This
relative-locality Laplacian is determined by the square of
the geodesic distance from the origin in momentum space
[93], which has the same form for both the Lorentzian and
Euclidean metric signatures [19], namely, d2ðp0; paÞ ¼
κ2arccosh2ðp−1=κÞ. In bicrossproduct coordinates it
becomes

LrlðP0;fPagÞ

¼−κ2arccosh2
�
cosh

�
1

κ
P0

�
þ 1

2κ2
eP0=κPaPa

�
; ð58Þ

while in classical coordinates,

Lrlðp0;fpagÞ¼−κ2arccosh2
�
1

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0þpapaþ κ2

q �
: ð59Þ

The return probability in 3þ 1 dimensions is now given by

Pð3þ1ÞðσÞ

¼ π5=2κ3

4
ffiffiffi
σ

p e1=ð4κ2σÞ
�
e2=ðκ2σÞerf

�
3

2κ
ffiffiffi
σ

p
�
−3erf

�
1

2κ
ffiffiffi
σ

p
��

;

ð60Þ

in 2þ 1 dimensions by

Pð2þ1ÞðσÞ ¼
π3=2κ2ffiffiffi

σ
p ðe1=ðκ2σÞ − 1Þ ð61Þ

and in 1þ 1 dimensions by

Pð1þ1ÞðσÞ ¼
π3=2κffiffiffi

σ
p e1=ð4κ2σÞerf

�
1

2κ
ffiffiffi
σ

p
�

ð62Þ

([19] had only numerical results for the Laplacian Lrl).

In this case, none of the heat traces (60)–(62) can be
expanded in a series of the form (12). This is because of the
factor e1=σ, which yields an essential singularity at σ ¼ 0.
Consequently, the dimension spectrum of the relative-
locality Laplacian does not exist in any of the three
considered topological dimensions.
On the other hand, given the exact formulas (60)–(62),

we can compute the corresponding spectral dimensions
explicitly:

dð3þ1Þ
S ðσÞ ¼ 1þ 3

2κ2σ

erfð 1
2κ

ffiffi
σ

p Þ − 3e2=ðκ2σÞerfð 3
2κ

ffiffi
σ

p Þ
3erfð 1

2κ
ffiffi
σ

p Þ − e2=ðκ2σÞerfð 3
2κ

ffiffi
σ

p Þ ; ð63Þ

with limκ
ffiffi
σ

p
→∞ ¼ 4, limκ

ffiffi
σ

p
→0 ¼ ∞; similarly, in 2þ 1

dimensions

dð2þ1Þ
S ðσÞ ¼ 1þ 2

κ2σ

1

1 − e−1=ðκ2σÞ
; ð64Þ

with limκ
ffiffi
σ

p
→∞ ¼ 3, limκ

ffiffi
σ

p
→0 ¼ ∞; and in 1þ 1 dimen-

sions

dð1þ1Þ
S ðσÞ ¼ 1þ 1

2κ2σ

�
1þ 2κ

ffiffiffi
σ

p
e−1=ð4κ2σÞffiffiffi

π
p

erfð 1
2κ

ffiffi
σ

p Þ
�
; ð65Þ

with limκ
ffiffi
σ

p
→∞ ¼ 2, limκ

ffiffi
σ

p
→0 ¼ ∞. The UV divergence of

dSðσÞ might be considered problematic, but such behavior
of the dimensionality (sometimes also for the Hausforff
dimension) has been encountered in other models of
quantum spacetime and at least in commutative geometry
seems to be a consequence of the extremely high con-
nectivity between points of space [94].

D. Comparison

For the sake of comparison, let us first recall [Eq. (4)]
that the standard return probability on Rn reads

PclassðσÞ ¼ ð4πσÞ−n=2: ð66Þ

Hence, the dimension spectrum consists of a single element
fn=2g and is of order 1. The spectral dimension is a
constant function equal to n.
The first observation is that for the bicovariant Laplacian

the dimension spectra contain multiple elements. By
analogy with the Riemannian geometry, one could interpret
this as a signature of some sort of curved geometry of κ-
Minkowski space. Furthermore, in the (2þ 1)-dimensional
case the dimension spectrum is of order 2. From the
perspective of (pseudo)differential geometry, this means
that the heat trace expansion involves nonlocal coefficients.
The situation is analogous for the bicrossproduct Laplacian,
apart from the (1þ 1)-dimensional case, for which the
dimension spectrum coincides with the classical one. The
relative locality Laplacian does not have a dimension
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spectrum at all, which suggests that the corresponding
geometry is infinite dimensional.
In stark contrast with the quantum spheres, none of the

studied Laplacians on κ-Minkowski space exhibit complex
numbers outside of the real axis in their dimension spectra.
Consequently, there are no oscillations in the corresponding
spectral dimensions. The latter is also true for the relative-
locality Laplacian.
Let us now inspect the spectral dimensions closer.
The profiles of dSðσÞ for different Laplacians in 3þ 1

and 2þ 1 topological dimensions are compared in Fig. 7
[the situation in 1þ 1 topological dimensions is qualita-
tively the same apart from the case of Lcp, for which
dSðσÞ ¼ 2—see Subsec. IV B]. All curves in both plots
exhibit the strong discrepancy in the UV, while they
converge to the same IR limit, equal to the topological
dimension. Unless we have some extra reason to claim that
only one Laplacian is physically correct, the spectral
dimension seems to be an ambiguous characteristic of
κ-Minkowski space. Some further comments about the
relations between specific UV limits visible in Fig. 7 and
various results obtained within the quantum gravity
research, which could single out one of the Laplacians,
can be found in [19]. We also note that a recent analysis
[95] of a static potential between two sources on (3þ 1)-
dimensional κ-Minkowski space brings evidence that the
physical dimension in the UV is equal to 3, in agreement
with the result for the bicovariant Laplacian.
Let us note, however, that the spectral dimensions dSðσÞ

in the previous subsections were calculated under an
implicit assumption that all three operators L are of order
2—recall the discussion around Eq. (10). This is based on
the fact that these operators are deformations of the
classical Laplacian, which is a second-order differential
operator. In the case of the quantum spheres, we could
provide an external argument for the order of quantum
Laplacians, which is based on a rigorous first-order con-
dition in the theory of spectral triples. In the case of
κ-Minkowski space such an argument is not available,

because the considered Laplacians do not originate from a
Dirac operator.
Observe that in classical coordinates the bicovariant

Laplacian acquires the same form (40) as the standard
Laplacian on Rnþ1. This justifies the assumption that its
order equals 2. On the other hand, the bicrossproduct
Laplacian in classical coordinates (50) looks as if was
of order 1. Even more curiously, the relative-locality
Laplacian in classical coordinates (59) seems to be of
order 0. Indeed, its leading behavior for large values of
jpj ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 þ papa

p
is log jpj, which grows slower than

any power of jpj.
The problem is that in the quantum gravity models one

usually considers the quantum spacetime to be a certain
deformation of the classical one (more accurately, it is the
classical spacetime that is an approximation of the quantum
one), with the deformation controlled by some parameter(s)
related to the Planck length or mass. In particular, it is
expected that a generalized Laplacian becomes the standard
one in the classical limit, when the deformationvanishes, i.e.,
we actually have a parametrized family of operators, valid at
different scales. In this context, Eq. (5) allows one to track a
deviation from the IR value of spacetime dimension. Using
Eq. (10) with η ≠ 2 would prevent us from recovering the
correct IR limit, unless we allow the order of the operator to
depend on the deformation parameter.
If we assumed the order of the bicrossproduct Laplacian

to be a continuous function of κ, such that limκ→0 ηðκÞ ¼ 1
and limκ→∞ ηðκÞ ¼ 2, then we would obtain the dimension
n in the UVand nþ 1 in the IR, as in the bicovariant case.
In the same vein, we could set the order of the relative-
locality Laplacian to be a function of κ, satisfying
limκ→∞ ηðκÞ ¼ 2. The situation in the UV limit in this
case is more ambiguous since the dimension diverges,
while the order should tend to zero and their ratio could
yield any number. In particular, the behavior of ηðκÞ close
to κ ¼ 0 might be such that limκ→0 2=ηðκÞdSðσÞ ¼ n, as
for other Laplacians. Taking dSðσÞ ¼ dSðκ2σÞ given by
Eqs. (63)–(65) and considering the ansatz ηðκÞ ∝ κ2, we

FIG. 7. Spectral dimension dSðσÞ in 3þ 1 dimensions (left panel) and in 2þ 1 dimensions (right panel) for the Laplacians Lcv
(bottom curve), Lcp (middle curve) and Lrl (top curve) (we set κ ¼ 1).
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find that the desired limit requires ηðκÞ ∼ 4
n κ

2 for κ → 0.
Such a trick allows us to remove the discrepancy between
the UV behavior of the spectral dimensions of all three
Laplacians, while maintaining the correct classical limit. It
also agrees with the viewpoint on the operator orders
suggested by the formulas in classical coordinates.
Nevertheless, let us stress that the deformation-param-

eter-dependent order is only a tentative hypothesis, intro-
duced by us here. Furthermore, even if this hypothesis was
rigorously implemented and erased differences between
spectral dimensions for the three Laplacians, the corre-
sponding dimension spectra would still remain irreconcil-
ably different. For example, the dimension spectrum in
the case of 3þ 1 topological dimensions, depending on
the Laplacian, is infinite, has only two elements or does
not exist.

V. SUMMARY

Our analysis shows that the UV behavior of the spectral
dimensions of quantum spacetimes is fairly complex and
not limited to a monotonic flow. To understand it we have
adopted from noncommutative geometry à la Connes a
rigorous notion of a dimension spectrum. The latter
characterizes the UV behavior of a heat trace, from which
the spectral dimension is deduced. The relationship
between the spectral dimension and the dimension spec-
trum of a given Laplacian (more generally, an operator of
order η) is captured by the following dictionary:
(a) The dimension spectrum consisting of more than one

element implies a nonconstant behavior of the spectral
dimension and suggests a nontrivial geometry.

(b) If the UV limit σ → 0 is finite, then dSð0Þ ¼ ηdSd,
where dSd is the largest real number in the dimension
spectrum (14). Note that, in general, dSd need not be a
natural number. This happens routinely in fractal
geometry, where dSd recovers the Hausdorff dimen-
sion [56,57,96–98].

(c) The order of the dimension spectrum determines the
leading behavior of the spectral dimension for small σ.
If ord Sd > 1, then this behavior is logarithmic.
More concretely, if PðσÞ ∼ ðlog σÞpσ−r as σ tends to
0, with p ¼ ord Sd − 1 ∈ N and r ≥ 0, then dSðσÞ∼
2r − 2p=ðlog σÞ. This happens on the quantum sphere
with p ¼ 2 and r ¼ 0. On the other hand, a subleading
logarithmic behavior PðσÞ ∼ ασ−r þ βσ−r−1ðlog σÞp
translates to dSðσÞ∼2ðr−1Þþ2α=ðαþβσðlogσÞpÞ.
This is exemplified on the (2þ 1)-dimensional
κ-Minkowski spacetime, with p ¼ 1 and r ¼ 1 or
r ¼ 2 for the bicovariant and the bicrossproduct
Laplacians, respectively.

(d) The presence of nonreal numbers in Sd signifies
the presence of log-periodic oscillations in the UV
behavior of the spectral dimension.

With the help of the dimension spectrumwe have detected
the log-periodic oscillations of the spectral dimension for the

quantum sphere. These were overlooked in [20], because of
their very small amplitude for the deformation parameter
close to the classical value. It is remarkable that the complex
dimensions occur here in a somewhat unexpected setting,
where no fractal properties or discrete scale invariance were
a priori imposed.
In contrast, such oscillations are present on κ-Minkowski

spacetime for none of the three considered Laplacians, at
least in the cases of two, three and four topological
dimensions that we studied. One might relate this to the
fact the quantum sphere is compact, whereas κ-Minkowski
spacetime is not and interpret the oscillations as a peculiar
IR/UV mixing effect. On the other hand, from a more
conservative standpoint, one could simply say that the
quantum sphere is “more quantum.” In either case, it seems
worth looking for the complex dimensions in other models
of quantum spacetime.
Finally, we would like to stress that the spectral dimen-

sion and dimension spectrum of a given quantum spacetime
strongly depend on the chosen Laplacian. On the math-
ematical side, this is simply a consequence of their defi-
nitions, arising from the trace of the heat operator, which is
constructed from a given Laplacian. As we discussed in the
last subsection, the discrepancy between the UV behavior of
the spectral dimensions of κ-Minkowski space with differ-
ent Laplacians can perhaps be removed using the concept of
the deformation-dependent order of the Laplacian but even
then, differences will survive in the dimension spectra. On
the other hand, while the dimension spectra of the quantum
spherewith the spinorial and scalar Laplacians are identical,
their spectral dimensions do not overlap and actually behave
in the opposite ways in the IR. Thus, the spectral dimension
and dimension spectrum provide complementary informa-
tion about a quantum spacetime structure.
In terms of physics, we believe that it is of key importance

to understand which aspects of dimensionality are genuine
to the given quantum geometry and which are just math-
ematical artifacts of the chosen Laplacian. Our analysis
suggests that such universal properties are the log-periodic
oscillations for the quantum sphere, as well as the lack of
these for the κ-Minkowski spacetime, because these features
persist for all of the studied Laplacians. The same could be
said about the appearance of third-order poles in the
dimension spectra on quantum sphere. As pointed out, this
could be taken as an indication of some sort of “singular” or
“nonsmooth” character of this quantum spacetime. On the
other hand, the dimension spectra of κ-Minkowski space-
time fit within the ones obtained in classical (pseudo)
differential geometry. Interestingly enough, the second-
order poles, and hence the log σ terms in the heat trace,
occur only in 2þ 1 topological dimensions, but for both
bicovariant and bicrossproduct Laplacians. This suggests
that the geometry of (2þ 1)-dimensional κ-Minkowski
spacetime departs more strongly from the classical case.
However, further studies—possibly connected with the
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expected nonlocal nature of some coefficients of the
heat trace expansion—would be needed to confirm this
conclusion.
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APPENDIX: THE SPECTRAL ZETA
FUNCTION OF THE OPERATOR Δsc

q

In this Appendix we provide an explicit meromorphic
extension of the spectral zeta function associated with the

operator Δsc
q defined by Eq. (27). Before we start we

need to take care of the zero mode, as for any s ∈ C the
operator ðΔsc

q Þ−s is not trace class on the full Hilbert space
H0

q. We thus set h ≔ ðkerΔsc
q Þ⊥ and compute the zeta

function without the zero mode. Note that after such a
truncation, it is still possible to use the inverse Mellin
transform technique for the computation of the correspond-
ing heat trace (see [59] for the general method). Indeed,
we have

Psc
q ðσÞ ¼ TrH0

q
e−σΔ

sc
q ¼ 1þ Trhe−σΔ

sc
q

and simply use formulas (16) and (17) with h at the place
of H0

q.
Now, for ReðsÞ > 0 we have

ζΔsc
q
ðsÞ ¼ TrhðΔsc

q Þ−s ¼
X∞
j¼1

Xj

m¼−j
hj;mjðΔsc

q Þ−sjj;mi

¼ uð ffiffiffi
q

p Þ−s
X∞
j¼1

ð2jþ 1Þqs=2ðq−j − 1 − qþ qjþ1Þ−s

¼ ðuð ffiffiffi
q

p Þq−3=2Þ−s
X∞
k¼0

ð2kþ 3Þðq−k − q − q2 þ qkþ3Þ−s

¼ ðuð ffiffiffi
q

p Þq−3=2Þ−s
X∞
k¼0

ð2kþ 3Þqksð1 − qkþ1Þ−sð1 − qkþ2Þ−s:

In order to construct a meromorphic extension of ζΔsc
q
to

the entire complex plane we use the standard binomial
expansion formula

ð1 − xÞ−s ¼
X∞
n¼0

�
sþ n − 1

n

�
xn ðA1Þ

valid for any complex number s and any x ∈ C with

jxj < 1. The coefficients ðsþn−1
n Þ ¼ ΓðsþnÞ

n!ΓðsÞ are polynomials

in s of order n.

With the help of formula (A1) we rewrite the zeta
function as follows:

ζΔsc
q
ðsÞ ¼ ðuð ffiffiffi

q
p Þq−3=2Þ−s

X∞
k¼0

ð2kþ 3Þ

×
X∞
l¼0

X∞
m¼0

�
sþ l − 1

l

��
sþm − 1

m

�

× qðkþ1Þlqðkþ2Þmqks:

For ReðsÞ > 0 all of the series are absolutely convergent
and we are free to change the order of summation and
compute the sum over k. We thus have

ζΔsc
q
ðsÞ ¼ ðuð ffiffiffi

q
p Þq−3=2Þ−s

X∞
l¼0

X∞
m¼0

�
sþ l − 1

l

��
sþm − 1

m

�
qlþ2mð3 − qlþmþsÞ

ð1 − qlþmþsÞ2

¼ ðuð ffiffiffi
q

p Þq−3=2Þ−s
X∞
n¼0

Xn
m¼0

�
sþ n −m − 1

n −m

��
sþm − 1

m

�
qnþmð3 − qnþsÞ
ð1 − qnþsÞ2

¼ ðuð ffiffiffi
q

p Þq−3=2Þ−s
X∞
n¼0

qnð3 − qnþsÞ
ð1 − qnþsÞ2

�
sþ n − 1

n

�
2F1ð−n; s;−nþ sþ 1; qÞ;

with a hypergeometric function 2F1.
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The last series over n can easily be shown
(cf. Proposition 3.2 in [41]) to be absolutely convergent
for any complex s outside of the discrete set πi

log qZ − N. We

have thus obtained a meromorphic extension of ζΔsc
q
to the

entire complex plane. It has isolated double poles precisely
in the set SdΔsc

q ¼ SdΔsp
q ¼ πi

log qZ − N. The poles of the

Gamma function contribute additional poles at −n, n ∈ N,
hence the order of the dimension spectrum is 3.
Formula (24) for the meromorphic extension of the

function ζΔsp
q
is proved along the same lines with the help

of the identity (A1). The two zeta functions have the same
meromorphic structure, though ζΔsc

q
has a more involved

form of the coefficients.
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[6] P. Hořava, Phys. Rev. Lett. 102, 161301 (2009).
[7] O. Lauscher and M. Reuter, J. High Energy Phys. 10 (2005)

050.
[8] L. Modesto, Phys. Rev. D 86, 044005 (2012).
[9] S. Steinhaus and J. Thürigen, Phys. Rev. D 98, 026013

(2018).
[10] G. Calcagni, D. Oriti, and J. Thürigen, Phys. Rev. D 91,

084047 (2015).
[11] S. Carlip, Classical Quantum Gravity 32, 232001 (2015).
[12] A. Belenchia, D. M. T. Benincasa, A. Marcianò, and L.

Modesto, Phys. Rev. D 93, 044017 (2016).
[13] G. Calcagni, Phys. Rev. D 86, 044021 (2012).
[14] D. Benedetti and J. Henson, Phys. Rev. D 80, 124036

(2009).
[15] E. Alesci and M. Arzano, Phys. Lett. B 707, 272

(2012).
[16] S. Majid and H. Ruegg, Phys. Lett. B 334, 348 (1994).
[17] J. Lukierski, H. Ruegg, A. Nowicki, and V. N. Tolstoi, Phys.

Lett. B 264, 331 (1991).
[18] J. Lukierski, A. Nowicki, and H. Ruegg, Phys. Lett. B 293,

344 (1992).
[19] M. Arzano and T. Trześniewski, Phys. Rev. D 89, 124024

(2014).
[20] D. Benedetti, Phys. Rev. Lett. 102, 111303 (2009).
[21] M. Arzano and F. Nettel, Phys. Lett. B 767, 236 (2017).
[22] G. Calcagni, Phys. Rev. D 95, 064057 (2017).
[23] G. Calcagni, Phys. Rev. D 96, 046001 (2017).
[24] G. Calcagni, J. High Energy Phys. 03 (2017) 138; 06 (2017)

020(E).
[25] G. V. Dunne, J. Phys. A 45, 374016 (2012).
[26] G. Amelino-Camelia, G. Calcagni, and M. Ronco, Phys.

Lett. B 774, 630 (2017).
[27] E. Akkermans, G. V. Dunne, and A. Teplyaev, Phys. Rev.

Lett. 105, 230407 (2010).
[28] M. Flory, Fortschr. Phys. 66, 1700093 (2018).
[29] D. Sornette, Phys. Rep. 297, 239 (1998).

[30] A. Connes and H. Moscovici, Geom. Funct. Anal. 5, 174
(1995).

[31] P. B. Gilkey, Invariance Theory, the Heat Equation, and the
Atiyah-Singer Index Theorem, 2nd ed., Studies in Advanced
Mathematics (CRC Press, Boca Raton, 1995).

[32] P. B. Gilkey, Asymptotic Formulae in Spectral Geometry
(CRC Press, Boca Raton, 2004).

[33] M. Eckstein and B. Iochum, Spectral Action in Noncom-
mutative Geometry, SpringerBriefs in Mathematical Physics
(Springer, New York, 2018).

[34] E. Elizalde, S. Odintsov, A. Romeo, A. A. Bytsenko, and S.
Zerbini, Zeta Regularization Techniques with Applications
(World Scientific, Singapore, 1994).

[35] A. A. Bytsenko, G. Cognola, V. Moretti, S. Zerbini, and
E. Elizalde, Analytic Aspects of Quantum Fields (World
Scientific, Singapore, 2003).

[36] I. G. Avramidi, Nucl. Phys. B, Proc. Suppl. 104, 3 (2002).
[37] V. Gayral and R. Wulkenhaar, J. Noncommut. Geom. 7, 939

(2013).
[38] D. V. Vassilevich, Phys. Rep. 388, 279 (2003).
[39] P. Podleś, Lett. Math. Phys. 14, 193 (1987).
[40] L. Dąbrowski and A. Sitarz, Banach Cent. Pub. 61, 49

(2003).
[41] M. Eckstein, B. Iochum, and A. Sitarz, Commun. Math.

Phys. 332, 627 (2014).
[42] J.-M. Lescure, Bull. Soc. Math. Fr. 129, 593 (2001).
[43] M. Arzano and G. Calcagni, Eur. Phys. J. C 77, 835 (2017).
[44] D. Nesterov and S. N. Solodukhin, Nucl. Phys. B842, 141

(2011).
[45] M. A. Shubin, Pseudodifferential Operators and Spectral

Theory (Springer, New York, 2001).
[46] A. Connes and M. Marcolli, Noncommutative Geometry,

Quantum Fields and Motives, Colloquium Publications
Vol. 55 (American Mathematical Society, Providence,
2008).

[47] S. Minwalla, M. V. Raamsdonk, and N. Seiberg, J. High
Energy Phys. 02 (2000) 020.

[48] M. Eckstein and T. Trześniewski (to be published).
[49] J. W. Barrett, P. Druce, and L. Glaser, J. Phys. A 52, 275203

(2019).
[50] F. D’Andrea, M. A. Kurkov, and F. Lizzi, Phys. Rev. D 94,

025030 (2016).
[51] E. Elizalde, Ten Physical Applications of Spectral Zeta

Functions, 2nd ed. (Springer, New York, 2012).
[52] P. B. Gilkey and G. Grubb, Commun. Partial Differ.

Equations 23, 777 (1998).

SPECTRAL DIMENSIONS AND DIMENSION SPECTRA OF … PHYS. REV. D 102, 086003 (2020)

086003-19

https://doi.org/10.1007/s10714-018-2391-3
https://doi.org/10.1007/s10714-018-2391-3
https://doi.org/10.1088/1361-6382/aa8535
https://doi.org/10.1103/PhysRevLett.95.171301
https://doi.org/10.1103/PhysRevLett.95.171301
https://doi.org/10.1007/JHEP03(2015)151
https://doi.org/10.1007/JHEP03(2015)151
https://doi.org/10.1103/PhysRevLett.102.161301
https://doi.org/10.1088/1126-6708/2005/10/050
https://doi.org/10.1088/1126-6708/2005/10/050
https://doi.org/10.1103/PhysRevD.86.044005
https://doi.org/10.1103/PhysRevD.98.026013
https://doi.org/10.1103/PhysRevD.98.026013
https://doi.org/10.1103/PhysRevD.91.084047
https://doi.org/10.1103/PhysRevD.91.084047
https://doi.org/10.1088/0264-9381/32/23/232001
https://doi.org/10.1103/PhysRevD.93.044017
https://doi.org/10.1103/PhysRevD.86.044021
https://doi.org/10.1103/PhysRevD.80.124036
https://doi.org/10.1103/PhysRevD.80.124036
https://doi.org/10.1016/j.physletb.2011.12.026
https://doi.org/10.1016/j.physletb.2011.12.026
https://doi.org/10.1016/0370-2693(94)90699-8
https://doi.org/10.1016/0370-2693(91)90358-W
https://doi.org/10.1016/0370-2693(91)90358-W
https://doi.org/10.1016/0370-2693(92)90894-A
https://doi.org/10.1016/0370-2693(92)90894-A
https://doi.org/10.1103/PhysRevD.89.124024
https://doi.org/10.1103/PhysRevD.89.124024
https://doi.org/10.1103/PhysRevLett.102.111303
https://doi.org/10.1016/j.physletb.2017.02.005
https://doi.org/10.1103/PhysRevD.95.064057
https://doi.org/10.1103/PhysRevD.96.046001
https://doi.org/10.1007/JHEP03(2017)138
https://doi.org/10.1007/JHEP06(2017)020
https://doi.org/10.1007/JHEP06(2017)020
https://doi.org/10.1088/1751-8113/45/37/374016
https://doi.org/10.1016/j.physletb.2017.10.032
https://doi.org/10.1016/j.physletb.2017.10.032
https://doi.org/10.1103/PhysRevLett.105.230407
https://doi.org/10.1103/PhysRevLett.105.230407
https://doi.org/10.1002/prop.201700093
https://doi.org/10.1016/S0370-1573(97)00076-8
https://doi.org/10.1007/BF01895667
https://doi.org/10.1007/BF01895667
https://doi.org/10.1016/S0920-5632(01)01593-6
https://doi.org/10.4171/JNCG/140
https://doi.org/10.4171/JNCG/140
https://doi.org/10.1016/j.physrep.2003.09.002
https://doi.org/10.1007/BF00416848
https://doi.org/10.4064/bc61-0-4
https://doi.org/10.4064/bc61-0-4
https://doi.org/10.1007/s00220-014-2054-5
https://doi.org/10.1007/s00220-014-2054-5
https://doi.org/10.24033/bsmf.2409
https://doi.org/10.1140/epjc/s10052-017-5393-5
https://doi.org/10.1016/j.nuclphysb.2010.08.006
https://doi.org/10.1016/j.nuclphysb.2010.08.006
https://doi.org/10.1088/1126-6708/2000/02/020
https://doi.org/10.1088/1126-6708/2000/02/020
https://doi.org/10.1088/1751-8121/ab22f8
https://doi.org/10.1088/1751-8121/ab22f8
https://doi.org/10.1103/PhysRevD.94.025030
https://doi.org/10.1103/PhysRevD.94.025030
https://doi.org/10.1080/03605309808821365
https://doi.org/10.1080/03605309808821365


[53] M. Lesch, Ann. Glob. Anal. Geom. 17, 151 (1999).
[54] J. B. Gil and P. A. Loya, Math. Z. 259, 65 (2008).
[55] T. Kakehi and T. Masuda, Tohoku Math. J. 47, 595 (1995).
[56] M. L. Lapidus and M. van Frankenhuijsen, Fractal Geom-

etry, Complex Dimensions and Zeta Functions (Springer,
New York, 2006).

[57] J. Kellendonk and J. Savinien, Michigan Math. J. 65, 715
(2016).

[58] A. Connes, Noncommutative Geometry (Academic Press,
New York, 1995).

[59] M. Eckstein and A. Zając, J. Math. Phys. Anal. Geom. 18,
28 (2015).

[60] C. Bär, N. Ginoux, and F. Pfäffle, Wave Equations
on Lorentzian Manifolds and Quantization (European
Mathematical Society, Zürich, Switzerland, 2007).

[61] F. D’Andrea and L. Dąbrowski, Lett. Math. Phys. 75, 235
(2006).

[62] L. Dąbrowski, J. Geom. Phys. 56, 86 (2006).
[63] L. Dąbrowski, F. D’Andrea, G. Landi, and E. Wagner,

J. Noncommut. Geom. 1, 213 (2007).
[64] L. Dąbrowski, G. Landi, M. Paschke, and A. Sitarz, C.R.

Math. 340, 819 (2005).
[65] T. Friedrich, Dirac Operators in Riemannian Geometry,

Graduate Studies in Mathematics Vol. 25 (American Math-
ematical Society, Providence, 2000).

[66] A. Trautman, in Spinors, Twistors, Clifford Algebras
and Quantum Deformations (Springer, New York, 1993),
pp. 25–29.

[67] C. Bär, J. Math. Soc. Jpn. 48, 69 (1996).
[68] J. C. Várilly, An Introduction to Noncommutative Geometry

(European Mathematical Society, Zürich, Switzerland,
2006).

[69] A. H. Chamseddine, A. Connes, and W. D. van Suijlekom,
J. Geom. Phys. 73, 222 (2013).

[70] W. D. van Suijlekom, Noncommutative Geometry and
Particle Physics (Springer, New York, 2015).

[71] A. H. Chamseddine, A. Connes, and W. D. van Suijlekom,
J. High Energy Phys. 11 (2013) 132.

[72] A. Connes and H. Moscovici, J. Am. Math. Soc. 27, 639
(2014).

[73] P. Aschieri, C. Blohmann, M. Dimitrijevic, F. Meyer, P.
Schupp, and J. Wess, Classical Quantum Gravity 22, 3511
(2005).

[74] F. Fathizadeh and M. Khalkhali, J. Noncommut. Geom. 7,
1145 (2013).

[75] M. Eckstein, A. Sitarz, and R. Wulkenhaar, J. Math. Phys.
(N.Y.) 57, 112301 (2016).

[76] A. Sitarz, J. Pseudo-Differ. Oper. Appl. 5, 305 (2014).
[77] M. Lesch, Operators of Fuchs Type, Conical Singularities,

and Asymptotic Methods, Teubner-Texte zur Mathematik
Vol. 136 (Teubner, Leipzig, 1997).

[78] J. Lukierski and H. Ruegg, Phys. Lett. B 329, 189
(1994).

[79] G. Amelino-Camelia, Living Rev. Relativity 16, 5 (2013).
[80] J. Kowalski-Glikman, J. Lukierski, and T. Trześniewski, J.

High Energy Phys. 09 (2020) 096.
[81] J. Kowalski-Glikman, Phys. Lett. B 547, 291 (2002).
[82] J. Kowalski-Glikman and S. Nowak, Classical Quantum

Gravity 20, 4799 (2003).
[83] L. Freidel, J. Kowalski-Glikman, and S. Nowak, Phys. Lett.

B 648, 70 (2007).
[84] L. Freidel, J. Kowalski-Glikman, and S. Nowak, Int. J. Mod.

Phys. A 23, 2687 (2008).
[85] B. Iochum, T. Masson, and A. Sitarz, Banach Cent. Pub. 98,

261 (2012).
[86] M. Matassa, J. Geom. Phys. 76, 136 (2014).
[87] B. Iochum and T. Masson, J. Noncommut. Geom. 10, 65

(2016).
[88] S. Meljanac, A. Samsarov, M. Stojić, and K. Gupta, Eur.

Phys. J. C 53, 295 (2008).
[89] B. Durhuus and A. Sitarz, J. Noncommut. Geom. 7, 605

(2013).
[90] A. Pachoł and P. Vitale, J. Phys. A 48, 445202 (2015).
[91] A. Sitarz, Phys. Lett. B 349, 42 (1995).
[92] C. Gonera, P. Kosiński, and P. Maślanka, J. Math. Phys.

(N.Y.) 37, 5820 (1996).
[93] G. Gubitosi and F. Mercati, Classical Quantum Gravity 30,

145002 (2013).
[94] M. Mandrysz and J. Mielczarek, Classical Quantum Gravity

36, 015004 (2019).
[95] M. Arzano and J. Kowalski-Glikman, Phys. Lett. B 771, 222

(2017).
[96] A. Connes and M. Marcolli, in An Invitation to Non-

commutative Geometry, edited by M. Khalkhali and M.
Marcolli (World Scientific, Singapore, 2008), pp. 1–128.

[97] F. Cipriani, D. Guido, T. Isola, and J.-L. Sauvageot, J. Funct.
Anal. 266, 4809 (2014).

[98] E. Christensen, C. Ivan, and E. Schrohe, J. Noncommut.
Geom. 6, 249 (2012).

MICHAŁ ECKSTEIN and TOMASZ TRZEŚNIEWSKI PHYS. REV. D 102, 086003 (2020)

086003-20

https://doi.org/10.1023/A:1006504318696
https://doi.org/10.1007/s00209-007-0212-6
https://doi.org/10.2748/tmj/1178225463
https://doi.org/10.1307/mmj/1480734017
https://doi.org/10.1307/mmj/1480734017
https://doi.org/10.1007/s11040-015-9197-2
https://doi.org/10.1007/s11040-015-9197-2
https://doi.org/10.1007/s11005-005-0047-1
https://doi.org/10.1007/s11005-005-0047-1
https://doi.org/10.1016/j.geomphys.2005.04.003
https://doi.org/10.4171/JNCG/5
https://doi.org/10.1016/j.crma.2005.04.003
https://doi.org/10.1016/j.crma.2005.04.003
https://doi.org/10.2969/jmsj/04810069
https://doi.org/10.1016/j.geomphys.2013.06.006
https://doi.org/10.1007/JHEP11(2013)132
https://doi.org/10.1090/S0894-0347-2014-00793-1
https://doi.org/10.1090/S0894-0347-2014-00793-1
https://doi.org/10.1088/0264-9381/22/17/011
https://doi.org/10.1088/0264-9381/22/17/011
https://doi.org/10.4171/JNCG/145
https://doi.org/10.4171/JNCG/145
https://doi.org/10.1063/1.4965446
https://doi.org/10.1063/1.4965446
https://doi.org/10.1007/s11868-014-0097-1
https://doi.org/10.1016/0370-2693(94)90759-5
https://doi.org/10.1016/0370-2693(94)90759-5
https://doi.org/10.12942/lrr-2013-5
https://doi.org/10.1007/JHEP09(2020)096
https://doi.org/10.1007/JHEP09(2020)096
https://doi.org/10.1016/S0370-2693(02)02762-4
https://doi.org/10.1088/0264-9381/20/22/006
https://doi.org/10.1088/0264-9381/20/22/006
https://doi.org/10.1016/j.physletb.2007.02.056
https://doi.org/10.1016/j.physletb.2007.02.056
https://doi.org/10.1142/S0217751X08040421
https://doi.org/10.1142/S0217751X08040421
https://doi.org/10.4064/bc98-0-11
https://doi.org/10.4064/bc98-0-11
https://doi.org/10.1016/j.geomphys.2013.10.023
https://doi.org/10.4171/JNCG/229
https://doi.org/10.4171/JNCG/229
https://doi.org/10.1140/epjc/s10052-007-0450-0
https://doi.org/10.1140/epjc/s10052-007-0450-0
https://doi.org/10.4171/JNCG/129
https://doi.org/10.4171/JNCG/129
https://doi.org/10.1088/1751-8113/48/44/445202
https://doi.org/10.1016/0370-2693(95)00223-8
https://doi.org/10.1063/1.531701
https://doi.org/10.1063/1.531701
https://doi.org/10.1088/0264-9381/30/14/145002
https://doi.org/10.1088/0264-9381/30/14/145002
https://doi.org/10.1088/1361-6382/aaef71
https://doi.org/10.1088/1361-6382/aaef71
https://doi.org/10.1016/j.physletb.2017.05.047
https://doi.org/10.1016/j.physletb.2017.05.047
https://doi.org/10.1016/j.jfa.2014.02.013
https://doi.org/10.1016/j.jfa.2014.02.013
https://doi.org/10.4171/JNCG/91
https://doi.org/10.4171/JNCG/91

