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A correspondence between closed strings in their high-temperature Hagedorn phase and asymptotically
de Sitter (dS) space is established. We identify a thermal, conformal field theory (CFT) whose partition
function is, on the one hand, equal to the partition function of closed, interacting, fundamental strings in
their Hagedorn phase yet is, on the other hand, also equal to the Hartle-Hawking (HH) wave function of an
asymptotically dS universe. The Lagrangian of the CFT is a functional of a single scalar field, the
condensate of a thermal scalar, which is proportional to the entropy density of the strings. The
correspondence has some aspects in common with the anti–de Sitter/CFT correspondence, as well as
with some of its proposed analytic continuations to a dS=CFT correspondence, but it also has some
important conceptual and technical differences. The equilibrium state of the CFT is one of maximal
pressure and entropy, and it is at a temperature that is above but parametrically close to the Hagedorn
temperature. The CFT is valid beyond the regime of semiclassical gravity and thus defines the initial
quantum state of the dS universe in a way that replaces and supersedes the HH wave function. Two-point
correlation functions of the CFT scalar field are used to calculate the spectra of the corresponding metric
perturbations in the asymptotically dS universe and, hence, cosmological observables in the postinfla-
tionary epoch. Similarly, higher-point correlation functions in the CFT should lead to more complicated
cosmological observables.
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I. INTRODUCTION

Because of the well-known correspondence between
asymptotically anti–de Sitter (AdS) spacetimes and con-
formal field theories (CFTs) [1–4], along with the obser-
vation that the isometries of de Sitter (dS) space act as
the conformal group on the dS boundary, it has long been
expected that a similar duality should exist between
asymptotically dS cosmologies and a different class of
CFTs [5–7]. This idea was first put forth by Strominger
[5] for the case of an eternal dS spacetime and then later
for that of an inflationary cosmology [8,9]. Since dS
space has a spacelike asymptotic boundary, this frame-
work leads to a timeless boundary theory and, conse-
quently, a nonunitary CFT. One can perhaps view the
boundary theory as a Euclidean CFT by considering

certain analytic continuations of the standard AdS=CFT
correspondence [7,10].
The detailed implementation of the dS=CFT correspon-

dence began to take shape with a proposal by McFadden
and Skenderis—following from [11]—that the CFT duals
to domain walls in Euclidean AdS space could be analyti-
cally continued into what would be the CFT duals to
Lorentzian inflationary cosmologies [12–17]. The first
explicit realization of a dS=CFT duality from its AdS
counterpart was presented by Hertog and Hartle in [18]
(and further developed by Hertog and others in, e.g.,
[19–25]), where the relation between AdS=CFT hologra-
phy and the wave function of the inflationary Universe was
made precise. The two approaches differ in that McFadden
and Skenderis consider quantum fluctuations about a real
classical geometry, whereas Hertog et al. employ complex
semiclassical saddle point solutions of the gravitational and
the matter path integral. In this sense, only the latter is
proposing a quantum wave function of the Universe along
the same lines as that proposed by Maldacena [7]. On the
other hand, both are similar in their treatments of cosmo-
logical perturbations and the late-time state.
In spite of these successful programs, some have argued

that a direct relation between a dS=CFT correspondence
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and an explicit string theory relaization is still lacking (e.g.,
[26]). For instance, there is significant evidence that
ultraviolet completion of a stable dS space is incompatible
with semiclassical quantum gravity [27–29]. But, for a
more optimistic viewpoint, as well as an update on recent
progress, see [30,31].
The main purpose of the current paper is to make a

concrete proposal for a new type of dS=CFT correspon-
dence; one that is conceptually different than previous
attempts. Our proposed CFT dual is at finite temperature
and so is not obviously scale invariant, but we will
nevertheless argue that it is. The CFT is the theory of
the so-called thermal scalar and, as an effective description
of a multi-string partition function, has played an important
role in understanding the Hagedorn phase of string theory
[32–38]. The correspondence is substantiated by showing
that, when the fields and parameters of the two theories are
suitably matched, the partition function of the CFT is equal
to the Hartle–Hawking (HH) wavefunction [39] of an
asymptotically dS Universe.1 This equivalence is estab-
lished in the semiclassical regime for which the HH
wavefunction can be defined.
We are interested in the case that the equilibrium state of

the CFT is a thermal state of closed, interacting, funda-
mental strings in their Hagedorn phase. Such a state of
strings is known to be one possessing maximally allowed
pressure [34] and maximal entropy [41]. We have recently
proposed that this state should describe the initial state of
the Universe [42]; the motivation being that a state of
maximal entropy is just what is needed to resolve spacelike
singularities such as the interior of an event horizon or the
preinflationary Universe. The latter case leads to a duality
connecting the string state to dS space and, as shown in our
current discussion, implies a duality between dS space and
a thermal-scalar condensate. [43]. Indeed, previous studies
by Silverstein and collaborators have discussed, in a very
different context, how a tachyon condensate can be used to
tame spacelike singularities [44–47]. Note though that this
dS spacetime is the invented artifact of a late-time observer,
who wishes to explain the state’s origins and properties by
imposing some form of semiclassical evolution. In our
framework, this notion of dS space does not really exist,
certainly not as a semiclassical state.
The equilibrium state is maximally entropic in the sense

that its spatially uniform entropy density is equal to the
square root of its spatially constant energy density in
Planck units and, thus, the former density saturates the
causal entropy bound [48]. On the dS side of the corre-
spondence, maximal entropy translates into the Gibbons–
Hawking values of the entropy within a cosmological
horizon [49] and the constant energy density is interpreted
as a cosmological constant. In previous articles, starting
with [50], we have interpreted the saturation of the causal

entropy bound as indicating that such a state cannot be
described by a semiclassical geometry. Nonetheless, the
Lagrangian of the CFT can be used to calculate cosmo-
logical observables in spite of the lack of a semiclassical
geometric description. The Lagrangian that is presented
here extends a free energy that was first introduced in
[51,52] to describe Schwarzschild black hole (BH) interi-
ors. This free energy is expressed as a power series in the
entropy density and has a form that was adapted from the
free energy of polymers (e.g., [53–55]).
Having identified the CFT dual for dS space, we can

calculate correlations functions in the CFT and then trans-
late these into cosmological observables in the postinfla-
tionary epoch without relying on semiclassical dS
calculations. Our focus is on calculating the power spectra
for the tensor and scalar perturbations. We have already
presented qualitative expressions for these scale-invariant
spectra in [42], but the CFT improves on this by providing a
precise prescription for the relevant calculations. The
results presented here are shown to be in agreement with
those of standard inflationary calculations [56] and with
those obtained using the HH wave function [57–59].
Our proposed model has some features in common with

those of string-gas cosmology as presented by Branden-
berger, Vafa, and collaborators [35,60–63], as well as with
the holographic cosmology model of Banks and Fischler
[64,65]. However, as discussed at length in [42], such
similarities are mostly superficial due to differences both in
the physical substance and in the resulting predictions.
A main difference between our proposal for a dS=CFT

duality and previous ones is that ours does not rely upon an
intermediating semiclassical Euclidean AdS solution. Also,
our duality is holographic but not in the usual way: it is
holographic in the sense that the thermal scalar condenses
by winding around a compactified Euclidean time loop. So
the thermal scalar field theory “lives” in one less dimen-
sion. This is not equivalent to taking a small limit S1 in a
bulk gravity description. Strings are essential, as there is no
condensate as a matter of principle without strings winding
on a string-length-sized thermal circle. It is also worth
emphasizing that there is a clear string-theory origin for our
model because, as is well known, the effective field theory
of the thermal scalar can be used to calculate the string
partition function near the Hagedorn temperature.
Briefly on the contents, the next section introduces the

CFT Lagrangian, Sec. III discusses the various aspects of
the theory in terms of thermal-scalar condensate and
Sec. IV establishes the correspondence to dS space. We
then present our calculations of the cosmological observ-
ables in Sec. V and conclude in Sec. VI.

II. THERMAL SCALAR OF CLOSED STRINGS IN
THE HAGEDORN PHASE

Let us begin here with the quantum partition function for
closed, interacting strings Z ¼ Tre−βH, where H is the1For a recent discussion of the HH wavefunction, see [40].
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Hamiltonian and β is related to the temperature T as in
Eq. (2). The partition function and its associated thermal
expectation values can be calculated in terms of a Euclidean
action SE that is obtained by compactifying imaginary time
on a “thermal circle,”

SE ¼
I

β

0

dτ
ffiffiffiffiffiffi
gττ

p Z
ddx

ffiffiffi
γ

p
LE; ð1Þ

where

1

T
¼

I
β

0

dτ
ffiffiffiffiffiffi
gττ

p
; ð2Þ

and where the D ¼ dþ 1-dimensional coordinate system
and metric tensor should be regarded as those of a fiducial
manifold, since the string state lacks a semiclassical
geometry. We will be discussing the case in which temper-
atures are close to but slightly above the Hagedorn temper-
ature, T ≳ THag and T − THag ≪ THag. It follows that the
circumference of the thermal circle is on the order of the
string length ls.
Compactifying time and ignoring the time-dependence

of the fields amounts to reducing the dimensionality of the
theory from dþ 1 to d. The result is then a “timeless”
theory living on a d-dimensional spatial hypersurface, just
as expected from a would be dS=CFT correspondence.
Strings can wind around the thermal circle and the

resulting picture can be described by using the well-studied
theory of the thermal scalar [32–38]. Theþ1winding mode
is denoted by ϕ and its −1 counterpart is denoted by ϕ�. As
the winding charge is a conserved quantity, the Lagrangian
is required to be a functional of jϕj2. The path integral of
the thermal scalar is known to provide an effective (but
complete) description of the multistring partition function
when the temperature is close to the Hagedorn temperature.
The Lagrangian of the thermal scalar can be expressed as

LEðϕ;ϕ�Þ ¼ 1

2
γij∂iϕ∂jϕ

� − c1εTϕϕ�

þ 1

2
c2g2sT2ðϕϕ�Þ2 þ � � � ; ð3Þ

where ε ¼ T − THag, g2s is the dimensional string-coupling
constant and the positive, dimensionless numerical coef-
ficients c1 and c2 depend on the specific string theory. The
ellipsis denotes higher-order interactions, both here and
below (and will sometimes be omitted). The relative
unimportance of these higher-order terms will be discussed
in the next section. The potential for the thermal scalar was
introduced a long time ago in [34]. We have made here a
choice of sign that ensures a non-trivial solution in the
regime of interest (see below). The total mass dimension of
the Lagrangian density has to, of course, be dþ 1. Because
the mass dimension of ε is þ1 and that of the dimensional

coupling g2s is −ðd − 1Þ, it then follows that the mass
dimension of ϕ is þ d−1

2
. We may absorb the numerical

coefficients by the redefinitions c1ε → ε and c2g2s → g2s ,
thus giving

LEðϕ;ϕ�Þ ¼ 1

2
γij∂iϕ∂jϕ

� − εTϕϕ� þ 1

2
g2sT2ðϕϕ�Þ2: ð4Þ

For temperatures below the Hagedorn temperature
(ε < 0), the thermal scalar is known to have a positive
mass squared [34]. Meanwhile, its mass vanishes at
Hagedorn transition temperature ε ¼ 0, and so it is tempt-
ing to adopt the standard viewpoint that the phase transition
is describing the condensation of closed-string winding
modes about the thermal circle. This perspective is espe-
cially interesting for the case of BHs, as it aligns nicely with
earlier proposals that a Euclidean BH—albeit one in an
AdS spacetime—could be related to the condensation of
the thermal scalar [38,66–71]. However, as should become
clear by the end of the section, the Lagrangian (4) has to be
regarded as an expansion near a nontrivial minimum of the
potential which lies above the Hagedorn temperature. The
restriction to trans-Hagedorn temperatures can understood
by noticing that the entropy and energy densities both
vanish for ε ¼ 0 [cf. Eqs. (27)–(28)] and that the former
density formally becomes negative for ε < 0. Hence, the
Lagrangian (4) cannot be used directly to describe the
Hagedorn phase transition and reproduce its expected first-
order character.
The equation of motion ϕ�δLE=δϕ� ¼ 0 is as follows:

−
1

2
ϕ�∇2ϕ − εTϕϕ� þ g2sT2ðϕϕ�Þ2 ¼ 0: ð5Þ

An interesting solution of the above equation and its
conjugate is one in which the thermal scalar condenses,

jϕ0j2 ¼
ε

g2sT
: ð6Þ

It will be shown later that this ratio is a small number in
comparison to the Hagedorn scale, ε=ðg2sTHagÞ ≪ Td−1

Hag.
Expanding the Lagrangian about this constant solution,

ϕ ¼ ϕ0 þ φ, ϕ� ¼ ϕ0 þ φ�, we find that

LE ¼ 1

2
γij∂iφ∂jφ

� þ εTφφ� þ 1

2
g2sT2ðφφ�Þ2 − 1

2

ε2

g2s
: ð7Þ

One may also include a coupling to the Ricci scalar in the
Lagrangian. For instance, if a conformal coupling is
chosen, then LE → LE − d−1

4d Rφφ�. The importance of this
inclusion will be revealed later on; however, as one always
has the freedom to choose Ricci-flat fiducial coordinates,
this term cannot be relevant to the calculation of physical
observables.
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The expanded Euclidean action is thus given by

SE ¼ 1

T

Z
ddx

ffiffiffi
γ

p �
1

2
γij∂iφ∂jφ

� −
d − 1

4d
Rφφ�

þ εTφφ� þ 1

2
g2sT2ðφφ�Þ2 − 1

2

ε2

g2s

�
: ð8Þ

The action in Eq. (8) is similar to the standard expression in
the literature (e.g., [34,36]).

III. THERMAL SCALAR CONDENSATE

In this section, we elaborate on some of the conse-
quences for our theory when the thermal scalar condenses.

A. Euclidean action

In the case of condensation, it is simpler to use the real
field,

s ¼ jϕj2T ð9Þ

as the fundamental field; for which the expectation value at
the minimum is then

s0 ¼
ε

g2s
: ð10Þ

We have denoted the field by s because its condensate value
s0 is the same as the local entropy density of the strings
(see below).
Let us now rewrite the Lagrangian (4) as a functional

of s,

LEðsÞ ¼
1

8

1

sT
γij∂is∂js − εsþ 1

2
g2ss2: ð11Þ

Expanding the above near the minimum s ¼ s0ð1þ σðxiÞÞ,
keeping only quadratic terms and recasting it as a com-
pactified Euclidean action as in Eq. (8), we have

Sð2Þ
E ¼ 1

T

Z
ddx

ffiffiffi
γ

p
LEðσÞ þ S0; ð12Þ

such that

S0 ¼ −
1

T

Z
ddx

ffiffiffi
γ

p 1

2

ε2

g2s
ð13Þ

and

Sð2Þ
E ¼ 1

g2sT

Z
ddx

ffiffiffi
γ

p �
1

8

ε

T
γij∂iσ∂jσ þ 1

2
ε2σ2

−
d − 1

16d
ε

T
Rσ2

�
þ S0; ð14Þ

with the conformal coupling to R included for
completeness.

The equation of motion that results from the action (14),
for the case of Ricci flatness, is found to be

−∇2σ þ 4εTσ ¼ 0: ð15Þ

The field σ is therefore a massive, conformally coupled
scalar with a positive thermal mass-squared, m2 ¼ þ4εT.
This value for m2 can be compared with the magnitude of
the negative mass-squared of the thermal scalar when it is
below the Hagedorn temperature, m2 ¼ −εT (e.g., [36]).
We may absorb the dimensionality of g2s and ε by

rescaling them with appropriate powers of the temperature,

g̃2s ¼ g2sTd−1; ð16Þ

ϵ ¼ ε

T
: ð17Þ

In which case,

Sð2Þ
E ¼ 1

g̃2s
Td

Z
ddx

ffiffiffi
γ

p �
1

8
ϵ
1

T2
γij∂iσ∂jσ þ 2ϵ2σ2

−
d − 1

16d
ϵ
1

T2
Rσ2

�
: ð18Þ

As the field σ is dimensionless by its definition, the only
remaining dimensional parameter is T, making this a
thermal CFT. We will explain how scale and Weyl trans-
formations act on this action, after discussing the higher-
order interactions.
Higher-order (HO) terms in the action come about in two

different ways: (I) more than two strings intersecting at a
single point or (II) the same pair of strings intersecting at
two or more different points. Additional action terms of the
former kind are

SðHO;IÞ
E ¼ 1

T

Z
ddx

ffiffiffi
γ

p �
a3
3!

1

T
ðg2sÞ2s3 þ

a4
4!

1

T2
ðg2sÞ3s4 þ � � �

�
;

ð19Þ

where the a’s (and b’s below) are numerical coefficients
and the additional powers of temperature are dictated by the
scaling dimensions of the various quantities. Expanding
about the minimum s ¼ s0ð1þ σðxiÞÞ, we then have

SðHO;IÞ
E ¼ 1

g2sT

Z
ddx

ffiffiffi
γ

p �
a3
3!

ε2ϵð1þ σÞ3

þ a4
4!

ε2ϵ2ð1þ σÞ4 þ � � �
�

¼ Td

g̃2s

Z
ddx

ffiffiffi
γ

p �
a3
3!

ϵ3ð1þ σÞ3

þ a4
4!

ϵ4ð1þ σÞ4 þ � � �
�
; ð20Þ
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where all parameters and fields besides T are explicitly dimensionless in the lower line. As the small expansion parameter in
this case is ϵ ¼ T−THag

T ≪ 1, these corrections can be identified as α0 corrections in the effective action.
Higher-order terms coming from the same strings intersecting at two or more different points take the form,

SðHO;IIÞ
E ¼ 1

T

Z
ddx

ffiffiffi
γ

p �
b2
2!

Td−1ðg2sÞ2s2 þ
b3
2!

T2ðd−1Þðg2sÞ3s2 þ � � �
�
: ð21Þ

Once again expanding about the minimum and converting to dimensionless quantities, we obtain

SðHO;IIÞ
E ¼ 1

Tg2s

Z
ddx

ffiffiffi
γ

p �
b2
2!

Td−1ðg2sÞε2ð1þ σÞ2 þ b3
2!

T2ðd−1Þðg2sÞ2ð1þ σÞ2 þ � � �
�

¼ Td

g̃2s

Z
ddx

ffiffiffi
γ

p �
b2
2!

g̃2sϵ2ð1þ σÞ2 þ b3
2!

ðg̃2sÞ2ϵ2ð1þ σÞ2 þ � � �
�
: ð22Þ

The small expansion parameter in this case is g̃2s ¼ g2sTd−1,
and so these are identifiable as string loop corrections in the
effective action.
There are, of course, more complicated higher-order

interaction terms involving both string-coupling and α0
corrections. All of these corrections are parametrically
small provided that the requisite hierarchy ϵ ≪ g̃2s < 1
(see Subsection III C) is respected.

B. Conformal symmetry

Let us now discuss the transformation properties of the
theory under Weyl transformations. We first restrict atten-
tion to the case of constant Weyl transformations, which
correspond to scale transformations of the coordinates. For
the dþ 1-dimensional Euclidean theory, the constant Weyl
transformations can be expressed as

gττ → Ω2gττ;

γij → Ω2gij: ð23Þ

As we have seen, the dimensional coupling parameters
g2s and ε can be rendered dimensionless by rescaling them
with appropriate powers of the temperature, as done in
Eqs. (18), (20) and (22). Meaning that the only remaining
dimensional parameter is the temperature. The question
then is how to interpret the parameter T in the d-dimen-
sional compactified theory. If one considers the temperature
to be a fixed dimensional parameter, then this is obviously
not a scale-invariant theory. However, if one rather con-
siders that the temperature is the inverse of the circum-
ference of the thermal circle as in Eq. (2), 1

T ¼ H β
0 dτ

ffiffiffiffiffiffi
gττ

p
,

then it obviously varies under a Weyl transformation as

T → T=Ω: ð24Þ

Then, in this case, the variation of the metric in each of
Eqs. (18), (20) and (22) is exactly canceled by the variation
of the temperature, as the product Td ffiffiffi

γ
p

, in particular, is

scale invariant. Since the zeroth-order part of the action in
Eq. (13), S0 ¼ Td

R
ddx

ffiffiffi
γ

p 1
2
ϵ2

g̃2s
, transforms similarly, the

complete action is scale invariant.
When the temperature varies as in Eq. (24), the theory is

also invariant under general x-dependent Weyl transforma-
tions,

gττ → Ω2ðxiÞgττ;
γij → Ω2ðxiÞγij: ð25Þ

The only term that is sensitive to the difference between
constant and x-dependentWeyl transformations is the kinetic
term. However, the conformal coupling of the scalar to the
Ricci scalar ensures the invariance of the kinetic term even
under spatially dependent Weyl transformations. It can then
be concluded that, when the parameter T varies according to
Eq. (24), the thermal-scalar condensate is described by a
CFT, in spite of the appearance of a dimensional scale—the
temperature.

C. Free energy and thermodynamics

For the physical interpretation of the condensate sol-
ution, it is helpful to recall our previous discussions on the
Helmholtz free energy of strings that are slightly above the
Hagedorn temperature [51,52]. There, we proposed a free
energy density which is similar to those of polymers with
attractive interactions (e.g., [53–55]). In particular, the free
energy density F=V should be regarded as an expansion in
terms of the entropy density s such that s ≪ Td

Hag,

−
�
F
V

�
strings

¼ εs −
1

2
g2ss2 þ � � � ; ð26Þ

where the ellipsis, as usual, denotes higher-order interac-
tion terms. The right-hand side of Eq. (26) is the same as
the potential in Eq. (11).
From this stringy point of view, ε should be regarded as

the strings’ effective temperature. That is, the temperature
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associated with the collective motion of long strings, rather
than the local value of the temperature of small pieces of
string (or “string bits”) for which the temperature is much
higher, ε ≪ T ∼ THag.
The first term on the right of Eq. (26) represents the

Helmholtz free energy of a free string. In the free case and
in string units (ls ¼ 1), both the energy E and the entropy S
are equal to the total length L of the strings, E ¼ L and
S ¼ L. It follows that F=V ¼ ðE − STÞ=V ¼ ð1 − TÞL=V
and then, since s ¼ S=V ¼ L=V and ε ¼ T − THag, also
that F=V ≃ −εs, where we have approximated T ≃ THag ≃
1=ls ¼ 1.
The second term on the right of Eq. (26)—the leading-

order interaction term—can be understood by recalling
that a closed string interacts at its intersections, either with
itself or with another string. The simplest such interactions
being those for which two closed strings join to form one
longer one or one closed string splits into two shorter ones.
Since the probability of interacting is given by the dimen-
sionless string-coupling constant g̃2s , and again under the
assumptions that T ∼ THag ∼ 1 and that any numerical or
phase-space factors were absorbed into the dimensional
coupling, the total interaction strength is proportional to
g̃2sL2=V ¼ g̃2ss2V. As for the higher-order terms, these will
include extra factors of g̃2sL=V ∼ g̃2ss ∼ ϵ [see Eq. (27)
below] and/or g̃2s when the same strings intersect at multiple
points. Therefore, ϵ; g̃2s < 1 are necessary conditions for
these interactions to be suppressed. Equation (27) below
further implies the hierarchy, ϵ ≪ g̃2s < 1.
The minimization of the free energy defines the equi-

librium state. Doing so, one obtains what was previously
identified as the condensate solution,

s ¼ ε

g2s
; ð27Þ

which along with standard thermodynamics (with ε serving
as the temperature) yields the equilibrium relations,

p ¼ ρ ¼ 1

2

ε2

g2s
; ð28Þ

where the first equality is independent of Eq. (27). The
causal entropy bound is indeed parametrically saturated
since s ∼ ffiffiffi

ρ
p

.

D. An effective two-dimensional conformal field theory

As previously discussed, the thermal-scalar condensate
can be viewed as a d-dimensional Euclidean CFT.
However, as we now show, it is effectively a two-dimen-
sional CFT. This aspect of the thermal scalar was noticed a
long time ago in [41] and is implicit in [34]. We have
already discussed this feature of the theory in the context of
BHs in [51,52].

The free energy density of a D-dimensional (Euclidean)
CFT at temperature 1=β is expressible as2 F=V ¼ fββ−D,
where fβ is a numerical coefficient. This leads to an energy
density of the form ρ ¼ −ð1 − 1

DÞbββ−D, with bβ being
another number. The two coefficients are related according
to fβ ¼ bβ=D and an expression for the entropy density s
promptly follows, s ¼ −bββ−ðD−1Þ.
For the case of D ¼ 2,

F2=V ¼ 1

2
ðbβÞ2β−2; ð29Þ

ρ2 ¼ −
1

2
ðbβÞ2β−2; ð30Þ

s2 ¼ −ðbβÞ2β−1: ð31Þ

Whereas, in our case,

F=V ¼ −
1

2

ε2

g2s
; ð32Þ

ρ ¼ 1

2

ε2

g2s
; ð33Þ

s ¼ ε

g2s
: ð34Þ

Identifying ε as the effective temperature,

ε ¼ 1=β; ð35Þ

and setting

ðbβÞ2 ¼ −1=g2s ; ð36Þ

one can see a perfect match between Eqs. (32)–(34) and
Eqs. (29)–(31).
Moreover, if we adopt the standard parametrization for

the energy density of a two-dimensional CFT in terms of
the central charge c, ρ ¼ π

6
cβ−2 (see, e.g., [73]), then

c ¼ 3

π

1

g2s
; ð37Þ

and it follows that

s ¼ π

3
cβ−1: ð38Þ

The relations c ∼ 1=g2 and s ∼ c are indeed universal
features of CFTs, whereas the numerical coefficients
depend on additional detailed information. The central
charge is also expected to be related to the two-point

2In this subsection, we often adopt notation from [72].
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function of the stress-energy tensor as hT0
0T0

0i ∼ c. This
will be verified in detail next.
In CFTs at finite temperature, an operator with a non-

vanishing conformal dimension can have a non-zero
expectation value (i.e., a thermal one-point function),

hOiβ ¼
AO

βΔO
; ð39Þ

where ΔO is the conformal dimension and AO is a
dimensionless coefficient for the operator O. The scaling
of such a one-point function can be specified in terms of the
stress-energy tensor,

∂hOiβ
∂β ¼ −

1

β

Z
ddþ1xhT0

0ðx⃗ÞOð0Þicβ; ð40Þ

where the superscript c signifies a connected function.
Choosing O as the stress–energy tensor itself, one

obtains

∂hT0
0iβ

∂β ¼ −
1

β

Z
ddþ1xhT0

0ðx⃗ÞT0
0ð0Þicβ

¼ −
Z

ddxhT0
0ðx⃗ÞT0

0ð0Þicβ; ð41Þ

where the time circle has now been compactified to a
circumference of β ¼ 1=ε so as to agree with the definition
of the stress-energy tensor. Both sides of Eq. (41) have
explicit expressions in the CFT, and so we can verify the
relationship directly, a highly unusual situation for inter-
acting CFTs.
First, using Eqs. (33), (35) and the Euclidean identi-

fication T0
0 ¼ ρ, one can translate the left-hand side of

Eq. (41) into

∂hT0
0iβ

∂β ¼ −
ε3

g2s
: ð42Þ

The evaluation of the right-hand side of Eq. (41) requires
some additional ingredients. Since the Euclidean action
is expressed in terms of the entropy density s, a direct
relationship between T0

0 and s is required. For this,
recalling that ε is the effective temperature, we rely on
the thermodynamic relation δρ ¼ εδs. It follows that

T0
0ðx⃗Þ − hT0

0ðx⃗Þiβ ¼ εðsðx⃗Þ − hsðx⃗ÞiβÞ; ð43Þ

and so

hT0
0ðx⃗ÞT0

0ð0Þicβ ¼ ε2hsðx⃗Þsð0Þicβ: ð44Þ

We are interested in the limit jx⃗jε ≫ 1, as this will later
be shown to describe superhorizon scales. In this case, the
Euclidean action reduces to a single term, as can be seen
from Eq. (14),

SE ∼ β

Z
ddx

1

2
g2sðs − hsiÞ2: ð45Þ

The two-point function of s can then be readily evaluated in
terms of a Gaussian integral, again using T ¼ ε,

hsðx⃗Þsð0Þicβ ¼
Z

D½s�sðx⃗Þsð0Þe−SEðs;βÞ ¼ ε

g2s
δdðx⃗Þ; ð46Þ

which, by way of Eq. (44), leads to

hT0
0ðx⃗ÞT0

0ð0Þicβ ¼
ε3

g2s
δdðx⃗Þ: ð47Þ

It can now be verified that the right-hand side of Eq. (41),

−
Z

ddxhT0
0ðx⃗ÞT0

0ð0icβ ¼ −
ε3

g2s
; ð48Þ

matches its left-hand side, as shown in Eq. (42). Similarly,
one could also discuss the conformal dimension of Ti

i ¼
−p and find agreement between both sides of Eq. (41).
Finally, Eq. (47) makes clear the expected relationship
between the stress-energy tensor and the central charge
(37), hT0

0ðx⃗ÞT0
0ð0Þicβ ∼ 1=g2s ∼ c.

IV. CORRESPONDENCE TO AN
ASYMPTOTICALLY DE SITTER UNIVERSE

We will now set up the correspondence between dS
space and the theory of the thermal scalar in a similar
manner to that of AdS=CFT [2,3], but yet with significant
differences. To establish our proposed correspondence, it
will be shown that the HH wave function ΨHH of an
asymptotically dS Universe can be calculated using the
partition function of the CFT of the thermal-scalar con-
densate. The same CFT can be viewed as “living” on a
spacelike surface which should also be regarded as the
future boundary of its asymptotically dS dual.
Here, we are considering a situation in which an

asymptotically dS spacetime decays into a radiation-domi-
nated Universe. From the perspective of the microscopic
string state, this corresponds to the phase transition from
the Hagedorn phase of long strings to a thermal state of
radiation. As argued in [42], we do expect the Hagedorn
phase to be unstable, due to either a process which is
similar to Hawking radiation or else to some coherent
perturbation. From the viewpoint of the semiclassical
spacetime, this decay corresponds to the reheating of the
Universe after inflation. The correlation functions then
become temperature perturbations and are the late-time
observables, just as in the standard inflationary paradigm.
Meaning that the late-time, Friedmann-Robertson-Walker
(FRW) observers are the “metaobservers” [6] or “score-
keeping observers” [42] of the early inflationary epoch.
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As the FRW evolution starts in a thermal state, an FRW
observer might be compelled to invent a prehistory to
explain the observable Universe. This is similar to the way
that a semiclassical observer invents a description of the
BH interior [43] (and see below). Three possible such
prehistories are shown in Fig. 1.
An FRWobserver would then conclude that the Universe

exponentially expanded during some epoch in its pre-
history, for which the inflationary paradigm provides a
possible explanation. But let us emphasize the essential
point that the inflationary paradigm is an invented effective
history of the Universe. What is physically real are the
results of the measurements that are made by an FRW
observer after the end of inflation [42].
It is interesting to compare the just-discussed cosmo-

logical picture to the corresponding situation in the case of
BHs. In the latter case, it is clear that an asymptotic,
external observer is the one who can eventually measure
observables using the quantum state of the emitted radi-
ation and is, therefore, the score keeper for the interior. The
cosmological analogue—perhaps not quite as obvious—is
the late-time or FRW observer. The distant past of this
observer, before the beginning of the hot-radiation phase,
is the analogue of the BH interior. We similarly argued for
the case of BHs [43] (also see [74]) that all proposals for
the prehistory are perfectly acceptable as long as they are

self-consistent, able to reproduce the observable Universe
and compatible with the laws of physics. By this line
of reasoning, the puzzles of the FRW observer originate
from trying to explain what is an intrinsically quantum
initial state in terms of effective semiclassical physics.
The same situation was prevalent for BHs and led to the
infamous BH paradoxes. As will be shown here, the FRW
observer can interpret what is a maximally entropic state as
one of vanishing entropy with an approximate description
in terms of the flat-space slicing of a classical dS spacetime.
Let us briefly review the original proposal, first put

forward by Witten [6] and later by Maldacena [7] (also
see [10]), that the equality between the HH wave function
of an asymptotically dS Universe and the partition func-
tion of some CFT should serve as a requirement for set-
ting up a dS=CFT correspondence. The idea was to start
with a Euclidean AdS spacetime but regard the direction
perpendicular to the boundary—which is the radial coor-
dinate in AdS space—as the time coordinate in a Euclidean
dS spacetime. However, to the best of our knowledge,
this idea was never explicitly realized in a way that is
directly related to, or consistent with string theory [26].
The suggested equality ΨHHðgij; JÞ ¼ ZCFTðgij; JÞ relied
on certain identifications: The d-dimensional metric gij
represents, on the left, the reduction of the (dþ 1)-
dimensional dS metric on the spacelike boundary and,
on the right, the metric of the CFT. As for J, its dS meaning
is the boundary values of fields (like the graviton) which
can be used to set initial conditions for their post-infla-
tionary evolution, whereas its CFT meaning is the sources
for the fields in the CFT Lagrangian.
Correlation functions of operators in the CFT were

supposed to be calculated in the standard way; as deriv-
atives of the partition function with respect to the sources.
Given the above interpretation, these correspond on the
dS side to the boundary values of bulk expectation values
of spacetime fields. For example, if a dS scalar field ϕ is
considered, then hϕ2i ¼ R ½Dϕ�ϕ2jΨHHðϕÞj2, whereas
hϕ2i ¼ δZCFT

δJϕδJϕjJϕ¼0
.

We will follow [6,7] in taking the bulk spacetime as
being the Poincaré patch of dS space in planar coordinates
and the ground state of the bulk fields as being in
the Bunch-Davies vacuum. However, the identifications
between dS and CFT quantities will be different. We will
start by identifying the physical components of the two
different stress-energy tensors, that of the asymptotically
dS bulk and that of the CFT. The perturbed Einstein
equations in the bulk will then be used to find a relationship
between dS metric perturbations and perturbations of the
CFT stress–energy tensor. We cannot use the CFT metric
for this purpose because it is a fiducial, unphysical field. As
for the stress-energy tensor of the CFT, it cannot be
obtained as the derivative of the Lagrangian with respect
to such a fiducial metric. Rather, it has to be defined in
terms of the energy density and the pressure of the strings.

HH

FIG. 1. The correspondence between the CFT and dS space.
The HH wave function is calculated on a Euclidean section of a
dþ 1-dimensional space, as depicted by the black, dashed
semicircle, while the Euclidean CFT is d-dimensional and “lives”
on the future boundary of dS, as depicted by the solid, blue line.
In the upper half, the late observer’s past light cone is displayed
by the solid, red line, while in the lower half, lines of constant
planar-dS coordinates t and r are shown in red (approximately
vertical) and blue (approximately horizontal), respectively.
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Our current interest is in the case of pure gravity, so that
the only relevant bulk fields are the tensor and scalar
perturbations of the metric. In what follows, we will make
the abstract equalityΨHH ¼ ZCFT explicit and then use it to
calculate correlation functions of the relevant fields. The
correlation functions are our ultimate interest because these
are what correspond to observable physical quantities. We
will compare our results to those of the standard infla-
tionary paradigm [56] and to those which use the HH wave
function [57–59].

A. Parameters and fields

We now proceed by comparing the dimensional param-
eters and dynamical fields of the thermal-scalar CFT with
those of an asymptotically dS spacetime. As listed in
Table I, each side contains a pair of dimensional param-
eters: The D-dimensional Newton’s constant GD and the
Hubble parameterH in dS space versus g2s and ε on the CFT
side. It should be noted that the string length scale ls, or
equivalently, the inverse of the Hagedorn temperature, is a
unit length rather than a dimensional parameter and the
temperature T is not an additional parameter because it can
be expressed in terms of ε and THag, T ¼ εþ THag.
In the case of a pure theory of gravity in the asymp-

totically dS bulk, each side also contains two dynamical
fields. For dS space, these are the transverse-traceless (TT)
graviton hμν and the scalar perturbation ζ. Strictly speaking,
ζ is dynamical only when the dS symmetries are broken, as
it would be for a noneternal asymptotically dS spacetime.
For the CFT, the dynamical fields cannot simply be the
corresponding metric perturbations, as already discussed.
Hence, we will consider TT and suitably defined scalar
perturbations of the CFT stress-energy tensor and then,
with the help of Einstein’s equations, use these to deduce
the corresponding perturbations of the dS metric. Table II
includes the corresponding pairs of dynamical fields
along with each pair’s respective cosmological observable.
There and subsequently, we have denoted generic tensor

perturbations of the CFT stress-energy tensor by δρij and
their TT components by δρTTij .
In our framework, the dynamical CFT fields are given in

terms of either the entropy perturbations δs or the closely
related perturbations of the energy density and pressure,
δρ ¼ δp ¼ εδs, with the equalities following from the
equation of state and first law, respectively. Local scalar
perturbations in the entropy, energy and pressure are not
invariant under conformal transformations (rescalings in
particular) and therefore do not constitute physical observ-
ables. The identity of the physical scalar perturbations will
be clarified in Sec. IV C 2. Similarly, vector perturbations
are not physical, as these can be undone by special
conformal transformations. On the other hand, TT tensor
perturbations are physical. Higher-spin perturbations—
such as sextupole, hexapole, etc.—will involve derivatives
as these are the only other vectors available in the CFT. So
that, for length scales larger than the horizon, k ≪ H, such
higher-order perturbations are suppressed.
As for the TT components of the perturbations of the

stress-energy tensor, on the basis of isotropy, each inde-
pendent mode fluctuates with equal strength and the sum of
their squares is equal to the square of the energy-density
perturbation,

P
i;j jδρTTij j2¼ 1

2
ðdþ1Þðd−2ÞjδρTTij j¼ jδρj2.

For sake of completeness, the TT components can be
formally defined in terms of a transverse projection
operator PT

lm,

PT
lm ¼

�
δlm −

∇l∇m

∇2

�
; ð49Þ

which leads to the construction of a TT projector in the
standard way,

δρTTij ¼
�
PT
ilP

T
jm −

1

d − 1
PT
ijP

T
lm

�
δρlm: ð50Þ

Using the above correspondence between the two sets of
fields and dimensional parameters, we can turn the relation-
ship between the HH wave function and the CFT partition
function into a more explicit equality,

ΨHHðhij; ζ;GD;HÞ ¼ ZCFT

�
δρTTij ;

δs
s
; g2s ; ε

�
: ð51Þ

B. Thermodynamics

The objective here is to make the correspondence
between the CFT and dS space more precise by comparing
their respective values for the entropy. As for other possible
comparisons, the Gibbons-Hawking value of the dS tem-
perature TdS ¼ H

2π, is not directly related to observables in
the FRW epoch because of its observer dependence. The
energy density is indeed observable but even more ambigu-
ous, as the original derivation of the Gibbons-Hawking

TABLE I. Dimensional parameters in dS space and the thermal
CFT.

dS FT

GD g2s
H ε

TABLE II. Fields and cosmological observables (CO). The
quantity δρTTij is defined below in the text.

dS CFT CO

hij δρTTij PT
1
H

∂ζ
∂t

δs
s

Pζ
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entropy was for a closed dS space for which the total energy
vanishes [49]. Our expectation is that the energy density of
the strings will increase as the Hagedorn transition pro-
ceeds, until it becomes comparable to the Hagedorn energy
density. Hence, it is the entropy that serves as the most
reliable observable for comparison purposes.
Let us now recall from Eq. (27) that the CFT entropy

density is given by sCFT ¼ ε
g2s
, while also recalling that ε is

the associated (effective) temperature as in Sec. III D. The
entropy of the CFT in a Hubble volume VdðHÞ (or “causal
patch”) is then

SCFT ¼ εVdðHÞ
g2s

; ð52Þ

which should be compared to the Gibbons-Hawking
entropy on the dS side [49],

SdS ¼
AdðHÞ
4GD

¼ HVdðHÞ
4G

; ð53Þ

where AdðHÞ is the surface area of the Hubble volume and
AdðHÞ ¼ HVdðHÞ in planar coordinates has been used.
Equating the two entropies,

SCFT ¼ SdS; ð54Þ

we then obtain

8πGD

g2s

ε

H
¼ 2π: ð55Þ

Recall that we have absorbed numerical, string-theory
dependent, factors into ε and g2s (see Sec. II). Making
these factors explicit, one could then fix the ratio 8πGD

g2s
in

any specific string theory, which would in turn fix the ratio
ε
H. However, as the relation between GD and g2s is highly
model dependent, a detailed discussion on these ratios will
be deferred to a future investigation.
Given the identity in Eq. (54), the expected relation [49],

jΨHHj2 ¼ eþSdS ð56Þ

can now be recovered from the equilibrium value of the
CFT partition function,

Z2
CFT ¼ e−2

1
TS0 ¼ e

þ2
T

R
ddx1

2
ε2

g2s ; ð57Þ

where the rightmost exponent follows from Eq. (13) and the
use of flat, planar coordinates. One should take note of the
crucial sign change of the exponent thanks to the negativity
of S0. For the purposes of matching this partition function
to the HH wave function, we need to change the prefactor
in the exponent from 1=T to 1=ε. This is consistent with the

perspective of Sec. III D and is, once again, related to the
effective temperature of the long strings being equal to ε
rather than the microscopic temperature of the strings
T ∼ THag. The end result is

jΨHHj2 ¼ Z2
CFTðT → εÞ ¼ exp

�
1

ε

Z
ddx

ε2

g2s

�

¼ exp

�Z
ddxs

�

¼ expðSCFTÞ
¼ expðSdSÞ; ð58Þ

where the integral is over the Hubble volume and Eq. (54)
has been used at the end.
It should be emphasized that, in spite of the exponen-

tially growing magnitude of the wave function, the pertur-
bations are well behaved and controlled by a well-defined
Gaussian integral as in Eqs. (45) and (46).
Our definition of the HH wave function in terms of

ZCFT resolves several longstanding issues about this wave
function and its use in Euclidean quantum gravity [75,76].
Formally, the Euclidean gravitational action is unbounded
from below, and the integral defining it is badly divergent.
But the wave function is certainly relevant to perturbations
about an asymptotically dS space and, as we have seen, the
associated Gaussian integral is itself well defined and
convergent. Moreover, from our perspective, the growing
exponential for the magnitude of the wave function is not a
vice but a virtue, as it is needed to explain the large entropy
of dS space. Additionally, if ΨHH is viewed as defining a
probability distribution for a background dS Universe, the
distribution is peaked at small values of the cosmological
constant, thus implying a large and empty universe which
disfavors inflation. Our definition of the wave function, on
the contrary, predicts a large, hot Universe in lieu of
inflation. Finally, our definition extends the domain of
the quantum state of the Universe beyond the semiclassical
regime and demonstrates that the resolution of the initial
singularity problem must rely on strong quantum effects.

C. Two-point correlation functions and
spectrum of perturbations

We begin this part of the analysis by expanding the
Lagrangian LEðsÞ in Eq. (11) about the equilibrium
solution s0 up to second order in the perturbation strength
δsðx⃗Þ ¼ sðx⃗Þ − s0. This will enable us to calculate the two-
point correlation functions of the CFT, which can be used in
turn to calculate the spectra of the corresponding cosmo-
logical observables.
The relevant term in the just-described expansion is the

quadratic term,

Sð2Þ
E ¼ 1

T

Z
ddx

1

2
g2sδs2 þ � � � ; ð59Þ
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from which it follows that

hδsðx⃗Þδsð0Þi ¼
Z

½Dδs�δsðx⃗Þδsð0Þe−1
T

R
ddx1

2
g2sδs2 ¼ T

g2s
δdðx⃗Þ:

ð60Þ
In cosmology, it is customary to use the power spectrum

of the two-point function as the observable quantity. What
is then required is the Fourier transform of the perturbation
δsk⃗, which is related to δsðx⃗Þ in the usual way,

δsðx⃗Þ ¼ 1

ð2πÞd
Z

ddkeik⃗·x⃗δsk⃗: ð61Þ

The two-point function for δsk⃗ is expressible as

hδsk⃗1δsk⃗2i ¼ jδsk⃗1 j2ð2πÞdδdðk⃗1 þ k⃗2Þ; ð62Þ
where

jδsk⃗j2 ¼
T
g2s

ð63Þ

can be deduced from Eq. (60).
Now applying the standard relationship between a power

spectrum and its associated two-point function,

dðln kÞPδsðkÞ ¼
ddk
ð2πÞd jδskj

2; ð64Þ

we obtain the spectral form,

PδsðkÞ ¼
dΩd−1kd

ð2πÞd
T
g2s

; ð65Þ

where dΩd−1 is the solid angle subtended by a (d − 1)-
dimensional spherical surface. The power spectrum has, by
definition, the same dimensionality as hδsðx⃗Þ2i, and this
fixes the power of k unambiguously.
Since δρ ¼ εδs from the first law and δp ¼ δρ from the

equation of state, it can also be deduced that

PδρðkÞ ¼ PδpðkÞ ¼
dΩd−1kd

ð2πÞd
Tε2

g2s
: ð66Þ

1. Tensor perturbations

To obtain the power spectrum of the tensor perturbations,
we start with the relationship between a specific polariza-
tion of the tensor perturbations of the metric and the
corresponding component of the stress-energy tensor per-
turbation (see, e.g., [56]),

hjhijðkÞj2idS ¼
ð4πGDÞ2
ðk2Þ2 hjδTTT

ij ðkÞji2dS

¼ ð4πGDÞ2
ðk2Þ2 hjδρTTij ðkÞji2CFT; ð67Þ

where the proposed duality has been applied in the second
line, and thus the validity of the second equality only
applies on the spacelike matching surface (i.e., on the future
boundary of the asymptotically dS spacetime).
Let us recall that

PhjδρTTij ðkÞji2CFT ¼ jδρj2CFT. Then,
from Eq. (67), it follows that

PhjhijðkÞj2idS can be directly
related to jδρj2CFT, and one can similarly relate the total
power spectrum for the tensor perturbations PTðkÞ to the
spectrum in Eq. (66),

PTðkÞjk→H;T→ε ¼
ð4πGDÞ2
ðk2Þ2 Pδρjk→H;T→ε

¼ 1

4
ð8πGDÞ2

ε3

g2s
Hd−4 dΩd−1

ð2πÞd ; ð68Þ

where the standard horizon-crossing condition k → H
has been applied and our usual replacement T → ε has
been made.
Next, using Eq. (55), we obtain

PTðHÞ ¼ π

2

ε2

H2
ð8πGDÞHd−1 dΩd−1

ð2πÞd ; ð69Þ

or, in terms of the dS entropy in Eq. (53),

PTðHÞ ∼ 1

SdS
; ð70Þ

as expected. Notice that PTðHÞ is dimensionless.
In the observationally relevant case of d ¼ 3, the above

reduces to

PTðHÞ ¼ 1

4π

ε2

H2

H2

m2
P
; ð71Þ

which, has the same parametric dependence as the standard
inflationary result,

PTðinflationÞ ¼
2

π2
H2

m2
P
: ð72Þ

A calculation of the tensor power spectrum using the HH
wave function with an additional scalar field [57,59] is in
agreement with the standard inflationary outcome, and
therefore, our result is also in qualitative agreement with
this calculation.
It should be emphasized that we assumed in the cal-

culation that the state is one of exact thermal equilibrium,
so that its temperature is uniform or, equivalently, εðkÞ ¼
constant. It is for this reason that the spectrum of tensor
perturbations was found to be exactly scale invariant. It
may well be that the effective temperature of the state is
not exactly constant and could be scale dependent due to
some source of conformal-symmetry breaking. This break-
ing is quite natural insofar as the state has a finite extent;
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equivalently, the dS spacetime is noneternal. Nevertheless,
the breaking is expected to be quite small, as its effects are
proportional to the deviations of the spacetime from an
eternal dS background. We will discuss this issue further
after discussing the scalar perturbations.

2. Scalar perturbations

In an eternal asymptotically dS space, time does not
exist, and it is impossible for a single observer to see the
extent of the whole state. By contrast, in a noneternal
asymptotically dS spacetime, a quantity that measures
time—a “clock”—can be introduced. The same must apply
to each of their respective CFT duals. For instance, in
semiclassical inflation, the clock is introduced in the guise
of a slowly rolling inflaton field. On either side of our
proposed correspondence, the clock is the total observable
entropy of the state in units of the horizon entropy. And it is
the fluctuations in this clock time that serves as the dual to
the scalar modes of dS space, as we now explain.
To formulate the dual of the gauge-invariant scalar

perturbations ζ [56], we will follow [42] and rely on the
relationship between ζ and the perturbations in the number
of e-folds δNe-folds. This method was previously used to
calculate superhorizon perturbations in the “separate uni-
verse” approach and the δN formalism [77,78], where it
was shown that

ζ ¼ δNe-folds: ð73Þ

It should be emphasized that Eq. (73) fixes completely the
normalization of ζ. From our perspective, what is important
is that the value of δNe-folds can be expressed in terms of
CFT quantities, as we will clarify in the ensuing discussion.
The number of e-folds that an FRW observer has to

postulate is, from his perspective, determined by the
increase in volume which is required to explain the
difference in entropy between that in a single Hubble
horizon SH ∼ SdS and the total entropy of the Universe
Stot ¼ nHSH. From this observer’s perspective, the param-
eter nH is the number of causally disconnected Hubble
volumes VH at the time of reheating; that is,

nH ¼ edNe-folds ¼ V tot

VH
¼ Stot

SH
; ð74Þ

where the last equality assumes that there are no additional
entropy-generating mechanisms after the inflationary
period (otherwise, the final ratio would be an upper bound)
and that SH is constant, independent of its location.
Meanwhile, a hypothetical CFT observer faces the analo-
gous task of accounting for an extremely large total entropy
after the phase transition from strings to radiation.
To make use of the relationship between δNe-folds and ζ,

we call upon a known expression for ζ in terms of pressure
perturbations [78],

1

H
∂ζ
∂t ¼ −

1

pþ ρ
δpjρ: ð75Þ

Then, since pþ ρ ¼ εs and δp ¼ δρ ¼ εδs,

1

H
∂ζ
∂t ¼ −

δs
s
: ð76Þ

Next, the conformal symmetries on either side of the
duality allows for the replacement of 1

H
∂
∂t with − ∂

∂ðln kÞ,

∂ζ
∂ðln kÞ ¼

δs
s
; ð77Þ

or, formally,

ζ ¼
Z

dðln kÞ δs
s
: ð78Þ

This result can be recast as

ζ ¼
Z

dðlnVÞ
d

δs
s
¼ 1

d

Z
ddx

δs
Vs

¼ δNe-folds; ð79Þ

where the first equality follows from conformal symmetry
and the last one from Eq. (74).
We can now call upon Eq. (77) for ζ and the equilibrium

value for s in Eq. (27) to show that the two-point function
for the scalar perturbations satisfies

∂
∂ðln k1Þ

∂
∂ðln k2Þ hζk⃗1ζk⃗2i ¼

�
g2s
ε

�
2

hδsk⃗1δsk⃗2i: ð80Þ

Observing that both sides of Eq. (80) are of the form
fðk1Þδdðk⃗1 þ k⃗2Þ, one can integrate twice over both sides
and compare the coefficients. The result is

hjζkj2i ¼
Ne-folds

d

�
g2s
ε

�
2

hjδskj2i ¼
Ne-folds

d
Tg2s
ε2

; ð81Þ

where the second equality follows from Eq. (63) and the
factor of Ne-folds results from one of the integrals on the
right, −

R
dðln kÞ ¼ R

Hdt ¼ R
dðln aÞ ¼ Ne−folds. The

associated power spectrum is then

PζðkÞ ¼
Ne-folds

d
Tg2s
ε2

kddΩd−1

ð2πÞd : ð82Þ

To make contact with the dS calculation, the conditions
k → H and T → ε can once again be imposed,

PζðHÞ ¼ Ne-folds

d
g2s
ε
Hd dΩd−1

ð2πÞd : ð83Þ

If we further substitute 8πGD for g2s using Eq. (55), then
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PζðHÞ ¼ Ne-folds

2πd
8πGDHd−1 dΩd−1

ð2πÞd : ð84Þ

The fact that Pζ is enhanced by the number of e-folds
with respect to the tensor perturbations is a significant
feature of the correspondence,

Pζ ∼ Ne-foldsPT: ð85Þ

The enhancement factor ofNe-folds can be traced to the large
size of the initial string state rather than to the scaling
properties of the CFTor to deviations from scale invariance.
This is unlike in models of semiclassical inflation, for
which the tensor perturbations are viewed as suppressed
with respect to their scalar counterparts by a factor that is
explicitly related to the amount of deviation from scale
invariance.
For the d ¼ 3 case with m2

P ¼ 1=ð8πGÞ,

PζðHÞ ¼ Ne-folds

4π3d
H2

m2
P
; ð86Þ

which can be compared to the standard inflationary result,

PζðHÞinflation ¼
1

ϵinf

1

8π2
H2

m2
P
; ð87Þ

where ϵinf parametrizes the deviation from scale invariance,
1 − nS ¼ 6ϵinf − 2ηinf . Here, nS is the scalar spectral index
and ϵinf , ηinf are the slow-roll parameters. In simple models
of inflation, ϵinf ∼ 1=Ne-folds; meaning that our result is in
qualitative agreement with that of semiclassical inflation.
A calculation of the scalar perturbations using the HH

wave function [57–59] is in agreement with the standard
inflationary result and, just like for models of inflation,
requires an additional scalar field to render the scalar
perturbations as physical. Meaning that our result for the
scalar power spectrum is in qualitative agreement with the
HH calculation as well.
An important observable is the tensor-to-scalar power

ratio r. In general,

r ¼ PT

Pζ
¼ d

Ne-folds

π2ε2

H2
; ð88Þ

and, in the d ¼ 3 case,

r ¼ 3

Ne-folds

π2ε2

H2
: ð89Þ

Given that ε ∼H as expected, the above value of r ∼
1=Ne−folds would correspond to a high scale of inflation if
interpreted within simple models of semiclassical inflation.
This is consistent with our expectation that the energy
density is of the order of T4

Hag [42].

D. Higher-order correlation functions and deviations
from scale-invariance

The discussion has, so far, been focusing on the
quantities that are the least sensitive to the choice of
model; namely, the two-point functions in the case of
conformal invariance. Our results could be extended to
more model-dependent quantities, such as two-point cor-
relation functions when conformal invariance is weakly
broken or higher-point functions for the conformally
invariant case. We will not extend the calculations at the
present time but do anticipate a more detailed analysis
along this line in the future. Let us, meanwhile, briefly
explain the significance of such model-dependent
calculations.
Deviations from conformal invariance can arise from

spatial dependence (equivalently, k dependence) of the
effective temperature ε or the string coupling g2s or both.
These will in turn introduce scale dependence into the
tensor and scalar power spectra. The scale dependence is an
observable feature; however, because of its dependence on
the details of the background solution and on the nature of
the Hagedorn transition—and not just on scales and
symmetries—it is, in some sense, a less fundamental aspect
of the correspondence.
The higher-order terms in the CFT Lagrangian, as

discussed in Eqs. (19)–(22), are also present when the
conformal symmetry remains unbroken. However, these
terms are still model dependent as they depend on the
specific string theory. But, in spite of their relative small-
ness, they remain of considerable interest, as such terms can
be used to calculate three-point (and higher) correlation
functions. These multipoint correlators are what determines
the non-Gaussianity of the spectra of perturbations and,
therefore, represent an opportunity for distinguishing our
proposed correspondence from the standard inflationary
paradigm. Unfortunately, it is already quite evident that
such effects are small.

V. CONCLUSION AND OUTLOOK

We have put forward a new correspondence between
asymptotically dS space and a CFT dual by showing that
the partition function of the CFT is equal to the HH wave
function of the dS space. Our correspondence provides a
complete qualitative description of a nonsingular initial
state of the Universe and, in this sense, replaces the big-
bang singularity and semiclassical inflation.
We have built off of a previous work [42] which shows

that an asymptotically dS spacetime has a dual description
in terms of a state of interacting, long, closed, fundamental
strings in their high-temperature Hagedorn phase. A
significant, new development was the identification of
the entropy density of the strings with the magnitude-
squared of a condensate of a thermal scalar whose path
integral is equal, under certain conditions, to the full
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partition function for the Hagedorn phase of string theory.
The strings are thus described by a thermal CFT, which can
also be viewed as a Euclidean field theory that has been
compactified on a string-length thermal circle. Surprisingly,
the reduced theory has the scaling properties of a two-
dimensional CFT in spite of formally being defined in a
manifold with d ≥ 3 spatial dimensions.
Our correspondence provides a clear origin for the

entropy of dS space as the microscopic entropy of a hot
state of strings. This explanation clarifies how a state whose
equation of state is p ¼ −ρ, as in dS space, can have any
entropy at all when the thermodynamic relation pþ ρ ¼
sT suggests that both the entropy and the temperature are
vanishing. From the stringy point of view, the pressure is
rather maximally positive and the negative pressure of dS
space is an artifact of insisting on a semiclassical geometry
when none is justified.
The proposed duality redefines the HH wave function

and resolves several outstanding issues with its common
interpretation, such as the divergence of the Euclidean path
integral and its preference for an empty Universe with a
very small cosmological constant.
We have shown how the power spectra for the tensor and

scalar perturbations of the asymptotically dS metric can be
calculated on the CFT side of the correspondence by
identifying the two dual fields, the scalar and tensor
perturbations of the CFT stress-energy tensor. As was
discussed in detail, these calculations reproduce, qualita-
tively, the results of the standard inflationary paradigm and
the corresponding calculations which use the HH wave
function. Although any specific set of predictions will
depend on the value of an order-unity number—the ratio of
the effective temperature of the string state ε to the Hubble
parameter H—our framework does provide an opportunity
to compare the predictions of specific string-theory-based
models for cosmological observables. In addition, the
strength of the scalar perturbations was found to be
naturally enhanced by a factor of Ne-folds, even when the
theory formally exhibits local scale invariance. This places
our predicted value for the cosmological observabler r well
within the empirical bounds.
Let us now finish by discussing some remaining issues

and possible extensions of the current analysis:
First, it should be reemphasized that we do not explain

why the Universe is large. The entropy of the string state is
large because this corresponds to a large asymptotically dS
Universe and thus leads to a large FRW Universe in the
state’s future. The value of the entropy should be viewed as
part of the definition of the initial state.
Still lacking is a qualitative description of just how the

state of hot strings decays into the state of hot radiation

which follows; a transition which is known as reheating in
inflation. In our case, the transition corresponds to a phase
transition between the Hagedorn phase of long strings and a
phase of short strings propagating in a semiclassical
background. Because of the close parallels between
early-Universe cosmology and BHs, our expectation is
that the transition is described by a decay mechanism that is
akin to Hawking radiation.
Our proposal can be extended to incorporate the effects

of deviations away from conformality. To make such a
calculation precise, the issue of how the effective temper-
ature ε and the coupling g2s depend on scale will have to be
resolved. It will also, as mentioned, be necessary to fix the
ratio ε=H, which amounts to understanding the exact
relation between the string coupling and Newton’s constant
in specific compactifications of various string theories.
Another possible extension is the incorporation of three-
point correlation functions and higher. This entails the
inclusion of yet-to-be-specified higher-order terms in the
CFT Lagrangian, and using these to calculate three- and
higher-point correlation functions in dS space. Yet another
interesting extension is to include other dynamical fields
besides the physical graviton modes and their CFT dual, for
instance, the dilaton of the underlying string theory.
The connection between our proposed correspondence

and the AdS=CFT correspondence is not currently clear.
What is clear, though, is that if such a connection exists, it
must differ from previous proposals which regard the AdS
radial direction as Euclidean time and AdS time as one of
the spatial coordinates. It is still possible that the two
frameworks are somehow connected at a mathematical
level or even at a yet unknown deeper conceptual level.
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