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In this paper we report on certain ambiguities in the calculation of the ensemble average hTμνi of the stress-
energy-momentum tensor of an arbitrarily coupled massless scalar field in one-dimensional boxes in flat
spacetime. The study addresses a box with periodic boundary conditions (a circle) and boxes with reflecting
edges (with Dirichlet or Neumann boundary conditions at the end points). The expressions for hTμνi are
obtained from finite-temperature Green functions. In an appendix, in order to control divergences typical of
two dimensions, these Green functions are calculated for related backgrounds with an arbitrary number of
dimensions and for scalar fields of arbitrary mass, and are specialized in the text to two dimensions and for
massless fields. The ambiguities arise due to the presence in hTμνi of double series that are not absolutely
convergent. The order inwhich the two associated summations are evaluatedmatters, leading to two different
thermodynamics for each type of box. In the case of a circle, it is shown that the ambiguity corresponds to the
classic controversy in the literature whether or not zero-mode contributions should be taken into account in
computations of partition functions. In the case of boxes with reflecting edges, it results that one of the
thermodynamics corresponds to a total energy (obtained by integrating the nonhomogeneous energy density
over space) that does not depend on the curvature coupling parameter ξ as expected, whereas the other
thermodynamics curiously corresponds to a total energy that does depend on ξ. Thermodynamic require-
ments (such as local and global stability) and their restrictions on the values of ξ are considered.
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I. INTRODUCTION

Over the last decades, since the discovery that a black
hole behaves very much like a blackbody—with entropy
and temperature [1], and even radiation [2]—the study of
quantum fields at finite temperature near boundaries and in
spacetimes with nontrivial topologies and geometries has
received increasing attention in the literature. The message
seems to be that one may learn a great deal about the nature
of gravity itself by looking at boundary quantum field
theory at finite temperature, especially in lower dimensions
as holography suggests [3].
A simple example that is commonly used to illustrate the

interplay between thermodynamics of fields and nontrivial
topology is the model of a massless scalar field living
on a circle of length a and geometry (throughout the text
kB ¼ ℏ ¼ c ¼ 1)

ds2 ¼ dt2 − dx2: ð1Þ

Familiar methods in statistical mechanics lead to the
internal energy,

UðT; aÞ ¼ −
π

6a
þ 4π

a

X∞
k¼1

k

e2πk=Ta − 1
; ð2Þ

where the first term is the vacuum energy (i.e., correspond-
ing to T → 0) [4] and the second is the contribution at
temperature T due to the Planck distribution [5]. In fact,
Eq. (2) disguises a subtlety that has simply been ignored. It
turns out that due to the proper periodic boundary condition
of a circle, in evaluating U one should also take into
account the mode corresponding to k ¼ 0, i.e., the so-called
“zero mode” [6]. However, in order to do so some
regularization must be used. For example, the term1

2π

a
lim
ϵ→0

ϵ

e2πϵ=Ta − 1
ð3Þ
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1Note the factor 2π=a in Eq. (3), and not 4π=a as in Eq. (2)
where each term in the summation corresponds to two states.
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could be added to Eq. (2), resulting in

UðT; aÞ ¼ −
π

6a
þ T þ 4π

a

X∞
k¼1

k

e2πk=Ta − 1
: ð4Þ

The contrasting expressions in Eqs. (2) and (4) are the
source of a dispute in the literature regarding whether the
zero mode should be taken into account or not [7–9]. This
issue is relevant since it is related to the third law of
thermodynamics [6,7,9], the derivation of the Cardy-
Verlinde formula, and entropy bounds [10,11], among
other topics [12].
Arguing in favor of Eq. (2), the authors of Ref. [7]

remarked that an independent calculation using the thermal
Green function leads to a homogeneous energy density
hTtti which, multiplied by the length a, yields precisely U
in Eq. (2). Indeed, when looking through the literature one
finds an earlier calculation in a textbook [4], where the
ensemble average hTμνi of the stress-energy-momentum
tensor is determined from the thermal Green function.
Then, by taking hTtti × a, Eq. (2) comes up again. It is
rather puzzling that such a “local approach” to obtain the
internal energy ignores the term T in Eq. (4).
The apparent absence of Eq. (4) in the “local approach”

has motivated the investigation in Sec. II, whose content is
now outlined. In Appendix A 1, the finite-temperature
Green function for a neutral scalar field of mass M in a
flat N-dimensional spacetime with periodic boundary
condition along one of the dimensions is calculated. By
taking M → 0 and N → 2, the Green function is used in
Sec. II A to obtain hTμνi of a massless scalar field on a
circle of length a. As is typical in this kind of calculation
involving finite-temperature Green functions to obtain the
ensemble average of the stress-energy-momentum tensor
[13–16], the resulting expression for the homogeneous
hTμνi contains a double series. In higher dimensions the
double series converges absolutely, meaning that one can
interchange the order of the summations and the result will
still come out the same (see, e.g., Ref. [17]). However, this
is not the case in a two-dimensional background, as the
calculations in Sec. II show: evaluating the summations at
one order leads indeed to Eq. (2), but interchanging the
order of the summations leads instead to Eq. (4).
In Sec. II B the local thermodynamic stability of the two

sides of the ambiguity is addressed. In Sec. II C, in order to
further explore the implications of this ambiguity in
thermodynamics, the formula (with β ≔ 1=T)

U ¼
�∂ðβFÞ

∂β
�

a
ð5Þ

is integrated to determine the Helmholtz free energy F.
The integration constant resulting from this procedure is set
by requiring that the thermodynamic pressure matches the
stress component of hTμνi, such that there is no unknown

length scale. Various thermodynamics aspects are inves-
tigated at the asymptotic limits when Ta ≪ 1 and when
Ta ≫ 1.
It is rather well known that an interval with the Neumann

boundary condition at the end points is a model of a one-
dimensional box with reflecting edges, in which the
calculation of the partition function for hot scalar radiation
also leads to a zero mode commonly ignored. In fact, the
formula given in the literature for the internal energy
corresponding to the Dirichlet boundary condition at the
end points (for which there is no zero mode) is the same as
that corresponding to the Neumann boundary condition,
namely [18,19],

UðT; aÞ ¼ −
π

24a
þ π

a

X∞
k¼1

k

eπk=Ta − 1
; ð6Þ

where a is the length of the interval. Considering this fact
and the discussion in the previous paragraphs, one may
wonder if the local approach using Green functions may
contain surprises here as well. When examining the
literature, we have not found any study of hTμνi for hot
scalar radiation with Dirichlet or Neumann boundary
conditions at the end points of a one-dimensional box.2

Such a study is implemented in Sec. III A and out-
lined below.
In Appendix A 2, the finite-temperature Green function

for a neutral scalar field of mass M in N-dimensional flat
spacetime with two parallel plane walls at which either
Dirichlet or Neumann boundary conditions are taken is
evaluated. Then, in Sec. III A we again set M → 0 and
N → 2 and use the Green function to obtain hTμνi for a
massless scalar field in a one-dimensional box of length a
with reflecting end points. This time, it turns out that hTμνi
is nonhomogeneous and dependent on the curvature cou-
pling parameter ξ. Ambiguities now arise due to the
presence in hTμνi of two sets of double series. A particular
order of summation is chosen in each series, and then the
order is interchanged, resulting in two different expressions
for hTμνi. The corresponding local thermal behaviors are
investigated near the end points and at the midpoint of the
box, for low and high temperatures. The values of ξ
consistent with local stable thermodynamic equilibrium
(see Ref. [20]) are determined in Sec. III B.
In Sec. III C, in order to calculate the internal energies

corresponding to the two expressions for hTμνi found in
Sec. III A, we integrate the nonhomogeneous energy
densities hTtti over the box. It is then shown that one of
the integrations leads to the formula in the literature
(calculated using the partition function), i.e., Eq. (6),
whereas the other integration instead yields

2In fact, there is such a calculation in four dimensions [16], but
then there is no ambiguity since the corresponding double series
are absolutely convergent.
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UðT; aÞ ¼ −
π

24a
þ ð1 ∓ 4ξÞT

2
þ π

a

X∞
k¼1

k

eπk=Ta − 1
; ð7Þ

where (as in the rest of the text) the upper sign applies to the
Dirichlet boundary condition and the lower sign to the
Neumann boundary condition. It is worth noting that
Eqs. (2) and (4) correspond to Eqs. (6) and (7), respectively.
The appearance of ξ in Eq. (7) is a bit surprising since,

for a massless scalar field ϕ in flat spacetime with one
spatial dimension x, the classical expression for the energy
density Ttt depends on the curvature coupling parameter ξ
only through the term −2ξ∂xðϕ∂xϕÞ, which thus does not
contribute when integrating Ttt for Dirichlet or Neumann
boundary conditions [21]. It should also be noticed that by
setting ξ ¼ 1=4 in Eq. (7), the Neumann zero mode
mentioned above emerges. A last inescapable remark on
Eq. (7) at this early stage in the paper involves the low-
temperature behavior of the corresponding heat capacity at
constant volume, namely, C ¼ ð1 ∓ 4ξÞ=2 (up to a positive
exponentially small correction). As thermal stability
requires C > 0 [22], it follows that ξ must be such that
ξ ≤ 1=4 and ξ ≥ −1=4 for Dirichlet and Neumann boun-
dary conditions, respectively. Later on in the text, these
inequalities will be confronted with those obtained in
Sec. III B where local stable thermodynamic equilibrium
is required [20].
The rest of the material in Sec. III C further investigates

the two thermodynamics corresponding to Eqs. (6) and (7).
Again, Eq. (5) is used to obtain F, and from that the other
thermodynamic quantities whose behaviors are studied
when Ta ≪ 1 and when Ta ≫ 1. As in Sec. II C, various
thermodynamic aspects are addressed. It should be men-
tioned that, unlike the other cases, requiring that the
thermodynamic pressure be equal to the stress component
of hTμνi corresponding to Eq. (7) gives rise to a length
scale.
Section IV contains a summary and further discussion of

the results.

II. CIRCLE

In this section we consider the thermal behavior of a
massless scalar field living on a circle of length a.
Therefore, the geometry is that in Eq. (1) and the end
points x ¼ 0 and x ¼ a are identified.

A. hTμνi
The ensemble average hTμνi can be formally obtained by

using the “point splitting” method with the Feynman
propagator GF ðx; x0Þ at finite temperature T ¼ 1=β (see,
e.g., Refs. [4,23] or the short review in Ref. [24]). In a flat
background,

hTμνi ¼ i lim
x0→x

½ð1 − 2ξÞ∇μ∇ν0 þ ð2ξ − 1=2Þgμν∇σ∇σ0

− 2ξ∇μ∇ν�GF ðx; x0Þ;

whereGF ðx; x0Þ is related to the Green functions calculated
in the Appendix by

GEðx; x0Þ ¼ iGF ðx; x0Þ: ð8Þ

For the analysis that will be implemented below, it is
convenient to express each component of hTμνi explicitly. It
follows that the energy density is given by

hTtti ¼
i
2
lim
x0→x

� ∂2

∂t∂t0 þ ð1 − 4ξÞ ∂2

∂x∂x0 − 4ξ
∂2

∂t2
�
GF ðx; x0Þ;

ð9Þ

the stress by

hTxxi ¼
i
2
lim
x0→x

� ∂2

∂x∂x0 þ ð1− 4ξÞ ∂2

∂t∂t0 − 4ξ
∂2

∂x2
�
GF ðx;x0Þ;

ð10Þ

and the fluxes by

hTtxi ¼ i lim
x0→x

�
ð1 − 2ξÞ ∂2

∂t∂x0 − 2ξ
∂2

∂t∂x
�
GF ðx; x0Þ ð11Þ

and

hTxti ¼ i lim
x0→x

�
ð1 − 2ξÞ ∂2

∂x∂t0 − 2ξ
∂2

∂x∂t
�
GF ðx; x0Þ: ð12Þ

The reason for the appearance of the curvature coupling
parameter ξ in Eqs. (9)–(12), in spite of the flat geometry in
Eq. (1), is that Tμν is defined by a functional derivative with
respect to an arbitrary metric [4].
Considering Eqs. (8), (A12), and (A13), one has that

(keeping for the time being N and M arbitrary such that
divergences can be properly controlled)

GF ðx; x0Þ ¼
X∞

m¼−∞

X∞
n¼−∞

fðσðm;nÞÞ; ð13Þ

where

fðuÞ ≔ −
i

ð2πÞN=2M
N−2
2 ð−uÞ2−N4 KN−2

2
ðM ffiffiffiffiffiffi

−u
p Þ: ð14Þ

It is convenient to break the expression in Eq. (13) into the
following contributions:
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G0ðx; x0Þ ≔ fðσð0;0ÞÞ;

Gvacuumðx; x0Þ ≔
X0∞

n¼−∞
fðσð0;nÞÞ; ð15Þ

Gthermalðx; x0Þ ≔
X0∞

m¼−∞
fðσðm;0ÞÞ;

Gmixedðx; x0Þ ≔
X0∞

m¼−∞

X0∞

n¼−∞
fðσðm;nÞÞ; ð16Þ

with a prime in the summation indicating that the term
corresponding to m ¼ 0 or n ¼ 0 should be excluded.
Noting Eqs. (13) and (14), and considering the asymptotic
behavior of KνðzÞ [25], one sees that G0ðx; x0Þ is the
familiar vacuum propagator in Minkowski spacetime,
Gvacuumðx; x0Þ is the vacuum propagator due to a finite
length a (which vanishes if a → ∞), Gthermalðx; x0Þ is the
familiar thermal propagator in Minkowski spacetime (cor-
responding to the Planck distribution, and thus vanishing if
T → 0), and that Gmixedðx; x0Þ has a “mixed” nature
(vanishing if a → ∞ or if T → 0). Since the background
is flat, renormalization is implemented by dropping
G0ðx; x0Þ, yielding the renormalized propagator Gðx; x0Þ
that will replace GF ðx; x0Þ in Eqs. (9)–(12),

Gðx; x0Þ ¼ Gvacuumðx;x0Þ þGmixedðx; x0Þ þGthermalðx;x0Þ:
ð17Þ

Setting N ¼ 2 in Eq. (14), when M → 0 it follows
that [25]

fðuÞ ¼ i
2π

�
ln

�
M

ffiffiffiffiffiffi
−u

p
2

�
þ γ

�
þ � � � ; N ¼ 2: ð18Þ

Differentiating Eq. (18) and then setting M ¼ 0 gives

f0ðuÞ ¼ i
4πu

; ð19Þ

which is used in Eqs. (9)–(12) to determine the components
of hTμνi when N ¼ 2 andM ¼ 0. [Clearly, for N ¼ 2, only
the two first terms in Eq. (A13) are taken into account.] The
action of the differential operators in Eqs. (9)–(12) on
Eq. (17) yields

hTμνi ¼ hTμνivacuum þ hTμνimixed þ hTμνithermal: ð20Þ

Each contribution in Eq. (20) is diagonal with the energy
densities equaling the corresponding stresses, which
leads to

hTxxi ¼ hTtti; hTtxi ¼ hTxti ¼ 0: ð21Þ

According to Eq. (9),

hTtti ¼ hTttivacuum þ hTttimixed þ hTttithermal; ð22Þ

where the first and last terms are the (two-dimensional
versions of the) well-known expressions for the “Casimir”
energy density and the “blackbody” energy density,
respectively,

hTttivacuum ¼ −
π

6a2
; hTttithermal ¼

π

6
T2: ð23Þ

The second term in Eq. (22) arises when the differential
operators in Eq. (9) act on Gmixedðx; x0Þ in Eq. (16), and
therefore it contains a double series. When N ¼ 4 (which
was the case in Refs. [13,16]), the order in which the
corresponding summations are evaluated is irrelevant since
the double series is absolutely convergent [17]. However,
when N ¼ 2 the double series is not absolutely convergent
and the order of evaluation of the summations does matter,
as will now be shown.
One may first sum over the “boundary” number n,

corresponding to

hTttimixed ¼ T2uðTaÞ;

uðqÞ ≔ 2

π

X∞
m¼1

X∞
n¼1

m2 − q2n2

ðm2 þ q2n2Þ2 : ð24Þ

Or, instead, one may first sum over the “thermal” number
m, i.e.,

hTttimixed ¼ T2vðTaÞ;

vðqÞ ≔ 2

π

X∞
n¼1

X∞
m¼1

m2 − q2n2

ðm2 þ q2n2Þ2 : ð25Þ

It can be noticed that

vðqÞ ¼ −
1

q2
uð1=qÞ: ð26Þ

In fact, using Ref. [26] or Ref. [27], the first summations in
Eqs. (24) and (25) can be evaluated to give

uðqÞ ¼ −
π

6
þ π

q2
X∞
k¼1

cosech2
�
kπ
q

�
;

vðqÞ ¼ π

6q2
− π

X∞
k¼1

cosech2ðkπqÞ: ð27Þ

These expressions can be compared with each other by
using the identity

X∞
k¼1

k
e2πqk − 1

¼ 1

4

X∞
k¼1

cosech2ðkπqÞ; ð28Þ
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to recast “Schlömilch’s formula” as3

− πq
X∞
k¼1

cosech2ðkπqÞ − π

q

X∞
k¼1

cosech2
�
kπ
q

�

¼ 1 −
π

6

�
qþ 1

q

�
; ð29Þ

where one can appreciate the symmetry q → 1=q.
Considering then Eq. (29) in Eq. (27), it follows that

vðqÞ ¼ uðqÞ þ 1

q
; ð30Þ

showing that the double series in Eqs. (24) and (25) are
indeed distinct. Now, noting Eqs. (22), (23), and (27),
uðTaÞ in Eq. (24) leads to

hTtti ¼ −
π

6a2
þ π

a2
X∞
k¼1

cosech2
�
kπ
Ta

�
; ð31Þ

whereas vðTaÞ in Eq. (25) leads to

hTtti ¼ −
π

6a2
þ T

a
þ π

a2
X∞
k¼1

cosech2
�
kπ
Ta

�
; ð32Þ

where Eq. (30) has been used. Thus, one ends up with two
expressions for the energy density that differ from each
other by a term linear in temperature: Eq. (31) (which is
obtained by “summing first over n”) and Eq. (32) (which
arises by “summing first over m”). In fact, by taking into
account Eq. (21), it is seen that for each order of summation
chosen it corresponds to a different hTμνi. It should be
noticed that Eqs. (21) and (31) are the result reported in the
literature [4] (i.e., “summing first over n”).
Noting Eqs. (21), (31), and (32), one sees that the terms

carrying ξ in Eqs. (9)–(12) all cancel each other, and that
hTμνi is traceless, as it should be. Also, since hTμνi is
stationary and homogeneous, it is trivially conserved,
i.e., hTμνi;ν ¼ 0.
The physics of the ambiguity in Eqs. (31) and (32),

together with Eq. (21), can be better explored by consid-
ering the asymptotic behaviors of hTμνi. This is done next.

1. Summing first over n

Using Eq. (28) in the expression for u in Eq. (27), some
manipulation leads to

uðq → 0Þ ¼ −
π

6
þ 4π

q2
e−2π=q; ð33Þ

where smaller exponential corrections have been omitted
(and will be omitted throughout the text). Then, at low
temperatures or for small circles, Eqs. (22) to (24) with
Eq. (33) yield

hTtti ¼ −
π

6a2
þ 4π

a2
e−2π=Ta; Ta ≪ 1; ð34Þ

showing that the correction to the “Casimir” energy density
[see Eq. (23)] decreases exponentially when Ta → 0.
Considering now Eqs. (26) and (30), we obtain

uðqÞ ¼ −
1

q
−

1

q2
uð1=qÞ; ð35Þ

which with Eq. (33) gives

uðq → ∞Þ ¼ −
1

q
þ π

6q2
− 4πe−2πq: ð36Þ

Using now Eq. (36) in Eq. (24), one obtains from Eqs. (22)
and (23) that

hTtti ¼
π

6
T2 −

T
a
− 4πT2e−2πTa; Ta ≫ 1: ð37Þ

Thus, the “blackbody” energy density [see Eq. (23)] drops
by T=a at high temperatures or for big circles.
It should be remarked that the behavior of u for large

values of q [see Eq. (36)] has been determined from its
behavior for small values of q [see Eq. (33)] through
Eq. (35). Such a feature is typical of quantum fields at finite
temperature in backgrounds with boundaries and has been
well known in the literature for a long time [13,30]. It is
also worth remarking that the “blackbody”-like energy
density in Eq. (37) and the “Casimir”-like energy density in
Eq. (34) correspond to different regimes (of temperature
and size) of the very same phenomenon.

2. Summing first over m

Noting Eqs. (31) and (32) and the text just after them,
one sees that the easiest way to get the asymptotic
behaviors corresponding to “summing first over m” is to
add T=a to Eqs. (34) and (37), namely,

hTtti ¼ −
π

6a2
þ T

a
þ 4π

a2
e−2π=Ta; Ta ≪ 1 ð38Þ

and

hTtti ¼
π

6
T2 − 4πT2e−2πTa; Ta ≫ 1: ð39Þ

3“Schlömilch’s formula” is a Ramanujan-type identity which
has been used throughout the literature in related contexts. See,
e.g., Eq. (40) in Ref. [28] and Eq. (1) in Ref. [29]. [A typo was
detected in Eq. (40) of Ref. [28]: the term 1=2π should be
replaced by 1=2.]
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Alternatively, one could proceed as above, using Eq. (28) in
the expression for v in Eq. (27), to obtain

vðq → ∞Þ ¼ π

6q2
− 4πe−2πq: ð40Þ

Then, Eqs. (22), (23), and (25) with Eq. (40) yield Eq. (39).
Now, from Eqs. (26) and (30), it follows that

vðqÞ ¼ 1

q
−

1

q2
vð1=qÞ; ð41Þ

which, combined with Eq. (40), gives

vðq → 0Þ ¼ 1

q
−
π

6
þ 4π

q2
e−2π=q: ð42Þ

Considering again Eqs. (22), (23), and (25) now with
Eq. (42), one ends up with Eq. (38).
In comparing Eq. (34) with Eq. (38) and Eq. (37) with

Eq. (39), we see that the small exponential correction to the
“Casimir” energy density has been replaced by a linear one,
and that the linear correction to the “blackbody” energy
density has been replaced by a small exponential correc-
tion. These modifications will have radical consequences in
thermodynamics, as will be shown shortly.

B. Local thermodynamic stability

It is natural to wonder whether the requirement of local
thermodynamic stability (see, e.g., Sec. IV in Ref. [31])
might resolve the ambiguity in Eqs. (21), (31), and (32).
Consider a small segment of the circle, and assume that
the temperature T in inside the segment differs (due to a
fluctuation) slightly from Tout, which is the temperature
outside the segment. Conservation of momentum dictates
that the power (energy per unity of time) radiated out of the
segment is proportional to the differences of stresses inside
and outside, i.e.,

Φ ¼ hTxxiin − hTxxiout; ð43Þ

up to a positive overall factor [31]. Below, the regimes
Ta ≪ 1 and Ta ≫ 1 will be investigated.

1. Summing first over n

Using Eqs. (21) and (34) in Eq. (43) gives

Φ ¼ 4π

a2
ðe−2π=aT in − e−2π=aToutÞ; Ta ≪ 1: ð44Þ

Say that T in > Tout, i.e., Φ in Eq. (44) is positive. Taking
the derivative with respect to temperature of the energy
density in Eq. (34), it follows that

∂
∂T hTtti ¼

8π2

T2a3
e−2π=Ta > 0: ð45Þ

Thus, as Φ > 0, energy will leave the segment. Due to
conservation of energy (i.e., energy in the segment will
decrease) and noticing Eq. (45), T in will drop with the
thermodynamic equilibrium being restored, as expected.
Considering now Eqs. (21) and (37) in Eq. (43), the

leading contribution is

Φ ¼ π

6
ðT2

in − T2
outÞ; Ta ≫ 1: ð46Þ

If T in > Tout,Φ in Eq. (46) is positive and energy will leave
the segment. As ∂ThTtti > 0 [from Eq. (37)], conservation
of energy determines that T in will drop, and thermody-
namic equilibrium will be restored again.
These results show that “summing first over n” is

consistent with local thermodynamic stability.

2. Summing first over m

Considering Eqs. (21) and (38), Eq. (43) yields

Φ ¼ 1

a
ðT in − ToutÞ; Ta ≪ 1; ð47Þ

up to small exponential corrections. Taking into account the
leading contribution in Eq. (38),

∂
∂T hTtti ¼

1

a
> 0: ð48Þ

By repeating the argument above, if T in > Tout in Eq. (47),
then Φ > 0 and energy leaves the segment. It follows then
from Eq. (48) that T in drops, i.e., thermodynamic equilib-
rium is recovered.
By using Eqs. (21) and (39) in Eq. (43), one also ends up

with Eq. (46). The same argument just after Eq. (46) shows
that here as well thermodynamic equilibrium will be
restored.
Therefore, “summing first overm” is also consistent with

local thermodynamic stability.

C. Thermodynamics

The first step to obtain thermodynamics in the “local
approach” is to integrate the energy density over the
box, i.e.,

U ¼
Z

a

0

hTttidx; ð49Þ

yielding the internal energy U. By noticing the identity in
Eq. (28) and considering Eq. (49), the homogeneous hTtti’s
in Eqs. (31) (“summing first over n”) and (32) (“summing
first over m”) lead to the contrasting expressions for
U in Eqs. (2) and (4), respectively, which as mentioned
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previously are the source of the zero-mode controversy in
the “global approach” [see the text just after Eq. (4)]. The
thermodynamic aspects of this ambiguity are also better
appreciated by looking at the asymptotic behaviors.

1. Summing first over n

Corresponding to Eq. (34) one has from Eq. (49) that

UðT; aÞ ¼ −
π

6a
þ 4π

a
e−2π=Ta; Ta ≪ 1; ð50Þ

in agreement with an early calculation using the partition
function (i.e., the “global approach”) on the circle [18].
As the heat capacity at constant volume is positive, i.e.,
C ≔ ∂TU > 0 [see Eq. (45)], one of the criteria for global
thermodynamic stability is satisfied [22].
Now, using Eq. (50) in Eq. (5) and integrating, we obtain

FðT; aÞ ¼ −
π

6a
− 2Te−2π=Ta; Ta ≪ 1; ð51Þ

where the integration constant has been set such that the
thermodynamic pressure p ≔ −∂aF equals the stress hTxxi
[see Eqs. (21) and (34)]. It should be noticed that, since
hTμνi is traceless, the equation of state

U ¼ pa ð52Þ

holds, and that the “Casimir force” −π=6a2 (which tends to
contract the circle) is weakened by an small exponential
“thermal” contribution [see p in Eq. (34)]. The entropy
S ¼ −∂TF following from Eq. (51) is given by

SðT; aÞ ¼ 2

�
2π

Ta
þ 1

�
e−2π=Ta; Ta ≪ 1: ð53Þ

Then, when T → 0, S in Eq. (53) vanishes, i.e., the third
law of thermodynamics is satisfied.
Now, corresponding to the energy density in Eq. (37) one

has that

UðT; aÞ ¼ π

6
aT2 − T − 4πaT2e−2πTa; Ta ≫ 1; ð54Þ

which agrees with early calculations where the “global
approach” was used [18,19]. It follows from Eq. (54) that
C ≔ ∂TU > 0, which as mentioned previously is one of the
criteria for global thermodynamic stability [22]. Following
the same steps applied in the regime Ta ≪ 1 above, it
results that [see Eq. (5)]

FðT;aÞ¼−
π

6
aT2þT lnðTaÞ−2Te−2πTa; Ta≫ 1; ð55Þ

where Eq. (52) still holds, i.e., p is given by Eq. (37) where
πT2=6 is the “blackbody radiation force” and −T=a is the
“thermal Casimir force” (which, unlike the blackbody

contribution, tends to contract the circle). The asymptotic
behavior of the entropy associated with Eq. (55) is

SðT; aÞ ¼ π

3
aT − ½lnðTaÞ þ 1� − 2ð2πTa − 1Þe−2πTa;

Ta ≫ 1; ð56Þ

which becomes the entropy of the “blackbody radiation,”
πaT=3, as Ta → ∞.
In both regimes above (i.e., Ta ≪ 1 and Ta ≫ 1) one

can check that ∂ap > 0, which, in fact, violates one of the
criteria for global thermodynamic stability4 [22].

2. Summing first over m

Repeating the procedures above, the U corresponding to
Eq. (38) is given by Eq. (50) after adding T, from which it
follows that

FðT;aÞ¼−
π

6a
−T lnðTaÞ−2Te−2π=Ta; Ta≪ 1; ð57Þ

instead of Eq. (51). The equation of state (52) holds, and
therefore the “Casimir force” is now weakened by a term
linear in temperature [see p in Eq. (38)]. It follows from
Eq. (57) that

SðT;aÞ¼ lnðTaÞþ1þ2

�
2π

Ta
þ1

�
e−2π=Ta; Ta≪1; ð58Þ

which clearly violates the third law of thermodynamics,
with the entropy S diverging to −∞ as T → 0. This fact is
sometimes used in the literature to argue that the zero mode
should not be taken into account in computations of the
partition function (see e.g., Refs. [7,9]), i.e., one should
“sum first over n” accordingly.
Turning now to the regime Ta ≫ 1, corresponding to

Eq. (39), it follows that U is given in Eq. (54) by omitting
−T, F is given in Eq. (55) by omitting T lnðTaÞ, and S is
given in Eq. (56) by omitting− lnðTaÞ − 1. The equation of
state (52) holds, and p in Eq. (39) shows that this time there
is no “thermal Casimir force”.
In both regimes it can be checked that again C > 0

and ∂ap > 0.

III. INTERVAL WITH REFLECTING EDGES

In this section we address the thermal behavior of a
massless scalar field in an interval where Dirichlet or
Neumann boundary conditions are taken at the end points,
x ¼ 0 and x ¼ a. That is, the end points are the reflecting
“walls” of a one-dimensional box containing hot scalar
radiation in flat two-dimensional spacetime [see Eq. (1)].

4C > 0 implies thermal stability; ∂ap < 0 implies mechanical
stability.
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A. hTμνi
In order to determine hTμνi,5 we again use Eqs. (8)–(12),

but now with the Feynman propagator given by [see
Eqs. (A16)–(A17) and the end of Appendix A 2]

GF ðx; x0Þ ¼
X∞

m¼−∞

X∞
n¼−∞

½fðσðm;nÞ
− Þ ∓ fðσðm;nÞ

þ Þ�; ð59Þ

with f is defined in Eq. (14) and we recall that the upper
and lower signs are for Dirichlet and Neumann boundary
conditions, respectively. Removing the Minkowski vacuum
propagator G0ðx; x0Þ from GF ðx; x0Þ in Eq. (15) [note that
σðm;0Þ ¼ σðm;0Þ

− ], we obtain the following renormalized
propagator:

Gðx;x0Þ ¼ GCasimir
vacuumðx;x0Þ þGwall

vacuumðx;x0Þ þGCasimir
mixed ðx;x0Þ

þGwall
mixedðx;x0Þ þGthermalðx;x0Þ; ð60Þ

where Gthermalðx; x0Þ is the “blackbody” propagator in
Eq. (16), and

GCasimir
vacuumðx; x0Þ ≔

X0∞

n¼−∞
fðσð0;nÞ− Þ;

Gwall
vacuumðx; x0Þ ≔ ∓ X∞

n¼−∞
fðσð0;nÞþ Þ; ð61Þ

GCasimir
mixed ðx; x0Þ ≔

X0∞

m¼−∞

X0∞

n¼−∞
fðσðm;nÞ

− Þ;

Gwall
mixedðx; x0Þ ≔ ∓ X0∞

m¼−∞

X∞
n¼−∞

fðσðm;nÞ
þ Þ: ð62Þ

One sees from these definitions and Eq. (14) that, when
T → 0, only the vacuum contributions remain in Eq. (60).
When a→∞, bothGCasimir

vacuumðx; x0Þ andGCasimir
mixed ðx; x0Þ vanish.

Thus, when T → 0 and a → ∞, only Gwall
vacuumðx; x0Þ is left

in Eq. (60).
Proceeding now as in Sec. II A and considering N ¼ 2

andM → 0, Eqs. (60) and (19) are used in Eqs. (9)–(12) to
obtain the four components of hTμνi:

hTtti ¼ hTttiCasimir
vacuum þ hTttiwallvacuum þ hTttiCasimir

mixed

þ hTttiwallmixed þ hTttithermal; ð63Þ

and,

hTxxi ¼ hTttiCasimir
vacuum þ hTttiCasimir

mixed þ hTttithermal;

hTtxi ¼ hTxti ¼ 0: ð64Þ

The contribution hTttithermal is the “blackbody” energy
density in Eq. (23), and

hTttiCasimir
vacuum ¼ −

π

24a2
;

hTttiwallvacuum ¼ �ξ
π

2a2
csc2

�
πx
a

�
ð65Þ

are the vacuum energy densities. The contributions
hTttiCasimir

mixed and hTttiwallmixed, which contain double series
[see Eq. (62)] and are the source of ambiguities, will be
treated shortly.
As already mentioned, we have not found any study of

hTμνi in the literature for hot scalar radiation in an interval
with reflecting edges. However, there have been studies of
hTμνi at zero temperature [21,33], and the sum of the
contributions in Eq. (65) is in agreement with the vacuum
energy density calculated in those references.
The ambiguity in the value of the homogeneous

hTttiCasimir
mixed corresponds to that in Eqs. (24) and (25),

namely,

hTttiCasimir
mixed ¼T2uð2TaÞ; hTttiCasimir

mixed ¼T2vð2TaÞ; ð66Þ

where Eq. (30) should be noticed. The ambiguity in the
value of the nonhomogeneous hTttiwallmixed is new. Again, one
may sum first over the “boundary” number n, i.e.,

hTttiwallmixed ¼ ∓2ξT2μð2x=a; TaÞ;

μðp; qÞ ≔ 2

π

X∞
m¼1

X∞
n¼−∞

m2 − q2ðp − 2nÞ2
½m2 þ q2ðp − 2nÞ2�2 : ð67Þ

But one may also sum first over the “thermal” number m,
i.e.,

hTttiwallmixed ¼ ∓2ξT2νð2x=a; TaÞ;

νðp; qÞ ≔ 2

π

X∞
n¼−∞

X∞
m¼1

m2 − q2ðp − 2nÞ2
½m2 þ q2ðp − 2nÞ2�2 : ð68Þ

An interesting fact to point out is that for ξ ¼ 0 (i.e., for
minimal and conformal couplings) the “wall” ambiguity in
Eqs. (67) and (68) disappears, whereas the “Casimir”
ambiguity in Eq. (66) remains. In fact, when ξ ¼ 0, the
expressions for the components of hTμνi in an interval with
reflecting edges are given by those for the circle in
Eqs. (21), (31), and (32), after replacing a by 2a [see
Eqs. (63) and (64)].

5When a → ∞ is set in the hTμνi obtained in this section,
formulas corresponding to the presence of a single reflecting wall
at x ¼ 0 are consistently reproduced (see Refs. [20,24,32]).
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Note that the symmetry

μð2 − p; qÞ ¼ μðp; qÞ; νð2 − p; qÞ ¼ νðp; qÞ ð69Þ

was already expected since the two identical reflecting
walls are sitting at x ¼ 0 and at x ¼ a. By setting
p ¼ 2x=a, x ¼ 0 and x ¼ a correspond to p ¼ 0 and
p ¼ 2, respectively. Regarding hTttiwallmixed in Eqs. (67)
and (68), it follows that one can consider p running from
0 to 1, using then Eq. (69) to determine hTttiwallmixed in the
other half of the interval, i.e., for x > a=2. [Clearly the
same remark applies to hTttiwallvacuum in Eq. (65).]
A comparison of μ and ν in Eqs. (67) and (68) with u and

v in Eqs. (24) and (25) shows that (below, 2q is the
argument of the functions u and v)

μð0; qÞ ¼ 2uð2qÞ þ π

3
; νð0; qÞ ¼ 2vð2qÞ þ π

3
: ð70Þ

Using now Eq. (30), Eq. (70) yields

νð0; qÞ ¼ μð0; qÞ þ 1

q
: ð71Þ

Then, taking into account Eq. (69), it follows that the
relation in Eq. (71) also holds when p ¼ 2. Indeed, these
facts suggest that the relation in Eq. (71) may hold for
arbitrary p ∈ ½0; 2�, i.e.:
Conjecture:

νðp; qÞ ¼ μðp; qÞ þ 1

q
: ð72Þ

We do not have a proof of the equality in Eq. (72) for
arbitrary p, although there is strong numerical evidence that
supports it [27]. The main reason to display the conjecture
as in Eq. (72) is to check its consistency with results that
will appear later in the text.6

The summation over n in Eq. (67) can be evaluated (by
using, e.g., Ref. [27]) to give

μðp; qÞ ¼ −
π

4q2
X∞
k¼1

�
csc2

�
πðpq − ikÞ

2q

�

þ csc2
�
πðpqþ ikÞ

2q

��
: ð73Þ

By using trigonometric and hyperbolic identities and after
some manipulations, Eq. (73) can be recast as

μðp; qÞ ¼ π

q2
X∞
k¼1

cosðpπÞ cosh ðkπ=qÞ − 1

½cosðpπÞ − cosh ðkπ=qÞ�2 : ð74Þ

The first summation in Eq. (68) can also be evaluated [27]
to give

νðp; qÞ ¼ π

4q2
csc2

�
pπ
2

�
− πcosech2ðpqπÞ

− π
X∞
k¼1

½cosech2fqπð2k − pÞg

þ cosech2fqπð2kþ pÞg�; ð75Þ

where it should be noticed that although each of the first
two terms diverges as p → 0, their sum remains finite, i.e.,

lim
p→0

�
π

4q2
csc2

�
pπ
2

�
−πcosech2ðpqπÞ

�
¼ π

12q2
þπ

3
: ð76Þ

Taking into account the dependence on ξ in Eqs. (65),
(67), and (68), one sees that the stationary hTμνi in
Eqs. (63) and (64) is traceless when ξ ¼ 0, and that since
the stress hTxxi is homogeneous, hTμνi;ν ¼ 0.
As for the case of the circle in the previous section, the

physics of hTμνi in Eqs. (63) and (64) can be better studied
by looking at the thermal behaviors of hTμνi corresponding
to Ta ≪ 1 and Ta ≫ 1. However, it is worth remarking
that now hTμνi is nonhomogeneous, i.e., its value near one
of the walls (say, x ≈ 0) is different from that in the bulk of
the box (say, x ≈ a=2). Before embarking on this study, one
has to decide which summations are going to be considered
first in the expressions for hTttiCasimir

mixed and hTttiwallmixed [see
Eqs. (66), (67), and (68)]. For the sake of consistency,
the same order of summation will be taken in both
expressions. Note that the expression for hTxxi can be
obtained from that for hTtti simply by setting ξ ¼ 0 in the
latter [see Eq. (64)], i.e.,

hTxxi ¼ hTttiξ¼0; ð77Þ

showing explicitly the independence of the stress of ξ and
thus of the type of boundary condition.

1. Summing first over n

Looking at Eq. (74), it quickly follows that

μðp; q → 0Þ ¼ 2π

q2
cosðpπÞe−π=q; ð78Þ

where (as already mentioned) smaller exponential terms are
being omitted. Now, using Eq. (33) in Eq. (66) and Eq. (78)
in Eq. (67), and at the same time noting Eqs. (23) and (65),
Eq. (63) gives

6It should be stressed that there is a proof of Eq. (72) when
p ¼ 0 and p ¼ 2, as has been shown. The proof when p is
arbitrary possibly involves some generalization of “Schlömilch’s
formula,” which may turn out to be a hard task.
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hTtti¼−
π

24a2
�ξ

π

2a2
csc2

�
πx
a

�

þ
�
1∓ 4ξcos

�
2πx
a

��
π

a2
e−π=Ta; Ta≪ 1; ð79Þ

which holds not only for low temperatures, but also for
arbitrary temperatures and small enough boxes. It should be
noted that, although the correction in Eq. (79) to the
vacuum energy density is exponentially small, it will turn
out to be relevant when certain thermodynamic issues are
addressed later in the text.
Regarding the nonhomogeneous energy density in

Eq. (79), two places in the box are of particular interest:
very close to one wall (say, the wall at x ¼ 0),

hTtti ¼ � ξ

2πx2
þ ð1 ∓ 4ξÞ

�
−

π

24a2
þ π

a2
e−π=Ta

�
;

Ta ≪ 1; x=a ≪ 1; ð80Þ

and at the middle of the box,

hTtti ¼ −
π

24a2
� ξ

π

2a2
þ ð1� 4ξÞ π

a2
e−π=Ta;

Ta ≪ 1; x ¼ a=2: ð81Þ

When ξ ≠ 0, the first term in Eq. (80) carries a non-
integrable divergence, corresponding to x → 0, which is
well known in the literature of vacuum fluctuations in
boxes with reflecting walls [21]. In the bulk of the box, it is
seen from Eq. (81) that the “Casimir” vacuum energy
density can be substantially modified by a nonvanishing ξ.
In order to obtain the behavior corresponding to Ta ≫ 1,

one can proceed essentially along the same steps that led
from Eq. (63) to Eq. (79). But now it should be noticed that,
keeping 0 < p≲ 1, Eq. (75) yields

νðp; q → ∞Þ ¼ π

4q2
csc2

�
pπ
2

�
− πcosech2ðpqπÞ

− 8πe−4πq coshð2pqπÞ: ð82Þ

Then, using Eq. (36) in Eqs. (66) and (82) in Eq. (72), it
results that

hTtti¼�2πξT2cosech2ð2πTxÞþπ

6
T2−ð1∓4ξÞ T

2a
−4πT2½1∓4ξcoshð4πTxÞ�e−4πTa; Ta≫1; ð83Þ

for 0 < x≲ a=2. As it stands, Eq. (83) is also a conjecture,
except when x=a → 0, in which case Eq. (71) can be
used, i.e.,

hTtti ¼ � ξ

2πx2
þ ð1 ∓ 4ξÞ

�
π

6
T2 −

T
2a

− 4πT2e−4πTa
�
;

Ta ≫ 1; x=a ≪ 1: ð84Þ

It is worth noting that the “Casimir” vacuum energy density
in Eq. (80) (first term between right brackets) and the
“blackbody” energy density in Eq. (84) play similar roles,
with the latter diminished by a linear term in T=a.
The behavior of hTtti in the bulk, for high temperatures

or large boxes [which should be confronted with that in
Eq. (81)], can be obtained from Eq. (83),

hTtti ¼
π

6
T2 − ð1 ∓ 4ξÞ T

2a
� 16πξT2e−2πTa;

Ta ≫ 1; x ¼ a=2; ð85Þ

which is essentially the “blackbody” energy density, but
corrected by a term linear in T=a that depends on ξ. [Recall
that Eq. (85), though numerically supported [27], is a
conjecture.]
As has been previously mentioned, expressions for the

stress hTxxi can be obtained from those for hTtti above, as
prescribed in Eq. (77). An example is perhaps instructive.
For instance, Eq. (81) corresponds to

hTxxi¼−
π

24a2
þ π

a2
e−π=Ta; Ta≪ 1; x¼ a=2; ð86Þ

which is essentially the familiar “Casimir” effect: a vacuum
force attracting two reflecting walls.

2. Summing first over m

Starting with Eq. (63) and assuming Eq. (72), it is
straightforward to show that hTtti corresponding to
“summing first over m” should be obtained from that for
“summing first over n” by adding the following homo-
geneous term:

ð1 ∓ 4ξÞ T
2a

: ð87Þ

According to this prescription, e.g., Eqs. (80) and (81) lead
to

hTtti ¼ � ξ

2πx2
þ ð1 ∓ 4ξÞ

�
−

π

24a2
þ T
2a

þ π

a2
e−π=Ta

�
;

Ta ≪ 1; x=a ≪ 1; ð88Þ

and

hTtti ¼ −
π

24a2
� ξ

π

2a2
þ ð1∓ 4ξÞ T

2a
þ ð1� 4ξÞ π

a2
e−π=Ta;

Ta≪ 1; x¼ a=2; ð89Þ
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respectively. Now, whereas Eq. (89) is a conjecture,
Eq. (88) is not [see Eq. (71)].
In order to address the regime Ta ≫ 1, instead of

considering the prescription associated with Eq. (87),
one can start again with Eq. (63), using Eq. (82) in
Eq. (68), to show that hTtti is given by Eq. (83) with
the term linear in T=a missing. Therefore, it follows that

hTtti ¼ � ξ

2πx2
þ ð1 ∓ 4ξÞ

�
π

6
T2 − 4πT2e−4πTa

�
;

Ta ≫ 1; x=a ≪ 1; ð90Þ

and that

hTtti¼
π

6
T2�16πξT2e−2πTa; Ta≫1; x¼a=2: ð91Þ

The remark just after Eq. (84) applies here as well. That is,
the “Casimir” vacuum energy density in Eq. (88) and the
“blackbody” energy density in Eq. (90) play similar roles,
but now it is the former that is shifted by a linear term in
T=a. Recall that hTxxi follows immediately from Eq. (77).

B. Local thermodynamic stability

Using the same setup as in Sec. II B, i.e., a small segment
of the reflecting box where the temperature inside (T in) is
slightly different from the temperature outside (Tout), the
following investigation of the regimes Ta ≪ 1 and Ta ≫ 1
will show that not all values of the coupling parameter ξ are
consistent with local thermodynamic stability. As the stress
hTxxi will be needed in Eq. (43), it is worth recalling once
more that it can be obtained from the corresponding hTtti
by simply taking ξ ¼ 0 [see Eq. (77)].

1. Summing first over n

Looking at hTtti in Eq. (79), which holds when Ta ≪ 1,
it follows that Eq. (43) yields Φ > 0 if T in > Tout, i.e.,
energy leaves the segment. Thus, to ensure that thermo-
dynamic equilibrium is restored (in other words, to ensure
that T in drops), one must have that ∂ThTtti > 0 everywhere
in the box, then [from Eq. (79)] we obtain the constraint

−
1

4
≤ ξ ≤

1

4
; ð92Þ

regardless of the type of boundary condition (i.e., whether it
is Dirichlet or Neumann). It should be remarked that
Eq. (92) would also follow from Eqs. (80) and (81). It
should also be pointed out that Eq. (92) includes the
minimal and conformal couplings, i.e., ξ ¼ 0, but this is not
always the case since, for example, in a higher number of
dimensions when a single Dirichlet wall is present (see
Ref. [20]), conformal coupling is allowed whereas minimal
coupling is not.

Turning to Ta ≫ 1, one takes ξ ¼ 0 in Eq. (84) to obtain
hTxxi, and again uses Eq. (43) to conclude that Φ > 0 if
T in > Tout. Thus, requiring that ∂ThTtti > 0 in Eq. (84), it
results that ξ must be such that

Neumann∶ ξ ≥ −1=4; Dirichlet∶ ξ ≤ 1=4; ð93Þ

which are constraints that are consistent with (but less
stringent than) Eq. (92). It is worth noting that since
Eq. (85) is essentially the “blackbody” energy density it
does not set any constraint on the coupling parameter ξ.

2. Summing first over m

Taking into account Eqs. (88) and (43), it follows that
Φ > 0 if T in > Tout. By requiring ∂ThTtti > 0 in Eq. (88),
it leads again to7 Eq. (93), instead of the more stringent
constraint in Eq. (92). Clearly, the same outcome follows
from Eq. (89).
Turning now to Eq. (90), an identical analysis again

yields Eq. (93), whereas Eq. (91) sets no constraint on ξ.
Note that Eq. (93) includes the minimal and conformal
couplings in the constraints associated with both boundary
conditions.

C. Thermodynamics

Perhaps some of the most interesting aspects of the
ambiguities addressed in this paper are in the thermody-
namics of the scalar radiation in an interval with reflecting
edges. In order to obtain the internal energyU one still uses
Eq. (49), but now (unlike in Sec. II C) hTtti in Eq. (63) is
nonhomogeneous due to the presence of the terms
hTttiwallvacuum and hTttiwallmixed when ξ ≠ 0 [note Eqs. (65),
(67), and (68)]. In fact, as mentioned previously [see
Eq. (80) and the text after it], hTttiwallvacuum in Eq. (65) carries
nonintegrable divergences, and its integration from x ¼ 0 to
x ¼ a requires regularization, which when properly
implemented yields a vanishing contribution [21]. Thus,
by considering Eq. (63) in Eq. (49), the only nontrivial
integration is

Z
a

0

hTttiwallmixeddx ¼ ∓ξaT2

Z
2

0

μðp; TaÞdp;
Z

a

0

hTttiwallmixeddx ¼ ∓ξaT2

Z
2

0

νðp; TaÞdp; ð94Þ

corresponding to the ambiguity in Eqs. (67) and (68).
Regarding the integration of μ over p in Eq. (94), by

noticing that

Z
cosðpπÞcoshðkπ=qÞ−1

½cosðpπÞ− coshðkπ=qÞ�2dp¼ 1

π

sinðpπÞ
coshðkπ=qÞ− cosðpπÞ ;

7By considering a single reflecting wall at x ¼ 0, the con-
straints in Eq. (93) are also required [20,24].
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it follows from Eq. (74) that

Z
2

0

μðp; qÞdp ¼ 0; ð95Þ

and therefore the first integration in Eq. (94) gives a
vanishing contribution to the internal energy U. It is worth
remarking that a consistency check can be implemented by
considering Eq. (78) which leads promptly to Eq. (95), as it
should.
Regarding now the integration of ν over p in Eq. (94),

one uses Eq. (69) to write

Z
2

0

νðp; qÞdp ¼ 2

Z
1

0

νðp; qÞdp: ð96Þ

Looking at the expression for ν in Eq. (75), it is a simple
matter to show that

Z
1

0

�
π

4q2
csc2

�
pπ
2

�
− πcosech2ðpqπÞ

�
dp ¼ 1

q
cothðqπÞ

ð97Þ

and

Z
1

0

cosech2fqπð2k� pÞgdp

¼ ∓ 1

qπ
½cothfqπð2k� 1Þg − cothfqπ2kg�: ð98Þ

Then one uses Eq. (98) to integrate the series in
Eq. (75), i.e.,

− π
X∞
k¼1

Z
1

0

½cosech2fqπð2k − pÞg

þ cosech2fqπð2kþ pÞg�dp

¼ −
1

q

X∞
k¼1

½cothfqπð2k − 1Þg − cothfqπð2kþ 1Þg�

¼ 1

q
−
1

q
cothðqπÞ: ð99Þ

Finally, by adding Eqs. (97) and (99), Eq. (96) yields

Z
2

0

νðp; qÞdp ¼ 2

q
; ð100Þ

which should be compared with Eq. (95). A consistency
check can be done using Eq. (82), by integrating qν over p,
and then taking q → ∞, resulting 2 as in Eq. (100). It
should also be noted that Eqs. (95) and (100) offer an
opportunity to check the consistency of the conjecture in
Eq. (72) [namely, by integrating both sides of Eq. (72)],
with no surprises.

Finally, one uses Eqs. (95) and (100) in the expressions in
Eq. (94) to obtain the following contrasting contributions:

Z
a

0

hTttiwallmixeddx¼ 0;
Z

a

0

hTttiwallmixeddx¼∓2ξT; ð101Þ

respectively.
In order to obtain U in Eq. (49), one goes back to

Eq. (63), recalling that hTttiwallvacuum does not contribute with
U. Then, taking into account Eqs. (23), (65), (66), and
(101) gives U in Eq. (6) (corresponding to “summing first
over n”) or U in Eq. (7) (corresponding to “summing first
over m”). Note that Eqs. (6) and (7) differ from each other
by the term

ð1 ∓ 4ξÞT
2
; ð102Þ

which is consistent with the difference of the corresponding
energy densities in Eq. (87).
Certain features of the ambiguity in Eqs. (6) and (7) were

addressed in Sec. I. For example, it was mentioned that
Eq. (6) is the result found in the literature [18,19], and that
Eq. (7) violates the classical result that the internal energy
U should not depend on ξ in the background considered
here [21]. Proceeding as in Sec. II C, the following analysis
concerns thermodynamic aspects of this ambiguity when
Ta ≪ 1 and Ta ≫ 1.

1. Summing first over n

It can be quickly checked that Eq. (6) is obtained from
Eq. (2), which applies to the circle, by replacing a with 2a
and halving the final expression. In fact, the quantities U,
F, and S here can be obtained from those in Sec. II C 1
using this prescription. It results then that the thermody-
namics of the scalar radiation in an interval with reflecting
edges, according to “summing first over n,” is the same as
that discussed in Sec. II C 1. In particular, the third law of
thermodynamics is also satisfied.
By integrating hTμ

μi over the box [note Eqs. (63) and
(64)], due to the first integration in Eq. (101), it results that
U − hTxxia ¼ 0. As hTxxi is the thermodynamic pressure
p, the equation of state in Eq. (52) holds here as well.

2. Summing first over m

When ξ ¼ 0 (minimal and conformal couplings), it is
seen that Eq. (7) is also obtained from Eq. (4) by replacing
a by 2a and halving the final expression. The quantities U,
F, and S result from the corresponding quantities in
Sec. II C 2 by using this same prescription. Then, when
ξ ¼ 0, the thermodynamics of the scalar radiation in an
interval with reflecting edges, according to “summing first
over m,” closely resembles that in Sec. II C 2, including the
violation of the third law.
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However, when ξ ≠ 0, new issues arise. As mentioned
above, one can obtainU here by adding the term in Eq. (102)
to the corresponding expression for U in Sec. III C 1.
Beginning with the regime Ta ≪ 1, it results that

UðT;aÞ¼−
π

24a
þð1∓4ξÞT

2
þπ

a
e−π=Ta; Ta≪1: ð103Þ

The internal energy in Eq. (103), which holds for low
temperatures or small boxes, offers a good opportunity to
confront the local thermodynamic stability in Sec. III B 2
with the global one, as remarked in Sec. I. Since global
thermodynamic stability requires a positive heat capacity,
i.e., C ¼ ð1 ∓ 4ξÞ=2þ � � � > 0, one ends up consistently
with the bounds on ξ in Eq. (93) [see text in Sec. III B 2].
At this point, it is worth noting that by integrating hTμ

μi
over the box again, but now using the second integration in
Eq. (101), we obtain the equation of state

U − pa ¼∓2ξT ð104Þ
instead of that in Eq. (52). It should be remarked that p in
Eq. (77) does not depend on ξ.
Considering now Eqs. (103) and (104), we can integrate

Eq. (5) and introduce a positive length scale l that cannot
depend on either T or a, i.e.,

FðT;aÞ ¼ −
π

24a
− ð1∓ 4ξÞT

2
lnð2TlÞ− T

2
ln
a
l
− Te−π=Ta;

Ta≪ 1: ð105Þ

It should be pointed out that l arises only if ξ ≠ 0. The
entropy corresponding to Eq. (105) is given by

SðT; aÞ ¼ ln

ffiffiffi
a
l

r
þ 1

2
ð1 ∓ 4ξÞ½lnð2TlÞ þ 1�

þ
�

π

Ta
þ 1

�
e−π=Ta; Ta ≪ 1; ð106Þ

which remains finite as T → 0 for ξ ¼ 1=4 and ξ ¼ −1=4
in the case of Dirichlet and Neumann boundary conditions,
respectively, i.e., SðT → 0; aÞ ¼ ln

ffiffiffiffiffiffiffiffi
a=l

p
. Since a=l is not

a “universal constant,” the third law of thermodynamics is
still violated.8

Considering now the regime Ta ≫ 1, by adding Eq. (102)
to the corresponding expression for U in Sec. III C 1, one
ends up with

UðT;aÞ¼ π

6
aT2∓ 2ξT−4πaT2e−4πTa; Ta≫ 1: ð107Þ

At this point, a remark that makes connection with an earlier
paper is in order. By working with a single reflecting wall in

Ref. [24], we arrived at U ¼ πaT2=6 ∓ ξT which, when
compared with Eq. (107), suggests that the factor of 2 in
∓2ξT is due to the presence of a second wall (as was
conjectured in Ref. [24]). Note that in Ref. [24] only the
summation over the “thermal” numberm appeared and thus
the ambiguity of “summing first over n” versus “summing
first over m” is not apparent.
By taking into account Eq. (104), one sees that p is given

by dropping the term ∓2ξT in Eq. (107) and dividing the
resulting expression by a. The corresponding free energy is
given by

FðT;aÞ ¼ −
π

6
aT2 � 2ξT lnð2TlÞ− Te−4πTa; Ta≫ 1;

ð108Þ

where the length scale l arises again [see Eq. (105)].
Finally, the behavior of the entropy at high temperatures or
for large boxes follows from Eq. (108), namely,

SðT; aÞ ¼ π

3
aT ∓ 2ξ½lnð2TlÞ þ 1� − ð4πTa − 1Þe−4πTa;

Ta ≫ 1: ð109Þ

IV. FURTHER DISCUSSION

In this paper we investigated the finite temperature hTμνi
of a massless scalar field on a circle and in an interval with
reflecting edges (with Dirichlet or Neumann boundary
conditions at the edges). In so doing, it was shown that
hTμνi involves double series which—due to the number of
dimensions of the spacetime under consideration (i.e.,
N ¼ 2)—are not absolutely convergent and that this fact
is connected with ambiguities in the calculation of hTμνi.
Namely, the order in which the two summations are
evaluated leads to different results: summing first over
the “boundary” number n, versus summing first over the
“thermal” number m. By studying the associated thermo-
dynamics of the contrasting expressions for hTμνi, it was
found that in the case of the circle the ambiguity corre-
sponds to the classic debate in the literature of whether or
not zero modes should be ignored in the computation of
partition functions. In the case of the interval with reflecting
edges, one of the (nonhomogeneous) contrasting expres-
sions for hTμνi leads to the thermodynamics reported in the
literature (obtained by using the partition function) whose
internal energy U does not depend on the curvature
coupling parameter ξ (as one would expect from a classical
calculation), whereas the other expression for hTμνi leads to
a U that does depend on ξ, which is rather unexpected.
It was shown that the ambiguities reported in this paper

are nicely connected with classic results on infinite series
which go back to the works of Ramanujan. In this context,

8However, it is worth remarking that according to some
authors this is not a fault [34].
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a conjecture was presented whose consistency was checked
in various instances.
Regarding the asymptotic regimes Ta ≪ 1 and Ta ≫ 1,

although the ambiguities only affect subleading contribu-
tions in the contrasting expressions for hTμνi, their thermo-
dynamic consequences are substantial. For example,
“summing first over m” leads to a violation of the third
law of thermodynamics and, in the case of the interval with
reflecting edges, also to an internal energy U that depends
on ξ, as just mentioned. It should be recalled that “summing
first over n” is not free of issues either. In the case of the
circle, it leads to aU that spoils the derivation of the Cardy-
Verlinde formula (see Sec. I).
In the case of the interval with reflecting edges, the

requirement of local thermodynamic stability led to differ-
ent ranges of permissible values for ξ corresponding to
“summing first over n” (where the constraint is more
stringent and is the same for Dirichlet and Neumann
boundary conditions) and to “summing first over m”
(where the constraint is less stringent and depends on
the type of reflecting boundary condition). The “summing
first over m” side of the ambiguity allowed us to confront
local and global thermodynamic stability, and the
consistency of the constraints over the values of ξ was
verified.
Before closing, it is pertinent to raise an issue that may

have already come to mind. As is typical of series that are
not absolutely convergent, each way of summing the series
may lead to different results and, consequently, to different
physics. In light of this argument, one might question the
relevance of the particular ways of evaluating the summa-
tions discussed in this paper, namely, “summing first over
n” versus “summing first over m.” Whereas indeed other
ways of evaluating the summations can lead to new
thermodynamics (whose features may be interesting),
those considered in this paper are closely connected
with matters that have been addressed previously in
the literature, in various contexts, as shown throughout
the text.
This paper followed a line of investigation that was

established long ago by Brown, Maclay, Dowker, and
others, which consists in “deriving” blackbody thermody-
namics from hTμνi. We intend to pursue this approach
further in order to address classic issues that appear when
event horizons are present in the background.

ACKNOWLEDGMENTS

We wish to thank Lucas dos Santos, Luis Fernando
Mello, Marcia Kashimoto, and Claudemir de Oliveira for
helpful conversations on the convergence of double series.
This work is partially supported by “Fundação de Amparo
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APPENDIX: THERMAL GREEN FUNCTIONS

Consider a cavity in an N-dimensional flat spacetime,

ds2 ¼ dt2 − dx2 − dy2 − dz2 − � � � : ðA1Þ

One of the walls of the cavity coincides with the plane
x ¼ 0 and another with x ¼ a > 0. The other walls, when
they exist, are at infinity. A neutral scalar field ϕ with mass
M is in the cavity at temperature T. Then, the coordinate
x0 ≔ it is taken to be real with period β ¼ 1=T (see, e.g.,
Ref. [35]). Considering further x1 ≔ x, x2 ≔ y, x3 ≔ z,
Eq. (A1) becomes

ds2 ¼ −dx20 − dx21 − dx22 − dx23 − � � � − dx2N−1; ðA2Þ

and the boundary condition

ϕðx0; x1; x2;…; xN−1Þ ¼ ϕðx0 þ β; x1; x2;…; xN−1Þ ðA3Þ

must be observed. The (Euclidean) Green function
satisfies [4]

ð□x þM2ÞGEðx; x0Þ ¼ δðx − x0Þ; ðA4Þ

where □x ≔ −∂2
0 − ∂2

1 − ∂2
2 − ∂2

3 − � � � − ∂2
N−1.

1. Periodic boundary condition

The eigenfunctions of□x þM2 that satisfy Eq. (A3) and
the periodic boundary condition, i.e.,

ψðx0; x1; x2;…; xN−1Þ ¼ ψðx0; x1 þ a; x2;…; xN−1Þ;

are given by

ψkðxÞ ¼ η exp½iðk0x0 þ k1x1 þ � � � þ kN−1xN−1Þ�; ðA5Þ

where η, k0 ¼ 2πm=β, k1 ¼ 2πn=a, � � �, kN−1 are constants,
and m and n are integers. The corresponding eigenvalues
are

Ek ¼ k20 þ k21 þ � � � þ k2N−1 þM2: ðA6Þ

The constant η in Eq. (A5) is set such that the Green
function in Eq. (A4) is given by9

GEðx; x0Þ ¼ i
X∞

m¼−∞

X∞
n¼−∞

Z
∞

0

dτ
Z

∞

−∞
dk2 � � �

Z
∞

−∞
dkN−1e−iτEkψkðxÞψ�

kðx0Þ; ðA7Þ

9The expression in Eq. (A7) is known as Schwinger’s “proper
time” representation of the finite-temperature Green function
(see, e.g., Ref. [36]).
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and M2 is taken to have an infinitesimal imaginary part to
make the integration over τ in Eq. (A7) converge [37].
Then, it follows that

ð□x þM2ÞGEðx; x0Þ

¼ −
X∞

m¼−∞

X∞
n¼−∞

Z
∞

−∞
dk2 � � �

Z
∞

−∞
dkN−1ψkðxÞψ�

kðx0Þ

×
Z

∞

0

dτ
d
dτ

e−iτEk ; ðA8Þ

where the integration over τ yields simply minus unity.
Now, by choosing

jηj2 ¼ ð2πÞ2−N
βa

; ðA9Þ

and recalling the usual representation of the δ function, as
well as Poisson’s formula

X∞
l¼−∞

δðλ − 2πlÞ ¼ 1

2π

X∞
l¼−∞

e−ilλ; ðA10Þ

it results that the right-hand side of Eq. (A8) is indeed
δðx − x0Þ, as Eq. (A4) requires.
A more workable expression for GEðx; x0Þ in Eq. (A7)

can be obtained. Noting Eq. (A5), two factors arise in
Eq. (A7) that can be conveniently manipulated as follows:

X∞
l¼−∞

e−iτð4π2l2=p2Þþið2πl=pÞΔ

¼
X∞
l¼−∞

Z
∞

−∞
dλδðλ − 2πlÞe−iτðλ2=p2Þþiðλ=pÞΔ

¼ 1

2π

X∞
l¼−∞

Z
∞

−∞
dλe−iτðλ2=p2Þþiðλ=pÞðΔ−lpÞ; ðA11Þ

where Eq. (A10) has been used in the last step. All of the
integrations can now be performed [38], leading to

GEðx;x0Þ

¼ 1

ð2πÞN=2M
N−2
2

X∞
m¼−∞

X∞
n¼−∞

ð−σðm;nÞÞ2−N4 KN−2
2

	
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−σðm;nÞ

p 

;

ðA12Þ

where [noting the coordinates in Eq. (A1)]

σðm;nÞ ≔ ðt − t0 − imβÞ2 − ðx − x0 − naÞ2 − ðy − y0Þ2
− ðz − z0Þ2 − � � � ; ðA13Þ

and KνðzÞ is the modified Bessel function of the sec-
ond kind.

Before addressing Dirichlet and Neumann boundary
conditions, it should be mentioned that the Green function
in Eq. (A12) is closely related to the thermal Hadamard
function in Eq. (2.26) of Ref. [39], where certain aspects of
a charged scalar field were investigated in a background
with an arbitrary number of compact dimensions.

2. Dirichlet and Neumann boundary conditions

Considering now the Dirichlet boundary condition, i.e.,

ψðx0;x1¼ 0;x2;…;xN−1Þ¼ψðx0;x1¼ a;x2;…;xN−1Þ¼ 0;

the eigenfunctions of□x þM2, which also satisfy Eq. (A3),
are now given by

ψkðxÞ¼ ηsinðk1x1Þexp½iðk0x0þk2x2þ���þkN−1xN−1Þ�;
ðA14Þ

whose eigenvalues are those in Eq. (A6), where k0 ¼ 2πm=β
and k1 ¼ nπ=a, where m and n are integers as before. By
using Eq. (A14) in Eq. (A7), noting Eqs. (A9) and (A10), the
usual representation of the δ function and the Fourier sine
series [25],

δðx − x0Þ ¼ 1

a

X∞
n¼−∞

sinðnπx=aÞ sinðnπx0=aÞ; ðA15Þ

it follows that Eq. (A8) becomes Eq. (A4), as it should. One
now expands the sine functions in exponentials and manip-
ulates the sums in Eq. (A7) as in Eq. (A11). The last step is to
evaluate the integrations [38], resulting in

GEðx;x0Þ

¼ 1

ð2πÞN=2M
N−2
2

X∞
m¼−∞

X∞
n¼−∞

h
ð−σðm;nÞ

− Þ2−N4 KN−2
2

	
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−σðm;nÞ

−

q 


−ð−σðm;nÞ
þ Þ2−N4 KN−2

2

	
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−σðm;nÞ

þ

q 
i
; ðA16Þ

where

σðm;nÞ
� ≔ ðt − t0 − imβÞ2 − ðx� x0 − 2naÞ2

− ðy − y0Þ2 − ðz − z0Þ2 − � � � : ðA17Þ

At this point, it should be remarked that the term n ¼ 0 in
Eq. (A16) consistently reproduces the corresponding Green
function in Ref. [32] (i.e., as a → ∞). By settingM → 0 and
N ¼ 4 in Eq. (A16), the Green function in Ref. [16] is also
consistently reproduced.10

10By setting M → 0 and N ¼ 4 in Eq. (A16) it should also
match the results in Ref. [4]; however, a typo was detected in
Eq. (4.38) of Ref. [4]: “an” should be replaced by “2an.”
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Turning now to the Neumann boundary condition, i.e.,

∂
∂x1 ψðx0; x1 ¼ 0; x2;…; xN−1Þ

¼ ∂
∂x1 ψðx0; x1 ¼ a; x2;…; xN−1Þ ¼ 0;

one proceeds as in the case of the Dirichlet boundary
condition above, but now replacing the sine functions in
Eqs. (A14) and (A15) with cosine functions. This gives a
Green function that is still given by Eq. (A16), but with the
minus sign between the terms containing Bessel functions
replaced by a plus sign.
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