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A two-level atom freely falling towards a Schwarzschild black hole was recently shown to detect
radiation in the Boulware vacuum in an insightful paper [M. O. Scully et al., Proc. Natl. Acad. Sci. U.S.A.
115, 8131 (2018)]. The two-state atom acts as a dipole detector and its interaction with the field can be
modeled using a quantum optics approach. The relative acceleration between the scalar field and the
detector causes the atom to detect the radiation. In this paper, we show that this acceleration radiation is
driven by the near-horizon physics of the black hole. This insight reinforces the relevance of near-horizon
conformal quantum mechanics for all the physics associated with the thermodynamic properties of the
black hole. We additionally highlight the conformal aspects of the radiation that is given by a Planck
distribution with the Hawking temperature.
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I. INTRODUCTION

A black hole is a spacetime region, derived from a
classical solution to the Einstein field equations of general
relativity, from which no physical signals can escape.
However, Hawking’s seminal works [1–3] showed that
black holes can radiate, as was soon corroborated by a
series of papers by Unruh, Davies, Fulling, and many
others [4–10]. It was shown that this radiation is caused by
quantum effects in curved spacetime and is closely related
to black hole thermodynamics. Almost half a century
later, the thermal nature of black hole radiation has been
extensively studied, but we do not yet have a final picture
of the Hawking effect and all of its implications. One
aspect of particular interest is the role of the observer in
the detection of this thermal radiation. Unruh and Wald
[11] showed that an accelerated observer experiences
particles in a thermal bath in the Minkowski vacuum of
an inertial observer. The detection of particles in the
inertial vacuum by an accelerated detector is known as the
Unruh effect and is closely related to the Hawking
radiation from a black hole [4,12]. A more recent develop-
ment in understanding the Unruh effect is the use of
quantum optics to model the accelerated detector by a
two-state atom [13,14]. This model was applied by Scully

et al. in a more recent thought-provoking paper [15] to
show that an atom freely falling through a Boulware
vacuum [16] of a Schwarzschild black hole experiences
thermal radiation. At a first glance, this seems to violate
the equivalence principle since the freely falling atom
is in a locally inertial frame. However, it is the relative
acceleration between the field modes (defined with
boundary conditions at asymptotic infinity) and the freely
falling atom that gives rise to the acceleration radiation.
This was subsequently illustrated by a series of gedanken
experiments designed by Fulling [17].
Another insightful approach to black hole thermody-

namics is based on the conformal symmetry near the event
horizon of a black hole. The relation of the central charge
of the Virasoro algebra in the backdrop of conformal
field theory with the black hole entropy was discussed
in several papers [18–21]. One perspective involves finding
the connection between conformal quantum mechanics
(CQM), which is essentially conformal field theory in
0þ 1 dimension [22], and the Bekenstein-Hawking
entropy [23–28]. In Refs. [24,25], black hole thermody-
namics was shown to emerge from CQM as the near-
horizon approximation to the field modes, leading to
the Bekenstein-Hawking entropy [29] interpreted via a
brick-wall model [30], with a natural cutoff of the order of
the Planck-length scale.
In this paper, we make an explicit connection between

the near-horizon CQM framework developed in Ref. [24]
and the quantum optics approach advanced by Scully et al.
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[15]. We show explicitly that the main contribution to the
excitation probability of the freely falling atom described in
Ref. [15] comes from the scale-invariant behavior of the
near-horizon CQM field modes. In its final form, this result
exhibits a leading near-horizon radiation governed by
conformal invariance and given by a Planck distribution
with the Hawking temperature. Therefore, these findings
further confirm that the radiation emitted by the freely
falling atom is a near-horizon conformal phenomenon.
Moreover, the systematic application of the near-horizon

expansion defined in Refs. [24,25] allows us to extend the
analytical calculation of the excitation probability to the
whole class of D-dimensional generalized Schwarzschild
metrics with general initial conditions for the free motion of
the atom. We thus show that the final result is independent
of these generalizations, governed by conformal invariance,
and with details matching the special case considered in
Ref. [15].
This paper is organized as follows. In Sec. II, we briefly

discuss the background needed for the near-horizon treat-
ment of the problem. This section is divided into two parts
describing the emergence of the CQM equation from the
Klein-Gordon equation, and the basic tools of quantum
optics needed for the subsequent calculations. In Sec. III,
we use the near-horizon behavior to extend the quantum
optics formalism to a more general setting, viz., generalized
Schwarzschild metric with arbitrary initial conditions.
In Sec. IV, we further highlight the consequences of the
near-horizon conformal symmetry. The paper concludes
in Sec. V with a brief discussion on the implications and
possible applications of these results. Finally, in the
Appendixes, we provide some technical details related to
the results discussed in the main text.

II. BACKGROUND

A. Near-horizon CQM equation for generalized
Schwarzschild metric

Throughout the paper we will adopt natural units (unless
stated otherwise), with ℏ ¼ 1 and c ¼ 1, in conjunction
with the metric conventions of Ref. [31]. We consider
the family of static and spherically symmetric spacetime
geometries, which are described by the generalized
Schwarzschild metric

ds2 ¼ −fðrÞdt2 þ ½fðrÞ�−1dr2 þ r2dΩ2
ðD−2Þ; ð1Þ

in D spacetime dimensions (with D ≥ 4), where dΩ2
ðD−2Þ

stands for the metric on the unit (D − 2)-sphere, SD−2,
that foliate the spacetime manifold. This class of metrics
extends the familiar 4D Schwarzschild solution to D
dimensions, and also includes the D-dimensional
Reissner-Nordström (RN) metric [32], as well as combi-
nations of these with a cosmological constant, and black

hole solutions with additional charges [33]. The near-
horizon analysis will be centered on the functional depend-
ence of the fields in the neighborhood of the outer event
horizon at r ¼ rþ, employing the particular set of gener-
alized Schwarzschild coordinates ðt; r;ΩÞ. We briefly
review the setup developed in [24,25], in which this
singular-coordinate choice (around a coordinate singular-
ity) displays the conformal quantum-mechanical symmetry
from the outset and gives additional insight into black
hole thermodynamic relations. The full derivation has been
shown in Appendix A for completeness. We start with the
Euler-Lagrange equation satisfied by the scalar field in the
black hole gravitational background, which is given by

½□ − ðm2 þ ξRÞ�Φ≡ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ

− ðm2 þ ξRÞΦ ¼ 0: ð2Þ

This is the Klein-Gordon equation in curved spacetime. For
the class of metrics (1), we can consider the following mode
expansion of the scalar field

Φðt; r;ΩÞ ¼
X
n;l;m

½anlmϕnlmðr;Ω; tÞ þ H:c:�; ð3Þ

where anlm is the field annihilation operator, H.c. means
Hermitian conjugate, and ϕnlm constitute a complete set
of orthonormal solutions to Eq. (2) with respect to the
corresponding Klein-Gordon inner product [34]. The use of
Schwarzschild coordinates selects these particular modes
for the expansion of Eq. (3); and the corresponding Killing
time t leads to a definition of the positive frequency choice
from which a Fock space with mode occupation numbers is
constructed. This includes the existence of an associated
Boulware vacuum j0Bi such that [16,34]

anlmj0Bi ¼ 0 ð4Þ

for all modes, and which asymptotically behaves as the
Minkowski vacuum at infinity.
Equation (2) is separable in Schwarzschild coordinates

with the following ansatz

ϕnlmðt; r;ΩÞ ¼ χðrÞunlðrÞYlmðΩÞe−iωnlt; ð5Þ

where the angular part is given by the ultra-spherical
harmonics YlmðΩÞ and the time dependence involves
frequencies ωnl. In addition, the particular choice of
χðrÞ ¼ ½fðrÞ�−1=2r−ðD−2Þ=2 reduces the radial part of the
Klein-Gordon equation to its normal form

u00nlðrÞ þ IðDÞðr;ωnl; αl;DÞunlðrÞ ¼ 0; ð6Þ

where IðDÞ is an effective potential whose full form is given
in Appendix A. The behavior of the modes arising from
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Eq. (6) can be examined near the outer horizon H, r ∼ rþ,
with r ¼ rþ being the largest root of the scale-factor
equation fðrÞ ¼ 0. This can be performed by the shifted
variable x ¼ r − rþ, in terms of which the Taylor series for
the scale factor fðrÞ starts at first or higher orders. In this
paper, we only consider nonextremal metrics that satisfy
the condition f0þ ≡ f0ðrþÞ ≠ 0. Then, the expansions of
fðrÞ and its derivatives are given by

fðrÞ ∼ðHÞ
f0þx½1þOðxÞ�;

f0ðrÞ ∼ðHÞ
f0þ½1þOðxÞ�;

f00ðrÞ ∼ðHÞ
f00þ½1þOðxÞ�; ð7Þ

where f00þ ≡ f00ðrþÞ and the notation ∼ðHÞ
will be used to

represent the hierarchical expansion about the horizon.
With this near-horizon expansion, the effective potential

in Eq. (6) can be simplified significantly and, up to the
leading-order term in x, is given by the form (as shown in
Appendix A)

u00ðxÞ þ λeff
x2

½1þOðxÞ�uðxÞ ¼ 0; ð8Þ

where, by abuse of notation, we have replaced uðrÞ by uðxÞ.
Equation (8) indicates that dominant physics near the
horizon is driven by the interaction

VeffðxÞ ¼ −
λeff
x2

; λeff ¼
1

4
þ Θ2; Θ ¼ ω

f0þ
; ð9Þ

which corresponds to a one-dimensional effective
Hamiltonian H ¼ p2

x − λ=x2. This is the well-known
long-range representative of conformal quantummechanics
]35 ]. Thus, our derivation shows that the near-horizon

physics exhibits an asymptotic conformal symmetry.

B. Acceleration radiation by an atom falling freely
towards a black hole

In this subsection we use the setup described in Ref. [15].
A two-level dipole atom, which acts as the detector, falls
freely towards the black hole described by the generalized
Schwarzschild metric (1). Our goal is to probe the atom’s
acceleration radiation (Unruh effect). The Boulware vac-
uum state [36,37], defined by Eq. (4), allows us to single
out this form of radiation and explicitly separate it from the
one due to the black hole itself, i.e., the Hawking effect
[38]. Specifically, while in this Boulware state j0Bi there is
no Hawking radiation, a freely falling observer or detector
will perceive particles, as we explicitly show below.
As the atom falls towards the black hole, it will detect

radiation by going to the excited state and emitting a
photon. The probability of this process can be expressed as

Pexc ¼
1

ℏ2

����
Z

dτh1n; ajVIðτÞj0; bi
����2 ð10Þ

where jbi and jai are respectively the ground and the
excited state of the atom and τ is the atom’s proper time.
In addition, j1ni represents the one-photon mode with
quantum numbers n and j0i≡ j0Bi denotes the Boulware
vacuum state of the field.
The relevant interaction potential VIðτÞ needed for

Eq. (10) is given by the quantized dipole interaction

VIðτÞ ¼ ℏg½anϕnðrðτÞ; tðτÞÞ þ H:c:�ðσ−e−iντ þ H:c:Þ;
ð11Þ

where σ− is the lowering operator for the atom, ν is the
atom frequency, and the coupling constant g denotes the
strength of the interaction, which will be assumed to be
weak in the derivations of this paper. In addition, in
Eq. (11), ϕnðr; tÞ are the field modes with quantum
numbers n, which can be obtained from the Klein-
Gordon equation as in Sec. II A, and an stands for the
associated annihilation operators. For our choice of gen-
eralized Schwarzschild coordinates, as assumed in the
expansion of the field modes, Eq. (3), the quantum numbers
are explicitly n≡ ðn; l; mÞ. As displayed in Eq. (11) and in
the treatment that follows below, we will assume that we
can neglect the angular dependence of the modes. (We will
either consider the simplest transitions from the ground
state to an excited state without angular momentum, or
will assume a near-horizon approximation where such
dependence would only yield a phase factor not affecting
the probability.)
Several important remarks are in order. First, Eq. (11)

models a dipole interaction Hamiltonian whose scale is
given by the coupling g ¼ μE=ℏ, where μ is the atomic
dipole moment and E is the electric field; thus, g has
dimensions of frequency, inverse length, and mass in
natural units c ¼ 1, ℏ ¼ 1. Second, the remainder of the
expression in Eq. (11) involves the field and atom oper-
ators, with all factors being dimensionless to guarantee that
the overall Hamiltonian also has dimensions of frequency
or mass. Third, this Hamiltonian describes a simplified
model where ordinary vector (spin-1) photons are replaced
by scalar (spin-0) “photons.” Fourth, the normalization of
the field modes ϕ is somewhat arbitrary, and needs to be
specified consistently with the dimensionless requirement.
The corresponding normalization can be achieved by
including all relevant factors with coordinate dependence
and subsuming them into a pure phase function—this is
typically straightforward, as it corresponds to the local
outgoing/ingoing waves that can be defined around coor-
dinate singularities (e.g., the event horizon); see Sec. III.
It is clear from the expression of Pexc in Eq. (10) that

only the term corresponding to a†nσ†− will give nonzero
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contribution to the probability. This enables us to write
Eq. (10) in the following more explicit form:

Pexc ¼ g2
����
Z

dτ ϕ�ðrðτÞ; tðτÞÞeiντ
����2: ð12Þ

In order to find the detection probability Pexc, we need the
expression for the field modes and the trajectory of the
atom in free fall which is described in the next section.

III. NEAR HORIZON DESCRIPTION OF THE
ACCELERATION RADIATION BY A FREELY

FALLING ATOM

The field modes required to calculate the excitation
probability Pexc in Eq. (12) can be obtained using the
CQM equation (8), which gives a fundamental pair of near-
horizon outgoing/ingoing waves; in particular, we will
select the outgoing wave for the radiation emitted outwards
by the atom from the neighborhood of the event horizon.
This is given by

uðxÞ ¼ x
1
2
þ

ffiffiffiffiffi
1
4
−λ

p
¼ ffiffiffi

x
p

xiΘ ð13Þ

where Θ ¼ ω=f0þ as defined in Eq. (9). We thus combine
all the factors together to get the field mode ϕðr; tÞ ¼
χðrÞuðrÞe−iωt, where we will assume (as in Sec. II B) that
the angular dependence is not needed. Then, in the near-
horizon expansion,

χðrÞ ¼ ½fðrÞ�−1=2r−ðD−2Þ=2

∼ðHÞ 1ffiffiffi
x

p ffiffiffiffiffiffi
f0þ

p ðrþÞ−ðD−2Þ=2ð1þOðxÞÞ: ð14Þ

Therefore,

ϕðr; tÞ ∼ðHÞ 1ffiffiffiffiffiffi
f0þ

p r−ðD−2Þ=2
þ xiΘe−iωt ⇝ ϕðr; tÞ

∼ðHÞ
xiΘe−iωt ¼ e−iωðt−ln x=f0þÞ: ð15Þ

In the last step of Eq. (15), a pure-phase outgoing wave
in the neighborhood of the event horizon is extracted,
by removing the extra constant factors (such as rþ and f0þ)
in the leading near-horizon approximation. (Incidentally,
this can also be done most efficiently with semiclassical
Wentzel-Kramers-Brillouin techniques [35].) Alternatively,
this identification is equivalent to using the near-horizon
expansion of the Klein-Gordon equation in Eddington-
Finkelstein coordinates as shown in Appendix B.
The spacetime trajectories for free-fall motion of the

atoms in a background metric gμν are described by the
geodesic equations. For a static and spherically symmetric
metric defined by Eq. (1), there is invariance under time
translations and invariance under spatial rotations involving
ðD − 1ÞðD − 2Þ=2 planes. These symmetries lead to their

associated conserved energy and components of the angu-
lar momentum tensor, and a corresponding number of
Killing vectors. For D ¼ 4, the latter reduce to the familiar
3 components of angular momentum. All of the angular
momentum components but one can be fixed to define a
single plane for the orbit where an azimuthal angle ϕ can be
used. This procedure reduces the problem to finding the
geodesics with initial conditions defined by two conserved
quantities

e ¼ −ξ · u ¼ fðrÞ dt
dτ

; l ¼ η · u ¼ r2
dϕ
dτ

; ð16Þ

in terms of the Killing vectors ξ ¼ ∂t and η ¼ ∂ϕ and
spacetime velocity u. More precisely, these are the energy
per unit mass e≡ E=m, and angular momentum per unit
mass l≡ L=m (in terms of the mass m of the atom). For a
free fall from a fiducial point, with initial specific energy e
and initial specific angular momentum l, these conserved
quantities give the initial conditions. When the Killing
symmetries are enforced, the first-order form of the
geodesic equations for timelike geodesics become [31]

dt
dτ

¼ e
fðrÞ : ð17Þ

dr
dτ

¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 − fðrÞ

�
1þ l2

r2

�s
; ð18Þ

dϕ
dτ

¼ l
r2

ð19Þ

[where Eq. (18) represents velocity normalization com-
bined with the other first integrals of the motion (16)].
In particular, the negative sign in Eq. (18) indicates the in-
falling motion of the atom. We can integrate these equa-
tions to get the atom’s proper time τ and the Schwarzschild
coordinate time t in terms of the radial variable r,

τ ¼ −
Z

r

r0

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 − fðrÞð1þ l2

r2Þ
q ð20Þ

t ¼ −
Z

r

r0

dr
e=fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2 − fðrÞð1þ l2

r2Þ
q ; ð21Þ

where r0 is the radial distance of a fiducial point for the free
fall of the atom consistent with the initial conditions in
Eq. (16). The integration of τ and t can now be performed
by using a Taylor expansion around the event horizon as a
function of the near-horizon variable x ¼ r − rþ. Up to first
order in x, the integration yields,

τ ¼ −
x
e
þ constþOðx2Þ; ð22Þ
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t ¼ −
1

f0þ
ln x − Cxþ const:þOðx2Þ; ð23Þ

where C is a constant dependent on the conserved quan-
tities given by

C ¼ 1

2

�
1

e2

�
1þ l2

r2þ

�
−

f00þ
ðf0þÞ2

�
: ð24Þ

Near the horizon we can neglect the Oðx2Þ terms as their
contribution becomes negligible. This is equivalent to the
hierarchical near-horizon expansion shown in Eq. (7).
It should be noted that, while the coordinate time t is
logarithmic in x, the proper time τ is linear in x; in addition,
the constant C governs the linear term in the coordinate t.
The logarithmic dependence on x of the coordinate time
ensures that it diverges when the particle reaches the
horizon, i.e., when x → 0, while the proper time τ remains
finite.
Now we are equipped with all the quantities needed to

calculate the excitation probability Pexc. Substituting
Eqs. (15), (22), and (23) into Eq. (12), we get

Pexc ¼
g2

e2

����
Z

xf

0

dx x−iΘeiωð− ln x=f0þ−CxÞe−iνx=e
����2

¼ g2

e2

����
Z

xf

0

dx x−iσe−isx
����2 ð25Þ

where

σ ¼ 2Θ ¼ 2ω

f0þ
¼ ω

κ
; ð26Þ

s ¼ Cωþ ν

e
¼ ω

2

�
1

e2

�
1þ l2

r2þ

�
−

f00þ
ðf0þÞ2

�
þ ν

e
; ð27Þ

and κ ¼ f0þ=2 is the surface gravity of the black hole. In
Eq. (25), xf is an upper limit of the integration that signifies
the boundary of a region where the near-horizon approxi-
mation is valid. Thus, Eq. (25) can be written in terms of the
lower incomplete gamma function, but a conformal prop-
erty of the integrand allows us to write the expression
in a more familiar and compact form. As we will show in
the next section, in the limit when s ≫ σ, we can push the
upper limit of the integration to infinity and evaluate the
integral to give us

Pexc ≈
2πg2σ
e2s2

1

e2πσ − 1
ð28Þ

¼ 2πg2

κ

ω

ν2ð1þ Ceω=νÞ2
1

e2πσ − 1
ð29Þ

≈
2πg2

κ

ω

ν2
1

e2πω=κ − 1
; ð30Þ

where the approximation ν ≫ ω is enforced again in the
last step. This is the familiar Planck distribution with the
Hawking temperature

T ¼ f0þ
4π

¼ κ

2π
: ð31Þ

The following remarks are in order. First, the frequency
hierarchy ν ≫ ω is a “geometrical optics” approximation
for the fall of the atom, i.e., a semiclassical treatment of
the particle geodesics ðtðτÞ; rðτÞÞ as well-defined classical
paths, which is necessary for this approach to be consistent.
Second, applying this frequency hierarchy ν ≫ ω to Pexc in
the transition from Eq. ((29) to Eq. ((30) involves the
reduction of the denominator ð1þ Ceω=νÞ2 ≈ 1; this
shows that the final result (29) for Pexc is independent
of the numerical factor C. Third, C is typically a numerical
factor of order one that may also depend on the chosen
rescaling of the near-horizon variable (see Appendix D)—
but this “geometrical optics” hierarchy removes any ambi-
guities in the selection of coordinates. Fourth, and most
importantly, the derivation above shows that the final
expression for Pexc (with the removal of extra field-
frequency factors), fully conforms to the Planck distribu-
tion at the Hawking temperature, i.e., it exhibits a similar
behavior to the Hawking radiation itself.

IV. CONFORMAL ASPECTS OF THE
NEAR-HORIZON RADIATION

In this section we provide a brief discussion on the
conformal aspect of the radiation detected by the atom.
From Eq. (25), the integrand consists of two multiplicative
functions f1ðxÞ≡ x−iσ ¼ e−iσ ln x and f2ðxÞ≡ e−isx ¼
e−iðs=f0þÞðf0þxÞ, which are both oscillatory in nature.
However, all aspects of the near-horizon physics, including
the free-fall radiation properties under study, rely on the
function f1ðxÞ, as will be proved below.
The oscillatory nature of the function f1ðxÞ in Eq. (25)

involves a spatial frequency that increases as x → 0, i.e., as
the event horizon is approached. This property arises from
the logarithmic form of the phase of the near-horizon
modes (15) of the governing CQM. Conformal invariance
is manifested by the remarkable scaling symmetry of the
modes. This invariance implies that the ensuing geometric
pattern, displayed in Fig. 1, looks identical under arbitrary
magnifications. More precisely, the pattern looks like a
properly rescaled version of itself from any vantage
point, i.e., invariant under rescaling transformations.
The meaning of this statement can be spelled out by
identifying the functional form of the wavefronts associated
with the modes. A given phase value for the mode ϕðr; tÞ is
achieved at coordinate values xðnÞ such that Θ ln xðnÞ ¼
−2πnþ const, for integer n (with the sign chosen so that,
when n → ∞, the event horizon is approached). Therefore,
xðnÞ ¼ xð0Þηn (defined up to a multiplicative constant)
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follows a geometric series with ratio η ¼ e−2π=Θ. A
complete characterization or equivalence of this geometric
sequence is given by the relation

xðn0þmÞ
xðnþmÞ

¼ xðn0Þ
xðnÞ

: ð32Þ

(This equation is a straightforward corollary of xðnÞ ¼
xð0Þηn, but it can also be iteratively reversed to reconstruct
the whole geometric sequence.) In Eq. (32), the vantage
point is shifted from n to nþm, thus proving the
anticipated statement. Moreover, when n → ∞, the geo-
metric pattern of wavefronts exhibits infinite crowding
towards the horizon as accumulation point, as shown in
Fig. 1. These properties have been pointed out by several
authors—most notably in Refs. [39,40]. But it is only by
highlighting the governing role of CQM that such behavior
and its universal manifestations for thermal radiation and
black hole thermodynamics can be fully understood.
Incidentally, other aspects of this “Russian-doll” behavior
have been studied in CQM in terms of renormalization
frameworks and a variety of physical realizations [41–43].
It is noteworthy that the functional dependences of

the modes ϕ�ðr; tÞ and the function f1ðxÞ are equivalent
because f1ðxÞ arises from ϕ�ðr; tÞ in Eq. (12) in the near-
horizon limit,

ϕ�ðr; tðτðrÞÞÞ ∼ðHÞ
f1ðxÞe−iCωx; ð33Þ

where x ¼ r − rþ should be used on the right-hand side,
and the extra factor e−iCωx appears at higher orders and
can be neglected, as discussed at the end of Sec. III.
Specifically, there is an additional logarithmic x depend-
ence of the coordinate time t via the proper time τ of the
atom’s geodesic in Eq. (33). Thus, while the explicit x

dependence of the modes is ϕ�ðr; tÞ ∼ðHÞ
x−iΘeiωt ∝ x−iΘ

according to Eq. (15), the total x dependence of f1ðxÞ
becomes f1ðxÞ ∼ðHÞ

x−iσ ¼ x−2iΘ, which involves the dou-
bling of the scale Θ → 2Θ. The former probes the field in
static Schwarzschild coordinates while the latter probes the
field following the freely falling atom. But the patterns
associated with both functions have the same geometric
form shown in Fig. 1.
In this paper, the conformal behavior driven by the

function f1ðxÞ leads directly to the Planck distribution,
with the Hawking temperature, of the radiation emitted by
the freely falling atom. This can be seen from the integral of
Eq. (25), where the upper limit of integration is xf ≪ rþ,
such that the near-horizon approximation is valid. As we
will show below, from the conformal behavior of f1ðxÞ, we
can push the upper limit to infinity without significant error,
and thus derive the Planck distribution. The validity of this
approximation is due to the nontrivial x-dependent fre-
quency resolution of f1ðxÞ. The same oscillatory logarith-
mic dependence of the wavelike function f1ðxÞ—which
produces an increasing, diverging spatial frequency near
the event horizon—leads to decreasingly slower variations
with respect to x much farther away, i.e., for f0þx ≥ Oð1Þ
[Fig. 2(b)]. It should be noted that the factor f0þ provides a
characteristic inverse length scale (of the order or 1=rþ),
which permits a comparison of the various other parameters
involved.
In contrast with the nontrivial frequency resolution of

f1ðxÞ, the competing oscillating function f2ðxÞ is con-
trolled by a single spatial frequency s. Then, for s=f0þ ≫ σ
and f0þx ≥ Oð1Þ, f2ðxÞ oscillates very rapidly compared
to the relatively slower changes of f1ðxÞ, as shown in
Figs. 2(a) and 2(b). Thus, the contribution of the integrand
becomes negligible on average. Furthermore, the condition
s=f0þ ≫ σ is again essentially due to the “geometrical
optics” frequency hierarchy ν ≫ ω. On the other hand, as
we move closer to the origin, the variations of f1ðxÞ and
f2ðxÞ become comparable with changing x [Fig. 2(c)].
It is this region that contributes significantly to the sum.
Moving closer to the event horizon (“origin” x ¼ 0 for the
variable x) reveals the Russian-doll behavior described
above for the function f1ðxÞ; however, the function f2ðxÞ
becomes slowly varying on that near-horizon scale
[Fig. 2(d)]. This indicates that only the near-horizon region
contributes significantly to the integral in Eq. (25); thus,
extending the limit of integration does not significantly

FIG. 1. The wavefronts associated with the near-horizon
conformal modes ϕðr; tÞ are shown. The dotted line shows the
location of the event horizon. The crowding of the modes as the
horizon is approached follows from the sequence xðnÞ ∝ ηn. In
this graph, we used an ad hoc value η−1 ¼ 1.4. In general,
η ¼ e−2π=Θ, with Θ defined in Eq. (9). The geometric scaling is
depicted with the Russian-doll analogy. The function f1ðxÞ
exhibits an identical functional form, but with a doubling of
the frequency scale, i.e., η ¼ e−2π=σ ¼ e−π=Θ, as follows from
Eqs. (25) and (26).

CAMBLONG, CHAKRABORTY, and ORDÓÑEZ PHYS. REV. D 102, 085010 (2020)

085010-6



affect the value of the integral due to the rapid oscillations
of the function f2ðxÞ.
As a consequence, the excitation probability can be

evaluated by the following sequence of steps:

Pexc ¼
g2

e2

����
Z

xf

0

dx x−iσe−isx
����2

→
g2

e2

����
Z

∞

0

dx x−iσe−isx
����2 ¼ 2πg2σ

e2s2
1

e2πσ − 1
: ð34Þ

In summary, in this section we have outlined a heuristic
argument that explains why the extension of the upper limit
of integration is asymptotically valid when s=f0þ ≫ ν. This
procedure can be further justified by a more rigorous,
analytical approach, as discussed in Appendix C, where the
explicit evaluation of the integral in the last step of Eq. (34)
is also spelled out.

V. DISCUSSION

We have developed a conformal approach to provide a
deeper understanding of the nature of the radiation emitted
by an accelerated atom, and its relationship with the

Hawking effect. This conformal approach involves a re-
examination of the model advanced in Ref. [15], where it
was shown that an atom falling radially towards a
Schwarzschild black hole, with zero kinetic energy at
infinity, experiences radiation in the Boulware vacuum.
This acceleration radiation is ultimately due to the relative
acceleration between the atom and the outgoing photon
modes. Moreover, the specific realization of this radiation—
via transitions associated with counterrotating terms in the
interaction Hamiltonian (11)—further supports the existence
of Unruh radiation, despite claims to the contrary [44].
In this article, in addition to displaying the near-horizon

aspects of the acceleration radiation by free fall as arising
from conformal quantum mechanics, we have extended
the applicability of this model to the broader class of
generalized D-dimensional Schwarzschild metrics with gen-
eral initial conditions. The atom undergoes a free fall with
conserved total specific energy e and angular momentum l
(per unit mass). Carrying out the detection probability
calculation is nontrivial and more involved in the original
formalism, and limited to the particular initial conditions
defined by e ¼ 1 and l ¼ 0. However, exploiting the
conformal nature of the physics near the horizon provided
us with a much simpler method. Using the near-horizon

(a) (c)

(b) (d)

FIG. 2. The graphs depict the oscillatory functions f1ðxÞ and f2ðxÞ. The conformal nature of f1ðxÞmatches the Russian-doll behavior
shown in Fig. 1, with a local spatial frequency that can be compared against the single-frequency oscillating function f2ðxÞ. For the sake
of simplicity, only the real part of the functions f1ðxÞ (shown in red) and f2ðxÞ (in blue) are plotted. The imaginary parts behave in a
similar way. The parameters used to generate the plots are σ ¼ 2.0 and s ¼ 50.0. (a) Plot ofℜ½f1ðxÞ� andℜ½f2ðxÞ� in a range of 0 to 10.
(b) A magnified view of a region in (a) to show the slow variation of f1ðxÞ compared to f2ðxÞ. (c),(d) As we zoom in closer to the origin,
the behavior of f1ðxÞ remains scale invariant, whereas the oscillation becomes comparable to that of f2ðxÞ.
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expansion for the fieldmodes and the geodesic equations, we
have shown that the probability distribution can be derived in
a closed form. Furthermore, in the “geometrical optics” limit
ν ≫ ω, which implies s ≫ σ, the probability distribution
reduces to the Planck form with the Hawking temperature.
The conformal nature of the integral in Eq. (25) plays a
crucial role in obtaining the Planck distribution, as discussed
in Sec. IV. In Appendix D, we also show that the result is
robust under a reparametrization of the near-horizonvariable
within the same approximation ν ≫ ω.
In summary, the formalism developed here provides

further insight into the role played by the event horizon and
the near-horizon physics in the acceleration radiation by
free fall. Moreover, the techniques we have presented in
this paper also allow us to handle more general spacetime
geometries and initial conditions. Extensions of this work
are in progress, and include exploring more general classes
of spacetime backgrounds (e.g., including black hole
rotation) and finding the deeper connection between
singular CQM and the Unruh effect.
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APPENDIX A: DERIVATION OF CQM
EQUATION FROM KLEIN-GORDON EQUATION

The Klein-Gordon equation (2), with the choice of
metric given in Eq. (1), reduces to

−
1

f
Φ̈þ fΦ00 þ

�
f0 þ ðD − 2Þf

r

�
Φ0 þ 1

r2
ΔðD−2Þ

ðγÞ Φ

− ðm2 þ ξRÞΦ ¼ 0; ðA1Þ

where the dots and primes stand for time and radial

derivatives respectively, while ΔðD−2Þ
ðγÞ and γabðΩÞ are the

Laplacian and the metric on SD−2. The quantum field
operator can be expanded as

Φðt; r;ΩÞ ¼
X
n;l;m

½anlmϕnlmðr;Ω; tÞ þ H:c:�: ðA2Þ

with the following ansatz as mentioned in the main text
Eq. (5):

ϕnlmðt; r;ΩÞ ¼ χðrÞunlðrÞYlmðΩÞe−iωnlt: ðA3Þ

The choice of the radial function

χðrÞ ¼ exp

�
−
1

2

Z �
f0

f
þ ðD − 2Þ

r

�
dr

	
¼ ½fðrÞ�−1=2r−ðD−2Þ=2 ðA4Þ

brings the radial part of Eq. (A1) to the canonical form

u00nlðrÞ þ IðDÞðr;ωnl; αl;DÞunlðrÞ ¼ 0; ðA5Þ

where

IðDÞðr;ω;αl;DÞ ¼
1

f2

�
ω2 þ f02

4

�
−
ðm2 þ ξRÞ

f
−
1

f
αl;D
r2

þRrr þ
��

1

f
− 1

�
½ðD− 3Þ=2�2 þ 1

4

	
1

r2
;

ðA6Þ

with

Rrr ¼ −
f00

2f
−
ðD − 2Þ

r
f0

2f
ðA7Þ

being the radial component of the Ricci tensor for the
metric (1) and

αl;D ¼ lðlþD − 3Þ þ ½ðD − 3Þ=2�2 ¼
�
lþD − 3

2

�
2

ðA8Þ
being the angular momentum coupling.
Now, with the near-horizon expansion described in

Eq. (7), the various terms in Eq. (A6) can be reduced

with the replacements f00=f ∼ðHÞ
f00þ=ðf0þxÞ and f0=f ∼ðHÞ

1=x,

together with r ∼ðHÞ
rþ; in each one of these factors, the

corrections are multiplicative and of the order ½1þOðxÞ�.
As a result, the leading orders of each one of the terms on
the right-hand side of Eq. (A6) become

IðDÞðr;ω; αl;DÞ ∼ðHÞ 1

ðf0þÞ2
�
ω2 þ ðf0þÞ2

4

�
1

x2
½1þOðxÞ�

−
ðm2 þ ξRþÞ

f0þ

1

x
½1þOðxÞ�

−
1

f0þ

αl;D
r2þ

1

x
½1þOðxÞ�

−
�
f00þ
2f0þ

þ
�
D
2
− 1

�
1

rþ

�
1

x
½1þOðxÞ�

þ 1

f0þ

1

r2þ

1

x
½1þOðxÞ�; ðA9Þ

and the leading term in Eq. (A9), of order Oð1=x2Þ,
becomes asymptotically dominant as r ∼ðHÞ

rþ. Therefore,
Eq. (A6) yields the CQM equation
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u00ðxÞ þ λeff
x2

½1þOðxÞ�uðxÞ ¼ 0; ðA10Þ

where we have written uðrÞ≡ uðxÞ, and

λeff ¼
1

4
þ Θ2; Θ ¼ ω

f0þ
: ðA11Þ

The validity of the expansion in x relies on the condi-
tion r − rþ ¼ x ≪ rþ.

APPENDIX B: EQUIVALENCE OF
EDDINGTON-FINKELSTEIN MODES

AND CQM MODES

In Eddington-Finkelstein coordinates, the leading order
of the outgoing field mode is proportional to

ϕðr; tÞ ¼ e−iωðt−r�Þ; ðB1Þ

where r� is the tortoise coordinate given by the integral

r� ¼
Z

dr
fðrÞ ∼ðHÞ

Z
dx
f0þx

�
1 −

f00þ
f0þ

x
2

�
¼ 1

f0þ
ln x −

f00þ
2ðf0þÞ2

x:

ðB2Þ

Thus, enforcing the near-horizon approximation (B2), the
Eddington-Finkelstein field modes can be written as

ϕðr; tÞ ¼ expð−iωtÞ exp
�
i
ω

f0þ
ln x − i

ωf00þ2

2ðf0þÞ2
x

�

¼ e−iωtxiΘ exp

�
−iω

f00þ2

2ðf0þÞ2
x

�
: ðB3Þ

Compared to the leading CQM modes of Eq. (15), we see
that Eq. (B3) has the same governing exponential factors
e−iωt and xiΘ. In addition, the extra factor in Eq. (B3),
appears from the next-to-leading order near-horizon
approximation of these modes, arising from the second
term in Eq. (B2). This extra factor, when used in the
evaluation of Pexc in Eq. (12), modifies the constant C
defined in Eq. (27), which now becomes

CEF ¼ C −
1

2

f00þ
ðf0þÞ2

¼ 1

2e2

�
1þ l2

r2þ

�
−

f00þ
ðf0þÞ2

: ðB4Þ

However, in the “geometrical optics” limit ν ≫ ω (see the
last paragraph of Sec. III), the value of this constant is not
relevant, Moreover, this allows us to write the excitation
probability as a Planck distribution regardless of the modes
selected at intermediate steps.

APPENDIX C: CONFORMAL ASPECTS
OF THE INTEGRAL IN EQ. (25)

In this Appendix we investigate the mathematical struc-
ture of the integral in Eq. (25) in greater detail. We begin by
recasting the integral into a form of gamma function as
shown below. Specifically,

Î ¼
Z

xf

0

dx e−ixsx−iσ

¼ 1

ðisÞ1−iσ
Z

yf

0

dy y−iσe−y

¼ γð1 − iσ; yfÞ
ðisÞ1−iσ ; ðC1Þ

where γðz; bÞ is the lower incomplete gamma function
defined by

γðz; bÞ ¼
Z

b

0

dy e−yyz−1: ðC2Þ

We claim that, in the approximation s ≫ σ, the upper limit
can be pushed to infinity and the integral can be written as

Î ¼ Γð1 − iσÞ
ðisÞ1−iσ : ðC3Þ

Here, γðz;∞Þ ¼ ΓðzÞ is the ordinary gamma function when
the upper limit of the integral is infinity. This integral can be
further rewritten as

Î ¼ jΓð1 − iσÞje−πσ=2
s

eiδ ¼ s−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ

e2πσ − 1

r
eiδ; ðC4Þ

where use was made of jΓð1 − iσÞje−πσ=2 ¼
ffiffiffiffiffiffiffiffiffiffi
2πσ

e2πσ−1

q
, and δ

is a real phase. Therefore, the relevant probability factor in
Eqs. (12) and (28) becomes

jÎ j2 ¼ 2πσ

s2ðe2πσ − 1Þ : ðC5Þ

This leads to the final expressions for the probability
integral,

Pexc ¼
g2

e2

����Γð1 − iσÞ
ðisÞ1−iσ

����2 ¼ 2πg2σ
e2s2

1

e2πσ − 1
: ðC6Þ

Parenthetically, in calculating the analytic continuation
of the gamma function to the complex plane, one should
add a small real ϵ to the exponent of y in the integral in
Eq. (C1) and then take the limit ϵ → 0 after the integral is
carried out.
One can probe the properties of the incomplete gamma

function to find the validity of the approximation of
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pushing the upper limit to infinity, but it is more instructive
to investigate the form of the integral in terms of the
variable x. The method of stationary phase implies that, for
an integral of the form

R
fðxÞeizgðxÞdx, where z → ∞ and

gðxÞ is bounded, the contribution comes from the boundary
points and the stationary points of gðxÞ. Since there is no
stationary point for the function gðxÞ in the probability
integral, the only contribution comes from the boundary
points (see Ref. [14] for a detailed discussion). Now, if we
displace the upper boundary xf to xf þ δx, then the extra
contribution to the integral from the interval ðxf; xf þ δxÞ
will be negligible because it does not contain any stationary
point. In this way, we can push the upper boundary to
infinity without adding any significant contribution to the
integral, thus validating the approximation made in the
main text.

APPENDIX D: REPARAMETRIZATION OF THE
NEAR-HORIZON VARIABLE

In this Appendix, we show that a reparametrization of the
near-horizon variable can produce inequivalent results for
the probability integral, but, in the “geometrical optics”
limit ν ≫ ω, all reparametrizations lead to the same
prefactor in Eq. (28). This is indeed the “geometrical
optics” condition discussed at the end of Sec. III. To
simplify calculations we use the dimensionless variables
ξ ¼ ðr − rþÞ=rþ and normalize rþ to 1. This essentially
enables us to replace x with ξ. Thus, the near-horizon
expansion is an expansion in ξ. In this new variable, we
then consider the near-horizon class of reparametrizations
of ξ defined by

ξ ¼ ð1þ ηÞα − 1; ðD1Þ

which are labeled by the parameter α, and where η≡ ξ̃ is
the redefined near-horizon variable. When we further
enforce the near-horizon approximation, the leading orders
of the variables are related by

ξ ∼ðHÞ
αη; ðD2Þ

ln ξ ∼ðHÞ
ln ηþ ðα − 1Þη

2
þ const: ðD3Þ

The expansions just change the constant s in Eq. (27) by an
extra factor. This leads to superficially inequivalent results
for Eq. (28), where the denominator includes a shifted
value of s. However, if we consider the “geometrical
optics” limit ν ≫ ω, all the inequivalent expressions con-
verge to the same result obtained in Ref. [15], i.e.,

Pexc ¼
2πg2σ
ν2

1

e2πσ − 1
: ðD4Þ

This proves the robustness of the radiation formula under
this reparametrization. Moreover, this is a self-consistent
result in that the approximation ν ≫ ω is also needed in the
form s ≫ σ for the derivation of Eq. (28), as outlined
in Sec. IV.
In the near-horizon limit, the reparametrization pro-

cedure defined above differs from a pure scale trans-
formation due to the presence of the logarithmic term in
the expression for the field modes. For a scaling trans-
formation of the near-horizon variable ξ → ξ̃ ¼ αξ, the
result of Eq. (28) remains invariant. This is not surprising
because the near-horizon expansion follows the CQM
defining condition, Eq. (8), which is scale invariant.
The difference between the reparametrization (D1) and
a scale transformation (D2) is the expansion of the
logarithmic function, where a parameter-dependent extra
term appears, as shown in Eq. (D3). However, the
parameter-dependent term becomes irrelevant when
evaluating Eq. (12), in the hierarchical limit ν ≫ ω.
Thus, the reparametrization is equivalent to a scale
transformation within the “geometrical optics” approxi-
mation—see the comments in the last paragraph of
Sec. III. With these qualifications, our results are in
agreement with those of Ref. [15], by using a trans-
formation of the type (D1) with α ¼ 2=3.
In short, a reparametrization of the coordinate can lead to

an inequivalent prefactor for the probability distribution.
However, this issue can be resolved by considering the limit
ν ≫ ω, where all inequivalent expressions of Pexc converge
to the unique thermal Planck distribution, thus displaying a
robustness of the result under this transformation.
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