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Semiclassical physics in the gravitational scenario, in its first approximation (first order), cares only
for the expectation value of the stress energy tensor and ignores the inherent quantum fluctuations
thereof. In the approach of stochastic gravity, on the other hand, these matter fluctuations are supposed to
work as the source of geometry fluctuations and have the potential to render the results from first-order
semiclassical physics irrelevant. We study the object of central significance in stochastic gravity, i.e., the
noise kernel, for a wide class of Friedmann spacetimes. Through an equivalence of quantum fields on
de Sitter spacetime and those on generic Friedmann universes, we obtain the noise kernel through the
correlators of stress energy tensor for fixed comoving but large physical distances. We show that in many
Friedmann universes including the expanding universes, the initial quantum fluctuations the universe is
born with may remain invariant and important even at late times. Furthermore, we explore the
cosmological spacetimes where even after long times the quantum fluctuations remain strong and
become dominant over large physical distances, which the matter-driven universe is an example of. The
study is carried out in minimal as well as nonminimal interaction settings. Implications of such quantum
fluctuations are discussed.
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I. INTRODUCTION

The study of quantum matter over a classical geometry
has given rise to many novel and intriguing features like
Hawking radiation, the Unruh effect, gravitational particle
creation, etc. [1–4]. In the absence of a complete theory of
quantum gravity, semiclassical physics, which is a “first-
order” quantum correction to the classical general relativity,
is the only available methodology capturing the interplay
between concepts of quantum mechanics (such as Hilbert
space and wave function superposition) and those of
general relativity (such as general covariance, geodesic
distance, etc.). Since the inception of the idea of using the
quantum expectation value on the right-hand side of the
Einstein field equations, there has been some level of
discomfort regarding its operational status [5,6], more
particularly, its handling of the inherent quantum fluctua-
tions. One can envisage that, in situations where fluctua-
tions tend to grow, the usage of quantum expectation values
of the stress tensor alone would not remain justifiable for
any physical interpretation. Thus, in the scenarios where
significant physical insights depend upon the geometrical
structure obtained through the expectation values, it is
worthwhile to address the contributions from fluctuations

as well. Gravitational particle creation during the early
inflationary phase of the Universe is such an avenue,
where the expectation value for the dynamics-driving field
(called inflaton) sets up the expansion of the Universe,
which, in turn, creates particles from the perturbation field
[7–10]. This semiclassical program has been really suc-
cessful in predicting various novel features of the early
Universe, many of which have also received observational
vindication [11]. Furthermore, there have been attempts of
using different kinds of accelerating phase to obtain or
explain various features of the early Universe’s spectra of
quantum predictions [12–14]. Such efforts are expected to
be obtained from different quantum states and subsequent
evolution of stress energy expectation values in these
states. Furthermore, the late time acceleration, in many
discussions [6,15–17], is also attributed to the quantum
character of the stress energy tensor. Therefore, it is
imperative to analyze if the semiclassical study directing
such physical discourse is stable under fluctuations in the
stress energy tensor.
It is natural to expect that any good quantum gravity

theory would yield the known classical results in some
appropriate classical limit (in a spirit similar to Ernfest’s
theorem), apart from capturing the quantum fluctuations.
Furthermore, if one seeks an nth-order quantum correction
to the classical theory, motivated from the semiclassical
approach, it is also natural to expect that the quantum
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gravity theory should return these values in the properly
considered limits. Stochastic gravity is one such approach
to incorporate quantum fluctuations to the semiclassical
gravity, where one considers the effect of quantum fluc-
tuations in matter fields on the classical geometry of
spacetime. This is accomplished using the Einstein-
Langevin equation [5,6], in which a central object in the
form of a noise kernel works as a stochastic source in
addition to the quantum averaged stress tensor. The noise
kernel is the vacuum expectation value of symmetrized
stress energy bitensor for a quantum field in curved
spacetime. As a result, these fluctuations, if strong enough,
will lead to fluctuations in the geometry, too [5,6]. Such
induced fluctuations have played an important role in many
studies involving backreaction. Backreaction problems in
gravity and cosmology, for example, have been addressed
[5,6,18–20] using Einstein-Langevin equations.
The role of quantum fluctuations themselves in the

context of the early Universe is quite vital. The vacuum
fluctuations are understood to form the seed of the modern-
day galaxy clusters during the inflationary epoch [7–10].
The present understanding and observational signatures
[11] suggest that the Universe was born in a very near de
Sitter configuration. The de Sitter spacetime, like flat
spacetime, is a maximally symmetric spacetime, but with
constant positive curvature. Analyzing quantum scalar
fields on de Sitter spacetime is an old subject [21], and
a lot of effort has been spent in studying it since then
[10,22–38]. Like the flat spacetime, all the quantum
information of free fields on classical de Sitter geometry
gets encoded in the Wightman function. From this
Wightman function, one can further construct the rhs of
the Einstein field equations, i.e., the vacuum expectation of
the stress energy operator [8]. Like all quadratic operators
in quantum field theory, the Wightman function itself
becomes ill defined at the same spacetime point, since,
for well-behaved states, it has the so-called Hadamard
form, i.e., diverges quadratically as well as logarithmically
[8]. Such divergences are attributed to the ultraviolet limit
of the theory, and they typically get regularized in most of
the physical scenarios. However, if we consider the
Wightman function of a minimally coupled massless scalar
field in a de Sitter universe, it shows divergence even for
different spacetime points, a phenomenon known as the
infrared problem of the de Sitter spacetime. This infrared
divergence of the Wightman function is also intimately tied
up with the prediction of scale invariance of the power
spectrum [8,39], which is one of the remarkable success
stories of the inflationary paradigm. However, this diver-
gence also goes on to suggest that for de Sitter (or de Sitter–
like universes) the quantum fluctuations can become very
important. Various physical reasons of these divergences
are suggested in the literature, and, in order to obtain
physically meaningful results from the Wightman function,
various methods have been devised over the years [8,40].

Still, the infrared problem calls the stability of de Sitter
spacetime into question, as the severity of these divergences
may also be felt up at loop levels in quantum field
theory [41]. In Ref. [39], quantum fields over a family
of Friedmann-Robertson-Walker (FRW) universes were
shown to be connected to quantum fields in de Sitter
spacetime and, hence, sharing the divergences as well, in
some cases. Thus, the potential instability of the de Sitter
spacetime may also have adverse effects for the stability of
these Friedmann universes. However, if we wish to study
the stability of such spacetimes through the semiclassical
Einstein equations, divergence in the Wightman function
may not be sufficient or reliable enough. In order to
investigate if the quantum fluctuations are strong enough
to make the de Sitter or the connected FRW universes
unstable under the stochastic gravity approach, we need to
evaluate the relevant noise kernel components, too.
The noise kernel can also be expressed in terms of the

products of derivatives of Wightman functions [42], and,
therefore, the divergences of Wightman functions may also
creep into the expressions for the noise kernel. In this paper,
we evaluate the noise kernel, for a minimally coupled
massive scalar field in a de Sitter universe and for the
connected massless fields in Friedmann spacetime. We
obtain the noise kernel in the late time universe when the
scale factor grows and the physical distance between fixed
comoving coordinates becomes large. We analyze if the
quantum fluctuations which were nonzero initially over
small physical distances, retain their form, grow, or decay,
as the scale factor growth separates the points apart.
However, the stress energy tensor, being quadratic in
nature, has an in-built ultraviolet divergence in it, and
the noise kernel is obtained from the so-called regularized
stress energy tensor (RSET). For the flat Minkowski
spacetime, Ref. [42] calculates the noise kernel for a
massive scalar field and gives a dimensional regularization
procedure to separate the problematic parts.
In this paper, we adopt the formalism discussed in

Ref. [42] but generalized for Friedmann universes. The
study of quantum fields and their backreaction has attracted
a lot of attention [43–49]. However, in this work, we are
interested in quantifying the stochasticity in the Einstein-
Langevin approach for such spacetimes. To begin with, we
calculate the noise kernel for a massive scalar field in the de
Sitter spacetime and analyze the stability of it. A similar
study has been done in Ref. [50], which suggests the decay
of stochastic noise over large distances, as the mass of the
field increases. However, it is important to note that, in
FRWuniverses, the spacelike distances can become large in
two ways: for (i) large comoving distances and a nonzero
scale factor or (ii) fixed finite comoving distances but with
a large scale factor. In flat spacetime, there are nonzero
quantum fluctuations for finite distances, and, as distances
grow, the fluctuations decay and become subdominant in
front of any other relevant expectation values. However, in
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certain Friedmann universes, it may so happen that the
finite comoving fluctuations remain invariant or even
grow when the scale factor rises and makes the physical
distances large. The first may be expected for conformal
field theories, something which we see in de Sitter
universes, too. However, we show that there exists a class
of theories in the de Sitter universe, where the noise kernel
blows up as the physical distance between fixed comoving
points grows. Subsequently, through the relation to
Friedmann universes, we realize that there are universes
where the stochastic correction in semiclassical analysis
should really become important. We show that the uni-
verse driven by pressureless dust or strong energy con-
ditions violating fluids (accelerating universes belong to a
family of such solutions) becomes very susceptible to
such fluctuations, and the semiclassical understanding or
stabilities of these spacetimes may need to be reinvesti-
gated in the face of divergent fluctuations. Furthermore,
there are other phantom fluid-driven Friedmann universes
which retain the initial quantum fluctuations under scale
factor growth (much like conformal field theories, despite
not being one), and there the semiclassical analysis should
be weighed against the strength of the quantum fluctua-
tions. We also do the analysis for nonminimal coupling
and show that a conformal interaction is able to cure this
blowup in all cases.
The paper has five sections. In Sec. II, we quickly review

some standard results regarding de Sitter spacetime and
quantization of a minimally coupled scalar field living on
classical de Sitter spacetime as well as a brief discussion of
evaluation of the noise kernel. In Sec. III, we derive the
expression of the noise kernel for a minimally coupled
massive scalar field living on a de Sitter universe and
analyze its various mass limits. We develop the noise kernel
computation for both minimal and nonminimal interaction
cases. Section IV deals with spacetimes which are con-
formally dual to de Sitter spacetimes in terms of quantum
field analysis. We compute the noise kernel in these cases
and study the stability here. Section V deals with the energy
density correlator and the subsequent analysis for
Friedmann universes driven by various matter equations
of state. We summarize our main results and discuss future
prospects in conclusion in Sec. VI. We use the ð−;þ;þ;þÞ
sign convention for the metric.

II. PRELIMINARIES

A. Noise kernel

In the stochastic gravity paradigm, one tries to include
the effect of quantum fluctuations of the matter field on the
classical geometry of the spacetime through the noise
kernel, which is given by [5,6]

Nabcd¼
1

8
ft̂ab; t̂cdg; where t̂ab¼ T̂ab−hT̂abi and ð1Þ

ht̂abcdðx; x0Þi
≡ ht̂abðxÞt̂cdðx0Þi
¼ h0jT̂abðxÞT̂cdðx0Þj0i − h0jT̂abðxÞj0ih0jT̂cdðx0Þj0i: ð2Þ

Here T̂ab represents the stress energy (or energy-momentum)
quantum operator which one obtains by replacing the
classical fields by field operators in the classical expression
for the stress energy tensor. The noise kernel incorporates
much information regarding the quantum property of matter
and its backreaction on the geometry, too. For example, one
can easily obtain the fluctuation in the stress energy tensor
from the noise kernel. Fluctuation in the stress energy tensor
at some spacetime point x, like any other quantum operator,
is equal to hðt̂abðxÞÞ2i. Therefore, we see that the fluctuation
in the stress energy tensor is obtained by taking a ¼ c and
b ¼ d and by considering the x0 → x limit in the noise
kernel, i.e., limx0→xht̂ababðx; x0Þi.1
Furthermore, in the gravitational scenario, the stress

energy tensor, denoted by Tαβ, is defined as the
variation of the matter action with respect to the metric
variation, i.e.,

TαβðxÞ ¼ −
2ffiffiffiffiffiffi−gp ∂SM

∂gαβðxÞ : ð3Þ

Therefore, for a minimally coupled massive scalar field in
the general spacetime metric, given by

S½gαβ;ϕ� ¼ −
1

2

Z
dηd3x⃗

ffiffiffiffiffiffi
−g

p ðgαβ∇αϕ∇βϕþm2ϕ2Þ; ð4Þ

we have

TαβðxÞ ¼ ∇αϕ∇βϕ −
1

2
gαβðgγδ∇γϕ∇δϕþm2ϕ2Þ: ð5Þ

For example, if we consider the Minkowski space, i.e.,
gαβ ¼ ηαβ, we have

TabðxÞ ¼ lim
y→x

Pabðx; yÞϕðxÞϕðyÞ; ð6Þ

where

Pabðx; yÞ ¼
�
δcðaδ

d
bÞ −

1

2
ηabη

cd

�
∇x

c∇y
d −

1

2
ηabm2: ð7Þ

1Fluctuations obtained in this way are generally divergent in
the x0 → x limit, but these can be taken care of by proper
regularization procedures as is routinely done for divergent
observables in quantum field theory [5,8,51]. However, in the
present paper, we are more interested in the correlations rather
than the fluctuations explicitly.
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This implies that the stress energy two-point correlator in
the vacuum of the field can be obtained as2

htabcdðx;x0Þi
¼ lim

y→x
y0→x0

Pabðx;yÞPcdðx0;y0Þh0jϕðxÞϕðyÞϕðx0Þϕðy0Þj0i

− lim
y→x
y0→x0

Pabðx;yÞPcdðx0;y0Þh0jϕðxÞϕðyÞj0ih0jϕðx0Þϕðy0Þj0i:

ð8Þ

After some manipulations, this becomes [42]

htabcdðx; x0Þi ¼ 2lim
y→x
y0→x0

Pabðx; yÞPcdðx0; y0ÞGðx; x0ÞGðy; y0Þ;

ð9Þ

whereGðx; x0Þ is the Wightman function for the scalar field
in the considered vacuum,

Gðx; x0Þ ¼ h0jϕðxÞϕðx0Þj0i: ð10Þ

B. de Sitter space

An n-dimensional de Sitter space, denoted by dSn, can
be viewed as the embedding

ηabXaXb ¼ H−2; ð11Þ

in Rð1;nÞ with the metric ημν ¼ diagð−1; 1;…; 1Þ. The
de Sitter space is a maximally symmetric space and has
constant Ricci scalar R ¼ 2ðn − 1Þðn − 2ÞH2. It can be
shown that the de Sitter space is also the solution of vacuum
Einstein equations with a positive cosmological constant,
given by ðn − 1Þðn − 2ÞH2=2.
One can use a number of coordinate systems to cover the

de Sitter space,3 but one particularly useful coordinate
system (called planar or inflationary coordinates) for our
purposes is given by

Xn − X0 ¼ � eHt

H
; Xi ¼ �xieHt; i ¼ 1;…; n − 1;

Xn þ X0 ¼ �
�
e−Ht

H
− xixiHeHt

�
: ð12Þ

For a given sign in the above equation, one covers only
half of the de Sitter manifold. Therefore, � signs corre-
spond to two charts covering the full de Sitter space. In a
single chart, all the coordinates (i.e., t; x1; x2;…; xn−1) lie
between ð−∞;∞Þ.
In these coordinates, the metric in both the charts is

given by

ds2 ¼ −dt2 þ e2Htdx⃗2: ð13Þ

The transformation4 dη ¼ dt=aðtÞ with aðηÞ ¼ −1=Hη
brings the above metric in the following conformally flat
form:

ds2 ¼ 1

ðHηÞ2 ð−dη
2 þ dx⃗2Þ: ð14Þ

If we define Zðx; x0Þ ¼ H2ηabXaðxÞXbðx0Þ, then, in the
planar coordinates, we have

Zðx; x0Þ ¼ 1þ ðη − η0Þ2 − ðx⃗ − x⃗0Þ2
2ηη0

: ð15Þ

This is a useful quantity, which (indirectly) characterizes
the geodesic distance between points x and x0 on the de
Sitter manifold.

C. Quantum fields on de Sitter space

The minimally coupled scalar field, corresponding to (4),
satisfies the following equation of motion:

ð□ −m2ÞϕðxÞ ¼ 0: ð16Þ

The Wightman function also satisfies the same equation as
the field, i.e.,

ð□ −m2ÞGðx; x0Þ ¼ 0: ð17Þ

For a de Sitter invariant vacuum, evidently this depends
only on the geodesic distance, i.e., Gðx; yÞ ¼ GðZðx; yÞÞ,
and the above equation becomes (see Refs. [23,55])

ðZ2 − 1Þ d
2G
dZ2

þ 4Z
dG
dZ

þ m2

H2
GðZÞ ¼ 0: ð18Þ

Under the transformation Z → Y ¼ ð1þ ZÞ=2, it further
reduces to

Yð1 − YÞ d
2G
dY2

þ ð2 − ðaþ bþ 1ÞYÞ dG
dY

− abGðYÞ ¼ 0;

ð19Þ

2In this expression and the following expressions, we do not
bother ourselves to put a hat over the stress energy (or field)
operators, since it is understood that we are exclusively working
with quantum stress energy operators.

3To know more about different coordinate systems used for
de Sitter space (like global coordinates, static coordinates,
Eddington-Finkelstein coordinates, Kruskal coordinates, etc.)
and the causal structure of the de Sitter space (i.e., its Penrose
diagram, etc.), one can refer to Refs. [52–54].

4Now η lies between ð−∞; 0Þ corresponding to t lying between
ð−∞;∞Þ.
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where a ¼ 3=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4 −m2=H2

p
and b ¼ 3=2 −ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9=4 −m2=H2
p

or vice versa. This is the hypergeometric
equation, and one particular solution to this equation is
GðZÞ ¼ 2F1ða; b; 2; 1þZ

2
Þ. A particular choice for the de

Sitter invariant vacuum state (called the Bunch-Davies
vacuum) leads to GðZÞ ¼ ðH2=16π2ÞΓðaÞΓðbÞ2F1ða; b; 2;
1þZ
2
Þ. Because of its structure, massless fields (for which

a ¼ 3, b ¼ 0) have a divergent piece in GðZÞ which is
identified as the infrared divergence. Since the Wightman
function is only a function of Z, all its higher-order
derivatives can be evaluated in terms of variation of Z
with respect to spacetime coordinates (see Appendix A).

III. NOISE KERNEL IN de Sitter UNIVERSE

First, we express the stress energy correlator (algebrai-
cally related to the noise kernel) in a conformally flat

Friedmann spacetime. For a minimally coupled scalar field
in a conformally flat spacetime metric, i.e., gαβ ¼ aðηÞ2ηαβ,
we can again use the expression (6) for the stress energy
correlator but now with

Pabðx; yÞ ¼
�
δcðaδ

d
bÞ −

1

2
ηabη

cd

�
∇x

c∇y
d

−
1

2

�
aðηÞ þ aðη0Þ

2

�
2

ηabm2: ð20Þ

Now using this expression of Pabðx; yÞ in Eq. (9) and
specializing to the case of de Sitter spacetime, i.e.,
aðηÞ ¼ − 1

Hη, we have the following expression for the
noise kernel:

htabcdðx; x0ÞidS ¼
�
∇b∇0

cGðx; x0Þ∇a∇0
dGðx; x0Þ þ∇b∇0

dGðx; x0Þ∇a∇0
cGðx; x0Þ

− ηcdη
ρσ∇a∇0

ρGðx; x0Þ∇b∇0
σGðx; x0Þ −

1

H2η02
m2ηcd∇aGðx; x0Þ∇bGðx; x0Þ

− ηabη
γδ∇γ∇0

cGðx; x0Þ∇δ∇0
dGðx; x0Þ þ

1

2
ηabη

γδηcdη
ρσ∇γ∇0

ρGðx; x0Þ∇δ∇0
σGðx; x0Þ

þ 1

2H2η02
m2ηabη

γδηcd∇γGðx; x0Þ∇δGðx; x0Þ −
1

H2η2
m2ηab∇0

cGðx; x0Þ∇0
dGðx; x0Þ

þ 1

2H2η2
m2ηabηcdη

ρσ∇0
ρGðx; x0Þ∇0

σGðx; x0Þ þ
1

2H4η2η02
m4ηabηcdGðx; x0ÞGðx; x0Þ

�
: ð21Þ

We are interested in learning if the primordial fluctuations
remain relevant if the universe expands. For this purpose,
we first choose a spacelike surface by fixing η. We now use
the properties of the Wightman function on constant time
(η-) hypersurfaces and evaluate htabcdðx; x0ÞidS when the
physical distances between fixed comoving distances grow
very large, i.e., aðηÞ → ∞, which in expanding universes
will be the late time era.

A. Minimal coupling

In order to study the stochastic correction, in principle, it
will be necessary to consider all the components of the
noise kernel. However, for our purpose, it will be sufficient
to explore only the ht0000i component to establish the

growth or decay of such stochastic corrections. In fact, the
table in Appendix B shows that the degree of divergence (if
any) of the other components of the noise kernel is either
less than or equal to that of the ht0000i component of the
noise kernel. Furthermore, the ht0000i also gives the energy
correlator in a straightforward manner which is a readily
accessible observable quantity [11]. Therefore, we need to
calculate the ða ¼ 0; b ¼ 0; c ¼ 0; d ¼ 0Þ component of
the noise kernel. In de Sitter spacetime, late time corre-
sponds to the η → 0 limit. So, we consider the noise kernel
on constant time sheets (i.e., η ¼ η0) with finite spatial
distances (i.e., Δx⃗ ≠ 0), and then we take the η → 0 limit.
Using Eq. (21) and formulas from Appendix A, we

see that

ht00ðη; x⃗Þt00ðη; x⃗0ÞidS ¼
�
ðG00Þ2

�ðΔx⃗Þ6
4η10

þ ðΔx⃗Þ8
32η12

þ ðΔx⃗Þ4
2η8

�
þ G2

�
m4

2H4η4

�
þ ðG0Þ2

�
3ðΔx⃗Þ2
2η6

þ ðΔx⃗Þ4
8η8

þ 2

η4

þ m2

H2

�ðΔx⃗Þ4
4η8

þ ðΔx⃗Þ2
η6

��
þ ðG00G0Þ

�
−
5ðΔx⃗Þ4
4η8

−
ðΔx⃗Þ2
η6

−
ðΔx⃗Þ6
8η10

��
: ð22Þ
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Using the expressions for the Wightman function and its
derivatives in the Bunch-Davies vacuum, i.e.,

GðZÞ ¼ H2

16π2
Γ
�
3

2
þ ν

�
Γ
�
3

2
− ν

�

× 2F1

�
3

2
þ ν;

3

2
− ν; 2;

1þ Z
2

�
; ð23Þ

G0ðZÞ ¼ H2

64π2
Γ
�
5

2
þ ν

�
Γ
�
5

2
− ν

�

× 2F1

�
5

2
þ ν;

5

2
− ν; 3;

1þ Z
2

�
; ð24Þ

G00ðZÞ ¼ H2

384π2
Γ
�
7

2
þ ν

�
Γ
�
7

2
− ν

�

× 2F1

�
7

2
þ ν;

7

2
− ν; 4;

1þ Z
2

�
ð25Þ

(where ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
9
4
− m2

H2

q
), and appealing to the late time

behavior (i.e., Z → −∞) for the 2F1 functions [56], i.e.,

2F1ða; b; c; zÞ ¼
Γðb − aÞΓðcÞð−zÞ−a

ΓðbÞΓðc − aÞ

×

�X∞
k¼0

ðaÞkða − cþ 1Þkz−k
k!ða − bþ 1Þk

�

þ Γða − bÞΓðcÞð−zÞ−b
ΓðaÞΓðc − bÞ

×

�X∞
k¼0

ðbÞkðb − cþ 1Þkz−k
k!ðb − aþ 1Þk

�
; ð26Þ

we have

ht00ðη; x⃗Þt00ðη; x⃗0ÞidSjlate time ¼
H4Γ2ðνÞΓ2ð5

2
− νÞ

π5

�
9η2−4ν

32ðΔx⃗Þ6−4ν þ
21ð3 − 2νÞη4−4ν
16ðΔx⃗Þ8−4ν

þ ð656ν3 − 3244ν2 þ 5168ν − 2655Þη6−4ν
64ðν − 1ÞðΔx⃗Þ10−4ν þOðη2Þ

�
: ð27Þ

From here, we can see that there is a transition in the
behavior of the stochastic correction term at ν ¼ 1=2. For
any ν < 1=2, it vanishes in the late lime limit (large
physical distances) as η2−4ν, e.g., for ν ¼ 0,

ht00ðη; x⃗Þt00ðη; x⃗0ÞidSjlate time ¼ lim
η→0

½OðηÞ�: ð28Þ

On the other hand, the noise kernel approaches a saturating
value at ν ¼ 1=2, for large physical distances with finite
comoving distance,

ht00ðη; x⃗Þt00ðη; x⃗0ÞidSjlate time ¼ lim
η→0

�
9H4

32π4ðΔx⃗Þ4 þOðηÞ
�
:

ð29Þ

This is not surprising, as ν ¼ 1=2 is conformal field
theory and does not feel aðηÞ. However, this goes
on to suggest that the stochastic correction is un-
controllable after ν > 1=2. For example, for a massless
field, ν ¼ 3=2,

ht00ðη; x⃗Þt00ðη; x⃗0ÞidSjlate time ¼ lim
η→0

lim
ϵ→0

�
9H4

128π4η4
½1 − 4ϵ� þ 21H4ϵ

32π4ðΔx⃗Þ2η2 þ
H4

16π4ðΔx⃗Þ4
�
3

2
þ 14ϵ

�
þOðηÞ

�

¼ lim
η→0

�
9H4

128π4η4
þ H4

16π4ðΔx⃗Þ4
�
3

2

�
þOðηÞ

�
→ ∞: ð30Þ

Therefore, we see that, for a minimally coupled scalar
field in Bunch-Davies vacuum, the ða ¼ 0; b ¼ 0;
c ¼ 0; d ¼ 0Þ component of the noise kernel (on constant
time sheets with finite spatial distance and in the late time
universe limit) undergoes a kind of “phase transition” as a
function of ν, with the critical value being ν ¼ 1=2. To put
in context, it is also well known that de Sitter has an

instability against the particle creation of light mass
particles [22,57–60].

B. Comparison with large comoving distance case

At this point, we can compare our results with the case
for large comoving distance, obtained in Ref. [50], in which
the noise kernel is shown to be
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htabcdðx; x0ÞÞidS ¼ PðμÞnanbncnd þQðμÞðnanbgc0d0 þ nc0nd0gabÞ þ RðμÞðnsnc0gbd0 þ nbnd0gac0 þ nand0gbc0 þ nbnc0gad0 Þ
þ SðμÞðgac0gbd0 þ gbc0gad0 Þ þ TðμÞgabgc0d0 ; ð31Þ

where P, Q, R, S, and T are sums of products of the
Wightman function and its first- and second-order deriv-
atives with respect to the geodesic distance. Here, na and
na0 are the unit tangent vectors to the geodesic connecting
the points x and x0, at x and x0, respectively. The action of
gac0 is to parallel transport a vector from x0 to x along the
geodesic.
For the Z ≪ −1 regime, P;Q; T ∼ Z−2h , R ∼ Z−2h −1,

and S ∼ Z−2h −2. Using these behaviors of P, Q, R, S, and
T, it is argued that the fluctuations decay faster with the
distance as mass increases. However, for the fixed comov-
ing distance and large scale factor limit, the coefficients of
PðμÞ,QðμÞ, etc., in the above equation, also depend upon η
(and hence on Z as Z ¼ 1þ ðη−η0Þ2−ðΔx⃗Þ2

2ηη0 ), and the men-
tioned result is obtained ignoring these dependences. So, in
this sense, the results of Ref. [50] are, in fact, valid for those
scenarios in which η and η0 are held finite (and constant)
and Z approaches large values through the ðΔx⃗Þ2 → ∞
limit. However, large spatial separation can arise in another
way, namely, with finite Δx⃗ð≠ 0Þ and aðηÞ → ∞. This
other scenario again shows the divergences obtained in the
previous section, for the relevant mass ranges.
A similar expression can be derived for nonminimally

coupled fields as well. Though the relations derived
above carry over with simple reparameterization m2 →
m2 þ 12ξH2, we still present a brief discussion for the
nonminimal case.

C. Nonminimal coupling

Let us consider a nonminimally coupled massive scalar
field with the following action5:

Snm½gαβ;ϕ�

¼ −
1

2

Z
dηd3x⃗

ffiffiffiffiffiffi
−g

p ðgαβ∇αϕ∇βϕþm2ϕ2 þ ξRϕ2Þ:

ð32Þ

It gives the following equation of motion for the scalar
field ϕ:

½□ − ð12ξH2 þm2Þ�ϕðxÞ ¼ 0; ð33Þ

which implies

GðZðx; x0ÞÞ ¼ H2

16π2
ΓðaÞΓðbÞ2F1

�
a; b; 2;

1þ Z
2

�
; ð34Þ

where a ¼ 3
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
4
− 12ξH2þm2

H2

q
and b ¼ 3

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
4
− 12ξH2þm2

H2

q
.

The stress energy tensor for this case is given by

Tnm
αβ ðxÞ ¼ ∇αϕ∇βϕ −

1

2
gαβðgγδ∇γϕ∇δϕþm2ϕ2Þ

þ ξðGαβϕ
2 þ gαβgγδ∇γ∇δϕ

2 −∇α∇βϕ
2Þ; ð35Þ

where Gαβ is the Einstein tensor. Using the fact that,
for de Sitter space, Gαβ ¼ −3H2gαβ and gαβ ¼ ηαβ=H2η2,
we have

Tnm
αβ ðxÞ ¼ lim

y→x
Pnm
ab ðx; yÞϕðxÞϕðyÞ

¼ lim
y→x

ðPabðx; yÞ þMabðx; yÞÞϕðxÞϕðyÞ; ð36Þ

where

Pabðx; yÞ ¼
��

ð1 − 2ξÞδrðaδsbÞ −
�
1

2
− 2ξ

�
ηabη

rs

�
∇x

r∇y
s

−
2ð3H2ξþ m2

2
Þ

ðHηÞ2 þ ðHη0Þ2 ηab
�

ð37Þ

and

Mabðx; yÞ ¼ ½2ξηabηrs − 2ξδrðaδ
s
bÞ�

∇x
r∇x

s þ∇y
r∇y

s

2
: ð38Þ

In the above formula, η and η0 correspond to the time
coordinate of points x and y, respectively. Here, we see that
the Pab part is the same as it is for the minimally coupled
scalar field with ξ ¼ 0. Also, the expression for Pnm

ab ðx; yÞ is
symmetric in x and y.
Similar to the minimally coupled case, we find that

htnmab ðxÞtnmcd ðx0Þi
¼ 2lim

y→x
y0→x0

Pnm
ab ðx; yÞPnm

cd ðx0; y0ÞGðx; x0ÞGðy; y0Þ

¼ 2lim
y→x
y0→x0

ðPabðx; yÞPcdðx0; y0Þ þ Pabðx; yÞMcdðx0; y0Þ

þMabðx; yÞPcdðx0; y0Þ þMabðx; yÞMcdðx0; y0ÞÞ
× Gðx; x0ÞGðy; y0Þ: ð39Þ5Here superscript nm refers to nonminimal coupling.

STRESS ENERGY CORRELATOR IN de Sitter SPACETIME: … PHYS. REV. D 102, 085009 (2020)

085009-7



The contributions of the PabPcd, PabMcd, MabPcd, and MabMcd terms, to the noise kernel expression, are given in
Appendix B 2. The power counting argument clearly shows that the most dominant power of η (in the limit η → 0), in the

relevant noise kernel component, is still 2 − 4ν (where ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
4
− 12ξH2þm2

H2

q
). In fact, we have

htnmab ðxÞtnmcd ðx0Þijlate time ¼ lim
η→0

�
η2−4νH4

512π5ðΔx⃗Þ6−4ν
�
32ð12ξ − 1ÞΓ

�
5

2
− ν

�
Γ
�
7

2
− ν

�

þ
�
16

m4

H4
þ 8

m2

H2
ð24ξþ ð3 − 2νÞ2Þ − 48ξð3 − 2νÞ2 þ ð3 − 2νÞ2ð29 − 20νþ 4ν2Þ

þ 32ξ2ð27 − 12νþ 4ν2ÞÞ
�
Γ2

�
3

2
− q

��
Γ½ν�2 þOðη4−4νÞ

�
: ð40Þ

This implies that the noise kernel for a conformally coupled
scalar field behaves exactly similar to the noise kernel for a
minimally coupled scalar field except for the fact that
m2=H2 in the latter case goes to m2=H2 þ 12ξ in the
former; i.e., it undergoes a sort of “divergent transition” as
m2=H2 þ 12ξ crosses the critical value 2, making ν ≥ 1=2.
Thus, we readily see that the conformal coupling ξ ¼ 1=6
cures the divergence as, even for the massless field, we get
ν ¼ 1=2, which, at best, has a nonzero finite value of noise
kernel component over large physical scales. For any other
nonzero mass, the value of ν is less than 1=2, showing a
vanishing correlation over large scales. However, for any
ξ < 1=6, we still have divergences over a range of mass
values. Clearly, this divergence in late times is different
from the secular divergences of stress energy as (a) we use
the RSET, and (b) this divergence appears only for a finite
comoving distance in the large scale factor limit. Thus, the
correlation structure on fixed comoving distance may grow
or decay as the scale factor turns large, depending upon the

value of the coupling ξ and mass m. We now relate the
noise kernel of Friedmann universes with the noise kernel
of a de Sitter universe for various masses.

IV. NOISE KERNEL FOR FRIEDMANN SPACES

In this section, we relate the results of the previous
sections on the components of the noise kernel in the de
Sitter spacetime to the corresponding noise kernel compo-
nents in Friedmann spacetimes using the fact that a massless
scalar field in a Friedmann spacetime is conformally
equivalent to a massive scalar field in de Sitter spacetime.6

If a power-law Friedmann universe has scaling factor
aðηÞ ¼ ðHηÞ−q, then the corresponding massive scalar field
in de Sitter spacetime hasm2 ¼ H2ð1 − qÞð2þ qÞ. One also
gets that theWightman function in the power-law universe is
related to the Wightman function in de Sitter spacetime,
GP:L:ðx; x0Þ ¼ ðHηÞq−1ðHη0Þq−1Gðx; x0Þ. Using this, we
see that

∇0
μGP:L: ¼ ðHÞ2q−2½ðq − 1ÞðηÞq−1ðη0Þq−2Gδμ0 þ ðηÞq−1ðη0Þq−1∇0

μG�; ð41Þ

and

6The action of a massless scalar field in a universe with metric gαβ ¼ a2ηαβ with aðηÞ ¼ ðHηÞ−q is given by

S ¼ −
1

2

Z
d4xa4ða−2ηαβ∂αϕ∂βϕÞ:

Under the transformation ϕðxÞ ¼ ðHηÞ−1þqψðxÞ, the action becomes

S ¼ −
1

2

Z
d4xb4ðb−2ηαβ∂αψ∂βψ −m2

effψ
2Þ;

where bðηÞ ¼ ðHηÞ−1 andm2
eff ¼ H2ð1 − qÞð2þ qÞ. Therefore, we see that a massless scalar field in a Friedmann universe with scaling

factor aðηÞ ¼ ðHηÞ−q goes to a massive scalar field in a de Sitter universe under the above mentioned transformation. We also see that
the transformation relation between the fields, i.e., ϕðxÞ ¼ ðHηÞ−1þqψðxÞ, explains the relation between the Wightman functions in the
related spacetimes, i.e., GP:L:ðx; x0Þ ¼ ðHηÞq−1ðHη0Þq−1Gðx; x0Þ. A similar kind of correspondence can be established for the
nonminimal setting as well. For more details, see Appendix A.2 of Ref. [39].
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∇ν∇0
μGP:L: ¼ H2q−2½ðq − 1Þ2ðηÞq−2ðη0Þq−2Gδμ0δν0 þ ðq − 1ÞðηÞq−1ðη0Þq−2δμ0∇νG

þ ðq − 1ÞðηÞq−2ðη0Þq−1δν0∇0
μGþ ðηÞq−1ðη0Þq−1∇ν∇0

μG�

¼ ðHηHη0Þq−1
�ðq − 1Þ2

ηη0
Gδμ0δν0 þ

ðq − 1Þ
η0

δμ0∇νGþ ðq − 1Þ
η

δν0∇0
μGþ∇ν∇0

μG

�
: ð42Þ

The above expression, for η ¼ η0, for different values of ν and μ is given by (see Appendix A)

∇0∇0
0G

P:L: ¼ ðHηÞ2q−2
�ðq − 1Þ2

η2
Gþ ðq − 1Þ

η
∇0Gþ ðq − 1Þ

η
∇0

0Gþ∇0∇0
0G

�
;

∇0∇0
jG

P:L: ¼ ðHηÞ2q−2
�
q − 1

η
∇0

jGþ∇0∇0
jG

�
;

∇i∇0
0G

P:L: ¼ ðHηÞ2q−2
�
q − 1

η
∇iGþ∇i∇0

0G

�
;

∇i∇0
jG

P:L: ¼ ðHηÞ2q−2½∇i∇0
jG�: ð43Þ

Now, we have the covariant derivatives of the Wightman function in the Friedmann spacetimes in terms of the
corresponding quantities in the de Sitter spacetime. Using the above expressions in the noise kernel expression for a
massless scalar field and for Friedmann spacetimes, we see that the considered noise kernel component (on constant time
sheets) is given by

ht00ðη; x⃗Þt00ðη; x⃗0ÞiP:L: ¼ ðHηÞ4ðq−1Þ
�
G2

2η4
ðq − 1Þ4 þGG0

�ð2q3 − 7q2 þ 8q − 3ÞðΔxÞ2
2η6

−
ðq − 1Þ2

η4

�
þGG00 ðq − 1Þ2ðΔx⃗Þ4

4η8

þ G0G00
�ðq − 3

2
ÞðΔx⃗Þ6

4η10
þ ðq − 9

4
ÞðΔx⃗Þ4
η8

−
ðΔx⃗Þ2
η6

�
þ ðG0Þ2

�
2

η4
þ ðq2 − 5qþ 11

2
ÞðΔx⃗Þ2

η6

þ ð2q2 − 6qþ 9
2
ÞðΔx⃗Þ4

4η8

�
þ ðG00Þ2

�ðΔx⃗Þ6
4η10

þ ðΔx⃗Þ8
32η12

þ ðΔx⃗Þ4
2η8

��
: ð44Þ

For different power-law universes, i.e., for different values of q, one can evaluate the above expression on constant time
sheets. However, as ν can take values only in the range ½−3=2; 3=2�, we see that we can use the considered equivalence only
for those values of q which lie in the range ½−2; 1�. The region jνj > 3=2 is mapped to the region outside ½−2; 1�. As we are
interested in the behavior of the noise kernel component in the late time universe, we observe that, for q ∈ ð0; 1�, the late
time universe corresponds to η → 0 and, for q ∈ ½−2; 0Þ, the late time universe corresponds to η → ∞. We now list down the
stress energy correlator for various Friedmann spacetimes:

(i) q ¼ 1.—This case trivially corresponds to a massless scalar field in de Sitter spacetime, which is just the case
ν ¼ 3=2 in the previous section. As discussed above, the correlator diverges in the late time limit as η−4 or a4.

(ii) q ∈ ð0; 1Þ.—If we perform, for this case as well, the same power counting analysis as is done in Appendix B, we find
that the relevant noise kernel component in the late time universe, i.e., η → 0 limit, has an η-independent term.
Therefore, we have a constant late time noise kernel component for those Friedmann universes which have a negative
exponent of η in the scale factor. In fact, we have

ht00ðη; x⃗Þt00ðη; x⃗0ÞiP:L:jlate time ¼ lim
η→0

ðHηÞ4q−4
ðΔx⃗Þ4

�
H4η4−4qðΔx⃗Þ4q−4

8π5
ðð11 − 12qþ 4q2ÞðΓð2 − qÞÞ2ðΓð0.5þ qÞÞ2Þ

þ 44qη4qþ4H4

32π5ðΔx⃗Þ4þ4q ðð1þ 2qÞ4ðΓð2þ qÞÞ2ðΓð−0.5 − qÞÞ2Þ þOðη6−4qÞ
�
: ð45Þ

In the late time limit, only the term H4qðΔx⃗Þ4q−8
8π5

ðð11 − 12qþ 4q2ÞðΓð2 − qÞÞ2ðΓð0.5þ qÞÞ2Þ survives, which is time
independent and is therefore a remnant of the quantum fluctuations the universe was born with. For these spacetimes,
the stochastic term, in the Einstein-Langevin equation, will be relevant if the constant it saturates to is comparable to
the expectation values appearing in the semiclassical analysis. Thus, in principle, these spacetimes are vulnerable to
long-range effects.
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This is a bit interesting as, in the late time limit, the Wightman function (and hence the stress energy correlator)
drops the time (or the scale factor) dependency. For constant time sheets, we have

GP:L:ðη; x⃗; η0; x⃗0Þ ¼ H2ðHηÞ2q−2
16π2 2F1

�
2þ q; 1 − q; 2; 1 −

ðΔx⃗Þ2
4η2

�
: ð46Þ

In the η → 0 limit, we have

GP:L:ðη; x⃗; η0; x⃗0Þ ¼ H2ðHηÞ2q−2
16π2

Γð2þ qÞΓð1 − qÞ
�Γð−1 − 2qÞðððΔx⃗Þ2

4η2
ÞÞ−2−q

Γð1 − qÞΓð−qÞ
X∞
k¼0

ð2þ qÞkð1þ qÞkð− ðΔx⃗Þ2
4η2

Þ−k
k!ð2þ 2qÞk

þ
Γð1þ 2qÞððΔx⃗Þ2

4η2
Þ−1þq

Γð2þ qÞΓð1þ qÞ
X∞
k¼0

ð1 − qÞkð−qÞkð− ðΔx⃗Þ2
4η2

Þ−k
k!ð−2qÞk

�
: ð47Þ

Since aðηÞ ¼ ðHηÞ−q (i.e., Hη ¼ a−1=q), we can convert the above expression in terms of the physical distance on
constant time sheets, i.e., a2ðΔx⃗Þ2, and in terms of aðηÞ, i.e.,

GP:L:ðη; x⃗; η0; x⃗0Þ ¼ H2

16π2
Γð2þ qÞΓð1 − qÞ

×

�
Γð−1 − 2qÞðH2

4
Þ−2−qa2q−2=q

Γð1 − qÞΓð−qÞða2ðΔx⃗Þ2Þ2þq

X∞
k¼0

ð2þ qÞkð1þ qÞkð− H2

4
Þ−kða2ðΔx⃗Þ2Þ−kða−2þ2=qÞ−k

k!ð2þ 2qÞk

þ Γð1þ 2qÞðH2

4
Þ−1þqa2−2q

Γð2þ qÞΓð1þ qÞða2ðΔx⃗Þ2Þ1−q
X∞
k¼0

ð1 − qÞkð−qÞkð− H2

4
Þ−kða2ðΔx⃗Þ2Þ−kða−2þ2=qÞ−k
k!ð−2qÞk

�
: ð48Þ

One can check that the leading term of the second series in the square bracket is the dominant term for q > −1=2,
in the η → 0 limit, which kills off all a dependence at late times, assuming a pseudoconformal form. It is worth
noting that, for all prior times, there is a η− dependency in the expression, which gradually decays, and at the end we
are left with the constant leading-order term. Therefore, long-distance correlators, with small coordinate values, of
this spacetime maintain the initial time correlations.

(iii) q ¼ 0.—This is a special limit of no dynamics, i.e., aðηÞ ¼ 1, and hence is the flat space result, which is well studied
[42,61,62]. The Wightman function for Minkowskian spacetime is given by Gðx; x0Þ ¼ 1

4π2ð−ðη−η0Þ2þðΔx⃗Þ2Þ. Using this

expression, we find that the noise kernel, on constant time sheets for finite spatial distance, is given by

ht̂00ðη; x⃗Þt̂00ðη; x⃗0ÞiP:L: ¼
3

2π4ðΔx⃗Þ8 : ð49Þ

Evidently, for a constant comoving distance, the correlator survives, as the comoving and physical distances are the
same and physical distance does not grow in “late time” or “early time” because of the lack of dynamics. For a large
physical distance, there is no appreciable stochastic effect.

(iv) q ∈ ð−2; 0Þ.—In this case, aðηÞ ¼ ðHηÞjqj and, hence, the late time universe corresponds to η → ∞. For this case,
we have

ht00ðη; x⃗Þt00ðη; x⃗0ÞiP:L:jlate time ¼ lim
η→∞

ðHηÞ4q−4
�

3H4η4

2π4ðΔx⃗Þ8þ
η2H4ð3qþ 4q2Þ

8π4ðΔx⃗Þ6 þ H4q
64π4ðΔx⃗Þ4

�
ð−4− 7qþ 6q2þ 11q3Þ

þ 2ð1þqÞð−1þqÞ2
�
2γþ log

�ðΔx⃗Þ2
4η2

�
þψ ð0Þð1−qÞþψ ð0Þð2þqÞ

��
þOðη−2Þ

�
:

ð50Þ

Here γ is the Euler gamma symbol and ψ ð0ÞðzÞ is the poly-Gamma function. Clearly, the late time correlator has a
behavior Oðη4qÞ for fixed Δx which washes away any quantum correlation at late times.
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(v) q ¼ −2.—This case is particularly interesting as we see that m2 ¼ H2ð1 − qÞð2þ qÞj → 0 for q → −2, and, hence,
a massless scalar field in this particular Friedmann spacetime is conformally equivalent to a massless scalar field
in de Sitter spacetime. The stress energy correlator for this case is given as

ht00ðη; x⃗Þt00ðη; x⃗0ÞiP:L:jlate time ¼ lim
η→∞

lim
ϵ→0

H−12
�

3H4

2π4η8ðΔx⃗Þ8 þ
4

ðΔx⃗Þ6η10
�
5H4

16π4
þOðϵÞ

�

þ 1

η12ðΔx⃗Þ4
�

9H4

16π4ϵ
þ
9ð6H4 þH4 logððΔx⃗Þ2

4η2
ÞÞ

16π4
þOðϵÞ

�

þ 1

4ðΔx⃗Þ2η14
�
−
27H4

8π4ϵ
−
27ð7H4 þ 2H4 logððΔx⃗Þ2

4η2
ÞÞ

16π4
þOðϵÞ

�

þ 1

16η16

�
81H4

8π4ϵ2
þ
27H4ð10þ 3 logððΔx⃗Þ2

4η2
ÞÞ

4π4ϵ
þOðϵ0Þ

�
þOðη−18Þ

�
: ð51Þ

Since the ϵ → 0 limit blows up for all large but finite
η, the long-range correlators become dominant over
the expectation values, and one needs to resort to
stochastic gravity necessarily. In fact, it is easy to
show that such divergent behavior persists at all
times. This is not unexpected, as we have already
seen that the Wightman function diverges secularly
for the massless case in de Sitter. However, q ¼ −2
spacetime is connected to the de Sitter case as

Gq¼−2
m¼0 ðx; x0Þ ¼ ðH2ηη0Þ−3GdS

m¼0ðx; x0Þ; ð52Þ

and, thus, in this spacetime, the divergent term from
the de Sitter develops time dependence and survives
under derivative actions in Eq. (9). A similar
spacetime-dependent divergence appears for uni-
verses with q < −2 and q > 1 corresponding to
jνj > 3=2. Therefore, the semiclassical (or even
classical) analysis on these universes is potentially
unstable in the face of quantum fluctuations.

V. ENERGY-ENERGY CORRELATION ON
CONSTANT TIME SHEETS

In the previous section, we evaluated the ht0000i compo-
nent of the noise kernel for different Friedmann spacetimes.
We realize that, in some cases, the late time character cares
only for the coordinate separation (Δx) which is not
coordinate invariant. This is not unexpected, as the noise
kernel is not an invariant scalar. However, one can construct
invariant scalars out of these to assess the effect of
stochastic fluctuations more covariantly. For this purpose,
we consider the behavior of energy-energy density corre-
lator in the late time universe in these Friedmann universes.
Energy density at any point x is given by TαβðxÞtαtβ,
where tα is some timelike vector. So, if we consider a
comoving timelike path xðλÞ ¼ ðNðλÞ; x⃗ ¼ c⃗Þ, then we see
that tα ¼ ð _NðλÞ; 0⃗Þ and, hence, the unit parametrization in

de Sitter space implies that _NðλÞ ¼ 1=aðηÞ. This implies
that the energy density, at point ðη; x⃗Þ, is T00ðη; x⃗Þ=ðaðηÞÞ2
and the energy-energy density correlator between the points
ðη; x⃗Þ and ðη0; x⃗0Þ is given by

ht00ðη; x⃗Þt00ðη0; x⃗0Þi
ðaðηÞaðη0ÞÞ2 : ð53Þ

Using the expressions for ht00ðη; x⃗Þt00ðη0; x⃗0Þi obtained in
the previous section, we can obtain the energy density
correlators, over large physical distances, for different
Friedmann universes.

(i) q ¼ 1.—This is the de Sitter spacetime. Using
Eq. (53), we see that the energy-energy correlator,
in the η → 0 limit, is 0 for every value of ν except for
ν ¼ 3=2, forwhich it is constant (¼ 9H8=128π4).One
point to note is that, for ν ¼ 3=2, the infrared problem
does not appear at the level of noise kernel, as we take
the massless field as the limiting case. Since the
massless fields have no de Sitter invariant vacuum
[23], one needs to regularize the divergent piece in the
Wightman function in a properway.However, it can be
shown that the regularized massless Wightman func-
tion does not yield any nonzero energy density
correlator in the late time limit [63].

(ii) q ∈ ð0; 1Þ.—Using Eq. (53) for the energy-energy
correlator and the fact that aðηÞ ¼ ðHηÞ−q, we see
that, in this case, the energy-energy correlator goes
to 0 in the η → 0 limit.

(iii) q ¼ 0.—This is the flat space case, i.e., aðηÞ ¼ 1,
where the ht0000i is the same as the energy-energy
correlator.

(iv) q ∈ ð−2; 0Þ.—In this case, we find that the late time
universe, i.e., η → ∞, has zero value for the energy-
energy correlator.

(v) q ¼ −2.—Again using Eq. (53), we see that the
energy-energy correlator, for this case, is divergent
in the late time limit (in fact, for arbitrary values
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of η), as there is a pole in the Wightman function at
ν ¼ 3=2. Similarly, the energy-energy correlator will
blow up for q < −2 and q > 1, too.

Thus, we see the coordinate invariant quantity ismostly under
control andmay give rise to finite value observable quantities.
However, some Friedmann universes still give divergent
energy-energy correlators which are explained below.

A. Cosmological implications

The equation of state parameter w, for an ideal fluid
driving the Friedmann universe, is related to the exponent
of the scale factor in Friedmann cosmologies by q ¼
−2=ð1þ 3wÞ (see [39]). Different values of w represent
the dominance of different types of fluid during the
evolution of the universe; e.g., w ¼ 0 corresponds to dust,
whereas w ¼ 1=3 corresponds to radiation. Therefore, we
see that the Friedmann universe with q ∈ ð0; 1� is driven by
a fluid with equation of state parameter w ∈ ð−∞;−1�,
whereas w ∈ ½0;∞Þ for q ∈ ½−2; 0Þ. This means that the
quantum fluctuations [ða ¼ 0; b ¼ 0; c ¼ 0; d ¼ 0Þ noise
kernel component] may remain relevant for w ∈ ð−∞;−1�
in the late time universe where the initial quantum
fluctuation remains frozen under expansion, whereas there
are no quantum fluctuations left over for w ∈ ð0;∞Þ in the
late time universe. Interestingly, for q ¼ −2, i.e., w ¼ 0, a
pressureless dust-driven universe is the one most affected
by stochastic fluctuations, as the noise kernel components
(or even scalar correlators) blow up for this spacetime.
Thus, any semiclassical or possibly even classical analysis
in a dust-driven universe is subject to scrutiny under
stochastic correction. In other words, this spacetime
remains as quantum as ever. The same remains true for
q < −2 or q > 1 corresponding to w ∈ ½−1; 0�. Thus, the
spacetimes in these regime never drop their quantum
character, and a higher-order quantum analysis is necessary.
Interestingly, accelerating universes require w < −1=3,
and, hence, any accelerating universe also seeks for a

quantum treatment. The summary of this section is given
by Fig. 1.

VI. CONCLUSIONS

In this paper, we analyze the stability of various
Friedmann universes under the possible effect of a stochastic
correction term in the Einstein-Langevin equation. Using
the relations between Wightman functions in de Sitter and
Friedmann universes, as well as the relation of theWightman
function to noise kernel components, we relate the noise
kernel in a Friedmann universe to the conformal scaling of
the noise kernels of massive fields in a de Sitter universe.
Typically, quantum fluctuations are expected to decay
over large length scales in flat spacetime and remain relevant
only over extremely small scales. A Friedmann universe is
conformally flat; i.e., the points which are initially very close
by will get physically separated under a global topological
expansion. However, in this lies an interesting possibility,
where two spacetime points are physically apart by large
distances while maintaining small coordinate separation.
Under certain scenarios, e.g., for conformal fields, it may be
possible that the noise kernel cares about the coordinate
separation and not about the true physical distances. In those
cases, the quantum fluctuations which were stronger when
the points had not accelerated away from each other remain
as strong under time (and, hence, physical distance) growth.
Furthermore, there can be cases where the signature of small
coordinate distance gets enhanced with an increasing con-
formal scale factor. We argue that certain Friedmann uni-
verses develop this tendency in the late time era and, thus,
maintain a potentially significant second-order correction to
the semiclassical equations. We first list our findings in this
paper as follows.

(i) Minimally coupled massive scalar field in de Sitter
spacetime.—We first consider a minimally coupled
massive scalar field on dS4 and study the variation of
the ða ¼ 0; b ¼ 0; c ¼ 0; d ¼ 0Þ component of the

FIG. 1. Relation between different types of fluid (and the corresponding Friedmann spacetimes) and the behavior of the noise kernel in
these regions.
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noise kernel as a function of the mass. We consider
only those cases in which jνj lies in the range
½0; 3=2�, because this range of values for ν ensures
that the mass is real as m2=H2 ¼ 9=4 − ν2. If we
consider finitely separated points on constant time
sheets and take the late time, η → 0, limit [for which
the scale factor 1=ðHηÞ grows], we find that the
considered component of the noise kernel undergoes
a sort of phase transition from zero to nonzero
values, with the critical value being ν ¼ 1=2. The
noise kernel components stay vanishing for ν ∈
½0; 1=2Þ and assume a finite nonzero value at
ν ¼ 1=2. Furthermore, for ν > 1=2, it diverges in
the limit η → 0. We also show that the energy-
energy correlator [which is just the ða ¼ 0; b ¼ 0;
c ¼ 0; d ¼ 0Þ component of the noise kernel sup-
pressed by the fourth power of the scale factor]
vanishes for all values of ν except for ν ¼ 3=2 for
which it is finite (at the value 9H8=128π4).

(ii) Nonminimally coupled scalar field in de Sitter
spacetime.—We also evaluate the stochastic correc-
tions for the nonminimally coupled massive scalar
field on dS4, which amounts to adding ξRϕ2 to the
minimally coupled Lagrangian. In this case as well,
we consider finitely separated points on constant
time sheets in the η → 0 limit. We show that the
variation of the ða ¼ 0; b ¼ 0; c ¼ 0; d ¼ 0Þ com-
ponent of the noise kernel as a function of ν is
similar to the minimally coupled case with
ν → ν ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4 − ðm2 þ 12ξH2Þ=H2

p
. In effect,

what we have shown is that the considered compo-
nent is 0 for ðm2=H2 þ 12ξÞ > 2 and becomes
nonzero for ðm2=H2 þ 12ξÞ ¼ 2 and diverges for
ðm2=H2 þ 12ξÞ < 2. Therefore, conformal coupling
ξ ¼ 1=6 cures the divergences for all masses. Sim-
ilarly, the energy-energy correlator stays 0 for all
values of m2=H2 þ 12ξ in the range ½0; 9

4
Þ but

becomes constant for m2=H2 þ 12ξ ¼ 0.
(iii) Conformally related massless scalar field in Fried-

mann spacetimes.—Using the results of Ref. [39],
that establish an equivalence between a massless
scalar field in Friedmann spacetimes with that of a
massive scalar field in de Sitter space where the mass
gets related to the exponent of the scale factor of
Friedmann, we compute the noise kernels for vari-
ous Friedmann universes. For ν lying between
½−3=2; 3=2�, q can take values between ½−2; 1�.
Since we are interested in large physical separation
(late time universes), the late time limit corresponds
to η → 0 for q ∈ ð0; 1�, whereas it corresponds to
η → ∞ for q ∈ ½−2; 0Þ. We find that, for q ∈ ½0; 1Þ,
the considered noise kernel component approaches a
constant value, while, for q ∈ ð−2; 0Þ, it vanishes
over large physical separations. Similarly, for the

energy-energy correlator, we showed that it is zero
for q ∈ ð−2; 0Þ ∪ ð0; 1Þ. However, particularly in-
teresting cases are for q ≤ −2 and q ≥ 1 (which
correspond to universes driven by −1 < w < 0
equation of state fluids) where, as shown in Ref. [39],
the Wightman function has a divergent term with
spacetime dependence. The conformal connection
between the fields of de Sitter and Friedmann spaces
provides an additional conformal time dependence
to the divergent term in the de Sitter Wightman
function, which contributes dominantly in both the
noise kernel and the energy-energy correlators.
Therefore, the universes, which are driven by such
fluids, remain susceptible to quantum fluctuations at
late time as well.

Several observations and their implications are in order.
First, we see that the spacetimes which are potentially
stable against the stochastic corrections are those driven by
w > 0 or phantom universes w < −1 if expectation values
are large. This reinforces the quantum fluctuation structure
suggested in Ref. [39]. However, there are a couple of
more interesting points to be learned from this exercise.
First, in the de Sitter case, the late time divergence for
fields with ν > 1=2 is dynamic in nature (unlike the
Wightman function which is spacetime independent, as
well as, only for massless case). Second, in the phantom
spacetimes, the noise kernel does not grow out
of control but still maintains a nonvanishing noise over
large length scales if the points were born close by.
Furthermore, for q ¼ −2, we see that there is a non-
dynamic divergence in all correlators, which makes a dust-
driven universe potentially unstable under quantum noise.
From power counting arguments, it is easy to visualize
that, for spacetimes which are driven by w ∈ ð−1; 0�, the
quantum fluctuations will always remain important, in a
similar spirit. This has many physical implications on
semiclassical physics in such spacetimes, e.g., quasi–de
Sitter inflation or late time quintessence field-driven
universes. Therefore, the dynamics or the growth of
perturbations of the massless kind in these spacetimes
needs to be evaluated carefully, accounting for such
corrections. The effects of stochastic corrections on the
background as well as perturbation dynamics in these
spacetimes are currently being studied and will be reported
elsewhere. Besides this, cosmological data suggest that w
is a dynamical quantity; i.e., it changes with time. In this
paper, we have studied these stochastic corrections only for
constant w-driven universes, and, as such, our analysis
requires some changes to take this fact into account which
we plan to study in future. However, if the time variation of
ω is sufficiently small compared to the rate of expansion
of the universe, i.e., _ω=ω ≪ _a=a, then our study
becomes relevant in the dust-driven as well as dark-
energy-dominated or quintessence era, etc.
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APPENDIX A: BASIC COMPUTATION ON
CONSTANT TIME SURFACE

In this Appendix, we collect certain results which are
important in some of the calculations presented in the main
text of this paper. For de Sitter invariant vacuum,
Gðx; x0Þ ¼ GðZðx; x0ÞÞ, we see, using Eq. (15), that

∇0
μG ¼ G0

�ðx − x0Þμ
ηη0

þ Δs2

2ηη02
δμ0

�
; ðA1Þ

∇νG ¼ G0
�
−
ðx − x0Þν

ηη0
þ Δs2

2η2η0
δν0

�
; ðA2Þ

∇ν∇0
μG ¼ G00

�ðx − x0Þμ
ηη0

þ Δs2

2ηη02
δμ0

�

×

�
−
ðx − x0Þν

ηη0
þ Δs2

2η2η0
δν0

�

þ G0
�
ημν
ηη0

−
ðx − x0Þμ
η2η0

δν0

þ ðx − x0Þν
ηη02

δμ0 −
Δs2

2η2η02
δν0δμ0

�
: ðA3Þ

On constant time sheets, i.e., η ¼ η0, we have

Zðx; x0Þ ¼ 1 −
ðΔx⃗Þ2
2η2

; ðA4Þ

∇0
iG ¼ G0

�ðx − x0Þi
η2

�
; ðA5Þ

∇iG ¼ G0
�
−
ðx − x0Þi

η2

�
; ðA6Þ

∇0
0G ¼ G0

�ðx⃗ − x⃗0Þ2
2η3

�
; ðA7Þ

∇0G ¼ G0
�ðx⃗ − x⃗0Þ2

2η3

�
; ðA8Þ

∇i∇0
jG ¼ G00

�
−
ðx − x0Þiðx − x0Þj

η4

�
þ G0

�
δij
η2

�
; ðA9Þ

∇0∇0
jG¼G00

�ðx−x0Þjðx⃗− x⃗ 0Þ2
2η5

�
−G0

�ðx−x0Þj
η3

�
; ðA10Þ

∇i∇0
0G¼G00

�
−
ðx−x0Þiðx⃗− x⃗ 0Þ2

2η5

�
þG0

�ðx−x0Þi
η3

�
; ðA11Þ

∇0∇0
0G ¼ G00

�ðx⃗ − x⃗0Þ4
4η6

�
þ G0

�
−

1

η2
−
ðx⃗ − x⃗ 0Þ2

2η4

�
: ðA12Þ

APPENDIX B: POWER COUNTING
FOR NOISE KERNEL

1. Minimal coupling

In this Appendix, we present a power counting argument
to find out for what values of ν the noise kernel for de Sitter
spacetime, i.e., Eq. (22), diverges as η → 0 (late time
universe). If we look at the first term in Eq. (22), i.e.,

ðG00Þ2
�ðΔx⃗Þ6
4η10

þ ðΔx⃗Þ8
32η12

þ ðΔx⃗Þ4
2η8

�
; ðB1Þ

we see that the most divergent term in the square brackets is
Oðη−12Þ. So, if we can find the values of ν for which the
least power of η in ðG00Þ2 is <12, then we have found
the range of ν for which this term diverges. Since the
Wightman function and its derivatives are functions of
1þZ
2

ð¼ 1 − ðΔx⃗Þ2
4η2

Þ,7 we must look at the series expansion of

the Wightman function and its derivative at large values
of their arguments in the η → 0 limit. If we look at the
following series expansion of 2F1ða; b; c; zÞ [56] (valid for
large jzj and a − b ∉ Z)8:

2F1ða;b;c;zÞ¼
Γðb−aÞΓðcÞð−zÞ−a

ΓðbÞΓðc−aÞ
X∞
k¼0

akða−cþ1Þkz−k
k!ða−bþ1Þk

þΓða−bÞΓðcÞð−zÞ−b
ΓðaÞΓðc−bÞ

X∞
k¼0

bkðb−cþ1Þkz−k
k!ð−aþbþ1Þk

;

ðB2Þ

and keep in mind Eq. (25), we find that the least power of η
in ðG00Þ2 is 14 − 4ν. Therefore, the above term diverges for
ν > 1

2
. A similar analysis with the other terms in Eq. (22)

tells us that Eq. (22) diverges for ν > 1
2
.

These arguments can be applied to the general compo-
nents of the noise kernel. In fact, looking at the least powers
of η in the formulas listed in Appendix A for different

7See Eqs. (23)–(25).
8In our case, a − b ¼ 2ν, which is not an integer for every

value of ν in the range ½0; 3
2
� except for ν ¼ 0; 1

2
; 1; 3

2
. But we have

already considered these cases separately in Sec. III.
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covariant derivatives of the Wightman function on constant
time sheets and Eq. (21), we see that

htabðη; x⃗Þtcdðη; x⃗0ÞidS
Leading-order
behavior in η

a ¼ 0; b ¼ 0; c ¼ 0; d ¼ 0 Oðη2−4νÞ
a ¼ 0; b ¼ 0; c ¼ 0; d ¼ l Oðη3−4νÞ
a ¼ 0; b ¼ j; c ¼ 0; d ¼ 0 Oðη3−4νÞ
a ¼ 0; b ¼ j; c ¼ 0; d ¼ l Oðη4−4νÞ
a ¼ i; b ¼ j; c ¼ 0; d ¼ 0 Oðη2−4νÞ
a ¼ 0; b ¼ 0; c ¼ k; d ¼ l Oðη2−4νÞ
a ¼ i; b ¼ j; c ¼ k; d ¼ 0 Oðη3−4νÞ
a ¼ 0; b ¼ j; c ¼ k; d ¼ l Oðη3−4νÞ
a ¼ i; b ¼ i; c ¼ k; d ¼ l and k ≠ l Oðη4−4νÞ
a ¼ i; b ¼ j; c ¼ k; d ¼ k and i ≠ j Oðη4−4νÞ
a ¼ i; b ¼ i; c ¼ k; d ¼ k Oðη2−4νÞ
a ¼ i; b ¼ j; c ¼ k; d ¼ l and i ≠ j; k ≠ l Oðη6−4νÞ

2. Nonminimal coupling

Below is given the expression of the noise kernel for the
nonminimally coupled massive scalar field on de Sitter
spacetime in terms of the Wightman function and its
covariant derivatives. First, we substituted the expression
(36) for the stress energy tensor in the definition of the
noise kernel (1). Since the definition of the noise kernel
contains the vacuum expectation of the product of two
stress energy tensors and each stress energy operator
contains two field operators, we would get the vacuum
expectation of the product of four field operators. Then, we
can use the Wick theorem to express this vacuum expect-
ation as the product of two Wightman functions and obtain
Eq. (39). We obtain the below given expression by
substituting the expressions (37) and (38) for Pabðx; yÞ
and Mabðx; yÞ in Eq. (39):

htnmab ðxÞtnmcd ðx0Þi ¼
�
ð1− 2ξÞ2ð∇b∇0

cGðx;x0Þ∇a∇0
dGðx;x0Þþ∇b∇0

dGðx;x0Þ∇a∇0
cGðx;x0ÞÞ

− ð1− 4ξÞð1− 2ξÞηcdηρσ∇a∇0
ρGðx;x0Þ∇b∇0

σGðx;x0Þ−
ðm2þ 6H2ξÞð1− 2ξÞ

H2η02
ηcd∇aGðx;x0Þ∇bGðx;x0Þ

− ð1− 4ξÞð1− 2ξÞηabηγδ∇γ∇c
0Gðx;x0Þ∇δ∇0

dGðx;x0Þ þ
ð1− 4ξÞ2

2
ηabη

γδηcdη
ρσ∇γ∇0

ρGðx;x0Þ∇δ∇σ
0Gðx;x0Þ

þ ðm2þ 6H2ξÞð1− 4ξÞ
2H2η02

ηabη
γδηcd∇γGðx;x0Þ∇δGðx;x0Þ−

ðm2þ 6H2ξÞð1− 2ξÞ
H2η2

ηab∇0
cGðx;x0Þ∇0

dGðx;x0Þ

þ ðm2þ 6H2ξÞð1− 4ξÞ
2H2η2

ηabηcdη
ρσ∇0

ρGðx;x0Þ∇0
σGðx;x0Þþ

1

2H4η2η02
ð6H2ξþm2Þ2ηabηcdG2

�

þ 2ξ

�
2ηcdð1− 2ξÞð∇ðaG∇bÞ□0GÞ− 2ð1−2ξÞð∇ðaG∇bÞ∇0

ðc∇0
dÞGÞ−

ð6H2ξþm2Þ
ðHηÞ2 ηabηcdG□0G

− ð1− 4ξÞηabηcdðηrs∇sG∇r□
0GÞþ ð1− 4ξÞηabðηrs∇sG∇r∇0

ðc∇0
dÞGÞþ

ð6H2ξþm2Þ
ðHηÞ2 ηabG∇0

ðc∇0
dÞG

�

þ 2ξ

�
2ηabð1− 2ξÞð□∇0

ðcG∇0
dÞGÞ− 2ð1− 2ξÞð∇ða∇bÞ∇0

ðcG∇0
dÞGÞ−

ð6H2ξþm2Þ
ðHη0Þ2 ηabηcdG□G

− ð1− 4ξÞηabηcdðηrs□∇0
sG∇0

rGÞþ ð1− 4ξÞηcdðηmn∇ða∇bÞ∇0
nG∇0

mGÞþ
ð6H2ξþm2Þ

ðHη0Þ2 ηcdG∇ða∇bÞG
�

þ 4ξ2½ηabηcdð□0G□GþG□□
0GÞ− ηabð∇0

ðc∇0
dÞG□GþG□∇0

ðc∇0
dÞGÞ

− ηcdð∇ða∇bÞG□0GþG∇ða∇bÞ□0GÞþ ð∇ða∇bÞG∇0
ðc∇0

dÞGþG∇ða∇bÞ∇0
ðc∇0

dÞGÞ�: ðB3Þ

The first square bracket contains the PabPcd term, and the
second and the third square brackets contain the PabMcd
and MabPcd terms, respectively, whereas the fourth square
bracket contains the MabMcd term. We can use the same

power counting analysis as is done for the minimal
coupling section of this Appendix and study the behavior
of divergences for the noise kernel as a function of the mass
and the coupling constant ξ.
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APPENDIX C: DIVERGENCE IN NOISE KERNEL FOR ω ∈ ð− 1;0Þ-DRIVEN UNIVERSE

Looking at Eq. (85) of Ref. [39], we see that theWightman function for a massless scalar field in Friedmann spacetimes is
given by

Gðx; x0Þ ¼ β2ðηη0Þq−1
8π2

Z
∞

0

ds
sð1=2Þ−ν

ðs2 − 2Zsþ 1Þ3=2 : ðC1Þ

1. Case ν < − 3
2

Now, consider the integral for large s values, i.e.,

Gðx; x0Þ ¼ β2ðηη0Þq−1
8π2

�
finite termþ

Z
∞

N
dss−ð5=2Þ−ν

�
1 − 2

Z
s
þ 1

s2

�
−3=2

�

¼ β2ðηη0Þq−1
8π2

�
finite termþ

Z
∞

N
dss−ð5=2Þ−ν

�
1 −

3

2

�
−2

Z
s
þ 1

s2

�
þ 3 � 5
2 � 2 � 2

�
−2

Z
s
þ 1

s2

�
2

þ � � �
��

¼ β2ðηη0Þq−1
8π2

�
finite termþ

�
s−ð3=2Þ−ν

− 3
2
− ν

þ 3Z
s−ð5=2Þ−ν

− 5
2
− ν

−
3

2

s−ð7=2Þ−ν

− 7
2
− ν

þ ðlower powers ofsÞ
�����

∞

N

�
: ðC2Þ

Since Z ¼ 1þ ðη−η0Þ2−ðΔx⃗Þ2
2ηη0 , we see that the highest collective power of η and η0 is −3 − 2v, and one such highest power term

is multiplying an η and η0 independent and always diverging term s−ð3=2Þ−νj∞N in the expression for the Wightman function.
This implies that the behavior of the noise kernel, in this case, is the same as for the ν ¼ − 3

2
case [because the divergences

are determined by the highest power (for η → ∞) and, hence, most divergent term]. In fact, we have

ht00ðη; x⃗Þt00ðη; x⃗0ÞiP:L: ¼
H4qðq − 1Þ4
128π4η8−4qϵ2

þOðϵ−1Þ; ðC3Þ

where q ¼ ν − 1
2
and 1

ϵ ¼ s−ð3=2Þ−νj∞
3
2
þν

.

2. Case ν > 3
2

Now, consider the integral for small s values, i.e.,

Gðx; x0Þ ¼ β2ðηη0Þq−1
8π2

�
finite termþ

Z
ϵ

0

dssð1=2Þ−νð1 − 2Zsþ s2Þ−3=2
�

¼ β2ðηη0Þq−1
8π2

�
finite termþ

Z
ϵ

0

dssð1=2Þ−ν
�
1 −

3

2
ð−2Zsþ s2Þ þ 3 � 5

2 � 2 � 2 ð−2Zsþ s2Þ2 þ � � �
��

¼ β2ðηη0Þq−1
8π2

�
finite termþ

�
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3
2
− ν

þ 3Z
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5
2
− ν

−
3

2
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7
2
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þ ðhigher powers ofsÞ
�����

ϵ
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