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We study the modular invariance in magnetized torus models. The modular invariant flavor model is a
recently proposed hypothesis for solving the flavor puzzle, where the flavor symmetry originates from
modular invariance. In this framework, coupling constants such as Yukawa couplings are also transformed
under the flavor symmetry. We show that the low-energy effective theory of magnetized torus models is
invariant under a specific subgroup of the modular group. Since Yukawa couplings as well as chiral zero
modes transform under the modular group, the above modular subgroup (referred to as modular flavor
symmetry) provides a new type of modular invariant flavor models with D4 × Z2, ðZ4 × Z2Þ ⋊ Z2, and
ðZ8 × Z2Þ ⋊ Z2. We also find that conventional discrete flavor symmetries which arise in magnetized torus
model are noncommutative with the modular flavor symmetry. Combining both symmetries, we obtain a
larger flavor symmetry, which is the semidirect product of the conventional flavor symmetry and the
modular flavor symmetry for the nonvanishing Wilson line. For the vanishing Wilson line, we have
additional Z2 symmetry, i.e., parity, which is the unique common element between the conventional flavor
symmetry and the modular flavor symmetry.
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I. INTRODUCTION

The origin of the flavor structure of the quarks and
leptons is a long-standing problem. Discrete flavor sym-
metry is an attractive candidate answer for the flavor
puzzle, especially for the neutrino sector. For instance,
small θ13 and large θ23 might imply the tribimaximal
mixing [1], and such a characteristic pattern can be
originated from discrete symmetry [2–4]. For review, see
Refs. [5,6] and references therein.1

The modular invariant flavor model is a new hypothesis
proposed for solving the flavor puzzle [8,9], which assumes
that the action is invariant under the modular group
Γ ¼ PSLð2; ZÞ ¼ SLð2; ZÞ=Z2. The most distinct feature
of this framework is that not only the fields, such as the
leptons and the Higgs field, but also the coupling param-
eters are transformed under the modular group. More
precisely, they form representation of quotient groups of
the modular group: ΓN ¼ Γ=ΓðNÞ. ΓN is called finite
modular group. The experimental values corresponding

to the lepton sectors, the masses of charged leptons, neu-
trino mass-square differences, three mixing angles, and the
CP phase can be reproduced in models with modular
symmetries of Γ2 ≅ S3 [10–12], Γ3 ≅ A4 [12–16], Γ4 ≅ S4
[17,18], and Γ5 ≅ A5 [19]. Modular symmetry is also
applied to other physics beyond the standard model such
as leptogenesis and inflation [20–23], and relationships
between generalized CP symmetry [24,25] and the modu-
lar symmetry are also pointed out [26–29].
Modular symmetry is motivated by string compactifica-

tions. So far, the modular symmetries were investigated in
the heterotic string on orbifolds [30–34] and in the D-brane
modes [35–38]. The situation is different in the case of type
II superstring with magnetic flux [39]. The Kähler potential
of type IIB superstring implies that the chiral superfield has
modular weights [40]. The zero mode’s profiles of bulk
fields have also been investigated using the four-dimen-
sional effective action compactified on torus with magnetic
flux [41]. Yukawa couplings are then obtained through the
overlap integrals of the zero-mode wave functions. These
results have been used to investigate the property of the
modular transformation for each component [42–46], and it
is found that the Yukawa couplings as well as the chiral
zero modes form a representation of the modular group.
However, it still remains unclear whether the full effective
action including the Yukawa term is modular invariant. The
purpose of this paper is to study modular invariance of the
effective action of the magnetized torus model in a
systematic way based on the fundamental generators
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1Recent developments of neutrino oscillation experiments
unveil the precise structure of the mixing angles including the
CP phase [7].
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S and T of the modular transformation. We show that,
although the effective action is not invariant under the
modular group, it is invariant under its specific subgroup.
The generators of the Yukawa invariant modular subgroup
form a new type of flavor symmetry referred to as modular
flavor symmetry, such as Z2, D4 × Z2, ðZ4 × Z2Þ ⋊ Z2,
and ðZ8 × Z2Þ ⋊ Z2 depending on the value of magnetic
fluxes. The modular flavor symmetry is noncommutative
with conventional discrete flavor symmetries, e.g., Δð27Þ,
which appear if the greatest common divisor of generation
numbers of matter fields g is greater than 1 [47]. Combing
these two groups, we obtain a larger flavor symmetry. This
idea has already been discussed in Refs. [29,48–50], in
which a possible extension of the conventional flavor
groups by finite modular groups has been studied in the
heterotic orbifold. In this paper, we develop a similar idea
for magnetized torus. We find that it is insufficient for
determining the group structure correctly by a single field
because its representation is not faithful in the combined
two groups. To avoid this ambiguity, we consider a
simultaneous transformation of all the components in the
model. We find that the conventional discrete flavor group
is a normal subgroup of the whole group. In other words,
the modular group is interpreted as a subgroup of the
automorphism of the conventional flavor group. This is
consistent with the result of Ref. [48]. We also find that the
whole symmetry group is isomorphic to the semidirect
product of modular and the conventional flavor group if the
Yukawa couplings have a faithful representation.2

This paper is organized as follows. In Sec. II, we
introduce modular symmetry. In Sec. III, we review the
zero-mode profiles of magnetized torus. We show how the
wave functions and Yukawa couplings transform under
the modular group. In Sec. IV, we study modular trans-
formation of the Yukawa term. We then investigate the
modular flavor symmetry as the modular subgroup, under
which the Yukawa term is invariant. The group structure
of modular flavor symmetry is also analyzed. In Sec. V,
we consider modular transformation and flavor symmetry
simultaneously. We will show that they are noncommuta-
tive and they form a larger flavor group. Section VI is
devoted to the conclusion.

II. MODULAR SYMMETRY

In this section, we introduce modular symmetry [8] and
develop our notation.
The action of chiral superfields is determined by two

functions: Kähler potential K and superpotential W. Using
these two functions, the action is given by

S ¼
Z

d4xd2θd2θ̄KðΦi; Φ̄i; τ; τ̄Þ

þ
Z

d4xd2θWðΦi; τÞ þ ðH:c:Þ; ð1Þ

where Φi denotes a chiral superfield and τ is a complex
parameter, i.e., modulus. We assume W is a holomorphic
function of τ and Φi, and K is real.
Modular symmetry is the invariance of the action under

modular transformation. Let γ be an element of SLð2;ZÞ.
Modular transformation of τ under γ is given by

γ∶τ ⟼
aτ þ b
cτ þ d

; ð2Þ

where a, b, c, d are integers satisfying ad − bc ¼ 1. Since
the actions of γ and −γ are the same, the modular trans-
formation group Γ is isomorphic to PSLð2;ZÞ ¼
SLð2;ZÞ=Z2. The modular group is generated by two
generators,

S∶τ ↦ −
1

τ
; T∶τ ↦ τ þ 1; ð3Þ

and they correspond to the SLð2;ZÞ elements as

S ¼
�

0 1

−1 0

�
; T ¼

�
1 1

0 1

�
: ð4Þ

Thus, modular invariance is equivalent to invariance under
these two generators.
To construct modular invariant action, we introduce a

holomorphic function known as modular form. Modular
forms are characterized by two parameters: weight k and
level N. The modular group of level N is a subgroup of the
modular group given by

ΓðNÞ ¼
��

a b

c d

�
∈ Γ
����a ¼ d ¼ 1 and

b ¼ c ¼ 0 mod N

�
; ð5Þ

and modular forms f of weight k and level N are
holomorphic functions of τ, which transform as

f

�
aτ þ b
cτ þ d

�
¼ ðcτ þ dÞkfðτÞ; ð6Þ

under
� a b
c d

�
∈ ΓðNÞ. Let f1ðτÞ and f2ðτÞ be modular

forms of weight k and level N; then, f1ðτÞ þ f2ðτÞ is also a
modular form of weight k and level N. Hence, the set of the
modular forms of weight k and level N forms a vector

space. This space is denoted by ModðNÞ
k . If fðτÞ is a

2This is not always true for the combined symmetry. For the
heterotic orbifold, the group structure is indeed rather compli-
cated [48–50].
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modular form of weight k and level N, fðγτÞ is also a
modular form of weight k and level N. This relation holds
even if γ ∉ ΓðNÞ. Hence, modular transformation of the
modular forms can be written as

fiðτÞ → ðcτ þ dÞkρijfjðτÞ; ð7Þ

where fi is the basis of ModðNÞ
k and ρ is a unitary matrix.

ρ is a representation of ΓN ¼ Γ=ΓðNÞ since ΓðNÞ trivially
act on ModðNÞ

k . Modular forms are classified by the
irreducible representations of ΓN . ΓN is a non-Abelian
finite group if N ≤ 5: Γ2 ¼ S3;Γ3 ¼ A4;Γ4 ¼ S4;Γ5 ¼ A5

(and Γ1 is a trivial group) [9]. The above non-Abelian
groups have been used for non-Abelian flavor symmetries,
and this is why modular symmetry is attractive for particle
phenomenology.
To construct modular invariant action, we need modular

transformations for chiral superfields. We assume that each
chiral superfieldΦi is a modular form of weight ki and level
N, which transforms as

Φi → ðcτ þ dÞkiρki;ijΦj ð8Þ

under the modular group. A modular invariant Kähler
potential is given by

K ¼
X
i

ΦiΦ̄i

ðτ − τ̄Þ−ki ; ð9Þ

where Imτ transforms as Imτ → jcτ þ dj−2Imτ under the
modular group and it cancels the prefactor of (8). This form
of the Kähler potential is obtained from dimensional
reduction of superstring effective theory. Construction of
the modular invariant superpotential is more complicated.
We expand the superpotential W as

W ¼
X

Yi1i2…inðτÞΦi1Φi2…Φin : ð10Þ

We assume the coupling constant Yi1i2…inðτÞ is a modular
form. The modular invariant superpotential is realized if the
weight of Yi1i2…inðτÞ is equal to −ki1 − ki2 − � � � − kin , and
ρki1 ⊗ ρki2 ⊗ … ⊗ ρkin ⊗ ρY has the trivial singlet, where

ρY is a representation of Y.
From a supergravity perspective, τ is a vacuum expect-

ation value of the modulus field U rather than a parameter,
and the superpotential is coupled to the Kähler potential.
The Kähler potential should include the kinetic term of U.
It is given by [51]

K0 ¼ −h logðU þ ŪÞ; ð11Þ

and U is related to τ as τ ¼ −ihUi. The modular invariant
condition is changed to [8]

kY ¼ −ki1 − ki2 − � � � − kin − h: ð12Þ

In the next section, we consider magnetized torus model.
In the following analysis, we use canonically normalized
chiral fields and consider physical Yukawa couplings rather
than holomorphic couplings. The physical Yukawa cou-
plings are no longer holomorphic function of the modulus,
and their nonholomorphic part reflects the effects of Kähler
potential.3 As we will see later, the modular invariance of
the kinetic term (Kähler potential) of the matter fields is
trivial as long as canonically normalized fields are used,
while they are not modular forms. The modular invariance
of the low-energy effective theory is investigated from the
Yukawa interaction term (superpotential).

III. MODULAR TRANSFORMATION IN SYM
THEORY ON TORUS

Let τ is a complex number satisfying Imτ > 0. A lattice
L generated by ð1; τÞ is defined by

L ¼ fnþmτ ∈ Cj∀ n; ∀m ∈ Zg:

A torus is defined by C=L. Since the lattices generated by
ð1; τÞ and ðaτ þ b; cτ þ dÞ are equivalent if ad − bc ¼ 1,
the modular group is symmetry of a torus. τ is interpreted as
the complex structure of a torus. Thus, the natural origin of
modular symmetric theories is a higher-dimensional theory
compactified on a torus or its orbifold. Indeed, it is shown
that effective action of heterotic orbifolds is modular
invariant [34]. In this paper, we study modular invariance
of six-dimensional supersymmetric Yang-Mills (SYM)
with SUðNÞ compactified on a two-dimensional torus.
This model is known as magnetized torus, and it is the
low-energy effective theory of type IIB superstring [39].
Turning on background magnetic fluxes on the torus, the
gauge group is broken to the direct product of its subgroup:
SUðNÞ → SUðN1Þ ×… × SUðNlÞ. We assume N ¼
N1 þ � � � þ Nl in this paper, i.e., the Abelian Wilson line.
Such backgrounds break not only the gauge group but also
higher-dimensional supersymmetry, and four-dimensional
N ¼ 1 super Yang-Mills theory is realized as effective
theory. This property is certainly attractive for phenom-
enological purpose. This model might be the origin of the
Standard Model [53–55].
To obtain the effective theory, we calculate mode

expansion of bulk fields. Four-dimensional chiral super-
fields originate from the off-diagonal components of the

3While our analysis is limited to global supersymmetry, the
effect of the modular transformation of the tree-level Kähler
potential for the complex structure moduli as well as for the
matter field in Eq. (8) can be identified with the nonholomorphic
part of the modular transformation of the physical Yukawa
couplings via dimensional reduction of the ten-dimensional
Yang-Mills theory with local supersymmetry [52] [see Eq. (46)].
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gauginos. After breaking the gauge group, they become
bifundamental matter fields Φij, which transform as
ðNi; N̄jÞ under SUðNiÞ × SUðNjÞ. We briefly review the
derivation of the zero-mode wave function of the Φij. We
consider the equation of motion for the fermionic compo-
nent of Φij. Wave functions of its scalar component are the
same as those of the fermion unless four-dimensional
supersymmetry is broken. We also review modular trans-
formation of the zero modes and Yukawa couplings [42–45].
The six-dimensional fields Φ are expanded by wave

functions on the compact space,

Φ ¼
X
n

ϕnðxÞψnðz; z̄Þ: ð13Þ

We concentrate on the zero-mode wave functions since we
investigate modular invariance of low-energy effective
theory. The zero-mode equation for the fermionic compo-
nents of Φij is written as

i=Dψ ¼ i

�
0 D†

D 0

�
ψ

¼ i
πR

 
0 ∂ − πðmi−mjÞ

2Imτ ðz̄þ ζ̄Þ
∂̄ þ πðmi−mjÞ

2Imτ ðzþ ζÞ 0

!

×

�
ψþðz; τÞ
ψ−ðz; τÞ

�
¼ 0; ð14Þ

where z is the complex coordinate of the torus, ζ is the
Wilson line, and ∂ is the partial derivative in terms of z.mi,
mj are integer magnetic fluxes, which are given by

Fzz̄ ¼
πi
Imτ

0
BB@

m11N1×N1

. .
.

ml1Nl×Nl

1
CCA: ð15Þ

The boundary conditions for the wave functions depend on
the value of the magnetic flux. They are summarized as the
equations

ψðzþ 1Þ ¼ exp

�
i
πM
Imτ

Imðzþ ζÞ
�
ψðzÞ; ð16Þ

ψðzþ τÞ ¼ exp

�
i
πM
Imτ

Imτ̄ðzþ ζÞ
�
ψðzÞ; ð17Þ

where M ¼ mi −mj. The solutions of the Dirac equation
are given by

ψ j;M
þ ðz; τÞ ¼ N eπiMðzþζÞImðzþζÞ=Imτϑ

	 j
M

0



ðMðzþ ζÞ;MτÞ;

ð18Þ

for positive M, and

ψ j;M
− ðz; τÞ ¼ N eπiMðz̄þζ̄ÞImðz̄þζ̄Þ=Imτ̄ϑ

	 j
M

0



ðMðz̄þ ζ̄Þ;Mτ̄Þ;

ð19Þ

for negativeM. j runs from 0 to jMj − 1 for the both cases.
Thus, we have jmi −mjj replicas of zero modes for each
Φij. This is the origin of the generations of the quarks and

the leptons [53–55]. ϑ½ α
β
�ðz; τÞ is the Jacobi theta function:

ϑ

	
α

β



ðz; τÞ ¼

X
n∈N

eπiðnþαÞ2τe2πiðnþαÞðzþβÞ: ð20Þ

Since the Jacobi theta function can not be well defined if
Imτ ≤ 0, ψþ have the normalizable solutions only when
M > 0, and ψ− becomes normalizable only when M < 0.
Hence, chiral theory is realized. Using the area of the torus
A, a normalization factor N is calculated as

N ¼
�
2jMjImτ

A2

�1
4

: ð21Þ

The action of γ on the zero-mode wave function is
defined as

ψðz; τÞ → ψ 0 ¼ ψ

�
z

cτ þ d
;
aτ þ b
cτ þ d

�
; ð22Þ

where ad − bc ¼ 1 [56]. It is easily checked that anti-
holomorphic part of ψþ and holomorphic part of ψ− are not
changed by the modular transformation. Since the Dirac
operator includes only ∂̄ for ψþ and ∂ for ψ−, the wave
function ψ 0 also satisfies the original zero-mode Dirac
equation Dψ 0 ¼ 0 for any γ ∈ SLð2; ZÞ. Indeed, substitut-
ing ψ 0þ to ψþ in (14), we obtain

Dψ 0þ ¼ Dψ

�
z

cτ þ d
;
aτ þ b
cτ þ d

�

¼
�
Mπi

zþ ζ

cτ þ d
−ðcτ þ dÞ
2iImτ

þ πM
2Imτ

ðzþ ζÞ
�
ψþ ¼ 0:

ð23Þ

The same relation holds for ψ−. However, the boundary
conditions (16) and (17) are not always satisfied. Define a
new holomorphic function fðzÞ by

ψ j;M

�
z

cτ þ d
;
aτ þ b
cτ þ d

�
¼ N ei

Mπ
2ImτImðzþζÞ2fðzÞ: ð24Þ

The boundary conditions for the wave function are reinter-
preted to the conditions for fðzÞ. Equations (16) and (17)
are equivalent to
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fðzþ aτ þ bÞ ¼ e−πia
2MReτe−2πiaMReðzþζÞfðzÞ;

fðzþ cτ þ dÞ ¼ e−πic
2MReτe−2πicMReðzþζÞfðzÞ: ð25Þ

On the other hand, the zero-mode wave functions (18) and
(19) imply that

fðzþ aτ þ bÞ ¼ e−2MπiaReðzþζÞe−Mπia2Reτ−MπiabfðzÞ;
fðzþ cτ þ dÞ ¼ e−2MπicReðzþζÞ−Mπic2Reτ−MπicdfðzÞ: ð26Þ
Thus, the boundary conditions are satisfied only whenMcd
and Mab are even. When M is even, these conditions are
satisfied for all a, b, c, d, and the action of γ is well defined.
When M is odd, the action of γ is not consistent with the
boundary conditions if ab or cd is odd. For odd M,
however, it is found that a subgroup such that ab and
cd are even is consistent with the boundary conditions. This
subgroup is called Γ1;2 [56]:

Γ1;2 ¼
��

a b

c d

�
∈ SLð2; ZÞ

����ab; cd ∈ 2Z

�
: ð27Þ

Now, we can define modular transformation (or trans-
formation under Γ1;2) of the matter fields. We summarize
their results. Let M be a positive integer. Then, the
transformation of the wave function under S is given by

ψ j;Mð−z=τ;−1=τÞ ¼
�
2MIm −1

τ

A2

�1
4

eπiM
zþζ
τ ImðzþζÞτ̄=Imτϑ

	 j
M

0




× ð−Mðzþ ζÞ=τ;−M=τÞ

¼ e−
πi
4ffiffiffiffiffi
M

p
�
τ

jτj
�1

2
X
k

e2πi
jk
Mψk;Mðz; τÞ: ð28Þ

In the second row, we use modular transformation of Jacobi
theta function

ϑ

	−β
α



ðz; τÞ ¼ ð−τÞ−1=2e−πiz2τ ϑ

	
α

β


�
−z
τ
;
−1
τ

�
; ð29Þ

and the Poisson resummation formula

ϑ

	
0
j
N



ðν; τ=NÞ ¼

X
k¼0;…;N−1

e2πi
jk
Nϑ

	 k
N

0



ðNν; NτÞ: ð30Þ

If M is even, the modular transformation of the wave
function under T is given as

ψ j;Mðz; τ þ 1Þ ¼ eπi
j2

Mψ j;Mðz; τÞ: ð31Þ

Since Γ is generated by S and T, we obtain the modular
transformation of the chiral zero modes for evenM. IfM is
odd, as shown before, we consider modular transformation
of the subgroup Γ1;2. Since all the elements of Γ1;2

are generated by S and T2, we consider the modular
transformation of the zero modes under T2, which is
calculated as

ψ j;Mðz; τ þ 2Þ ¼ e2πi
j2

Mψ j;M: ð32Þ
In the case of negative M, modular transformation is given

as the complex conjugate of the one for ψ j;jMj
þ ðzÞ since

ψ j;M
− ðzÞ is the complex conjugate of ψ j;jMj

þ ðzÞ.
We introduce a matrix representation for S and T as

ψ j;M

�
z
τ
;−

1

τ

�
¼ e−

πi
4

�
τ

jτj
�

1=2
ρMðSÞjkψk;Mðz; τÞ; ð33Þ

ψ j;Mðz; τ þ 1Þ ¼ ρMðTÞjkψk;Mðz; τÞ; ð34Þ

for positive and even M. ρMðSÞ and ρMðTÞ are a matrix
representation for the M-component vector of the chiral
zero modes, which are denoted by

ρMðSÞ ¼
1ffiffiffiffiffi
M

p

0
BBBBB@

1 1 � � � 1

1 σ � � � σM−1

..

. . .
. ..

.

1 σM−1 � � � σ

1
CCCCCA; ð35Þ

ρMðTÞ ¼

0
BBBBB@

1 0 � � � 0

0 eπi
1
M � � � 0

..

. . .
. ..

.

0 0 � � � eπi
ðM−1Þ2

M

1
CCCCCA; ð36Þ

where σ ¼ e
2πi
M . ρMðSÞ and ρMðTÞ are noncommutative with

each other, and they generate a non-Abelian finite group.
If M is odd, we consider T2 instead of T, and its matrix
representation is given as

ψ j;Mðz; τ þ 2Þ ¼ ρMðT2Þjkψk;Mðz; τÞ: ð37Þ
The matrix representation for negative M is given as the
complex conjugate of the one for positive M:

ρMðSÞ ¼ ðρjMjðSÞÞ�; ρMðTÞ ¼ ðρjMjðTÞÞ�: ð38Þ
We note that the modular transformation given by ρMðSÞ
and ρMðTÞ is a unitary transformation among the zero-
mode wave functions.
We consider the modular transformation of the Yukawa

couplings. Four-dimensional effective couplings are calcu-
lated by overlap integrals among the zero-mode wave
functions. Yukawa couplings of magnetized torus are given
by [41]

Yijk̄ ¼
Z
T2

dzdz̄ψ i;M1ψ j:M2ðψk;jM3jÞ�; ð39Þ
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where we assume that M1 and M2 are positive and M3 is negative for definiteness. M1 þM2 þM3 ¼ 0 since
Mi ¼ mj −mk. Substituting the zero-mode wave functions in (39), we obtain Yukawa couplings,

YijkðτÞ ¼
�
2Imτ

A2

�
1=4
����M1M2

M3

����1=4e πi
Imτ

P
i
MiζiImζi

X
m∈ZM3

δk;iþjþM1mϑ

	M2i−M1jþM1M2m
−M1M2M3

0



ðζ̃; jM1M2M3jτÞ; ð40Þ

where the Kronecker delta is defined modulo M3, which means δk;iþjþM1m ¼ 1 if and only if k ¼ iþ jþM1m mod M3.
The index i runs from 0 to M1 − 1, j runs from 0 to M2 − 1, and k runs from 0 to jM3j − 1. ζi is the Wilson line
corresponding toMi, and ζ̃ is given by ζ̃ ¼ M1M2ðζ1 − ζ2Þ. From Eq. (40), the action of S and T on the Yukawa couplings
can be read off as

Yijk

�
−
1

τ

�
¼
�
2Imτ

jτj2A2

�
1=4
����M1M2

M3

����1=4e πi
Imτ

P
i
Mi

ζi
τ Imζi τ̄

X
m∈ZM3

δk;iþjþM1mϑ

	M2i−M1jþM1M2m
−M1M2M3

0


�
ζ̃

τ
;−

jM1M2M3j
τ

�
;

¼
�
2Imτ

jτj2A2

�
1=4
����M1M2

M3

����1=4
�

−iτ
jM1M2M3j

�
1=2

e
πi
Imτ

P
i
MiζiImζi

×
X

m∈ZM3

δk;iþjþM1m

X
l¼0;…;jM1M2M3j−1

e2πi
ðM2i−M1jþM1M2mÞl

jM1M2M3 j ϑ

	 l
jM1M2M3j

0



ðζ̃; jM1M2M3jτÞ ð41Þ

and

Yijkðτ þ 1Þ ¼
�
2Imτ

A2

�
1=4
����M1M2

M3

����1=4e πi
Imτ

P
i
MiζiImζi

X
m∈ZM3

δk;iþjþM1me
πi

ðM2i−M1jþM1M2mÞ2
jM1M2M3 j ϑ

	M2i−M1jþM1M2m
−M1M2M3

0


�
ζ̃;

τ

jM1M2M3j
�
;

ð42Þ
where we use the fact thatM1M2M3 is even for jM3j ¼ M1 þM2. When the greatest common divisor ofM1,M2, and jM3j
is 1, the Yukawa couplings can be written in a simpler form:

YijkðτÞ ¼
�
2Imτ

A2

�
1=4
����M1M2

M3

����1=4e πi
Imτ

P
i
MiζiImζiϑ

	 i
M1

þ j
M2

þ k
M3

0



ðζ̃; jM1M2M3jτÞ: ð43Þ

In this case, modular transformation is given by

Yijk

�
−
1

τ

�
¼
�
2Imτ

A2jτj2
�

1=4
����M1M2

M3

����1=4e πi
Imτ

P
i
Mi

ζi
τ Imζi τ̄ϑ

	 i
M1

þ j
M2

þ k
M3

0


�
ζ̃

τ
;−

jM1M2M3j
τ

�

¼
�
2Imτ

A2jτj2
�

1=4
����M1M2

M3

����1=4
�

τ

jM1M2M3j
�

1=2
e−

πi
4e

πi
Imτ

P
i
MiζiImζi

×
X

l¼0;…;jM1M2M3j−1
e2πi

−iM2M3−jM3M1−kM1M2
jM1M2M3 j l

ϑ

	 l
jM1M2M3j

0



ðζ̃; jM1M2M3jτÞ;

¼
�
τ

jτj
�

1=2
e−

πi
4

X
l¼0;…;jM1M2M3j−1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2M3

p e2πi
−iM2M3−jM3M1−kM1M2

jM1M2M3 j
i0
M1

þ j0
M2

þ k0
M3Yi0j0k0 ; ð44Þ

and

Yijkðτ þ 1Þ ¼
�
2Imτ

A2

�
1=4
����M1M2

M3

����1=4e πi
Imτ

P
i
MiζiImζiϑ

	 i
M1

þ j
M2

þ k
M3

0



ðζ̃; jM1M2M3jτ þ jM1M2M3jÞ

¼ e
πi

�
ð−iM2M3−jM3M1−kM1M2Þ2

jM1M2M3 j

�
YijkðτÞ: ð45Þ

Therefore, the Yukawa couplings form a representation of the modular group.
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It is shown here that the modular transformation of the
Yukawa couplings is given as a linear combination of the
original Yukawa couplings. This is because the Yukawa
couplings are given by the overlap integral of the zero
modes, so the modular transformation of the Yukawa
couplings is given by a tensor product of the modular
transformation of each zero mode. Thus, they form a
representation of the modular group. In fact, the modular
transformation of the Yukawa couplings given in Eqs. (41)
and (42) is equivalent to the tensor representation

Yijk

�
−
1

τ

�
¼ e−

πi
4

�
τ

jτj
�

1=2
ρM1

ðSÞii0ρM2
ðSÞjj0

× ðρjM3jðSÞkk0 Þ�Yi0j0k0 ðτÞ; ð46Þ

Yijkðτ þ 1Þ ¼ ρM1
ðTÞii0ρM2

ðTÞjj0 ðρjM3jðTÞkk0 Þ�Yi0j0k0 ðτÞ;
ð47Þ

which will be used for the analysis of the modular
invariance of the Yukawa term in the next section.
In what follows, we ignore overall Uð1Þ phases such as

e−
πi
4 which appear in the modular transformations for the

matter fields and the Yukawa couplings, since they can
always be rotated away by field redefinition.

IV. MODULAR FLAVOR SYMMETRY ON
MAGNETIZED TORUS

A. Local supersymmetry and the Yukawa interaction

The effective theory of the magnetized torus is consistent
with local supersymmetry if the Wilson line vanishes [52].4

The physical Yukawa coupling is given in supergravity as

Yijk ¼ eK0=2ðKiīKjj̄Kkk̄Þ−1=2yijk; ð48Þ

whereK0 is the Kähler potential of moduli fileds,Kiī is that
of the matter fields, and yijk is the holomorphic Yukawa
coupling. The effective action of type IIB superstring
implies

K0 ∼ − lnðU þ ŪÞ þ � � � ð49Þ

U is the complex structure moduli field: ihUi ¼ τ. We omit
the Kähler potential of Kähler modulus T and the dilaton S
since it is irrelevant to the modular symmetry. The Kähler
potential in terms of the chiral superfields and the super-
potential is given by

K ∼
X
j;M

ϕ̃j;M ¯̃ϕ
j;M

ðU þ ŪÞ1=2 ;

W ∼
����M1M2

M3

����1=4ϑ
	 i
M1

þ j
M2

þ k
M3

0



ð0; jM1M2M3jiUÞ

× ϕj;M1ϕk;M2ϕl;jM3j; ð50Þ

where we omit the S and T dependent terms, too. The
modular weights of the chiral superfields are −1=2. The
modular transformation of the Jacobi theta function (29)
implies that the weight of the holomorphic Yukawa
couplings is 1=2. Thus, they satisfy the modular invariant
condition (12).
We investigate the modular symmetry of the Yukawa

term,

Yjklϕ
j;M1ϕk;M2ϕl;jM3j;

where ϕj;Mk denotes the four-dimensional chiral field in
Eq. (13). ϕj;M is a canonically normalized chiral superfield,
and it corresponds to ϕ̃j;M as ϕj;M ∝ Imτ−1=4ϕ̃j;M.
Modular transformation of the four-dimensional fields ϕ

should coincide with that of the wave functions on the
compact space, since the six-dimensional fields should be
invariant under the modular group.5 This is the same as the
flavor symmetry originating from extra dimensions [47].
Thus, the modular transformation for the four-dimensional
fields is written as

ϕ̃j;M → ðcτ þ dÞ−1=2ρM;jkϕ̃
k;M; ð51Þ

and the modular transformation of the canonically normal-
ized chiral superfield is given by

ϕj;M →

�jcτ þ dj
cτ þ d

�
1=2

ρM;jkϕ
k;M: ð52Þ

Using the tensor representation, we obtain the general
modular transformation of the Yukawa term by g ∈ Γ as

Yjklϕ
j;M1ϕk;M2ϕl;jM3j!g ρM1;jj0ρM2;kk0ρ

�
jM3j;ll0Yj0k0l0ρM1;jj00

× ϕj00;M1ρM2;kk00ϕ
k00;M2

× ρ�jM3j;ll00ϕ
l00;jM3j

¼ ðρTM1
ρM1

Þj00j0 ðρTM2
ρM2

Þk00k0
× ðρ†jM3jρ

�
jM3jÞl00l0Yj0k0l0ϕ

j00;M1

× ϕk00;M2ϕl00;jM3j: ð53Þ

4For nonvanishing Wilson line, the situation is more compli-
cated. It is unclear how to split the interaction term into a
holomorphic part and real part.

5If the modular group acts on the six-dimensional fields
nontrivially, their representations might be different, but we
ignore this possibility in this paper.
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Here, the overall phases are ignored. We obtain the Yukawa
invariant modular subgroup M by

M ¼ fg ∈ Γjρ̃M1
ðgÞjj0 ρ̃M2

ðgÞkk0 ρ̃�jM3jðgÞll0Yj0k0l0 ¼ Yjklg;
ð54Þ

where ρ̃MðgÞ is defined as ρ̃MðgÞ ¼ ρTMðgÞρMðgÞ. Hereafter,
we refer to the Yukawa invariant modular subgroup M as
the modular flavor symmetry.
The Yukawa invariant modular subgroup M has the

three independent elements S2, TN , and ðSTNÞ2, whereN is
the least common multiple of the generation numbers of the
corresponding zero modes. (TN is well defined since N is
always even.) The representations of S2 and TN are written
as

ρMðSÞ2 ¼

0
BBB@

1 0 � � � 0

0 0 � � � 1

..

. ..
. . .

. ..
.

0 1 � � � 0

1
CCCA; ð55Þ

ρMðTNÞ ¼

0
BBBBB@

1 0 � � � 0

0 eNπi 1M � � � 0

..

. ..
. . .

. ..
.

0 0 � � � eNπiðM−1Þ2
M

1
CCCCCA

¼

0
BBBBB@

1 0 � � � 0

0 ð−1ÞN=M � � � 0

..

. ..
. . .

. ..
.

0 0 � � � ð−1ÞN=M

1
CCCCCA: ð56Þ

There are two cases for the matrix representations of TN

and ðSTNÞ2. IfM is even and N=M is odd, since ρMðTNÞ is
not the identity, the ρMððSTNÞ2Þ is given by

ρMððSTNÞ2Þij ¼ ð−1Þi−1δðMÞ
i;−j−M

2

; ð57Þ

where the index runs from 0 to M − 1 and the Kronecker
delta is defined modulo M; otherwise, ρMðTNÞ ¼ 1 and
ρMððSTNÞ2Þ ¼ ρMðS2Þ. Through these matrices, we can
check the invariance of the Yukawa term. S2 and TN

invariance is obvious since

ρMðS2ÞTρMðS2Þ ¼ ρMðTNÞTρMðTNÞ ¼ 1: ð58Þ

For ρMððSTNÞ2Þ, ifM is even and N=M is odd, substituting
(57), we find

ρMððSTNÞ2ÞTρMððSTNÞ2Þ ¼ ð−1Þi−1δi;−j−M
2
δð−1Þk−1δk;−j−M

2

¼ δi;k: ð59Þ

Thus, the Yukawa term is ðSTNÞ2 invariant, too.
In the case of vanishing Wilson line, the modular

symmetry is enhanced. In this case, we have Z2 parity
symmetry [47]:

ϕj;M ¼ ϕM−j;M: ð60Þ

Substituting the ρMðSÞ into (53), we find

Yjklϕ
j;M1ϕk;M2ϕl;jM3j!S ðρM1

ðSÞÞ2jj0 ðρM2
ðSÞÞ2kk0 ðρ�jM3jðSÞÞ2ll0

× Yj0k0l0ϕ
j;M1ϕk;M2ϕl;jM3j

¼ Yjklϕ
M1−j;M1ϕM2−k;M2ϕjM3j−l;jM3j;

¼ Yjklϕ
j;M1ϕk;M2ϕl;jM3j; ð61Þ

in the second row, we use (55). The Yukawa term is S
invariant. Therefore, in the case of vanishing Wilson line,
the Yukawa invariant modular subgroup M has two
independent generators of S and TN . We will see that S
can be interpreted as a “square root” of the parity operator
in Sec. V.

B. Modular flavor symmetry in three-generation model

In this section, we study a characteristic example of the
three generations to illustrate the modular flavor symmetry.
Suppose that the gauge group SUðNÞ is broken to three
non-Abelian gauge groups, SUðN1Þ × SUðN2Þ × SUðN3Þ,
and integer magnetic fluxes of m1, m2, m3 are turned on.
LetM1 ¼ M2 ¼ 3 andM3 ¼ −6. In this case, there are two
three-generation chiral zero modes and one six-generation
chiral zero mode.

1. Model with Wilson line

First, we consider the case with nonvanishing Wilson
line. The wave functions for three-generation chiral zero
modes are given by

ψ j;3 ¼ N eπi3ðzþζÞImðzþζÞ=Imτϑ

	 j
3

0



ð3ðzþ ζÞ; 3τÞ; ð62Þ

where j ¼ 0, 1, 2. The modular transformations of these
wave functions are given by (28) and (31). For M ¼ 3, the
matrix representations are given by

ρ3ðSÞ ¼
1ffiffiffi
3

p

0
B@

1 1 1

1 ω ω2

1 ω2 ω

1
CA; ρ3ðT2Þ ¼

0
B@

1 0 0

0 ω 0

0 0 ω

1
CA;

ð63Þ
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where ω ¼ e
2πi
3 . We study T2 instead of T since M1;2 are

odd. For M ¼ jM3j ¼ 6, the matrix representations are
given by

ρ6ðSÞ ¼
1ffiffiffi
6

p

0
BBBBBBBBB@

1 1 1 1 1 1

1 η η2 −1 η4 η5

1 η2 η4 1 η2 η4

1 −1 1 −1 1 −1
1 η4 η2 1 η4 η2

1 η5 η4 −1 η2 η1

1
CCCCCCCCCA
;

ρ6ðT2Þ ¼

0
BBBBBBBBB@

1 0 0 0 0 0

0 η 0 0 0 0

0 0 η2 0 0 0

0 0 0 −1 0 0

0 0 0 0 η4 0

0 0 0 0 0 η

1
CCCCCCCCCA
; ð64Þ

where η ¼ e
πi
3 . The Yukawa couplings Yijk are classified

into six values,

Y0 ≡ Y000 ¼ Y112 ¼ Y224; Y1 ≡ Y101 ¼ Y213 ¼ Y025;

Y2 ≡ Y120 ¼ Y202 ¼ Y014;

Y3 ≡ Y221 ¼ Y003 ¼ Y115; Y4 ≡ Y210 ¼ Y022 ¼ Y104;

Y5 ≡ Y011 ¼ Y123 ¼ Y205; ð65Þ

where Yj is given by

YjðτÞ ¼
�
3Imτ

A2

�
1=4
�
ϑ

	 j
18

0



ðζ̃; 54τÞ þ ϑ

	 jþ6
18

0



ðζ̃; 54τÞ

þ ϑ

	 jþ12
18

0



ðζ̃; 54τÞ

�
: ð66Þ

Other couplings are prohibited by the Z3 charge of Δð27Þ
flavor symmetry [47]. A matrix representation of the
modular transformation for the six-component vector
(Yi) is defined as

Yj

�
−
1

τ

�
¼ ρYðSÞjkYkðτÞ; Yjðτ þ 1Þ ¼ ρYðTÞjkYkðτÞ:

ð67Þ

In this basis, ρY is exactly the same as the one for the six-
generation chiral zero mode, i.e., ρY ¼ ρ6.
The Yukawa invariant modular subgroup is generated by

S2, T6, and ðST6Þ2. These elements satisfy the following
relations:

ρMðS2Þ2 ¼ ρMðT6Þ2 ¼ ρMððST6Þ2Þ4 ¼ 1: ð68Þ

Thus, they correspond to Z2 and Z4, respectively. ðST6Þ2
and T6 are noncommutative, and these three elements
generate a non-Abelian group. This group has 16

elements and is found to be isomorphic to ZðS2Þ
2 ×

ðZððT6SÞ2Þ
4 ⋊ ZðT6Þ

2 Þ ¼ Z2 ×D4. The irreducible decompo-
sition of the chiral zero modes is given by

3 ¼ 1þþþ ⊕ 1þþþ ⊕ 1−þ−; ð69Þ

6 ¼ 2þ ⊕ 2þ ⊕ 2−; ð70Þ
where the lower index of 1 denotes the eigenvalues of T6

and ðST6Þ2 and the upper index denotes the eigenvalue of
the diagonal Z2. Since Z2 and D4 are real, irreducible
decomposition of the Yukawa couplings is the same as that
of ψ j;6. Table I summarizes the irreducible decomposition
of each component.

2. Model without Wilson line

If the Wilson line is set to zero, the Yukawa invariant
modular subgroup is enhanced. The Yukawa term is
invariant under S for the vanishing Wilson line model,
and the Yukawa invariant subgroup is enhanced to

ðZðST6Þ
8 × ZðS2Þ

2 Þ ⋊ ZðT6Þ
2 . The character indices of this

group and irreducible representations are summarized
in Table III. This group has eight singlets and six doublets.
The three-generation chiral zero modes are decomposed
to three singlets,

3 ¼ 1þ0 ⊕ 1þ2 ⊕ 1þ1; ð71Þ
where the index represents the eigenvalues of T6 and S;
T61�j ¼ �1�j and S1�j ¼ ej

iπ
21�j. The six-generation zero

modes are decomposed into three doublets:

6 ¼ 22 ⊕ 23 ⊕ 24: ð72Þ

The representation of the Yukawa is the complex conjugate
of that of the six-generation chiral zero modes:

6̄ ¼ 2̄2 ⊕ 23 ⊕ 24 ¼ 21 ⊕ 23 ⊕ 24: ð73Þ

TABLE I. Irreducible decomposition of the chiral zero-modes
and Yukawa couplings. The upper indices denote the eigenvalue
of the diagonal Z2, and the lower indices denote the eigenvalues
of the D4 generators.

Representation of D4 × Z2

ψ j;3 1þþþ ⊕ 1þþþ ⊕ 1−þ−
ψ j;6 2þ ⊕ 2þ ⊕ 2−

Yj 2þ ⊕ 2þ ⊕ 2−
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Table II summarizes the irreducible decomposition of each
component.

3. Comments on the possibility of exceptional elements

We see if there is an exceptional element that is not
covered by the generators of S2, T6, and ðST6Þ2 (S and T6

for vanishing Wilson line). Since the modular group of
fS; T2g is finite with the order of 768 ¼ 28 × 3, we can
numerically check if each modular transformation satisfies
the condition (54). In our analysis, the group elements of
the modular transformation are obtained with a specific
representation e.g., ρM, so that the group structure should
be defined using the largest representation for definiteness.
In this case, we use the definition for the group element of
the modular transformation as

ρ ¼ ρM1
⊕ ρM2

⊕ ρM3
⊕ ρY; ð74Þ

for concrete calculation. We confirm that there is no other
element which keeps the Yukawa term invariant other than
the elements covered by S2, T6, and ðST6Þ2 (S and T6 for
vanishing Wilson line). The Yukawa invariant modular
subgroup is isomorphic to a finite group of Z2 ×D4

[ðZ8 × Z2Þ ⋊ Z2 for vanishing Wilson line].
We note that, although M is generated by S2, TN , and

ðSTNÞ2 (S and TN for vanishing Wilson line), the group
structure differs depending on the magnetic fluxes in the

model, since the value of N also differs by models. In fact,
we calculate the group structure for other examples with
different magnetic fluxes in the Appendix and show that
various discrete groups appear as modular flavor symmetry,
e.g., ðZ2 × Z4Þ ⋊ Z2 for a two-generation model.

V. MODULAR EXTENDED DISCRETE
FLAVOR SYMMETRY

It is known that the magnetized torus model has discrete
flavor symmetry. In this section, we study their relation-
ships and consider the full symmetry group.
First, we briefly review the conventional discrete flavor

symmetry [47]. Suppose that there are chiral zero modes
ϕj1;M1 ;…;ϕjl;Ml . If the greatest common divisor of the
generation numbers, g ¼ g:c:d:ðM1;…;MlÞ, is greater
than 1, the theory is invariant under the two operators

Z∶ϕj;Mk → ωjϕj;Mk ;

C∶ϕj;Mk → ϕjþJk;Mk; ð75Þ
where Mk ¼ gJk and ω ¼ e

2πi
g . C and Z are represented by

g × g matrices as

C ¼

0
BBB@

0 1 0 � � � 0

0 0 1 � � � 0

..

. ..
. ..

. . .
. ..

.

1 0 0 � � � 0

1
CCCA; Z ¼

0
BBB@

1 0 � � � 0

0 ω � � � 0

..

. ..
. . .

. ..
.

0 0 � � � ωg−1

1
CCCA:

ð76Þ
These two generators satisfy ZC ¼ ωCZ, and there are
three Zg charges in this model. Hence, this group is

isomorphic to ðZ0
g × ZðZÞ

g Þ ⋊ ZðCÞ
g .

We should emphasize that this discrete symmetry is
different from the non-Abelian symmetry originated from
the modular subgroup. The clear difference comes from the

TABLE II. Irreducible decomposition of the chiral zero modes
and Yukawa couplings without Wilson line.

Representation of ðZ8 × Z2Þ ⋊ Z2

ψ j;3 1þ0 ⊕ 1þ2 ⊕ 1þ1

ψ j;6 22 ⊕ 23 ⊕ 24
Yj 21 ⊕ 23 ⊕ 24

TABLE III. Character table for the Yukawa invariant modular subgroup, which keeps the Yukawa term invariant for the model without
Wilson line.

h χ1þ0
χ1þ1

χ1þ2
χ1þ3

χ1−0 χ1−1 χ1−2 χ1−3 χ21 χ22 χ23 χ24 χ25 χ26

C1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
C2 2 1 −1 1 −1 1 −1 1 −1 2 2 −2 −2 2 −2
C3 2 1 −1 1 −1 −1 1 −1 1 0 0 0 0 0 0
C4 2 1 −1 1 −1 1 −1 1 −1 −2 −2 2 2 2 −2
C5 2 1 1 1 1 1 1 1 1 −2 −2 −2 −2 2 2
C6 2 1 1 1 1 −1 −1 −1 −1 0 0 0 0 0 0
C7 4 1 i −1 −i 1 i −1 −i 0 0 0 0 0 0
C8 4 1 −1 1 −1 1 −1 1 −1 0 0 0 0 −2 2
C9 4 1 1 1 1 1 1 1 1 0 0 0 0 −2 −2
C10 4 1 −i −1 i 1 −i −1 i 0 0 0 0 0 0
C11 8 1 −i −1 i −1 i 1 −i −i

ffiffiffi
2

p
i
ffiffiffi
2

p ffiffiffi
2

p
−
ffiffiffi
2

p
0 0

C12 8 1 −i −1 i −1 i 1 −i i
ffiffiffi
2

p
−i

ffiffiffi
2

p
−
ffiffiffi
2

p ffiffiffi
2

p
0 0

C13 8 1 i −1 −i −1 −i 1 i i
ffiffiffi
2

p
−i

ffiffiffi
2

p ffiffiffi
2

p
−
ffiffiffi
2

p
0 0

C14 8 1 i −1 −i −1 −i 1 i −i
ffiffiffi
2

p
i
ffiffiffi
2

p
−
ffiffiffi
2

p ffiffiffi
2

p
0 0
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fact that the Yukawa couplings are always trivial singlet
under the conventional flavor symmetry, but not under the
modular transformation.
Let F and M be the conventional flavor group and the

Yukawa invariant modular subgroup, respectively. As
pointed out in Ref. [48], F and M are noncommutative
with each other. To see this, we consider three-generation
chiral zero modes for the purpose of illustration. The matrix
representation of S2 for the three-generation zero modes is
given by (63). C of Δð27Þ can act on the zero modes, too.
Their three-dimensional representations are given by

ρ3ðS2Þ ¼

0
B@

1 0 0

0 0 1

0 1 0

1
CA; ρ3ðCÞ ¼

0
B@

0 1 0

0 0 1

1 0 0

1
CA:

ð77Þ
Therefore, CS2 ≠ S2C. The sum of the Yukawa invariant
modular subgroup and conventional flavor symmetry gen-
erates a new group which acts on the effective theory. A
similar idea has been proposed in Refs. [29,48]. In the
previous works, however, calculation is restricted to a single
chiral field, and a simultaneous transformation of all the
components of the model including the Yukawa couplings
has not been taken into account. As pointed out in the
previous section, we must use large enough representation to
identify the group elements ofM correctly. The same is true
for the modular extension of the flavor symmetry. To see
this, let us consider the model with magnetic fluxes M1 ¼
M2 ¼ 2 and M3 ¼ −4. Without the Wilson line, this model
has D4 × Z2 conventional flavor symmetry and ðZ2 ×
Z4Þ ⋊ Z2 modular symmetry (see Appendix A 1).
ρYðSÞρYðT4ÞρYðSÞ−1 ≠ ρYðCÞ since the Yukawa couplings
are the trivial singlets underF , and ST4S−1 is not identical to
C in this model. However, ρ4ðSÞρ4ðT4Þρ4ðSÞ−1 ¼ ρ4ðCÞ for
the four-generation zero mode, and one may misidentify
ST4S−1 ¼ C if one restricts the representation to a single
field. We need a faithful representation of this combined two
groups to avoid such ambiguity. We provide a complete
analysis by use of the largest representation of Eq. (74) for
magnetized torus models.
We use G for denoting this novel group referred to as

modular extended flavor group. Our goal of this section is
to analyze the structure of G. The structure of G has two
possibilities in general. If F is not a normal subgroup of G,
this indicates that F is not the whole flavor symmetry and
there is an additional global symmetry hidden in G. Since in
this case we can find ∃m ∈ M such that mFm−1 is not
identified to F and the subgroup mFm−1 acts on the
Yukawa couplings trivially, this is interpreted as a flavor
symmetry, although these two groups are isomorphic.
Otherwise, F denotes the whole flavor symmetry, and
M is a subgroup of the automorphism of F [48].
Since the representation of the Yukawa couplings is

trivial for F , i.e., ρYðfÞ ¼ 1 for f ∈ F , we only need to

calculate the algebraic structure for ρM (the matrix repre-
sentation for M-generation chiral zero mode) in detail. It is
convenient to introduce new M ×M matrices Z0 and C0 as

Z0 ¼

0
BBB@

1 0 � � � 0

0 σ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � σM−1

1
CCCA; C0 ¼

0
BBB@

0 1 0 � � � 0

0 0 1 � � � 0

..

. ..
. ..

. . .
. ..

.

1 0 0 � � � 0

1
CCCA;

ð78Þ

where σ ¼ e
2πi
M . These two matrices satisfy the following

relations:

ρMðS2ÞZ0ρMðS−2Þ ¼ ðZ0Þ−1;
ρMðS2ÞC0ρMðS−2Þ ¼ C0−1: ð79Þ

Since ρMðZÞ ¼ Z0M=g and ρMðCÞ ¼ C0M=g, we obtain

S2ZS−2 ¼ Z−1; ð80Þ

S2CS−2 ¼ C−1: ð81Þ

We find S2FS−2 ⊂ F .6 If M is even and N=M is odd,
Eq. (56) becomes

ρMðTNÞ ¼

0
BBB@

1 0 � � � 0

0 −1 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � −1

1
CCCA: ð82Þ

We obtain

TNZT−N ¼ Z; ð83Þ

TNCT−N ¼ ð−1ÞM=gC ¼ C; ð84Þ

where we note that M=g is always even.7 TN is commu-
tative with the group elements of F . Using the matrix
representation given in (57), we obtain

6Similar analysis for S2 has also been done in Ref. [48]. Note,
however, that the action of S2 on the Yukawa couplings is
different from Ref. [48], since in our model the Yukawa couplings
depend on the Wilson line, which also transforms under the
modular group [see Eq. (22)].

7We show a precise proof here. SupposeM1,M2,M3 are three
integer numbers satisfying M3 ¼ M1 þM2. g and N are the
greatest common divisor and the least common multiple of these
three integers, respectively. We introduce new integer numbers
M0

j ¼ Mj=g; then, we find M0
1 þM0

2 ¼ M0
3 and N0 ¼ N=g is the

least common multiple ofM0
js. If

∃Mi ∈ fM1;M2;M3g such that
both N=Mi and Mi=g are odd, N0=M0

i ¼ N=Mi must be odd.
Since N0 is even, M0

i must be even. This is in contradiction with
the assumption.
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ρMððSTNÞ2Þii0C0
i0j0ρMððSTNÞ−2Þj0j

¼ ð−1Þi−1δðMÞ
i;−i0−M

2

δi0;j0−1ð−1Þj0−1−M
2 δðMÞ

j0;−j−M
2

¼ ð−1Þiþj−1δi;jþ1

¼ ðC0Þ−1 ð85Þ

ρMððSTNÞ2Þii0Z0
i0j0ρMððSTNÞ−2Þj0j

¼ ð−1Þi−1δðMÞ
i;−i0−M

2

σi
0−1δi0;j0 ð−1Þj0−1−M

2 δðMÞ
j0;−j−M

2

¼ σ1−iδi;j

¼ ðZ0Þ−1: ð86Þ

Thus, we find

ðSTNÞ2CðSTNÞ−2 ¼ C−1; ð87Þ

ðSTNÞ2ZðSTNÞ−2 ¼ Z−1: ð88Þ

The above two relations hold even if M is odd or N=M is
even, i.e., ρMðTNÞ ¼ 1. Thus, we find that F is a normal
subgroup of G, and G is written as FM. Therefore, there is
no additional flavor symmetry hidden in G. The intersection
of F andM is the trivial group, i.e., feg, since the Yukawa
couplings are invariant under F. We conclude G is
isomorphic to the semidirect product of F and M:

G ≃ F ⋊ M: ð89Þ

If the Wilson line is set to zero, M is generated by
fS; TNg. Using the matrix representation of S given in (35),
we calculate

ρMðSÞZ0ρMðS−1Þ ¼ C0; ð90Þ

ρMðSÞC0ρMðS−1Þ ¼ Z0−1; ð91Þ

and we obtain

SZS−1 ¼ SZ0M=gS−1 ¼ C0M=g ¼ C; ð92Þ

SCS−1 ¼ SC0M=gS−1 ¼ ðZ0�ÞM=g ¼ Z−1: ð93Þ

Therefore, we find SFS−1 ⊂ F . In addition, there is a
parity symmetry P which acts on the wave functions as

P∶ϕj;Mk → ϕMk−j;Mk ð94Þ

and trivially acts on the Yukawa couplings, i.e., P ∈ F . F
is generated by C, Z, and P. Equation (94) is nothing but
the action of S2 given in Eq. (55). Actually, the parity
operator P is understood as an element of M; P ∈ M.
Since Yijk ¼ YM1−i;M2−j;jM3j−k for vanishing Wilson line,
the action of S2 on the Yukawa couplings is given as

S2∶Yijk → YM1−i;M2−j;jM3j−k ¼ Yijk: ð95Þ

Therefore, P is identical to S2 for the vanishing Wilson
line8 (S2 as a generalization of P for nonvanishing Wilson
line). S2 is the unique element except for the identity that
keeps the Yukawa couplings invariant in M. S2 ¼ P is a
center of M, which means MPM−1 ¼ P. Thus, F is still
a normal subgroup of G, and M is an automorphism of F .
We introduce F 0 as a subgroup of F generated by C and Z,
and G is written as their semidirect product:

G ≃ F 0 ⋊ M: ð96Þ

We consider a concrete example in the following sub-
section for illustration purposes.

A. Modular extended flavor symmetry
in three-generation model

Here, we consider the model of M1 ¼ M2 ¼ 3 and
M3 ¼ −6.

1. Model with Wilson line

First, we consider model with nonvanishing Wilson line.
In this case, we have D4 × Z2 modular symmetry and
Δð27Þ for flavor symmetry. We use 15-dimensional rep-
resentation ρ3 ⊕ ρ−6 ⊕ ρY to construct the whole group
since there are three- and six-generation chiral zero modes
and six Yukawa couplings. The generators of the modular
symmetry is given by

ρ15ðS2Þ ¼

0
B@

1 0 0

0 0 1

0 1 0

1
CA ⊕

0
BBBBBBBBB@

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1
CCCCCCCCCA

⊕

0
BBBBBBBBB@

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1
CCCCCCCCCA

ð97Þ

8This result is the same as the result of Ref. [48].
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ρ15ðT6Þ ¼ 13×3 ⊕

0
BBBBBBBBB@

1 0 0 0 0 0

0 −1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 −1

1
CCCCCCCCCA

⊕

0
BBBBBBBBB@

1 0 0 0 0 0

0 −1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 −1

1
CCCCCCCCCA

ð98Þ

ρ15ððST6Þ2Þ ¼

0
B@

1 0 0

0 0 1

0 1 0

1
CA ⊕

0
BBBBBBBBB@

0 0 0 −1 0 0

0 0 1 0 0 0

0 −1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 −1
0 0 0 0 1 0

1
CCCCCCCCCA

⊕

0
BBBBBBBBB@

0 0 0 −1 0 0

0 0 1 0 0 0

0 −1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 −1
0 0 0 0 1 0

1
CCCCCCCCCA
; ð99Þ

where the first 3 × 3 matrices denote representation for three-generation chiral zero modes and the second one is for six-
generation chiral zero modes. The last one acts on the Yukawa couplings. The conventional flavor group is generated by

ρ15ðCÞ ¼

0
B@

0 1 0

0 0 1

1 0 0

1
CA ⊕

0
BBBBBBBBB@

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

1
CCCCCCCCCA

⊕ 16×6 ð100Þ

ρ15ðZÞ ¼

0
B@

1 0 0

0 ω 0

0 0 ω2

1
CA ⊕

0
BBBBBBBBB@

1 0 0 0 0 0

0 ω 0 0 0 0

0 0 ω2 0 0 0

0 0 0 1 0 0

0 0 0 0 ω 0

0 0 0 0 0 ω2

1
CCCCCCCCCA

�

⊕ 16×6: ð101Þ

ρ15ðZÞ has the conjugate representation for the six-
generation chiral zero mode since M3 is negative. The
irreducible decomposition of this group is summarized in
Table IV.

The following relations can be shown:

T6CT6 ¼ C;

T6ZT6 ¼ Z;

S2CS2 ¼ C2;

S2ZS2 ¼ Z2;

ðT6SÞ2CðT6SÞ−2 ¼ C2;

ðT6SÞ2ZðT6SÞ−2 ¼ Z2: ð102Þ

These are equivalent to (80), (81), (83), (84), (87), and (88).
Thus, the conventional flavor group F is the normal
subgroup of the novel group G. The intersection of F

TABLE IV. Irreducible decomposition of the chiral zero modes
and Yukawa couplings under the conventional flavor symmetry
Δð27Þ [47].

Δð27Þ
ϕj;3 3
ϕj;6 2 × 3̄
Yj 6 × 1
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andM consists only of the identity since the action ofF on
the Yukawa couplings is always trivial. We conclude G is
the semidirect product of F and M:

G ≃ F ⋊ M ¼ Δð27Þ ⋊ ðD4 × Z2Þ: ð103Þ

This is the modular extension of the flavor group for this
three-generation model.

2. Model without Wilson line

Without the Wilson line, we have additional generators
S. The matrix representation of S is given by

ρ15ðSÞ ¼
1ffiffiffi
3

p

0
B@

1 1 1

1 ω ω2

1 ω2 ω

1
CA ⊕

1ffiffiffi
6

p

0
BBBBBBBBB@

1 1 1 1 1 1

1 η η2 −1 η4 η5

1 η2 η4 1 η2 η4

1 −1 1 −1 1 −1
1 η4 η2 1 η4 η2

1 η5 η4 −1 η2 η1

1
CCCCCCCCCA

�

⊕
1ffiffiffi
6

p

0
BBBBBBBBB@

1 1 1 1 1 1

1 η η2 −1 η4 η5

1 η2 η4 1 η2 η4

1 −1 1 −1 1 −1
1 η4 η2 1 η4 η2

1 η5 η4 −1 η2 η1

1
CCCCCCCCCA
:

In addition, we have P ∈ F , and F ≃ Δð54Þ. We note that
P is identical to S2 since Yjkl ¼ Y−i−j−l as we denoted in
the previous section. The conjugation by S is given by

SZS−1 ¼ C; ð104Þ

SCS−1 ¼ Z2: ð105Þ

These are equivalent to (92) and (93). F 0 ≃ Δð27Þ and
M ≃ ðZ8 × Z2Þ ⋊ Z2. Therefore, G is written as

G ≃ F 0 ⋊ M ≃ Δð27Þ ⋊ ððZ8 × Z2Þ ⋊ Z2Þ: ð106Þ

Irreducible decomposition of the three-generation chiral
zero mode is given by a three-dimensional representation
since it is 3 in Δð27Þ. The six-generation chiral zero modes
are a six-dimensional representation of G. The Yukawa
couplings are decomposed to three two-dimensional rep-
resentations, since they are a trivial representation inΔð27Þ.

VI. CONCLUSION

We have investigated the modular symmetry of the
magnetized torus. The modular group is isomorphic to
SLð2;ZÞ=Z2, and it is an infinite group. For the heterotic
orbifold, the modular group can act on its effective action,
and it is invariant under the whole group. However, for
magnetized torus, the situation is different. When the
magnetic fluxes turn on, effective action is no longer
invariant under the whole modular group but is invariant
under its specific subgroup M, which we refer to as
modular flavor symmetry. We have shown this group
consists of S2, TN , and ðSTNÞ2, where N is the least
common multiple of the generation numbers in general.
These elements are noncommutative and generate non-
Abelian groups. This group is enhanced for the case of
vanishing Wilson line, and the theory (the Yukawa term)

becomes S invariant. We show several examples of con-
structions of this Yukawa invariant subgroups. These
subgroups are isomorphic to finite groups, such as D4 ×
Z2 and ðZ8 × Z2Þ ⋊ Z2. We find the group structures
depend on the chiral spectrum and we can realize various
finite groups as subgroups of the modular group. The
modular flavor symmetry consists of several Z2, Z4, and
Z8. Such discrete groups are utilized for solving the flavor
puzzles [57].
It is known that the magnetized torus model has conven-

tional flavor symmetry F. This flavor symmetry includes
the parity symmetry in terms of the extra dimension if the
Wilson line vanishes. Although the modular group and the
conventional flavor group are different, we have found that
the parity operator can be interpreted as S2 in the modular
symmetry. We have investigated modular extension of
conventional flavor symmetry in detail. They are non-
commutative with each other and enlarge the group of the
symmetry. Such an extension of the flavor symmetry has
been studied in Ref. [48]. However, we have extended the
analysis to modular transformation of the Yukawa terms,
which is important to correctly analyze the symmetry of the
theory. We have found there is no additional flavor
symmetry hidden in the novel group G (modular extended
flavor group). Therefore, as pointed out in Ref. [48], the
conventional flavor groupF is a normal subgroup of G, and
M is a subgroup of the automorphism ofF . In addition, we
have found that G is isomorphic to the semidirect product of
modular and the conventional flavor group for the non-
vanishing Wilson line because the Yukawa couplings form
a faithful representation of G. For the vanishingWilson line,
there is a nontrivial common element between F and M,
which is S2 inM. This is identical to P in F . Thus, G is not
the semidirect product of F and M but the semidirect
product of its subgroup F 0, which is generated by Z and C.
Our study is based on a field theory analysis of the

magnetized torus model, which is the low-energy effective
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theory of type II string theory. Taking into account more
stringy effects, e.g., vertex operator, local supersymmetry,
or the Green-Schwartz–like anomaly cancellation mecha-
nism, modular properties of fields and couplings may
change. Pursuing this possibility is certainly interesting,
but it is beyond the scope in the present paper.
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APPENDIX A: MORE EXAMPLES OF YUKAWA
INVARIANT MODULAR SUBGROUPS

We calculate more examples of Yukawa invariant modu-
lar subgroups in this Appendix. We study models similar
to the model studied in Sec. 3; the models contains
three gauge groups SUðN1Þ × SUðN2Þ × SUðN3Þ and
three types of bifundamental chiral zero modes. Their
generation numbers are given by M1, M2, and M3. They
satisfy M1 þM2 þM3 ¼ 0.

1. 224 model

Let M1 ¼ M2 ¼ 2 and M3 ¼ −4. In this case, there are
two two-generation chiral zero modes and one for-
generation chiral zero mode. The matrix representations
of the generators of the modular group for the two-
generation chiral zero modes are given by

ρ2ðSÞ ¼
1ffiffiffi
2

p
�
1 1

1 −1

�
; ρ2ðTÞ ¼

�
1 0

0 i

�
; ðA1Þ

and for M ¼ −4, the matrix representations of S and T are
given by

ρ−4ðSÞ ¼
1ffiffiffi
4

p

0
BBB@

1 1 1 1

1 i −1 −i
1 −1 1 −1
1 −i −1 i

1
CCCA

�

;

ρ−4ðTÞ ¼

0
BBB@

1 0 0 0

0 e
πi
4 0 0

0 0 −1 0

0 0 0 e
πi
4

1
CCCA

�

; ðA2Þ

where the complex conjugate is required since M3 is
negative.

a. Model with Wilson line

First, we investigate the model with nonvanishing
Wilson line. In this case, the Yukawa couplings are
classified to four values,

Y0ðτÞ ¼ Y000 ¼ Y112; Y1ðτÞ ¼ Y101 ¼ Y013;

Y2ðτÞ ¼ Y110 ¼ Y002; Y3ðτÞ ¼ Y011 ¼ Y103; ðA3Þ

and these four Yj form a four-dimensional representation of
the modular group. The Yukawa invariant subgroup is
generated by S2, T4, and ðST4Þ2. They satisfy the following
equations:

ðS2Þ2 ¼ ðT4Þ2 ¼ ððST4Þ2Þ2 ¼ 1: ðA4Þ

Hence, they correspond to Z2. They are commutative with
each other, and the group is isomorphic to Z2 × Z2 × Z2.
We also check that there is no extra element which keeps
the Yukawa term invariant but cannot be generated by S2,
T4, and ðST4Þ2 in the group generated by ρMðSÞ and ρMðTÞ,
which consists of 3072 ¼ 210 × 3 elements. Irreducible
decomposition of the representations is summarized in
Table V.

b. Model without Wilson line

For the vanishing Wilson line model, the Yukawa
invariant modular group is enhanced. This group has 16
elements, and it contains two Z2 and one Z4. The Z4

corresponds to S, and the two Z2 correspond to T4 and
ðST4Þ2. Therefore, this group is generated by S and T4.
They satisfy the relations

T4ST−4 ¼ S3ðST4Þ2;
SðST4Þ2S−1 ¼ ðST4Þ2;

T4ðST4Þ2T−4 ¼ ðST4Þ2; ðA5Þ

and these mean that the subgroup generated by S and
ðST4Þ2 is a normal subgroup of the whole group. The group

generated by these matrices is isomorphic to ðZðST4Þ2
2 ×

ZðSÞ
4 Þ ⋊ ZðT4Þ

2 . This is the modular symmetry of the Yukawa
term without the Wilson line. Irreducible decomposition of
the representations is summarized in Table VI.

TABLE V. Irreducible decomposition of the fields and Yukawa
couplings for model with Wilson line. The indices of 1jkl denote

the eigenvalues of ZðS2Þ
2 ;ZðT4Þ

2 , and ZðST4Þ2
2 , respectively.

Z2 × Z2 × Z2

ϕj;2 2 × 1þþ
ϕj;4 1−−− ⊕ 1þ−− ⊕ 1þþ− ⊕ 1þþþ
Yj 1−−− ⊕ 1þ−− ⊕ 1þþ− ⊕ 1þþþ
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c. Modular extended discrete flavor symmetry

This model has D4 flavor symmetry in general and
D4 × Z2 flavor symmetry for the vanishing Wilson line
model. These D4 and the Yukawa invariant modular

subgroups are noncommutative. As shown in Sec. V,
we can obtain modular extended flavor symmetry.
The Yukawa invariant modular subgroup generators are
given by

ρ10ðS2Þ ¼ 12×2 ⊕

0
BBB@

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

1
CCCA ⊕

0
BBB@

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

1
CCCA;

ρ10ðT4Þ ¼ 12×2 ⊕

0
BBB@

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

1
CCCA ⊕

0
BBB@

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

1
CCCA; ðA6Þ

ρ10ððST4Þ2Þ ¼ 12×2 ⊕

0
BBB@

0 0 1 0

0 −1 0 0

1 0 0 0

0 0 0 −1

1
CCCA ⊕

0
BBB@

0 0 1 0

0 −1 0 0

1 0 0 0

0 0 0 −1

1
CCCA:

The flavor group generators are similarly given by

ρ10ðCÞ ¼
�
0 1

1 0

�
⊕

0
BBB@

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1
CCCA ⊕ 14×4;

ρ10ðZÞ ¼
�
1 0

0 −1

�
⊕

0
BBB@

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

1
CCCA ⊕ 14×4: ðA7Þ

Their irreducible decomposition is summarized in
Table VII.
It is easy to show that M is commutative with all the

generators of F . This is because C−1 and Z−1 are the same

as C and Z. Thus, the whole group G is isomorphic to the
direct product of F and M. We find

G ≃D4 × ðZ2Þ3: ðA8Þ
Without the Wilson line, the modular group is enhanced

to ðZ2 × Z4Þ ⋊ Z2. It is generated by S and T4. The ten-
dimensional representation of S is written asTABLE VI. Irreducible decomposition of the fields and

Yukawa couplings for the model without the Wilson line. The
indices of 1jk in the right column denote the eigenvalues of ZðT4Þ

2

and ZðSÞ
4 , respectively.

ðZ2 × Z4Þ ⋊ Z2

ϕj;2 1þ0 ⊕ 1þ2

ϕj;4 1þ0 ⊕ 1−3 ⊕ 2�

Yj 1þ0 ⊕ 1−1 ⊕ 2

TABLE VII. Irreducible representation of the conventional
flavor symmetry.

Representation of D4

ϕj;2 2
ϕj;4 1þþ ⊕ 1þ− ⊕ 1−þ ⊕ 1−−
Yj 4 × 1þþ
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ρ10ðSÞ ¼
1ffiffiffi
2

p
�
1 1

1 −1

�
⊕

1ffiffiffi
4

p

0
BBB@

1 1 1 1

1 i −1 −i
1 −1 1 −1
1 −i −1 i

1
CCCA

�

⊕
1ffiffiffi
4

p

0
BBB@

1 1 1 1

1 i −1 i3

1 −1 1 −1
1 −i −1 i

1
CCCA: ðA9Þ

We also have an extra Z2 symmetry, which acts on the
chiral zero modes as ψ j;M → ψ−j;M. This Z2 is denoted by
P, and its matrix representation is the same as that of S2.
The following relations hold:

SCS−1 ¼ Z ðA10Þ

SZS−1 ¼ C ðA11Þ

T4CðT4Þ−1 ¼ C ðA12Þ

T4ZðT4Þ−1 ¼ Z: ðA13Þ

These are nothing but (83), (84), (92), and (93). These
relations mean the flavor symmetry group is a normal
subgroup of the whole symmetry group. The intersection of
the D4 and the modular group is a trivial subgroup:
D4 ∩ M ¼ feg. Therefore, the whole symmetry group
is semidirect product of D4 and M:

G ≃D4 ⋊ ððZ2 × Z4Þ ⋊ Z2Þ: ðA14Þ

This is the full symmetry of the effective action. Since this
group is denoted by the (semi)direct product of the groups,
its order is 128 ¼ 8 × 16.

2. 246 model

Here, we consider the model with M1 ¼ 2, M2 ¼ 4 and
M3 ¼ −6. The matrix representation of the modular trans-
formation is already given in the former subsections. Since
g:c:d:ðM1;M2; jM3jÞ ¼ 2, we have D4 discrete flavor
symmetry for nonzero Wilson line models and D4 × Z2

for the vanishing Wilson line. Yukawa couplings are
classified into 12 values:

Y0 ¼ Y000 ¼ Y123; Y1 ¼ Y035 ¼ Y112; Y2 ¼ Y024 ¼ Y101; Y3 ¼ Y013 ¼ Y130

Y4 ¼ Y002 ¼ Y125; Y5 ¼ Y031 ¼ Y114; Y6 ¼ Y021 ¼ Y103; Y7 ¼ Y015 ¼ Y132

Y8 ¼ Y004 ¼ Y121; Y9 ¼ Y033 ¼ Y110; Y10 ¼ Y022 ¼ Y105; Y11 ¼ Y011 ¼ Y134: ðA15Þ

The other three-point couplings are prohibited by Z2

charge. We obtain 12-dimensional representation of the
modular group. This Yukawa term is not invariant under the
whole modular group. We construct its subgroup under
which the Yukawa term is invariant. If the Wilson line is
zero, this subgroup consists of 16 elements. This group is
isomorphic to ðZ2 × Z4Þ ⋊ Z2. All elements are commu-
tative with each other. If the Wilson line is not zero, it is not
invariant under S but S2, and the group is broken to
Z2 × Z2 × Z2.

3. 123 model

Here, we consider the model of M1 ¼ 1, M2 ¼ 2, and
M3 ¼ −3. In this model, there are one one-generation
chiral superfield, one two-generation chiral superfield,
and one three-generation chiral superfield. Their matrix

representations of the modular transformation have been
given already. In addition, we have six Yukawa couplings
for general Wilson line case. Their modular transformation
is the same as that of the six-dimensional chiral zero mode.
If the Wilson line is zero, we have Z2 parity flavor
symmetry. We use 11-dimensional representation to con-
struct the Yukawa invariant modular subgroup: ρ11 ¼ ρ2 ⊕
ρ�3 ⊕ ρY ¼ ρ2 ⊕ ρ�3 ⊕ ρ6. We find that they generate a
finite group whose order is 768.
The Yukawa invariant modular subgroup is generated by

S and T6. The subgroup consists of 32 elements. This group
is the same as that of the 336 model. This group is
isomorphic to ðZ8 × Z2Þ ⋊ Z2. If nonzero Wilson line is
turned on, S is no longer an element of the Yukawa
invariant modular subgroup. The modular subgroup is
broken to D4 × Z2.
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