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We study the modular invariance in magnetized torus models. The modular invariant flavor model is a
recently proposed hypothesis for solving the flavor puzzle, where the flavor symmetry originates from
modular invariance. In this framework, coupling constants such as Yukawa couplings are also transformed
under the flavor symmetry. We show that the low-energy effective theory of magnetized torus models is
invariant under a specific subgroup of the modular group. Since Yukawa couplings as well as chiral zero
modes transform under the modular group, the above modular subgroup (referred to as modular flavor
symmetry) provides a new type of modular invariant flavor models with Dy x Z,, (Z, X Z,) x Z,, and
(Zg x Z,) x Z,. We also find that conventional discrete flavor symmetries which arise in magnetized torus
model are noncommutative with the modular flavor symmetry. Combining both symmetries, we obtain a
larger flavor symmetry, which is the semidirect product of the conventional flavor symmetry and the
modular flavor symmetry for the nonvanishing Wilson line. For the vanishing Wilson line, we have
additional Z, symmetry, i.e., parity, which is the unique common element between the conventional flavor

symmetry and the modular flavor symmetry.
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I. INTRODUCTION

The origin of the flavor structure of the quarks and
leptons is a long-standing problem. Discrete flavor sym-
metry is an attractive candidate answer for the flavor
puzzle, especially for the neutrino sector. For instance,
small 63 and large 6,3 might imply the tribimaximal
mixing [1], and such a characteristic pattern can be
originated from discrete symmetry [2—4]. For review, see
Refs. [5,6] and references therein.'

The modular invariant flavor model is a new hypothesis
proposed for solving the flavor puzzle [8,9], which assumes
that the action is invariant under the modular group
I'=PSL(2,Z) = SL(2,Z)/Z,. The most distinct feature
of this framework is that not only the fields, such as the
leptons and the Higgs field, but also the coupling param-
eters are transformed under the modular group. More
precisely, they form representation of quotient groups of
the modular group: I'y =T'/I'(N). Ty is called finite
modular group. The experimental values corresponding

'Recent developments of neutrino oscillation experiments
unveil the precise structure of the mixing angles including the
CP phase [7].
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to the lepton sectors, the masses of charged leptons, neu-
trino mass-square differences, three mixing angles, and the
CP phase can be reproduced in models with modular
symmetries of I, = S; [10-12], '3 @ A, [12-16], T, = S,
[17,18], and I's =2 As [19]. Modular symmetry is also
applied to other physics beyond the standard model such
as leptogenesis and inflation [20-23], and relationships
between generalized CP symmetry [24,25] and the modu-
lar symmetry are also pointed out [26-29].

Modular symmetry is motivated by string compactifica-
tions. So far, the modular symmetries were investigated in
the heterotic string on orbifolds [30—34] and in the D-brane
modes [35-38]. The situation is different in the case of type
IT superstring with magnetic flux [39]. The Kihler potential
of type IIB superstring implies that the chiral superfield has
modular weights [40]. The zero mode’s profiles of bulk
fields have also been investigated using the four-dimen-
sional effective action compactified on torus with magnetic
flux [41]. Yukawa couplings are then obtained through the
overlap integrals of the zero-mode wave functions. These
results have been used to investigate the property of the
modular transformation for each component [42-46], and it
is found that the Yukawa couplings as well as the chiral
zero modes form a representation of the modular group.
However, it still remains unclear whether the full effective
action including the Yukawa term is modular invariant. The
purpose of this paper is to study modular invariance of the
effective action of the magnetized torus model in a
systematic way based on the fundamental generators
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S and T of the modular transformation. We show that,
although the effective action is not invariant under the
modular group, it is invariant under its specific subgroup.
The generators of the Yukawa invariant modular subgroup
form a new type of flavor symmetry referred to as modular
flavor symmetry, such as Z,, Dy X Z,, (Z4 X Z5) % Z,
and (Zg x Z,) x Z, depending on the value of magnetic
fluxes. The modular flavor symmetry is noncommutative
with conventional discrete flavor symmetries, e.g., A(27),
which appear if the greatest common divisor of generation
numbers of matter fields g is greater than 1 [47]. Combing
these two groups, we obtain a larger flavor symmetry. This
idea has already been discussed in Refs. [29,48-50], in
which a possible extension of the conventional flavor
groups by finite modular groups has been studied in the
heterotic orbifold. In this paper, we develop a similar idea
for magnetized torus. We find that it is insufficient for
determining the group structure correctly by a single field
because its representation is not faithful in the combined
two groups. To avoid this ambiguity, we consider a
simultaneous transformation of all the components in the
model. We find that the conventional discrete flavor group
is a normal subgroup of the whole group. In other words,
the modular group is interpreted as a subgroup of the
automorphism of the conventional flavor group. This is
consistent with the result of Ref. [48]. We also find that the
whole symmetry group is isomorphic to the semidirect
product of modular and the conventional flavor group if the
Yukawa couplings have a faithful representation.”

This paper is organized as follows. In Sec. II, we
introduce modular symmetry. In Sec. III, we review the
zero-mode profiles of magnetized torus. We show how the
wave functions and Yukawa couplings transform under
the modular group. In Sec. IV, we study modular trans-
formation of the Yukawa term. We then investigate the
modular flavor symmetry as the modular subgroup, under
which the Yukawa term is invariant. The group structure
of modular flavor symmetry is also analyzed. In Sec. V,
we consider modular transformation and flavor symmetry
simultaneously. We will show that they are noncommuta-
tive and they form a larger flavor group. Section VI is
devoted to the conclusion.

II. MODULAR SYMMETRY

In this section, we introduce modular symmetry [8] and
develop our notation.

The action of chiral superfields is determined by two
functions: Kéahler potential K and superpotential W. Using
these two functions, the action is given by

*This is not always true for the combined symmetry. For the
heterotic orbifold, the group structure is indeed rather compli-
cated [48-50].

S= /d4xd29d29K(q)i,Cf)i,r, 7)
—|—/d4xd26W((I)i,r) + (H.c.), (1)

where @' denotes a chiral superfield and 7 is a complex
parameter, i.e., modulus. We assume W is a holomorphic
function of 7 and @', and K is real.

Modular symmetry is the invariance of the action under
modular transformation. Let y be an element of SL(2, Z).
Modular transformation of 7 under y is given by

at+ b
ct+d’

yiTH— (2)
where a, b, ¢, d are integers satisfying ad — bc = 1. Since
the actions of y and —y are the same, the modular trans-
formation group ' is isomorphic to PSL(2,7Z)=
SL(2,Z)/Z,. The modular group is generated by two
generators,

1
St ——, T:t—>1+1, (3)
T

and they correspond to the SL(2,Z) elements as

(O TG

Thus, modular invariance is equivalent to invariance under
these two generators.

To construct modular invariant action, we introduce a
holomorphic function known as modular form. Modular
forms are characterized by two parameters: weight k and
level N. The modular group of level N is a subgroup of the
modular group given by

>
EF
d

b=c=0 modN}, (5)

a=d=1 and

and modular forms f of weight & and level N are
holomorphic functions of z, which transform as

F(EE2) = (e @), )

under (Z Z) € I'(N). Let fi(r) and f,(r) be modular

forms of weight k and level N; then, f(7) + f»(z) is also a
modular form of weight k and level N. Hence, the set of the
modular forms of weight k£ and level N forms a vector

space. This space is denoted by Mod,iN). If f(z) is a
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modular form of weight k and level N, f(yz) is also a
modular form of weight k£ and level N. This relation holds
even if y ¢ T'(N). Hence, modular transformation of the
modular forms can be written as

fi(@) = (et + d)*pyif (1), ()
where f; is the basis of ModECN) and p is a unitary matrix.
p is a representation of I'y = I'/T’(N) since I'(N) trivially
act on M od,iN). Modular forms are classified by the
irreducible representations of I'y. 'y is a non-Abelian
finite group if N < 5: Fz = S3, F3 = A4,F4 = S4, F5 = A5
(and T} is a trivial group) [9]. The above non-Abelian
groups have been used for non-Abelian flavor symmetries,
and this is why modular symmetry is attractive for particle
phenomenology.

To construct modular invariant action, we need modular
transformations for chiral superfields. We assume that each
chiral superfield ® is a modular form of weight k; and level
N, which transforms as

@ - (ct+ d)k"/)kh,-jdﬂ (8)

under the modular group. A modular invariant Kéhler
potential is given by

O'P!
APV ®)
where Imz transforms as Imz — |c7 + d|~>Imz under the
modular group and it cancels the prefactor of (8). This form
of the Kihler potential is obtained from dimensional
reduction of superstring effective theory. Construction of
the modular invariant superpotential is more complicated.
We expand the superpotential W as

W=> Y (1)@= D, (10)

We assume the coupling constant Y; ;, ; (7) is a modular
form. The modular invariant superpotential is realized if the
weight of ¥, ;, ; (7) is equal to —k; —k;, —---—k; , and
P, ® Pr,, Q...Qp ®py has the trivial singlet, where
py 1s a representation of Y.

From a supergravity perspective, 7 is a vacuum expect-
ation value of the modulus field U rather than a parameter,
and the superpotential is coupled to the Kéhler potential.
The Kihler potential should include the kinetic term of U.
It is given by [51]

Ky = —hlog(U + U), (11)

and U is related to 7 as 7 = —i(U). The modular invariant
condition is changed to [8]

ky = —k; — ki, —---—k; —h. (12)

I

In the next section, we consider magnetized torus model.
In the following analysis, we use canonically normalized
chiral fields and consider physical Yukawa couplings rather
than holomorphic couplings. The physical Yukawa cou-
plings are no longer holomorphic function of the modulus,
and their nonholomorphic part reflects the effects of Kahler
potential.3 As we will see later, the modular invariance of
the kinetic term (Kihler potential) of the matter fields is
trivial as long as canonically normalized fields are used,
while they are not modular forms. The modular invariance
of the low-energy effective theory is investigated from the
Yukawa interaction term (superpotential).

III. MODULAR TRANSFORMATION IN SYM
THEORY ON TORUS

Let 7 is a complex number satisfying Imz > 0. A lattice
L generated by (1,7) is defined by

L={n+mreC|Vn VYmeZ}.

A torus is defined by C/L. Since the lattices generated by
(1,7) and (ar + b, ct + d) are equivalent if ad — be = 1,
the modular group is symmetry of a torus. 7 is interpreted as
the complex structure of a torus. Thus, the natural origin of
modular symmetric theories is a higher-dimensional theory
compactified on a torus or its orbifold. Indeed, it is shown
that effective action of heterotic orbifolds is modular
invariant [34]. In this paper, we study modular invariance
of six-dimensional supersymmetric Yang-Mills (SYM)
with SU(N) compactified on a two-dimensional torus.
This model is known as magnetized torus, and it is the
low-energy effective theory of type IIB superstring [39].
Turning on background magnetic fluxes on the torus, the
gauge group is broken to the direct product of its subgroup:
SU(N) - SU(N;) X ... x SU(N;). We assume N =
N| + ---+ Ny in this paper, i.e., the Abelian Wilson line.
Such backgrounds break not only the gauge group but also
higher-dimensional supersymmetry, and four-dimensional
N =1 super Yang-Mills theory is realized as effective
theory. This property is certainly attractive for phenom-
enological purpose. This model might be the origin of the
Standard Model [53-55].

To obtain the effective theory, we calculate mode
expansion of bulk fields. Four-dimensional chiral super-
fields originate from the off-diagonal components of the

*While our analysis is limited to global supersymmetry, the
effect of the modular transformation of the tree-level Kéhler
potential for the complex structure moduli as well as for the
matter field in Eq. (8) can be identified with the nonholomorphic
part of the modular transformation of the physical Yukawa
couplings via dimensional reduction of the ten-dimensional
Yang-Mills theory with local supersymmetry [52] [see Eq. (46)].
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gauginos. After breaking the gauge group, they become
bifundamental matter fields @, s which transform as
(N;,N;) under SU(N;) x SU(N,). We briefly review the
derivation of the zero-mode wave function of the ®;;. We
consider the equation of motion for the fermionic compo-
nent of ®;;. Wave functions of its scalar component are the
same as those of the fermion unless four-dimensional
supersymmetry is broken. We also review modular trans-
formation of the zero modes and Yukawa couplings [42—45].

The six-dimensional fields ® are expanded by wave
functions on the compact space,

D= Z¢n<x)Wn(Z’ Z) (13)

We concentrate on the zero-mode wave functions since we
investigate modular invariance of low-energy effective
theory. The zero-mode equation for the fermionic compo-
nents of ®;; is written as

» .(0 D*)
l =1
W b o)V

_L< 0 o — =g <z+5>>
RND+ 752 e+ ) 0
w_(z,7)

where z is the complex coordinate of the torus, ¢ is the
Wilson line, and 0 is the partial derivative in terms of z. m;,
m; are integer magnetic fluxes, which are given by

mllleNl
i

i . (15)

“ Ime

me lefo

The boundary conditions for the wave functions depend on
the value of the magnetic flux. They are summarized as the
equations

w(z+ 1) =exp (i%lm(z-l—é’))l//(z), (16)

w(z+1) =exp <i%lnﬁ(z + C))y/(z), (17)

where M = m; — m;. The solutions of the Dirac equation
are given by

J
) = st onosg iy 1., e,

(18)

for positive M, and

i} i} J
WM (7,7) = N emMGE+DIm(z+)/imé g |:1\(/)I:| (M(z 4+ ), M7),

(19)

for negative M. j runs from O to |M| — 1 for the both cases.
Thus, we have |m; — m;| replicas of zero modes for each
®;;. This is the origin of the generations of the quarks and

the leptons [53-55]. z,7) is the Jacobi theta function:
he 1 [5355]19; is the Jacobi theta functi

b {;} (z.7) = Ze”“”*a)zfezﬂi(”+ aEA(20)

neN

Since the Jacobi theta function can not be well defined if
Imz <0, y, have the normalizable solutions only when
M > 0, and w_ becomes normalizable only when M < 0.
Hence, chiral theory is realized. Using the area of the torus
A, a normalization factor N\ is calculated as

2|M|Imz

N = (T)%' (21)

The action of y on the zero-mode wave function is
defined as

Z ar+b>

,— 22
ct+d ct+d (22)

w(z,7) —y' = l//(
where ad — bc =1 [56]. It is easily checked that anti-
holomorphic part of . and holomorphic part of y_ are not
changed by the modular transformation. Since the Dirac
operator includes only O for y_ and O for y_, the wave
function y’ also satisfies the original zero-mode Dirac
equation Dy’ = 0 for any y € SL(2, Z). Indeed, substitut-
ing y'_ to w, in (14), we obtain

z ar+b
Dy, = Dy —— 7
Vi W(cr-i—d cr+d>

ey iZ+C—(cr—|—d) M
N ct+d 2ilmr 2Imt

(z+ Z.:))W-‘r =0.
(23)

The same relation holds for y_. However, the boundary
conditions (16) and (17) are not always satisfied. Define a
new holomorphic function f(z) by

M Z art + b _ i%lm(ZJrg)z 24
v (CT +d ct+d Net fla)- (24
The boundary conditions for the wave function are reinter-

preted to the conditions for f(z). Equations (16) and (17)
are equivalent to
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f(z +ar+ b) _ e—ﬂiazMRere—2m‘aMRe(z+C)f(Z)’
f(Z + T+ d) — e—m'c2MReﬂ:e—27ricMRe(z+§)f(Z). (25)

On the other hand, the zero-mode wave functions (18) and
(19) imply that

f(Z +ar+ b) — e—2M7riaR£(Z+C)e—MzziazRe‘r—Mn'iabf(Z),

f(Z +er+ d) _ e—ZMﬂicRe(er{)—MﬂiczRer—Mnicdf(Z)' (26)

Thus, the boundary conditions are satisfied only when Mcd
and Mab are even. When M is even, these conditions are
satisfied for all a, b, c, d, and the action of y is well defined.
When M is odd, the action of y is not consistent with the
boundary conditions if ab or cd is odd. For odd M,
however, it is found that a subgroup such that ab and
cd are even is consistent with the boundary conditions. This
subgroup is called I'y , [56]:

I, = {(Z Z) € SL(2,2)

Now, we can define modular transformation (or trans-
formation under I'; ,) of the matter fields. We summarize
their results. Let M be a positive integer. Then, the
transformation of the wave function under S is given by

ab,cd € ZZ}. (27)

. 2MIm=L
yM(=z/t,~1/7) = (TT

X (-M(z+¢)/7,—-M /)
et T : 2mill kM (5 o
m<|) 2tz ). (28

In the second row, we use modular transformation of Jacobi
theta function

9 {_ﬂ } (z,7) = (—r)—l/ze—”"%&[;} <_—Z,_—1>, (29)

a T T

f )
) 4eﬂiM%§Im(z+C)?/Imr19 |:A]_4]
0

and the Poisson resummation formula

0 o [£
19[1](1/,7/N) = Z 62’”%9[8}(N1/,N1). (30)
N k=0,...N—1
If M is even, the modular transformation of the wave
function under 7T is given as

yiM (2,14 1) = ey M (7. 7). (31)

Since I' is generated by S and 7', we obtain the modular
transformation of the chiral zero modes for even M. If M is
odd, as shown before, we consider modular transformation
of the subgroup I'j,. Since all the elements of I'j,

are generated by S and T2, we consider the modular
transformation of the zero modes under T2, which is
calculated as

. 2
wiM(z, 7 +2) = ¥y M, (32)

In the case of negative M, modular transformation is given
as the complex conjugate of the one for l/fﬂr"M‘(z) since

WM (z) is the complex conjugate of y/™!(z).
We introduce a matrix representation for S and 7 as

. d 1 af T 172
l//],M (_ , __> — e 4 <7> pM(S)jka’M(Z’ T)’ (33)

wM(z, 1+ 1) = py(T) M (z.7), (34)

for positive and even M. py,(S) and py,(T) are a matrix
representation for the M-component vector of the chiral
zero modes, which are denoted by

1 1 c oMl
pu(S) = \/_A_/I . (39)
1 oM o
1 0 0
0 emin 0
pu(T) = . (36)
0 0 - eﬂl‘%

where 6 = 7. py,(S) and p,(T) are noncommutative with
each other, and they generate a non-Abelian finite group.
If M is odd, we consider T2 instead of T, and its matrix
representation is given as

wM (2,7 +2) = py(T?) "M (2. 7). (37)

The matrix representation for negative M is given as the
complex conjugate of the one for positive M:

pu(S) = (o (8))"s pu(T) = (o (T))". (38)

We note that the modular transformation given by p,,(S)
and py(T) is a unitary transformation among the zero-
mode wave functions.

We consider the modular transformation of the Yukawa
couplings. Four-dimensional effective couplings are calcu-
lated by overlap integrals among the zero-mode wave
functions. Yukawa couplings of magnetized torus are given
by [41]

Yk = /T dzdzy My (Ml (39)
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where we assume that M| and M, are positive and M5 is negative for definiteness. M| + M, + M5 = 0 since
M; = m; — my. Substituting the zero-mode wave functions in (39), we obtain Yukawa couplings,

2Imr\ /4
Yijk(T) = ( A2 )

where the Kronecker delta is defined modulo M3, which means & ;. jyy,» = 1 if and only if k = i + j + M;m mod M.
The index i runs from O to M, — 1, j runs from 0 to M, — 1, and k runs from O to |M;3| — 1. {; is the Wilson line
corresponding to M;, and £ is given by £ = M M5 (&, — &5). From Eq. (40), the action of S and T on the Yukawa couplings
can be read off as

M M,|V/
M,

-M MM,

e Mi¢idmd; § ’
e Z 5kz+]+M1m

mEZM

M), (40)

|:M2i—M1j+M1M2mi|

po (LY (2 VA MM [V s S o ot ] (€ IMiMoM|
ijk <) |T|2A2 M, iz, kz+/+M|m 0 7 T s
= 2Ime 1\ /4 MM, 174 it 1/26% M;&Img;
|7 A% M; |M MM
¢
(Myi—M| j+M{Mym —_— ~
XY Spijemm > AT [M MzMa}(g, |M\M,M5]7) (41)
meZy, £=0,....|M{MyM;| -1 0
and
M M|

2Imz\ 1/4
Yijk(T+ 1) = ( _,42 )

o Myi=M,j+M Mym
(Mai=Myj+M| Mym)? 2 1 1M B .
Imfz MigiTmg; § Stitjepyme PR 19[ —M, M, M, . ’
1
0 |M M, M;|

M3 meZM

(42)

where we use the fact that M, M, M3 is even for |[M3| = M| + M,. When the greatest common divisor of M, M,, and |M;|
is 1, the Yukawa couplings can be written in a simpler form:

2Imz\ /4
Yl]k( ) A2

In this case, modular transformation is given by

v 2Imz \ 1/4
k\ "2 A2|z[?

2Imz \ /4
A2 |T|2
27”—1M7Mg—jM3Ml —I\Ml sz

[
X e 1My M) M3 19|:M1M2M3:| (Z, |M1M2M3|T)’
0

MM,
M3

VA we [t ]
DOV 48[ B Mﬁ](g MMM ). (43)

MM2

] J k -
V4 S g [ Fan | (€ IMiMaMs|
0 Tz’ z
1/4 /2
/ < T > / ¢ ZLeI::rZiMiCilmgi

|M M, M|

M3

1 i —iMyM3—jM3M | —kM | My , i

R A e
e My MyM3] My MzY 102 (44)
and

M M,V
M;

M|t + MM, M3|)

2Imz /4
Yijk(1+1): <A2 >

zi ((—iM2M3-jM3M1 kM, M)?
=e

M Mo M3 ) Yijk(T)' (45)

elmrz M; {,Img’,19 [ + M, + M; :| <~
0

Therefore, the Yukawa couplings form a representation of the modular group.
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It is shown here that the modular transformation of the
Yukawa couplings is given as a linear combination of the
original Yukawa couplings. This is because the Yukawa
couplings are given by the overlap integral of the zero
modes, so the modular transformation of the Yukawa
couplings is given by a tensor product of the modular
transformation of each zero mode. Thus, they form a
representation of the modular group. In fact, the modular
transformation of the Yukawa couplings given in Egs. (41)
and (42) is equivalent to the tensor representation

1 T\ 12
Yiel==)=e (=) pu,(8)ipPm,(S);;
T 7|

X (P (S ) Yirjie (7)) (46)

Yiu(t+1) = par, (T)ivpn, (T) i (Piaas) (T e )* Y i e (7).

(47)

which will be used for the analysis of the modular
invariance of the Yukawa term in the next section.

In what follows, we ignore overall U(1) phases such as
e~% which appear in the modular transformations for the
matter fields and the Yukawa couplings, since they can
always be rotated away by field redefinition.

IV. MODULAR FLAVOR SYMMETRY ON
MAGNETIZED TORUS

A. Local supersymmetry and the Yukawa interaction

The effective theory of the magnetized torus is consistent
with local supersymmetry if the Wilson line vanishes [52].
The physical Yukawa coupling is given in supergravity as

Y = X2 (K;; ijKkl_c)_l/zyijkv (48)
where K, is the Kéhler potential of moduli fileds, K ; is that
of the matter fields, and y;;; is the holomorphic Yukawa

coupling. The effective action of type IIB superstring
implies

Ko~-In(U+U)+-- (49)

U is the complex structure moduli field: i(U) = 7. We omit
the Kéhler potential of Kdhler modulus 7" and the dilaton S
since it is irrelevant to the modular symmetry. The Kéhler
potential in terms of the chiral superfields and the super-
potential is given by

*For nonvanishing Wilson line, the situation is more compli-
cated. It is unclear how to split the interaction term into a
holomorphic part and real part.

)M ~JjM
K ~ Z:¢¢ :
7 (U+ D)2
4 [ 4ol 4k
| M &[Ml i Ma}(, iU)
3 0
% ¢qu1¢k~Mz¢f-|M3|’ (50)

where we omit the S and 7 dependent terms, too. The
modular weights of the chiral superfields are —1/2. The
modular transformation of the Jacobi theta function (29)
implies that the weight of the holomorphic Yukawa
couplings is 1/2. Thus, they satisfy the modular invariant
condition (12).

We investigate the modular symmetry of the Yukawa
term,

ijquﬁMl ¢k’M2¢f,|M3"

where ¢/« denotes the four-dimensional chiral field in
Eq. (13). ¢/ is a canonically normalized chiral superfield,
and it corresponds to ¢'M as p/M o Imz=!/4pIM.

Modular transformation of the four-dimensional fields ¢
should coincide with that of the wave functions on the
compact space, since the six-dimensional fields should be
invariant under the modular group.” This is the same as the
flavor symmetry originating from extra dimensions [47].
Thus, the modular transformation for the four-dimensional
fields is written as

PN = (et +d) P py ™M, (51)

and the modular transformation of the canonically normal-
ized chiral superfield is given by

‘ ct+d\ /2
M - <| |) ﬂM,jk¢k’M- (52)

ct+d

Using the tensor representation, we obtain the general
modular transformation of the Yukawa term by g € I" as

My pkMy 8. |M;| 9
Y jep M gF M ot 3‘_)le,jj’pMz.kk’pTM3‘ff’Y KEPM, i
»//’M k”,M
X @M pag, g @2
» s
X Py e
— (T
= (lepM,) i ’(pszMz)k”k’
X (p\Ms\p\Ms\)f”ﬂYj’k’f"ﬁj o
% ¢k”,M2¢f”.|M3\. (53)
’If the modular group acts on the six-dimensional fields

nontrivially, their representations might be different, but we
ignore this possibility in this paper.
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Here, the overall phases are ignored. We obtain the Yukawa
invariant modular subgroup M by

M ={g €1, (9)7Pm,(DiwPury (Do Y jre = Y jie}
(54)

where py(g) is defined as py,(g) = pl,(9)pu(g). Hereafter,
we refer to the Yukawa invariant modular subgroup M as
the modular flavor symmetry.

The Yukawa invariant modular subgroup M has the
three independent elements S?, TV, and (STV)?, where N is
the least common multiple of the generation numbers of the
corresponding zero modes. (T is well defined since N is
always even.) The representations of S?> and TV are written
as

0O --- 0
0 0 1
PM(S)2: ’ (55)
01 --- 0
1 0 0
0 eNniﬁ 0
pM(TN): :
0 0 N
0 0
0 (=M 0
= (56)
0 0 (—1)N/M

There are two cases for the matrix representations of 7%V
and (STV)2. If M is even and N/M is odd, since py, (TV) is
not the identity, the p,,((STV)?) is given by

pu((STV)?),; = (=118, (57)

2
where the index runs from 0 to M — 1 and the Kronecker
delta is defined modulo M; otherwise, py(TV) = 1 and
pu((STN)?) = py,(S?). Through these matrices, we can

check the invariance of the Yukawa term. S? and TV
invariance is obvious since

(S pun (%) = pu(TV) py(TV) = 1. (58)

For py, ((STV)?), if M is even and N /M is odd, substituting
(57), we find

pu((STV)?) py ((STV)?) = (‘1)i_15i,—j—%5(—1)k_lfsk,—j—%
- 5,"](. (59)

Thus, the Yukawa term is (S7")? invariant, too.

In the case of vanishing Wilson line, the modular
symmetry is enhanced. In this case, we have Z, parity
symmetry [47]:

P = MM, (60)

Substituting the py,(S) into (53), we find

. s )
ijﬂb],Ml¢k,Mz¢f*|M3‘—>(pM1 (S))?j’ (pMz (S))%k’ (P\M3\ (S))éﬂ
X erk/f/¢j~Ml ¢k,M2¢f~|M3|

- ijfq’)Ml_j‘Ml ¢M2_k’M2¢|M3|_f"M3‘ N
= ijfff’j’M‘ PrMe gt M3 (61)

in the second row, we use (55). The Yukawa term is S
invariant. Therefore, in the case of vanishing Wilson line,
the Yukawa invariant modular subgroup M has two
independent generators of S and TV. We will see that S
can be interpreted as a “square root” of the parity operator
in Sec. V.

B. Modular flavor symmetry in three-generation model

In this section, we study a characteristic example of the
three generations to illustrate the modular flavor symmetry.
Suppose that the gauge group SU(N) is broken to three
non-Abelian gauge groups, SU(N;) x SU(N,) x SU(N3),
and integer magnetic fluxes of m;, m,, ms are turned on.
Let M|, = M, = 3 and M; = —6. In this case, there are two
three-generation chiral zero modes and one six-generation
chiral zero mode.

1. Model with Wilson line

First, we consider the case with nonvanishing Wilson
line. The wave functions for three-generation chiral zero
modes are given by

I
Wj,3 — N eFi3(z+0)Im(z+¢)/Imz g [(3):| (3(2 + C), 31_)’ (62)

where j =0, 1, 2. The modular transformations of these
wave functions are given by (28) and (31). For M = 3, the
matrix representations are given by

. 1 1 1 0 O
SHN=— |1 o o*]|, ™ =10 o 0|,
p3(S) /3 : p3(T?)
1l w 0) 0 0 w

(63)
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where w = €5, We study 77 instead of T since M 1 are
odd. For M = |M;| = 6, the matrix representations are
given by

11111
Lo 7 =1 9 7
1 1 ]12 ’74 1 ]12 774
=7l 21 211 |
1 ’14 7,]2 1 ;74 2
1 ’75 ;,]4 _1 ”2 1
100 0 0 0
0Oy 0 0 0 0
. 007 0 0 0
pe(T?) = 000 -1 0 ol (64)
000 0 4 0
000 0 0 g

where 1 = ¢%. The Yukawa couplings Y, are classified
into six values,

Yo=Yoo = Y112 = Yoou, Yi =Y = Y3 = Yoos,
Y, =Yi20 = Yoo = Yous,
Y=Yy =Yp3 = Y15,

Ys=Yo1 = Y3 = Yops, (65)

Yi=Y0=Yo =Y,

where Y is given by

Y(r) = (3;”) 1/4{&[ﬂ (¢,547) +&{f] (Z,547)

+8[%] (, 541)}. (66)

Other couplings are prohibited by the Z5 charge of A(27)
flavor symmetry [47]. A matrix representation of the
modular transformation for the six-component vector
(Y;) is defined as

Y; <_%> = py(S) i Yi(2), Yi(z +1) = py(T) jYi(2).

(67)

In this basis, py is exactly the same as the one for the six-
generation chiral zero mode, i.e., py = pg.

The Yukawa invariant modular subgroup is generated by
§2, TS, and (ST%)?. These elements satisfy the following
relations:

TABLE I. Irreducible decomposition of the chiral zero-modes
and Yukawa couplings. The upper indices denote the eigenvalue
of the diagonal Z,, and the lower indices denote the eigenvalues
of the D, generators.

Representation of Dy x Z,

wl? I, el &1
wlt 2T 2T P2
Y; 2T P2t 2

PM(52)2 = PM(T6)2 = /’M((ST6)2)4 =1 (68)

Thus, they correspond to Z, and Z,, respectively. (ST%)?
and T° are noncommutative, and these three elements
generate a non-Abelian group. This group has 16

elements and is found to be isomorphic to ngz)x
(Zg(TGS)Z) X ZETG)) = Z, X D,. The irreducible decompo-

sition of the chiral zero modes is given by
3=l el el (69)
6=2"p2"d2, (70)

where the lower index of 1 denotes the eigenvalues of 7°
and (S7%)? and the upper index denotes the eigenvalue of
the diagonal Z,. Since Z, and D, are real, irreducible
decomposition of the Yukawa couplings is the same as that
of /. Table I summarizes the irreducible decomposition
of each component.

2. Model without Wilson line

If the Wilson line is set to zero, the Yukawa invariant
modular subgroup is enhanced. The Yukawa term is
invariant under S for the vanishing Wilson line model,
and the Yukawa invariant subgroup is enhanced to
(ZéST6> X ngz)) X ng. The character indices of this
group and irreducible representations are summarized
in Table III. This group has eight singlets and six doublets.
The three-generation chiral zero modes are decomposed
to three singlets,

3=1,o@1,81,, (71)

where the index represents the eigenvalues of 7° and S;
T°1,; = +£1,;and S1.; = ¢/71_;. The six-generation zero
modes are decomposed into three doublets:

6=2,®2; B2 (72)

The representation of the Yukawa is the complex conjugate
of that of the six-generation chiral zero modes:

6:i2®23@24:21@23®24. (73)
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TABLE II.  Irreducible decomposition of the chiral zero modes
and Yukawa couplings without Wilson line.

Representation of (Zg x Z,) X Z,

w3 lo®l,®1,
l//j’6 22 @ 23 @ 24
Yj 21 (&) 23 (&) 24

Table II summarizes the irreducible decomposition of each
component.

3. Comments on the possibility of exceptional elements

We see if there is an exceptional element that is not
covered by the generators of $2, T°, and (S7%)? (S and T°
for vanishing Wilson line). Since the modular group of
{S,T?} is finite with the order of 768 = 2% x 3, we can
numerically check if each modular transformation satisfies
the condition (54). In our analysis, the group elements of
the modular transformation are obtained with a specific
representation e.g., p,, so that the group structure should
be defined using the largest representation for definiteness.
In this case, we use the definition for the group element of
the modular transformation as

P = Pu, ® pu, ® Py, @ Py, (74)

for concrete calculation. We confirm that there is no other
element which keeps the Yukawa term invariant other than
the elements covered by S2, T°, and (ST°)? (S and T° for
vanishing Wilson line). The Yukawa invariant modular
subgroup is isomorphic to a finite group of Z, x D4
[(Zg x Z,) x Z, for vanishing Wilson line].

We note that, although M is generated by S?, TV, and
(STN)? (S and TV for vanishing Wilson line), the group
structure differs depending on the magnetic fluxes in the

TABLE III.
Wilson line.

model, since the value of N also differs by models. In fact,
we calculate the group structure for other examples with
different magnetic fluxes in the Appendix and show that
various discrete groups appear as modular flavor symmetry,
e.g., (Z, x Z4) x Z, for a two-generation model.

V. MODULAR EXTENDED DISCRETE
FLAVOR SYMMETRY

It is known that the magnetized torus model has discrete
flavor symmetry. In this section, we study their relation-
ships and consider the full symmetry group.

First, we briefly review the conventional discrete flavor
symmetry [47]. Suppose that there are chiral zero modes
M pieMe I the greatest common divisor of the
generation numbers, g = g.c.d.(M,...,M,), is greater
than 1, the theory is invariant under the two operators

Z:qﬁ/qu BN wj¢j~Mk’
C:(,bj’M" N ¢j+‘/kka’

(75)

where M, = gJ; and w = . Cand Z are represented by
g X g matrices as

010 -0 10 - 0
001 -0 0w - 0

C={(. . . . .| Z=
100 - 0 00 - o'
(76)

These two generators satisfy ZC = wCZ, and there are
three Z, charges in this model. Hence, this group is
isomorphic to (Z; x Zgz)) X Zéc).

We should emphasize that this discrete symmetry is
different from the non-Abelian symmetry originated from
the modular subgroup. The clear difference comes from the

Character table for the Yukawa invariant modular subgroup, which keeps the Yukawa term invariant for the model without

h X1 m X1, X1 X1, X1, X1, X1, X2, X2, X2, X2, X2s X2
C, 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
C, 2 1 -1 1 -1 1 -1 1 -1 2 2 -2 -2 2 -2
C; 2 1 -1 1 -1 -1 1 -1 1 0 0 0 0 0 0
Cy 2 1 -1 1 -1 1 -1 1 -1 -2 -2 2 2 2 -2
Cs 2 1 1 1 1 1 1 1 1 -2 -2 -2 -2 2 2
Ce 2 1 1 1 1 -1 -1 -1 -1 0 0 0 0 0 0
(& 4 1 i -1 —i 1 i -1 —i 0 0 0 0 0 0
Cg 4 1 -1 1 -1 1 -1 1 -1 0 0 0 0 -2 2
Cy 4 1 1 1 1 1 1 1 1 0 0 0 0 -2 -2
Cio 4 1 —i -1 i 1 —i -1 i 0 0 0 0 0 0
Ch 8 1 —i -1 i -1 i 1 —i —iv?2 i/2 V2 -2 0 0
Ch 8 1 —i -1 i -1 i 1 —i iv?2 —iv?2 -2 V2 0 0
Cis 8 1 i -1 —i -1 —i 1 i iv?2 —iv2 V2 -2 0 0
Ciy 8 1 i -1 —i -1 —i 1 i —iv?2 /2 -2 V2 0 0
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fact that the Yukawa couplings are always trivial singlet
under the conventional flavor symmetry, but not under the
modular transformation.

Let F and M be the conventional flavor group and the
Yukawa invariant modular subgroup, respectively. As
pointed out in Ref. [48], F and M are noncommutative
with each other. To see this, we consider three-generation
chiral zero modes for the purpose of illustration. The matrix
representation of S? for the three-generation zero modes is
given by (63). C of A(27) can act on the zero modes, t0o.
Their three-dimensional representations are given by

1 0 0 01 0
01 0 1 0 0

(77)

Therefore, CS? # S2C. The sum of the Yukawa invariant
modular subgroup and conventional flavor symmetry gen-
erates a new group which acts on the effective theory. A
similar idea has been proposed in Refs. [29,48]. In the
previous works, however, calculation is restricted to a single
chiral field, and a simultaneous transformation of all the
components of the model including the Yukawa couplings
has not been taken into account. As pointed out in the
previous section, we must use large enough representation to
identify the group elements of M correctly. The same is true
for the modular extension of the flavor symmetry. To see
this, let us consider the model with magnetic fluxes M; =
M, = 2 and M5 = —4. Without the Wilson line, this model
has D, x Z, conventional flavor symmetry and (Z, x
Z4) X Z, modular symmetry (see Appendix A1).
Py (S)py (THpy(S)~' # py(C) since the Yukawa couplings
are the trivial singlets under F, and S T4S~! is not identical to
C in this model. However, p,4(S)p4(T*)p4(S)™" = p4(C) for
the four-generation zero mode, and one may misidentify
ST*S~! = C if one restricts the representation to a single
field. We need a faithful representation of this combined two
groups to avoid such ambiguity. We provide a complete
analysis by use of the largest representation of Eq. (74) for
magnetized torus models.

We use G for denoting this novel group referred to as
modular extended flavor group. Our goal of this section is
to analyze the structure of G. The structure of G has two
possibilities in general. If F is not a normal subgroup of G,
this indicates that F is not the whole flavor symmetry and
there is an additional global symmetry hidden in G. Since in
this case we can find *m € M such that mFm~" is not
identified to F and the subgroup mFm~! acts on the
Yukawa couplings trivially, this is interpreted as a flavor
symmetry, although these two groups are isomorphic.
Otherwise, F denotes the whole flavor symmetry, and
M is a subgroup of the automorphism of F [48].

Since the representation of the Yukawa couplings is
trivial for F, i.e., py(f) =1 for f € F, we only need to

calculate the algebraic structure for p,, (the matrix repre-
sentation for M-generation chiral zero mode) in detail. It is
convenient to introduce new M x M matrices Z' and C’ as

10 - 0 010 -0
06 - 0 001 -0
Z=1. .. =1, ... |
00 - o¥! 100 -0
(78)

where ¢ = 7. These two matrices satisfy the following
relations:

pu(SH)Zpy(S72) = (Z)7,
pu(SH)Cpy(872) = C'. (79)

Since py(Z) = Z'™M/9 and p,,(C) = C"™M/9, we obtain
$228572 = 71, (80)
$2Cs2 = ¢, (81)

We find S2FS2c F.SIf M is even and N/M is odd,
Eq. (56) becomes

1 0
o -1 --- 0
/)M(TN) = . . . . . (82)
0 O -1
We obtain
TNZT N =7, (83)
TNCT™N = (-1)M/9C = C, (84)

where we note that M/g is always even.” TV is commu-
tative with the group elements of F. Using the matrix
representation given in (57), we obtain

®Similar analysis for S2 has also been done in Ref. [48]. Note,
however, that the action of S? on the Yukawa couplings is
different from Ref. [48], since in our model the Yukawa couplings
depend on the Wilson line, which also transforms under the
modular group [see Eq. (22)].

"We show a precise proof here. Suppose M, M,, M5 are three
integer numbers satisfying M3 = M| + M,. g and N are the
greatest common divisor and the least common multiple of these
three integers, respectively. We introduce new integer numbers
M, = M;/g; then, we find M + M5 = M’ and N' = N/g is the
least common multiple of M’s. If IM; € {M,, M,, M3} such that
both N/M; and M;/g are odd, N'/M} = N/M; must be odd.
Since N’ is even, M must be even. This is in contradiction with
the assumption.
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Pu((STY)?); Cloipa (STV) ™) 1

= (-8 yBrj-1(= 1)]‘/—1—%5;{@!__%
= (-

= (

D15,
c)™! (85)
Pu((STN)) 0 Zy pwa ((STN)72) 5
= (=116} oo (-1) o)
_ 01"'5,-’1-
— (). (86)
Thus, we find
(STN)2C(STN)=2 = C!, (87)
(STNY?2Z(STN) 2 = 771, (88)

The above two relations hold even if M is odd or N/M is
even, i.e., py(TV) = 1. Thus, we find that F is a normal
subgroup of G, and G is written as F M. Therefore, there is
no additional flavor symmetry hidden in G. The intersection
of F and M is the trivial group, i.e., {e}, since the Yukawa
couplings are invariant under F. We conclude G is
isomorphic to the semidirect product of F and M:
G~ F x M. (89)
If the Wilson line is set to zero, M is generated by
{S, TN}. Using the matrix representation of S given in (35),
we calculate

pu(8)Zpy (') =C, (90)
pu(S)Cpy(S7H) =271, (91)
and we obtain

SZS™! = Sz/M/9§-1 = C'M/9 = C, (92)
SCS™! = sCMast = (Z)Mls = Z71. (93)
J
1 00
0 00

1 00
($2)=10 0 1 |@® 000
P15 = 00 0

010
0 0 1
010

$This result is the same as the result of Ref. [48].

o O = O O O

Therefore, we find SFS~! ¢ F. In addition, there is a
parity symmetry P which acts on the wave functions as

P:¢]¥Mk N ¢Mk_jsMk (94)
and trivially acts on the Yukawa couplings, i.e., P € F. F
is generated by C, Z, and P. Equation (94) is nothing but
the action of S? given in Eq. (55). Actually, the parity
operator P is understood as an element of M; P € M.
Since Yijx = Yu,—im,—jm,|-k for vanishing Wilson line,
the action of S? on the Yukawa couplings is given as

Y.

ijk- (95)

N e R A
Therefore, P is identical to S? for the vanishing Wilson
line® (S2 as a generalization of P for nonvanishing Wilson
line). S? is the unique element except for the identity that
keeps the Yukawa couplings invariant in M. S = P is a
center of M, which means MPM~! = P. Thus, F is still
a normal subgroup of G, and M is an automorphism of F.
We introduce F’ as a subgroup of F generated by C and Z,
and G is written as their semidirect product:
G F' x M. (96)
We consider a concrete example in the following sub-
section for illustration purposes.

A. Modular extended flavor symmetry
in three-generation model

Here, we consider the model of M,
M3 - —6

=M, =3 and

1. Model with Wilson line

First, we consider model with nonvanishing Wilson line.
In this case, we have D4 x Z, modular symmetry and
A(27) for flavor symmetry. We use 15-dimensional rep-
resentation p3 @ p_g @ py to construct the whole group
since there are three- and six-generation chiral zero modes
and six Yukawa couplings. The generators of the modular
symmetry is given by

0 0 1 000 0O
0 1 000 0 O0 1
1 0 000 O0T1PO
0 0 ® 0001 O0O0 ©7)
00 0 01 00O
00 01 0 0 0O
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1 0 0 O

0O -1 0 O

P15(T°) = 13,5 @ 00 b0

0 0 0 -1

0O 0 0 O

0O 0 O

0O 0 O
I P
p1s((ST®)?) = g (1) (1) © 1, 0 o
0O 0 O
0 0 O

S = O O O O

S O O o O

0 1 0 0 0 0 O
0 0 -1 0 0 0 O
0 0 0 1 0 0 O
065000—100 (%8)
0 0 0 0 0 1 0
-1 0 0 0 0 -1
0 0 0 0 0 -1 0 O
0 0 0 0 1 0 0 O
0 0 0 -1 0 0 0 O
009100000’ (99)
0 -1 0 0 0 0 0 -1
1 0 00 0 0 1 0

where the first 3 x 3 matrices denote representation for three-generation chiral zero modes and the second one is for six-
generation chiral zero modes. The last one acts on the Yukawa couplings. The conventional flavor group is generated by

0 1 0
pis(C)=10 0 1]
1 0 0
1 0 0
pPs(Z)=10 o 0 | &
0 0 o

p15(Z) has the conjugate representation for the six-
generation chiral zero mode since M5 is negative. The
irreducible decomposition of this group is summarized in
Table IV.

TABLE IV. Irreducible decomposition of the chiral zero modes
and Yukawa couplings under the conventional flavor symmetry
A(27) [47].

A(27)
P 3
Po 2x3
Y. 6x1

J

S O O O O =

S = O O O O

01 0 00
001 00
00 010 o1 (100)
0000 1 o6
00 0 00
1 0000
0 0 0 0 0\°
o 0 0 0 O
0 > 0 0 0
o 0 1 0 o @D gy (101)
0 0 0 w O
0 0 0 0 o
[
The following relations can be shown:
T°CT® = C,
T°ZTS = Z,
S2CS? = 2,
NVASEVAS
(T®S)2C(T%S)? = C?,
(T®S)?Z(T°S)~ = Z2. (102)

These are equivalent to (80), (81), (83), (84), (87), and (88).
Thus, the conventional flavor group JF is the normal
subgroup of the novel group G. The intersection of F
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and M consists only of the identity since the action of F on
the Yukawa couplings is always trivial. We conclude G is
the semidirect product of F and M:

G F xM=A(27) x (D4 X Z,). (103)
|
1 1 1
1 2
| 1 1 1 . 1 ) 774
non
S)=—4|1 2 —
1 @* o
IV &
1 5 ,,14

In addition, we have P € F, and F ~ A(54). We note that
P is identical to S? since Y ke = Y_i_j_y as we denoted in
the previous section. The conjugation by S is given by

SzZ8! =, (104)

SCS! =72 (105)
These are equivalent to (92) and (93). ' ~ A(27) and
M~ (Zg x Z,) x Z,. Therefore, G is written as

G F' x M~A27) x ((Zg x Zy) x Z,).  (106)
Irreducible decomposition of the three-generation chiral
zero mode is given by a three-dimensional representation
since it is 3 in A(27). The six-generation chiral zero modes
are a six-dimensional representation of G. The Yukawa
couplings are decomposed to three two-dimensional rep-
resentations, since they are a trivial representation in A(27).

VI. CONCLUSION

We have investigated the modular symmetry of the
magnetized torus. The modular group is isomorphic to
SL(2,7)/Z,, and it is an infinite group. For the heterotic
orbifold, the modular group can act on its effective action,
and it is invariant under the whole group. However, for
magnetized torus, the situation is different. When the
magnetic fluxes turn on, effective action is no longer
invariant under the whole modular group but is invariant
under its specific subgroup M, which we refer to as
modular flavor symmetry. We have shown this group
consists of §2, TV, and (STV)?, where N is the least
common multiple of the generation numbers in general.
These elements are noncommutative and generate non-
Abelian groups. This group is enhanced for the case of
vanishing Wilson line, and the theory (the Yukawa term)

This is the modular extension of the flavor group for this
three-generation model.

2. Model without Wilson line

Without the Wilson line, we have additional generators
S. The matrix representation of S is given by

I 1\" 1 1 1 1 1 1
0o 1oy o =1 gt
2t o il B R B

1 -1 vel1l -1 1 -1 1 -1
e I A 2 B
e =R R

becomes S invariant. We show several examples of con-
structions of this Yukawa invariant subgroups. These
subgroups are isomorphic to finite groups, such as D, x
Z, and (Zgx Z,) X Z,. We find the group structures
depend on the chiral spectrum and we can realize various
finite groups as subgroups of the modular group. The
modular flavor symmetry consists of several Z,, Z,, and
Zg. Such discrete groups are utilized for solving the flavor
puzzles [57].

It is known that the magnetized torus model has conven-
tional flavor symmetry F. This flavor symmetry includes
the parity symmetry in terms of the extra dimension if the
Wilson line vanishes. Although the modular group and the
conventional flavor group are different, we have found that
the parity operator can be interpreted as S? in the modular
symmetry. We have investigated modular extension of
conventional flavor symmetry in detail. They are non-
commutative with each other and enlarge the group of the
symmetry. Such an extension of the flavor symmetry has
been studied in Ref. [48]. However, we have extended the
analysis to modular transformation of the Yukawa terms,
which is important to correctly analyze the symmetry of the
theory. We have found there is no additional flavor
symmetry hidden in the novel group G (modular extended
flavor group). Therefore, as pointed out in Ref. [48], the
conventional flavor group F is a normal subgroup of G, and
M is a subgroup of the automorphism of . In addition, we
have found that G is isomorphic to the semidirect product of
modular and the conventional flavor group for the non-
vanishing Wilson line because the Yukawa couplings form
a faithful representation of G. For the vanishing Wilson line,
there is a nontrivial common element between F and M,
which is S2 in M. This is identical to P in F. Thus, G is not
the semidirect product of F and M but the semidirect
product of its subgroup F’, which is generated by Z and C.

Our study is based on a field theory analysis of the
magnetized torus model, which is the low-energy effective
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theory of type II string theory. Taking into account more
stringy effects, e.g., vertex operator, local supersymmetry,
or the Green-Schwartz—like anomaly cancellation mecha-
nism, modular properties of fields and couplings may
change. Pursuing this possibility is certainly interesting,
but it is beyond the scope in the present paper.
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APPENDIX A: MORE EXAMPLES OF YUKAWA
INVARIANT MODULAR SUBGROUPS

We calculate more examples of Yukawa invariant modu-
lar subgroups in this Appendix. We study models similar
to the model studied in Sec. 3; the models contains
three gauge groups SU(N;) x SU(N,) x SU(N3) and
three types of bifundamental chiral zero modes. Their
generation numbers are given by M, M,, and M5. They
satisty M| + M, + M5 = 0.

1. 224 model

Let M| = M, = 2 and M5 = —4. In this case, there are
two two-generation chiral zero modes and one for-
generation chiral zero mode. The matrix representations
of the generators of the modular group for the two-
generation chiral zero modes are given by

=5, L) em=(y ) @
P2 _ﬂ 1 1) P2 “\o i)
and for M = —4, the matrix representations of S and 7 are
given by
1 1 1 I\ *
1 I i -1 =i
_4(S) =— ,
P 4( ) \/Z 1 -1 1 -1
1 —i -1 i
1 0 0\ *
0 et 0 0
4(T) = , A2
p-4(T) 0 0 -1 0 (A2)
0 0 0 f

where the complex conjugate is required since M3 is
negative.

TABLE V. Irreducible decomposition of the fields and Yukawa

couplings for model with Wilson line. The indices of 1;, denote

the eigenvalues of Z<232>, ZéTq), and ngmz, respectively.

Zz X Zz X ZZ
¢? 2x 1,
¢ el &1, &1,
Y; ol &1, 81,

a. Model with Wilson line

First, we investigate the model with nonvanishing
Wilson line. In this case, the Yukawa couplings are
classified to four values,

Y1(7> = Y01 = Yo13,

Y3(7) = You = Yo, (A3)
and these four Y ; form a four-dimensional representation of
the modular group. The Yukawa invariant subgroup is
generated by S2, 7%, and (ST*)?. They satisfy the following
equations:

(82)? = (T*)? = ((ST*)*)* = 1. (A4)
Hence, they correspond to Z,. They are commutative with
each other, and the group is isomorphic to Z, X Z, X Z,.
We also check that there is no extra element which keeps
the Yukawa term invariant but cannot be generated by S,
T4, and (ST*)? in the group generated by p,,(S) and py,(T),
which consists of 3072 = 2!9 x 3 elements. Irreducible

decomposition of the representations is summarized in
Table V.

b. Model without Wilson line

For the vanishing Wilson line model, the Yukawa
invariant modular group is enhanced. This group has 16
elements, and it contains two Z, and one Z,. The Z,
corresponds to S, and the two Z, correspond to T* and
(ST*)2. Therefore, this group is generated by S and T*.
They satisfy the relations

TAST~* = $3(ST*)?,
S(ST*)25~! = (ST%)?,
TH(ST*)?>T* = (ST*)?, (AS)
and these mean that the subgroup generated by S and
(ST*)? is a normal subgroup of the whole group. The group

412
generated by these matrices is isomorphic to (ngr) X

fo)) X Zgﬂ). This is the modular symmetry of the Yukawa
term without the Wilson line. Irreducible decomposition of
the representations is summarized in Table VI.
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c. Modular extended discrete flavor symmetry

This model has D, flavor symmetry in general and
D, x Z, flavor symmetry for the vanishing Wilson line
model. These D, and the Yukawa invariant modular

|

1 0 O
0 0 O
$2) = 1,,
p10(S%) 22 @D 00 1
01 0
1 0 O
e |0 70
£10 = lax2 0 0 1
0O 0 O
0O 0
0 -1
ST*)?) = 1,,
P10((ST*)?) 2x2 @ Lo
0 O

The flavor group generators are similarly given by

)e

0
1

1

P10(C) = < 0

Their irreducible decomposition is summarized in
Table VII.
It is easy to show that M is commutative with all the

generators of F. This is because C~! and Z~! are the same

TABLE VI. TIrreducible decomposition of the fields and
Yukawa couplings for the model without the Wilson line. The
indices of 1 in the right column denote the eigenvalues of ZZT

and Zis), respectively.

oS O O =

subgroups are noncommutative. As shown in Sec. V,
we can obtain modular extended flavor symmetry.
The Yukawa invariant modular subgroup generators are
given by

1 000
00 0 1
690010’
01 00
0 1 0 0 0
0 0 -1 0 0
0®0010’ (48)
-1 0 0 0 -1
0 0 0 1 0
0 0 -1 0 0
0@1000
-1 0 0 0 -1
010
0 0 1
000614><4»
1 00
0 0 0
-1 0 0
010®14x4- (A7)
0 0 -1

as C and Z. Thus, the whole group G is isomorphic to the
direct product of F and M. We find

G~D, x (Z,)>. (A8)

Without the Wilson line, the modular group is enhanced
to (Z, x Z4) % Z,. It is generated by S and T*. The ten-
dimensional representation of S is written as

TABLE VII. TIrreducible representation of the conventional
flavor symmetry.

(ZZ X Z4) el Zz

Representation of Dy

¢]2 Lo®1,
¢ Loy®l; 2
Yj 1+0 @ 1_1 @ 2

P2 2
P4 1.1, _o1_,61__
Y; 4x1,,
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11 1 1\*

/11 I R T A
p‘0(5)2%<1 —1>$721 1 -1 1 -1
1 —-i -1 i

111

@L 1 i -1 3 (A9)
VAl 11 <
1 —-i -1 i

We also have an extra Z, symmetry, which acts on the
chiral zero modes as y/"M — /M This Z, is denoted by
P, and its matrix representation is the same as that of S°.
The following relations hold:

Scs' =z (A10)
s§zs'=cC (A11)
T*C(TY) ' =C (A12)
T*Z(T*)™' = Z. (A13)

Yl :Y035:Y1127
YS = Y031 = Y1147
Y9 = Y033 = YllOa

Y0:Y000:Y1237
Y4:Y002:Y1257
Y8 = Y004 = Y1217

The other three-point couplings are prohibited by Z,
charge. We obtain 12-dimensional representation of the
modular group. This Yukawa term is not invariant under the
whole modular group. We construct its subgroup under
which the Yukawa term is invariant. If the Wilson line is
zero, this subgroup consists of 16 elements. This group is
isomorphic to (Z, x Z,) x Z,. All elements are commu-
tative with each other. If the Wilson line is not zero, it is not
invariant under S but S?, and the group is broken to
Ly X 2y X Z5.

3. 123 model
Here, we consider the model of M| =1, M, =2, and
M5 = =3. In this model, there are one one-generation

chiral superfield, one two-generation chiral superfield,
and one three-generation chiral superfield. Their matrix

These are nothing but (83), (84), (92), and (93). These
relations mean the flavor symmetry group is a normal
subgroup of the whole symmetry group. The intersection of
the D, and the modular group is a trivial subgroup:
D, N M = {e}. Therefore, the whole symmetry group
is semidirect product of D, and M:

G~Dy x ((Zy, x Z4) X Z,). (Al14)

This is the full symmetry of the effective action. Since this
group is denoted by the (semi)direct product of the groups,
its order is 128 = 8 x 16.

2. 246 model
Here, we consider the model with M| = 2, M, = 4 and
M5 = —6. The matrix representation of the modular trans-

formation is already given in the former subsections. Since
g.c.d.(M,M,,|M;|) =2, we have D, discrete flavor
symmetry for nonzero Wilson line models and D4 x Z,
for the vanishing Wilson line. Yukawa couplings are
classified into 12 values:

Y2:Y024:Y101’
Y6:Y021 :Y1037

Y3 :Y013 :Y130
Y7:Y015 :Y132
Yll = YOll = Y134‘

YlO = Y022 = YIOSv (AIS)

representations of the modular transformation have been
given already. In addition, we have six Yukawa couplings
for general Wilson line case. Their modular transformation
is the same as that of the six-dimensional chiral zero mode.
If the Wilson line is zero, we have Z, parity flavor
symmetry. We use 11-dimensional representation to con-
struct the Yukawa invariant modular subgroup: p1; = p, @
p3 ® py = pr @ p3 @ ps. We find that they generate a
finite group whose order is 768.

The Yukawa invariant modular subgroup is generated by
S and T®. The subgroup consists of 32 elements. This group
is the same as that of the 336 model. This group is
isomorphic to (Zg x Z,) x Z,. If nonzero Wilson line is
turned on, S is no longer an element of the Yukawa
invariant modular subgroup. The modular subgroup is
broken to Dy X Z,.
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