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The Unruh effect states that a uniformly linearly accelerated observer with proper acceleration a
experiences Minkowski vacuum as a thermal state in the temperature T lin ¼ a=ð2πÞ, operationally
measurable via the detailed balance condition between excitation and deexcitation probabilities. An
observer in uniform circular motion experiences a similar Unruh-type temperature Tcirc, operationally
measurable via the detailed balance condition, but Tcirc depends not just on the proper acceleration but also
on the orbital radius and on the excitation energy. We establish analytic results for Tcirc for a massless scalar
field in 3þ 1 and 2þ 1 spacetime dimensions in several asymptotic regions of the parameter space, and we
give numerical results in the interpolating regions. In the ultrarelativistic limit, we verify that in 3þ 1

dimensions Tcirc is of the order of T lin uniformly in the energy, as previously found by Unruh, but in 2þ 1

dimensions, Tcirc is significantly lower at low energies. We translate these results to an analogue spacetime
nonrelativistic field theory in which the circular acceleration effects may become experimentally testable in
the near future. We establish in particular that the circular motion analogue Unruh temperature grows
arbitrarily large in the near-sonic limit, encouragingly for the experimental prospects, but the growth is
weaker in effective spacetime dimension 2þ 1 than in 3þ 1.

DOI: 10.1103/PhysRevD.102.085006

I. INTRODUCTION

The Unruh effect [1–3] states that a linearly uniformly
accelerated observer in Minkowski spacetime reacts to a
quantum field in its Minkowski vacuum by excitations and
deexcitations with the characteristics of a thermal state in
the Unruh temperature aℏ=ð2πckBÞ, where a is the observ-
er’s proper acceleration (for textbooks and reviews, see
[4–7]). A direct experimental confirmation of the effect has
however remained elusive because of the required magni-
tude of the acceleration [7]. Prospects to observe versions
of the effect in high-power laser systems are discussed

in [8–14], and a selection of other experimental proposals
are discussed in [15–20]. Within the analogue spacetime
programme of simulating relativistic phenomena in non-
relativistic laboratory systems [21,22], an indirect experi-
ment relying on virtual observers was reported in [23] and
an indirect experiment relying on functional equivalence
was reported in [24]. A direct experimental confirmation
would have intrinsic interest as a demonstration of quantum
vacuum friction, as well as broader interest because of the
connections to the Hawking effect [25], and because of the
connections to the early universe quantum effects that may
be responsible for the origin of structure in the present-day
Universe [26,27].
While the Unruh effect in its standard form concerns

uniform linear acceleration in Minkowski spacetime, sim-
ilar phenomena exist also for other spacetimes and other
motions. A well-known example is the Gibbons-Hawking
effect for inertial motion in de Sitter spacetime [28], for
which an analogue spacetime simulation has been proposed
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in [29,30]. In Minkowski spacetime, a similar effect exists
for uniform accelerations that are not linear [31–33],
including uniform circular motion [34–38]. The circular
motion version is related to spin depolarization in accel-
erator storage rings [39–43], which was originally pre-
dicted by different methods [44,45], and which has been
observed [46], but the relation between this observation and
the circular motion Unruh effect remains indirect [42,43]. A
proposal to observe the circular motion version in an
electromagnetic cavity is discussed in [47].
Experimental interest in the circular motion Unruh effect

in Minkowski spacetime has been recently reinvigorated by
the experimental proposals put forward in [16,48,49],
within the analogue spacetime programme of simulating
relativistic phenomena in nonrelativistic laboratory systems
[21,22]. Among the four types of uniform nonlinear
acceleration that exist in four-dimensional Minkowski
spacetime [31–33], circular acceleration has two unique
advantages over linear acceleration. First, circular motion
allows the accelerating system to remain within a finite-size
laboratory for an arbitrarily long interaction time. Second,
in uniform circular motion in Minkowski spacetime, the
time dilation gamma factor between Minkowski time and
the worldline’s proper time remains constant over the
worldline, unlike what happens in uniform linear accel-
eration, or in any of the other nonlinear uniform accel-
erations [31–33]. Modelling circular motion time dilation
in a condensed matter system can therefore be accom-
plished simply by scaling the energies in the theoretical
analysis of the experiment by a time-independent gamma
factor. By contrast, modeling time dilation in linear accel-
eration, or in any of the other nonlinear accelerations,
would need to involve exponentially time-dependent
energy scalings [16,50,51], raising the problem of engi-
neering such time-dependent scalings in the condensed
matter system, and limiting the time for which the system
can be kept in the linear dispersion relation regime in which
the analogue spacetime correspondence operates.
Experimental proposals based on the circular motion

Unruh effect have however also a disadvantage, both in
genuinely relativistic systems and in analogue spacetime
systems: the linear acceleration Unruh temperature formula
no longer holds as an exact equality, and the actual Unruh
temperature depends not just on the magnitude of the
circular acceleration but also on the orbital speed and the
energy at which the effect is probed. While the linear
motion and circular motion temperatures are known to be
of the same order of magnitude in certain regions of the
parameter space [33,42,52,53], a detailed control of their
relation will be necessary for analyzing prospective
experiments.
The purpose of this paper is to give a detailed compari-

son of the linear and circular motion Unruh temperatures,
by a combination of analytic and numerical methods, in the
case where the quantum field is a massless scalar field in

Minkowski spacetime in its usual Minkowski vacuum state.
We consider spacetime dimensions 3þ 1 and 2þ 1, as
motivated by the experimental proposals. We address both
a genuine relativistic spacetime system, which incorporates
time dilation, and a condensed matter analogue spacetime
system, in which the absence of time dilation is handled by
a suitable energy scaling. We probe the field with a
pointlike linearly coupled Unruh-DeWitt detector [3,54],
and we work in linear perturbation theory, in the limit of
long interaction time but negligible backaction. The tem-
perature seen by the detector will be defined operationally
via the detailed balance condition between the excitation
rate and the deexcitation rate. We leave it to future work to
address effects due to other phenomena that will inevitably
be present in experimental implementations, including
finite size [55–57], finite interaction time [58], nonzero
ambient temperature [53], dispersion relation nonlinearity
and Lorentz noninvariance [57,59,60], and the detector’s
backaction on the field [61–63].
For the (3þ 1)-dimensional relativistic system, we

confirm that the circular motion Unruh temperature Tcirc
agrees with the linear motion Unruh temperature within an
energy-dependent factor of order unity in the ultrarelativ-
istic limit, in agreement with the previous analytic scalar
field results by Takagi [35], Müller [52], and Unruh [42]
(the published version [43] of [42] focused on the electro-
magnetic field), and consistently with the numerics given in
[33,42,64]. Beyond the ultrarelativistic limit the discrep-
ancy is however larger, as we show by analytic results in
several limits and by numerical results in the interpolating
regions.
For the (2þ 1)-dimensional relativistic system, Tcirc is

qualitatively similar to that in 3þ 1 dimensions at high
energies, but it is significantly smaller at low energies. In
the ultrarelativistic limit, the (2þ 1)-dimensional Tcirc is
suppressed at small energies relative to the (3þ 1)-
dimensional value by the factor 1= lnð1=jEjÞ, where E is
the detector’s energy gap.
Results for the analogue spacetime system follow by

scaling the relativistic energies by the time dilation gamma
factor. We find in particular that the temperature grows
arbitrarily large in the near-sonic limit, encouragingly for
the experimental prospects, but the growth is weaker in
effective spacetime dimension 2þ 1 than in 3þ 1, by a
factor proportional to 1= ln γ, where γ is the time dilation
gamma factor.
We begin by recalling in Sec. II relevant background

about an Unruh-DeWitt detector in a relativistic spacetime,
specializing to a stationary situation and reviewing the
detailed balance definition of an effective temperature
even when this temperature may depend on the energy,
and finally specializing to uniform circular motion in
Minkowski spacetime, with the quantum field in the
Minkowski vacuum. Sections III and IV address the
relativistic system in, respectively, 3þ 1 and 2þ 1
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dimensions. The translation to the analogue spacetime
system is made in Sec. V. Numerical plots are collected
in Sec. VI. Section VII presents the conclusions and a
discussion of the experimental upshots. Proofs of several
technical results stated in the main text are deferred to five
appendixes.
In the relativistic field theory, we use units in which

c ¼ ℏ ¼ kB ¼ 1, and in the analogue spacetime theory, we
use similar units in which the speed of sound has been set to
unity. In asymptotic formulas,OðxÞ denotes a quantity such
that OðxÞ=x is bounded as x → 0, oðxÞ denotes a quantity
such that oðxÞ=x → 0 as x → 0, Oð1Þ denotes a quantity
that remains bounded in the limit under consideration, and
oð1Þ denotes a quantity that goes to zero in the limit under
consideration.

II. RELATIVISTIC SPACETIME PRELIMINARIES

In this section, we review the relevant background about
an Unruh-DeWitt detector coupled linearly to a scalar field
in a relativistic spacetime. We first address a general
stationary motion in a stationary quantum state, working
in the limit of weak coupling and long interaction time but
negligible backaction, and recalling how the detailed
balance condition between the excitation rate and the
deexcitation rate can be used to define an effective
Unruh temperature even when this temperature depends
on the energy of the transitions. We then specialize to a
circular trajectory in Minkowski spacetime of dimension
d > 2 and to a massless scalar field prepared in its
Minkowski vacuum state.

A. Field, detector, transition rate, and temperature

We consider a real Klein-Gordon scalar field ϕ in a
relativistic spacetime, prepared initially in a quantum
state denoted by jΦi. We assume the Wightman function
Gðx; x0Þ ≔ hΦjϕðxÞϕðx0ÞjΦi to be a distribution with a
sufficiently controlled singularity structure, including the
Hadamard property at the coincidence limit x → x0 [65,66].
Further discussion about sufficient conditions is given
in [58].
We probe the field with an Unruh-DeWitt detector

[3,54]: a pointlike two-level quantum system on a pre-
scribed smooth timelike trajectory xðτÞ, parametrized by
the proper time τ. The detector’s Hilbert space is spanned
by the orthonormal basis fj0iD; j1iDg, such that HDj0iD ¼
0 and HDj1iD ¼ Ej1iD, where HD is the detector’s
Hamiltonian with respect to τ and the constant E ∈ R is
the detector’s energy gap. For E > 0, we may think of j0i as
the detector’s ground state and j1i as the excited state; for
E < 0, the roles are reversed.
The interaction Hamiltonian is

HintðτÞ ¼ cχðτÞμðτÞϕðxðτÞÞ; ð2:1Þ

where c ∈ R is a coupling constant, μ is the detector’s
monopole moment operator, and χ is a real-valued smooth
switching function that specifies how the interaction is
turned on and off. In first-order perturbation theory, the
probability for the detector to make a transition from j0iD
to j1iD, regardless the final state of ϕ, is [3–5,54]

P ¼ c2jh1jμð0Þj0ij2F χðEÞ; ð2:2Þ

where the (switching-dependent) response function F χ is
given by

F χðEÞ ≔
Z

∞

−∞
dτ0

Z
∞

−∞
dτ00χðτ0Þχðτ00Þe−iEðτ0−τ00ÞWðτ0; τ00Þ;

ð2:3Þ

Wðτ; τ0Þ ≔ GðxðτÞ; xðτ0ÞÞ is the pull-back of the field’s
Wightman function to the detector’s trajectory, and χ is
assumed to have sufficiently strong early and late time
falloff to make the integrals in (2.3) convergent. Note that
W is a distribution, with a coincidence limit singularity
whose strength depends on the spacetime dimension, and it
may have other singularities that depend on the details of
the state jΦi, but under our assumptions about G these
singularities are sufficiently controlled for the integrals in
(2.3) to exist [67,68]. Note also that F χ is manifestly real

valued because Wðτ; τ0Þ ¼ Wðτ0; τÞ, where the overline
denotes complex conjugation.
The key point here is that the response function F χ (2.3)

encodes how the detector’s transition probability depends
on the field’s initial state and on the detector’s energy gap,
trajectory, and switching. The detector’s internal structure
and the coupling strength enter only via the constant overall
factor in (2.2). This constant overall factor will not play a
role in what follows.
We now specialize to the situation where both the

trajectory and the state jΦi are stationary, in the sense
that W depends on its two arguments only through their
difference,

Wðτ0; τ00Þ ¼ Wðτ0 − τ00; 0Þ: ð2:4Þ

The only time dependence in the detector’s response comes
then from the switching function χ. We further specialize to
the limit in which the detector operates for a long time,
while the coupling nevertheless is so weak that first-order
perturbation theory remains applicable. Dividing F χ (2.3)
by the total interaction time and letting this interaction time
tend to infinity show that the transition probability per unit
time, or the transition rate, is proportional to the (stationary)
response function F , given by [4,5]

F ðEÞ ≔
Z

∞

−∞
dse−iEsWðs; 0Þ: ð2:5Þ
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The sense of the long time limit in the passage to (2.5) has
significant subtlety, including the validity of linear pertur-
bation theory, the uniformity of the long time limit in E
[58], and the relation to the occupation numbers in a
stationary state experiment [64], all of which would need to
be addressed in concrete experimental proposals. In this
paper, we work within the idealized regime in which the
transition rate is stationary and a multiple of F (2.5).
We define the Unruh temperature T as seen by the

detector by assuming that the detector’s excitation and
deexcitation rates are related by Einstein’s detailed balance
condition F ð−EÞ ¼ eE=TF ðEÞ [69], from which

1

T
¼ 1

E
ln

�
F ð−EÞ
F ðEÞ

�
: ð2:6Þ

For a conventional thermal state, T is independent of E,
as follows from the imaginary time periodicity of the
Wightman function known as the Kubo-Martin-Schwinger
condition [70–72], and as is reviewed for an Unruh-DeWitt-
type detector in [35,73]. This is in particular the case for
uniform linear acceleration in Minkowski vacuum, where T
is independent of E and equal to a=ð2πÞ, with a being the
magnitude of the proper acceleration [3]: this is the usual
Unruh effect. We consider situations where T may depend
on E.

B. Spacetime, field state, and detector trajectory

We specialize to Minkowski spacetime of dimension
d > 2 and to a massless scalar field that is initially prepared
in its usual Minkowski vacuum.We use standardMinkowski
coordinates in which x ¼ ðt;xÞ ¼ ðt; x1;…; xd−1Þ and the
metric reads

ds2 ¼ −dt2 þ ðdxÞ2
¼ −dt2 þ ðdx1Þ2 þ � � � þ ðdxd−1Þ2: ð2:7Þ

The Wightman function is given by

Gðx; x0Þ ¼ Γðd
2
− 1Þ

4πd=2½ðx − x0Þ2 − ðt − t0 − iϵÞ2�ðd−2Þ=2 ; ð2:8Þ

where the distributional limit ϵ → 0þ is understood, and the
overall phase and the locus of iϵ have been adjusted from the
Feynman propagator analysis of [65] to the Wightman two-
point function [74]. For odd d, the denominator in (2.8) is
positive for spacelike separations and the iϵ specifies the
branch on continuation to timelike separations.
We take the detector to be in uniform circular motion.

The worldline is

xðτÞ ¼ ðγτ; R cosðγΩτÞ; R sinðγΩτÞ;…Þ; ð2:9Þ

where the dots are absent in 2þ 1 spacetime dimensions
and stand for the requisite number of zeroes in higher

spacetime dimensions. R and Ω are positive parameters
satisfying RΩ < 1, and γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2Ω2

p
. R is the radius

of the orbit, Ω is the angular velocity with respect to
Minkowski time t, and τ is the proper time. The orbital
speed with respect to Minkowski time t is v ¼ RΩ. The
proper acceleration has magnitude a ¼

ffiffiffiffiffiffiffiffiffi
ðẍÞ2

p
¼ RΩ2γ2 ¼

R−1v2γ2, where the over dot stands for derivative with
respect to τ. Note that the orbital speed is constant over the
detector’s worldline: this is a crucial difference between
circular acceleration and linear acceleration.
We adopt R and v as a pair of independent parameters

that specify the trajectory. It follows that

Ω ¼ v=R; ð2:10aÞ

γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
; ð2:10bÞ

a ¼ R−1v2=ð1 − v2Þ; ð2:10cÞ

and

ðΔxðτÞÞ2 ≔ ðxðτÞ − xð0ÞÞ2

¼ −4R2

�
z2

v2
− sin2z

�
; ð2:11Þ

where z ¼ ðγv
2RÞτ.

Using (2.4), (2.8), and (2.11), the stationary response
function F is given by (2.5) where

Wðs; 0Þ ¼ Γðd
2
− 1Þ

4πd=2½ðΔxðs − iϵÞÞ2�ðd−2Þ=2 ; ð2:12Þ

understood in the sense of the distributional limit ϵ → 0þ.
For odd d, the denominator in (2.12) has the phase of id−2

for s > 0 and the phase of ð−iÞd−2 for s < 0.

C. Circular temperature versus linear temperature

Collecting, the Unruh temperature Tcirc for uniform
circular motion is given by (2.5) and (2.6) with (2.11)
and (2.12).
By comparison, recall that the Unruh temperature for

uniform linear acceleration with proper acceleration a is
equal to a=ð2πÞ [3]. If the same were true for uniform
circular motion, the formula (2.10c) would predict the
Unruh temperature,

T lin ¼
a
2π

¼ v2

2πð1 − v2ÞR : ð2:13Þ

Our aim is first to investigate how the linear motion pre-
diction (2.13) compares to the actual circular motion
temperature in four and three spacetime dimensions, and

STEFFEN BIERMANN et al. PHYS. REV. D 102, 085006 (2020)

085006-4



then to translate these results into the corresponding
analogue spacetime setting.

III. 3 + 1 DIMENSIONS

In this section, we address analytically the relativistic
theory in four spacetime dimensions, d ¼ 4. We first isolate
the contributions to the response function from the dis-
tributional and nondistributional parts, by applying the
arbitrary worldline result given in [75,76] to circular
motion. Recent applications of this isolation technique to
circular motion appear in [33,53], an early application
appears in Sec. 7.2 of [35], and an application in the related
context of vacuum fluctuations appears in [34]. By contrast,
most of the previous work on circular motion uses for the
response function and related quantities a distributional
integral formula in which an iϵ regulator is still present
[31,36–43,47,52,64], or eliminates the regulator by intro-
ducing a mode sum expansion [55–57,59]. We then give
analytic results in three limits of interest. Numerical results
will be given in Sec. VI.

A. Response function

For 3þ 1 dimensions, substituting d ¼ 4 in (2.12) gives

Wðs; 0Þ ¼ 1

4π2ðΔxðs − iϵÞÞ2 ; ð3:1Þ

understood in the sense of the distributional limit ϵ → 0þ.
The only distributional contribution to the response func-
tion (2.5) comes from s ¼ 0. Isolating this contribution
gives [75,76]

F ðEÞ ¼ F inðEÞ þ F corrðEÞ; ð3:2aÞ

F inðEÞ ¼ −
E
2π

Θð−EÞ; ð3:2bÞ

F corrðEÞ ¼ 1

2π2

Z
∞

0

ds cosðEsÞ
�
1

s2
þ 1

ðΔxðsÞÞ2
�

¼ 1

4π2γvR

Z
∞

0

dz cos

�
2ER
γv

z

�

×

�
γ2v2

z2
−

1

z2=v2 − sin2z

�
; ð3:2cÞ

whereΘ is the Heaviside function.F in is the inertial motion
response function. Note that the integral in (3.2c) has no
singularities and converges in absolute value.
While (3.2c) is useful for numerical evaluation and for

some analytic limits, an alternative that is useful for other
analytic limits can be obtained as follows. Starting from
(3.2c), assumingE ≠ 0 and proceeding as in Appendix C of
[53], we have

F corrðEÞ ¼ −
1

8π2γvR

Z
C
dz

exp ði 2jEjRγv zÞ
z2=v2 − sin2z

; ð3:3Þ

where the contour C is along the real axis from −∞ to ∞
except for passing the pole at z ¼ 0 in the upper half-plane.
Closing the contour in the upper half-plane, the residue
theorem gives

F corrðEÞ ¼ F corr
0 ðEÞ þ F corrþ ðEÞ; ð3:4aÞ

F corr
0 ðEÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2α0 − α20

p
exp ð− 2jEjR

γv α0Þ
8πRðα0 coshα0 − sinh α0Þ sinh α0

; ð3:4bÞ

F corrþ ðEÞ ¼ −
v

8πγR

×
X
n≠0

exp ð− 2jEjR
γv ðαn þ iβnÞÞ

ðαn þ iβnÞð1 − αn cothαn − iβn tanh αnÞ
;

ð3:4cÞ

where αn and βn, n ∈ Z, are, respectively, the imaginary
part and minus the real part of the zeroes of the func-
tion z2=v2 − sin2z in the upper half-plane, analyzed in
Appendix A.
We now turn to various limits of interest. The limits will

be of the form where one variable is large or small while all
other variables are held fixed, except for the ultrarelativistic
limit v → 1 in subsection III D, which will be uniform in
the remaining variables.

B. Large gap limit

Consider the limit jEj → ∞ with fixed v and R. This is
the “low ambient temperature” regime in Appendix C.3 of
[53] and the results from there apply, as follows:
By (A5a), F corrðEÞ → 0, and its leading behavior comes

from F corr
0 ðEÞ. Using (2.6), the Unruh temperature is

determined entirely by the coefficient of jEj in the exponent
in (3.4b) and is given by

Tcirc ¼
γv

2α0R
¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2α0 − α20

p
R
: ð3:5Þ

By comparison, recall from (2.13) that the linear-motion-
based prediction for the Unruh temperature is

T lin ¼
a
2π

¼ v2

2πð1 − v2ÞR ¼ α20
2πðsinh2α0 − α20ÞR

: ð3:6Þ

Hence,

Tcirc

T lin
¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2α0 − α20

p
α20

∈ ð0; π=
ffiffiffi
3

p
Þ: ð3:7Þ
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In the ultrarelativistic limit v → 1, we have α0 → 0, and
(3.7) gives

Tcirc

T lin
¼ πffiffiffi

3
p ≈ 1.8: ð3:8Þ

C. Small gap limit

Consider the limit E → 0 with fixed v and R.
A dominated convergence argument in (3.2c) shows that

F corrðEÞ is continuous in E and the E → 0 limit may be
taken under the integral. Using (2.6), (3.2), and (2.13) gives

Tcirc

T lin
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p

v

Z
∞

0

dz

�
1

z2
−

1 − v2

z2 − v2sin2z

�
: ð3:9Þ

D. Ultrarelativistic limit

Consider the ultrarelativistic limit v → 1. This is the
limit in which the detector’s orbital speed approaches the
speed of light, in the Lorentz frame (2.7) introduced in
subsection II B. We recall that the orbital speed is constant
along the trajectory, unlike in linear acceleration.
The ultrarelativistic limit was previously considered in

Secs. 7.2 and 7.3 of [35], in [52], and in [42]. The core
results for the temperature were found in formulas (12)–
(14) of [42]. We reproduce these results here, in our
Eqs. (3.12)–(3.14) below, verifying in particular that the
temperature result (3.12) is uniform in the ratio E=a.
When v → 1, αn and βn with n ≠ 0 tend to nonzero

values as described in Appendix A, and α0 tends to 0 with
the asymptotic behavior (A7). Taking α0 as the independent
parameter, we have

v ¼ 1 −
1

6
α20 þOðα40Þ; ð3:10aÞ

a ¼ 3

α20R
ð1þOðα20ÞÞ; ð3:10bÞ

1

γv
¼ α0ffiffiffi

3
p ð1þOðα20ÞÞ: ð3:10cÞ

From (3.4b) and (3.4c), we thus have

F corr
0 ðEÞ ¼

ffiffiffi
3

p
exp ð− 2α0jEjR

γv Þ
8πRα20

ð1þOðα20ÞÞ; ð3:11aÞ

F corrþ ðEÞ ¼ O

�
α0 exp

�
−
2α1jEjR

γv

��
; ð3:11bÞ

in agreement with formula (11) in [52], using (3.10b) and
(3.10c). The O-term in (3.11b) is independent of jEjR, as
seen from (3.4b). TheO-term in (3.11b) is uniform in jEjR:
this follows by a dominated convergence argument in
(3.4c), using the linear growth of jβnj established in
Appendix A.

For the Unruh temperature, using (2.6), keeping only the
leading v → 1 behavior, and expressing the result in terms
of a, we have

Tcirc ¼
jEj

lnð1þ 4
ffiffi
3

p jEj
a expð2

ffiffi
3

p jEj
a ÞÞ

; ð3:12Þ

uniformly in jEj=a: this is Eq. (12) in [42]. The small and
large jEj=a limiting forms are

Tcirc ≈
a

4
ffiffiffi
3

p for jEj=a ≪ 1; ð3:13aÞ

Tcirc ≈
a

2
ffiffiffi
3

p for jEj=a ≫ 1; ð3:13bÞ

or

Tcirc

T lin
≈

π

2
ffiffiffi
3

p ≈ 0.9 for jEj=a ≪ 1; ð3:14aÞ

Tcirc

T lin
≈

πffiffiffi
3

p ≈ 1.8 for jEj=a ≫ 1: ð3:14bÞ

Note that (3.14b) agrees with (3.8).

IV. 2 + 1 DIMENSIONS

In this section, we address analytically the relativistic
theory in three spacetime dimensions, d ¼ 3. Proceeding as
in Sec. III, we first isolate the contributions to the response
function from the distributional and nondistributional parts
of W, by applying the arbitrary worldline result given in
[77] to circular motion. To our knowledge, this application
has not been considered previously, although an alternative
analytic expression for the response function as a mode
sum has been given in [60]. We then consider analytically
four limits of interest. Numerical results will be given
in Sec. VI.

A. Response function

For 2þ 1 dimensions, substituting d ¼ 3 in (2.12) gives

Wðs; 0Þ ¼ 1

4π
×

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔxðs − iϵÞÞ2

p ; ð4:1Þ

understood in the sense of the distributional limit ϵ → 0þ.
The square root in the denominator is positive imaginary
for s > 0 and negative imaginary for s < 0.
The response function F (2.5) is discontinuous at zero

argument. We assume throughout E ≠ 0.
The only distributional contribution to the response

function comes again from s ¼ 0. Isolating this contribu-
tion gives [77]

F ðEÞ ¼ 1

4
−

1

2π

Z
∞

0

ds
sinðEsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðΔxðsÞÞ2

p ; ð4:2Þ
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where the square root in the denominator is now positive.
Using (2.11), this gives the split of F into its even and odd
parts as

F ðEÞ ¼ 1

4
þ F oddðEÞ; ð4:3aÞ

F oddðEÞ ¼ −
1

2πγv

Z
∞

0

dz
sin ð2ERγv zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2=v2 − sin2z

p : ð4:3bÞ

An alternative split is

F ðEÞ ¼ F inðEÞ þ F corrðEÞ; ð4:4aÞ

F inðEÞ ¼ 1

2
Θð−EÞ; ð4:4bÞ

F corrðEÞ ¼ 1

2π

Z
∞

0

ds sinðEsÞ
�
1

s
−

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðΔxðsÞÞ2

p �

¼ 1

2πγv

Z
∞

0

dz sin

�
2ER
γv

z

�

×

�
γv
z
−

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2=v2 − sin2z

p �
; ð4:4cÞ

where F in is the inertial motion response function. All the
integrals in (4.2), (4.3b), and (4.4c) are free of singularities
and converge as improper Riemann integrals.
We note that F corr is odd and

F corrðEÞ ¼ 1

4
sgnðEÞ þ F oddðEÞ: ð4:5Þ

Since F ≥ 0 by construction, and since F odd is odd, we
have jF oddj ≤ 1

4
, 0 ≤ F ≤ 1

2
, and jF corrj ≤ 1

2
. F corrðEÞ has

the same sign as E.
We shall mainly work with (4.3) and (4.4). We however

record here two alternative expressions.
First, starting from (4.4c) and proceeding as in

Appendix C of [53] give

F corrðEÞ ¼ i sgnðEÞ
4πγv

Z
C
dz

exp ði 2jEjRγv zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2=v2 − sin2z

p ; ð4:6Þ

where the contour C is along the real axis from −∞ to ∞
except for passing the branch point at z ¼ 0 in the upper
half-plane, and the square root in the denominator is
positive for z > 0 and negative for z < 0. Deforming the
contour to the upper half-plane gives

F corrðEÞ ¼ F corr
0 ðEÞ þ F corrþ ðEÞ; ð4:7aÞ

F corr
0 ðEÞ ¼ sgnðEÞ

2πγv

Z
∞

α0

dα
exp ð− 2jEjR

γv αÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2α − α2=v2

p ; ð4:7bÞ

F corrþ ðEÞ ¼ −
sgnðEÞ
2πγ

X
n≠0

i
βn

exp

�
−
2jEjR
γv

ðαn þ iβnÞ
�Z

∞

0

dy exp

�
−
2jEjR
γv

y

�

×

�
coshðαn þ yÞ

cosh αn
þ 1 −

i
βn

�
αn

sinh αn
sinhðαn þ yÞ þ ðαn þ yÞ

��
−1=2

×

�
coshðαn þ yÞ

cosh αn
− 1 −

i
βn

�
αn

sinh αn
sinhðαn þ yÞ − ðαn þ yÞ

��
−1=2

; ð4:7cÞ

where αn and βn are as given in Appendix A. The square
roots of a complex number in (4.7c) denote the branch with
a positive real part. The convergence of the sum in (4.7c) is
however weaker than that of the corresponding four-
dimensional sum (3.4c), and this limits the usefulness of
(4.7) for analytic limits.
Second, a mode sum expansion of the Wightman

function yields for the response function the mode sum
expression [60]

F ðEÞ ¼ 1

2γ

X∞
m¼⌈ER=ðvγÞ⌉

J2mðmv − ðER=γÞÞ; ð4:8Þ

where ⌈ · ⌉ is the ceiling function and Jm is the Bessel
function of the first kind. Formula (4.8) is tractable numeri-
cally [60], but extracting analytic limits from it does not
appear straightforward.
We now turn to various limits of interest. All the limits

will be of the form where one variable is large or small
while all other variables are held fixed.

B. Large gap limit

Consider the limit jEj → ∞ with fixed v and R.
Proceeding as in 3þ 1 dimensions, we find that the

dominant contribution to F corrðEÞ comes from F corr
0 ðEÞ.
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Changing the integration variable in (4.7b) by α ¼
α0ð1þ y2Þ and using the stationary point expansion near
y ¼ 0 [78] shows that this contribution is a multiple of
sgnðEÞjEj−1=2 exp ð− 2jEjR

γv α0Þ, whose exponential factor is
the same as in (3.4b).
The Unruh temperature is hence given by (3.5), as in

3þ 1 dimensions.

C. Small gap limit

Consider the limit E → 0 with fixed v and R.
We show in Appendix B that

F corrðEÞ ¼ γ − 1

4γ
sgnðEÞ þOðEÞ: ð4:9Þ

Using (2.6), (4.4), and (4.9), we then have

Tcirc ¼
jEj

lnðγþ1
γ−1Þ

ð1þOðEÞÞ; ð4:10Þ

so that Tcirc → 0 as E → 0. The temperature in this limit is
hence significantly lower than the nonzero limit (3.9)
obtained in 3þ 1 dimensions.

D. Ultrarelativistic limit with fixed E

Analysing the ultrarelativistic limit v → 1 uniformly in
E=a is difficult because the convergence of (4.7c) in this
limit is weaker than the convergence of (3.4c). In this
subsection, we consider the v → 1 limit with fixed E and R.
The case of fixed E=a will be addressed in subsection IV E.
We show in Appendix C that

F oddðEÞ ¼ −
1

4γ
sgnðEÞ þ oð1=γÞ: ð4:11Þ

By (4.3), this implies that F ðEÞ → 1
4
as v → 1. (We note in

passing that this is consistent with the numerical evidence
shown in Fig. 5 of [60], obtained by numerical evaluation
from (4.8).) From (2.6) and (4.3a), we then have

Tcirc ¼
γjEj
2

ð1þ oð1=γÞÞ: ð4:12Þ

Being proportional to γ, this temperature is significantly
lower than the 3þ 1 temperature shown in (3.13a), which
is proportional to γ2.

E. Ultrarelativistic limit with fixed E=a

Consider now the limit v → 1 with fixed E=a.
We verify in Appendix D three properties. First, that

F oddðEÞ → F odd
∞ ðEÞ ¼ −

1

2π
Gð2

ffiffiffi
3

p
E=aÞ; ð4:13aÞ

F corrðEÞ → F corr
∞ ðEÞ ¼ 1

2π
Hð2

ffiffiffi
3

p
E=aÞ; ð4:13bÞ

where

GðqÞ ≔
Z

∞

0

dx
sinðqxÞ
x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p ; ð4:14aÞ

HðqÞ ≔ sgnðqÞ
Z

∞

1

dy
e−jqjy

y
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

p : ð4:14bÞ

Second, that the small argument asymptotic form of G
and the large argument asymptotic form of H are, respec-
tively, given by

GðqÞ ¼ q lnð2e1−γE=jqjÞ þ oðqÞ; ð4:15aÞ

HðqÞ ¼ sgnðqÞ
ffiffiffiffiffiffiffiffi
π

2jqj
r

e−jqjð1þOðjqj−1ÞÞ; ð4:15bÞ

where γE is Euler’s constant. Third, that the functionsG and
H satisfy

HðqÞ ¼ π

2
sgnðqÞ −GðqÞ; ð4:16Þ

so that

F corr
∞ ðEÞ ¼ 1

4
sgnðEÞ þ F odd

∞ ðEÞ; ð4:17Þ

as must be for consistency with (4.5).
We note that Maple 2018 [79] gives for H and G

expressions in terms of Meijer’s G-function [80]. We have
used Maple numerical routines for these functions to make
consistency checks of some of the numerical results of
Sec. VI below.
The inverse Unruh temperature is given by

1

Tcirc
¼ 1

jEj ln
�
1þ 2

πGð2
ffiffiffi
3

p jEj=aÞ
1 − 2

πGð2
ffiffiffi
3

p jEj=aÞ

�

¼ 1

jEj ln
�
π −Hð2 ffiffiffi

3
p jEj=aÞ

Hð2 ffiffiffi
3

p jEj=aÞ

�
: ð4:18Þ

By (4.15), the small and large jEj=a limiting forms are

Tcirc ≈
πa

8
ffiffiffi
3

p
lnðe1−γEffiffi

3
p a

jEjÞ
for jEj=a ≪ 1; ð4:19aÞ

Tcirc ≈
a

2
ffiffiffi
3

p for jEj=a ≫ 1: ð4:19bÞ

Compared with the 3þ 1 results (3.13), the large jEj=a
regimes agree, but in the small jEj=a regime, the 2þ 1
temperature is suppressed by the logarithmic factor
1= lnða=jEjÞ.

STEFFEN BIERMANN et al. PHYS. REV. D 102, 085006 (2020)

085006-8



V. ANALOGUE SPACETIME IMPLEMENTATION

In this section, we consider analogue spacetime imple-
mentations of the type proposed in [16,48,49], in a non-
relativistic condensed matter laboratory system, such as a
Bose-Einstein condensate or superfluid helium [21,22]. We
consider both effective spacetime dimension 2þ 1 and
effective spacetime dimension 3þ 1.
The condensed matter system provides an effective

Minkowski geometry, in which the speed of light is
replaced by the speed of phonon-type excitations. We
work in units in which this speed of sound is set to unity.
The main new feature is that since the system has no
analogue of relativistic time dilation, the energy of
the moving detector is now defined with respect to the
laboratory time, which is the Minkowski time in the
effective Minkowski metric, and there is no analogue of
a relativistic proper time. To maintain the analogue with the
relativistic system, we assume that the detector’s speed
remains below the sonic limit v ¼ 1: we shall not consider
nonlinear dispersion or analogue Cerenkov radiation [81].
We continue to consider an Unruh-DeWitt detector that

is coupled linearly to the phonon-type quantum field. This
is precisely the detector introduced in the proposal of [16]
to accelerate a quantum dot in a Bose-Einstein condensate.
We note, however, that the results for the Unruh temper-
ature will be independent of the detailed form of the
coupling as long as the coupling is linear, given that we
are working in the regime of long interaction but negligible
backaction. This is because the detailed balance Unruh
temperature depends on the detector’s excitation and
deexcitation rates only through their ratio. For example,
if the coupling were not to the value of the field but to the
time derivative of the field, as in the detection proposal of
[48,49], or to higher time derivatives of the field, each time
derivative would bring to the response function F ðEÞ an
additional factor E2, and these factors would just cancel
from the temperature. More generally, any change in the
coupling that affects both the excitation and deexcitation
cross sections in the same way, even if energy dependent,
will cancel out of the detailed balance Unruh temperature.
We also assume the condensed matter system to be so

large, compared with the parameters of the detector’s orbit,
that finite size effects remain negligible. It follows, as in the
case of the relativistic field, that the circular motion Unruh
effect seen by the detector does not have a description in
terms of phonons adapted to a rigidly rotating quantization
frame: as the rotating frame has supersonic velocities
sufficiently far from the center of rotation, the frame does
not provide a positive and negative frequency split on
which a Fock quantization of the field could be based, there
is no notion of a “rotating vacuum” or “rotating phonons,”
and Bogoliubov coefficients cannot be introduced [55–57].
Under these assumptions, it is straightforward to trans-

late our relativistic formalism to the laboratory setting, by
writing

Ê ≔ E=γ; ð5:1aÞ

T̂ ≔ T=γ; ð5:1bÞ

â ≔ a=γ2; ð5:1cÞ

where Ê is the energy gap with respect to the laboratory
time t, T̂ is the temperature with respect to Ê, and â is the
nonrelativistic acceleration. The linear-motion-based pre-
diction for the analogue Unruh temperature is hence

T̂ lin ¼ T lin=γ ¼
a
2πγ

¼ âγ
2π

¼ γv2

2πR
; ð5:2Þ

while combining (2.6) and (5.1) shows that the actual
analogue Unruh temperature is given by

1

T̂circ
¼ 1

Ê
ln

�
F ð−γÊÞ
F ðγÊÞ

�
; ð5:3Þ

where F is the relativistic response function found in
Secs. III and IV.
Numerical results are shown below in Sec. VI.

We consider here analytically only the near-sonic limit
v → 1 with â and Ê fixed. Then E=a ¼ ðÊ=âÞ=γ → 0 as
v → 1. We show in Appendix E that

T̂circ ≈
1

4
ffiffiffi
3

p γâ in 3þ 1; ð5:4aÞ

T̂circ ≈
π

8
ffiffiffi
3

p γ

ln γ
â in 2þ 1; ð5:4bÞ

or

T̂circ

T̂ lin
≈

π

2
ffiffiffi
3

p in 3þ 1; ð5:5aÞ

T̂circ

T̂ lin
≈

π2

4
ffiffiffi
3

p 1

ln γ
in 2þ 1: ð5:5bÞ

The temperature hence grows arbitrarily large in the v → 1
limit in both 3þ 1 and 2þ 1 dimensions, in 3þ 1 dimen-
sions proportionally to γ, but in 2þ 1 dimensions only
proportionally to γ= ln γ.

VI. NUMERICAL RESULTS

For the relativistic spacetime system, perspective plots of
Tcirc=T lin ¼ 2πTcirc=a as a function of v and E=a are shown
Fig. 1, both in 3þ 1 dimensions and in 2þ 1 dimensions.
The plots confirm that in the ultrarelativistic limit Tcirc=T lin
is close to the linear motion value 1 for all E=a in 3þ 1
dimensions and for jEj=a≳ 0.5 in 2þ 1 dimensions. For
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jEj=a ≪ 1, the 2þ 1 temperature is however significantly
lower than the 3þ 1 temperature for all v.
For theanaloguespacetimesystem, thecorrespondingplots

of T̂circ=T̂ lin as a function of v and Ê=â are shown in Fig. 2,

both in 3þ 1 dimensions and in 2þ 1 dimensions. In 2þ 1

dimensions, there is again a significant drop at small Ê=â.
For the relativistic spacetime system, the plots in Fig. 1

are complemented by the large and small jEj limits shown

FIG. 2. Analogue spacetime Trlab ≔ T̂circ=T̂ lin as a function of v and Erlab ≔ Ê=â, for 0.1 ≤ v ≤ 0.95 and 0.1 ≤ Erlab ≤ 3. The plotting
range was again chosen for numerical stability, avoiding small and large values of v and small and large values of Erlab. Left in 3þ 1
dimensions; right in 2þ 1 dimensions. The data are as in Fig. 1, and Trlab ¼ Trat, but Erlab ¼ γEred. In the limit Ered → 0, outside the
plotted range, it is again the case that the 3þ 1 graph tends to a nonzero value while the 2þ 1 graph has a significant drop, tending to
zero linearly in Ered. In the near-sonic limit v → 1, outside the plotted range, the 3þ 1 graph tends to the constant value π=ð2 ffiffiffi

3
p Þ ≈ 0.9,

as seen from (5.5a), but the 2þ 1 graph drops to zero proportionally to −1= lnð1 − v2Þ, as seen from (5.5b); within the plotted range, this
drop shows as incipient for 0.9≲ v ≤ 0.95.

FIG. 1. Relativistic spacetime Trat ≔ Tcirc=T lin as a function of v and Ered ≔ E=a, for 0.1 ≤ v ≤ 0.95 and 0.1 ≤ Ered ≤ 3. The plotting
range was chosen for numerical stability, avoiding small and large values of v and small and large values of Ered. Left in 3þ 1
dimensions, evaluated from (2.6) with (3.2); right in 2þ 1 dimensions, evaluated from (2.6) with (4.4). In the limit Ered → 0, outside the
plotted range, the 3þ 1 graph tends to a nonzero value, as seen from (3.9), while the 2þ 1 graph has a significant drop, tending to zero
linearly in Ered, as seen from (4.10). The continuations of the graphs to the ultrarelativistic limit v → 1, outside the plotted range, are
shown in Fig. 4.
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in Fig. 3, and by the ultrarelativistic limit at fixed E=a
shown in Fig. 4.

VII. CONCLUSIONS AND EXPERIMENTAL
UPSHOTS

Motivated by recent proposals to observe the circular
motion Unruh effect in a condensed matter analogue
spacetime system [16,48,49], we have presented a detailed
comparison of the linear acceleration Unruh temperature
T lin and the circular acceleration Unruh temperature Tcirc,

for a massless scalar quantum field in its Minkowski
vacuum state, in spacetime dimensions 3þ 1 and 2þ 1.
We considered both a genuine relativistic spacetime system
and an analogue spacetime laboratory implementation, the
difference being that the laboratory system has no time
dilation, so that the systems are mapped to each other by
scaling the energies by the time dilation gamma factor. We
probed the field by a pointlike Unruh-DeWitt detector,
linearly coupled to the field, working in the limit of weak
interaction and long interaction time [3,54], neglecting the
detector’s backaction on the field. We obtained analytic
results in several limits and provided numerical results for
the interpolating regions.
An expected outcome was that the highest temperatures,

and hence the best experimental prospects, are at the
ultrarelativistic limit in the relativistic system and at the
near-sonic limit in the analogue spacetime system, both in
3þ 1 dimensions and in 2þ 1 dimensions. In the special
case of the 3þ 1 relativistic system, we in particular
confirmed the results obtained previously in [42]. An
unexpected outcome was, however, that in 2þ 1 dimen-
sions Tcirc contains a logarithmic suppression factor in
certain limits, including the near-sonic limit in the analogue
spacetime system: while the analogue spacetime temper-
ature grows without bound in the near-sonic limit in both
3þ 1 and 2þ 1 dimensions, the growth is slower in 2þ 1
dimensions. This suppression could help prospective ana-
logue spacetime experiments with an effective spacetime
dimension 2þ 1 to stay longer within the regime in which
our linear perturbation theory analysis remains valid.
While we leave it to future work to address effects due to

other phenomena that will inevitably be present in exper-
imental implementations, including finite size [55–57],
finite interaction time [58], nonzero ambient temperature
[53], dispersion relation nonlinearity and Lorentz non-
invariance [57,59,60], and the detector’s backaction on the
field [61–63], we shall end here with a comment on the
classical versus quantum nature of the circular motion
Unruh effect.
The Unruh-DeWitt detector analyzed in this paper is a

genuinely quantum detector coupled to a genuinely quan-
tum field. It was observed in [23] that some properties of
similar quantum systems can be modeled by classical
Gaussian noise when the quantum phenomena are analyzed
in terms of Bogoliubov coefficient techniques. In our
circular motion setting, where Bogoliubov coefficients
are not an applicable tool [55–57], could the response of
a localized Unruh-DeWitt detector in circular motion be
modeled and simulated by classical Gaussian noise?
The key observation here is that the two-point correlation

function of a Gaussian noise is the real part of the quantum
field’s Wightman function. A measurement of the two-
point correlation function of classical Gaussian noise (say,
of thermal fluctuations in a classical fluid) along a circular
trajectory would hence allow us to recover the part of the

FIG. 3. Relativistic spacetime Trat ≔ Tcirc=T lin as a function of
v in the limits of large and small jEj, showing the continuation of
the Fig. 1 plots to these limits. The dashed (blue) curve shows the
large jEj limit, in both 3þ 1 and 2þ 1 dimensions, evaluated
from (2.6) with (3.7). The solid (brown) curve shows the small jEj
limit in 3þ 1 dimensions, evaluated from (3.9). In 2þ 1
dimensions, the small jEj limit vanishes, as seen from the
analytic formula (4.10).

FIG. 4. Relativistic spacetime Trat ≔ Tcirc=T lin as a function of
Ered ≔ E=a in the ultrarelativistic limit, v → 1, showing the
continuation of the Fig. 1 plots to this limit. The dashed (blue)
curve is for 3þ 1 dimensions, evaluated from (3.12), interpolat-
ing between π=

ffiffiffi
3

p
≈ 1.8 as Ered → ∞ and π=ð2 ffiffiffi

3
p Þ ≈ 0.9 as

Ered → 0, as previously found in [42]. The solid (red) curve is for
2þ 1 dimensions, evaluated from (4.18), interpolating between
π=

ffiffiffi
3

p
≈ 1.8 as Ered → ∞ and 0 as Ered → 0, showing the falloff

proportional to 1= lnð1=EredÞ (4.19a) as Ered → 0.
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response functionF ðEÞ that is even in the energy E, but not
the part that is odd in E. Now, the amount of information
about F that is encoded in the even part depends on the
spacetime dimension. In 3þ 1 dimensions, the even part of
F (3.2) contains most of the information of interest, and in
particular it contains all of the dependence on the param-
eters of the orbit. In 2þ 1 dimensions, by contrast, the even
part of F (4.3) is a universal additive constant, independent
of the parameters of the orbit and even independent of E,
while all the information of interest is contained in the odd
part. This implies that a laboratory experiment to observe
the fluctuations responsible for the (2þ 1)-dimensional
circular motion Unruh effect by a localized Unruh-DeWitt-
type detector will need to be a genuinely quantum
experiment.
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APPENDIX A: ZEROES OF AN AUXILIARY
FUNCTION

In this Appendix, we locate and parametrize the zeroes of
the function f defined by

fðzÞ ≔ fþðzÞf−ðzÞ; ðA1aÞ

f�ðzÞ ≔
z
v
� sin z; ðA1bÞ

where 0 < v < 1 and z is a complex variable. Previous
discussion is given in [42,52].
Consider first the real zeroes. Each f�ðzÞ has a simple

zero at z ¼ 0 and no other real zeroes. Hence, the only real
zero of f is a double zero at z ¼ 0. Note that fðzÞ > 0 for
all real nonvanishing z.
To consider the nonreal zeroes, we parametrize v by

v ¼ α0
sinh α0

; ðA2Þ

where α0 > 0. As f is even, it suffices to give the zeroes in
the upper half-plane.
We write the zeroes in the upper half-plane as

zn ¼ iðαn þ iβnÞ, where n ∈ Z, αn > 0, and βn ∈ R. α0
is given by (A2) and β0 ¼ 0. For n ≠ 0, αn is the unique
positive zero of the function

gnðαÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
sinh α0
α0

α

sinh α

�
2

s
α0

sinh α0
coshα

þ arccos

�
sinh α0
α0

α

sinh α

�
þ jnjπ ðA3Þ

and

βn ¼ sgnðnÞ
�
arccos

�
sinh α0
α0

αn
sinh αn

�
þ jnjπ

�
: ðA4Þ

Even n gives the zeroes of f− and odd n gives the zeroes of
fþ. All these zeroes are simple.
The zeroes satisfy

0 < α0 < α�1 < α�2 < � � � ; ðA5aÞ

0 ¼ β0 < jβ�1j < jβ�2j < � � � : ðA5bÞ

STEFFEN BIERMANN et al. PHYS. REV. D 102, 085006 (2020)

085006-12



At jnj → ∞ with fixed v, the leading asymptotics are

αn ∼ ln

�ð2jnj þ 1Þπ sinh α0
α0

�
; ðA6aÞ

βn ∼ sgnðnÞ
�
jnj þ 1

2

�
π: ðA6bÞ

In the limit v → 1, (A2) gives α0 → 0 and

v ¼ 1 −
1

6
α20 þOðα40Þ; ðA7aÞ

α20 ¼ 6ð1 − vÞ þOðð1 − vÞ2Þ: ðA7bÞ

For n ≠ 0, αn and βn tend in this limit to the nonzero values
obtained from (A3) and (A4) after the replacement
sinh α0
α0

→ 1.

APPENDIX B: 2 + 1 SMALL GAP LIMIT

In this Appendix, we verify the 2þ 1 small gap property
(4.9) stated in subsection IV C.
Starting from (4.9), we write F corrðEÞ ¼ ð2πγÞ−1Pð2ERγv Þ,

where

PðbÞ ¼
Z

∞

0

dz sinðbzÞ
�
γ

z
−

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − v2sin2z

p
�

¼
Z

∞

0

dz sinðbzÞ
�
γ − 1

z
þ 1

z
−

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − v2sin2z

p
�

¼ πðγ − 1Þ
2

sgnðbÞ

þ b
Z

∞

0

dz
sinðbzÞ
bz

�
1 −

zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − v2sin2z

p
�

¼ πðγ − 1Þ
2

sgnðbÞ þ b
Z

∞

0

dz

�
1 −

zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − v2sin2z

p
�

þ oðbÞ: ðB1Þ

In (B1), we have added and subtracted a multiple of
sinðbzÞ=z under the integral, used the standard integralR∞
0 dz sinðbzÞ

z ¼ 1
2
πsgnðbÞ, and in the last step used a

dominated convergence argument to take the limit under
the integral. This establishes (4.9).

APPENDIX C: 2 + 1 ULTRARELATIVISTIC
LIMIT WITH FIXED E

In this Appendix, we verify the 2þ 1 fixed E ultra-
relativistic limit property (4.11) stated in subsection IV D.
From (4.3b), we have

F oddðEÞ ¼ −
1

2π
σγð2ERÞ; ðC1Þ

where

σγðbÞ ¼
Z

∞

0

dx
sinðbxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2x2 − sin2ð
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
xÞ

q ; ðC2Þ

after the change of variables z ¼ γvx. We shall show that

σγðbÞ ¼
π

2γ
sgnðbÞ þ oð1=γÞ ðC3Þ

when γ → ∞ with fixed b. Equation (4.11) then follows
from (C1).
Let b ≠ 0 be fixed. Using the standard integralR∞

0 dx sinðbxÞ
x ¼ 1

2
πsgnðbÞ, we rearrange (C2) as

σγðbÞ ¼
π

2γ
sgnðbÞ þ 1

γ
IγðbÞ; ðC4Þ

where

IγðbÞ ¼
Z

∞

0

dx
sinðbxÞ

x

��
1 −

sin2ð
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
xÞ

γ2x2

�−1=2
− 1

�
:

ðC5Þ

We need to show that IγðbÞ → 0 as γ → ∞.
Let M > 1 be a constant, and let γ be so large that

π=
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
< M. Let Ið1Þγ , Ið2Þγ , and Ið3Þγ denote, respec-

tively, the contributions to (C5) from 0 < x < π=
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
,

π=
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
< x < M, and M < x < ∞. We consider each

in turn.

In Ið3Þγ , the integrand goes pointwise to zero as γ → ∞
and is bounded in absolute value by the integrable function
A3=x3 where A3 is a γ-independent constant. Hence,

Ið3Þγ → 0 as γ → ∞ by dominated convergence.

In Ið2Þγ , we first write the integral to be over the
γ-independent interval 0 < x < M by defining the inte-
grand to have the value zero for 0 < x ≤ π=

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
. An

elementary argument then shows that the integrand goes
pointwise to zero as γ → ∞ and is bounded in absolute

value by a γ-independent constant. Hence, Ið2Þγ → 0 as γ →
∞ by dominated convergence.

In Ið1Þγ , changing the integration variable by x ¼
z=

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
gives

Ið1Þγ ðbÞ ¼
Z

π

0

dz
sin

	
bzffiffiffiffiffiffiffi
γ2−1

p



	
zffiffiffiffiffiffiffi
γ2−1

p

 �

1ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p

×

�
1 −

�
γ2 − 1

γ2

�
sin2z
z2

�
−1=2

−
1ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p �
: ðC6Þ
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In (C6), the integrand goes to zero pointwise at each
positive z as γ → ∞, and an elementary argument using
the properties of sin z

z shows that the integrand is bounded
in absolute value by a γ-independent constant. Hence,

Ið1Þγ → 0 as γ → ∞ by dominated convergence.
This completes the argument.

APPENDIX D: 2 + 1 ULTRARELATIVISTIC LIMIT
WITH FIXED E=a

In this Appendix, we verify the 2þ 1 ultrarelativistic
limit properties stated in subsection IV E.

1. Taking the limit

There are two ways to obtain the limit.
One way is to start from (4.3b) and write z ¼ y=γ, giving

F oddðEÞ ¼ −
1

2π

Z
∞

0

dy
sin ð2ER

γ2v yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2y2 − γ2ðγ2 − 1Þsin2ðy=γÞ

p :

ðD1Þ

Now take γ → ∞with 2ER=ðγ2vÞ fixed. The function under
the square root in (D1) has the pointwise limit y2ð1þ 1

3
y2Þ,

and taking the limit under the integral can be justified by
breaking the domain into half-periods of the sine, combining
pairwise the contributions from adjacent intervals, and
invoking a dominated convergence argument to take the
limit under the sum. (Evidence for the existence of a
dominating summable function was obtained numerically
from Maple.) Writing finally y ¼ ffiffiffi

3
p

x, we obtain (4.13a).
Another way is to start from (4.7) and take α0 → 0 with

2ERα0=ðγvÞ fixed. The contribution fromF corrþ vanishes by
a dominated convergence argument in (4.7c). For F corr

0 ,
writing α ¼ α0y in (4.7b) gives

F corr
0 ðEÞ ¼ sgnðEÞ

2πα0γv

Z
∞

1

dy
exp ð− 2jEjRα0

γv yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α−40 ðsinh2ðα0yÞ− y2sinh2α0Þ

p :

ðD2Þ

The function under the square root in (D2) has the pointwise
limit 1

3
y2ðy2 − 1Þ and is bounded below by this limit. Taking

the limit α0 → 0 under the integral is hence justified by
dominated convergence, with the outcome (4.13b).
To verify that the functions appearing in these limits

satisfy (4.16), we start from (4.14a) and proceed as in
Appendix C of [53],

sgnðqÞGðqÞ ¼ 1

2

Z
∞

−∞
dx

sinðjqjxÞ
x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p

¼ π

2
þ 1

2

Z
∞

−∞
dx sinðjqjxÞ

�
1

x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p −
1

x

�

¼ π

2
−
i
2

Z
∞

−∞
dxeijqjx

�
1

x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p −
1

x

�

¼ π

2
−
i
2

Z
C
dz

eijqjz

z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p

¼ π

2
−
Z

∞

1

dy
e−jqjy

y
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

p
¼ π

2
− sgnðqÞHðqÞ; ðD3Þ

where the contour C is along the real axis from −∞ to ∞
except for passing the pole at z ¼ 0 in the upper half-plane.
C is then deformed to the upper half-plane, encircling the
branch point at z ¼ i and running on both sides of the cut at
z ¼ iy with y > 1. The last equality uses (4.14b). This
gives (4.16).

2. Small argument form of G (4.14a)

To find the small argument form of G (4.14a), we
introduce a positive constant M and split (4.14a) as

GðqÞ ¼ qðI>ðqÞ þ I<ðqÞÞ; ðD4aÞ

I>ðqÞ ¼
Z

∞

M
dz

sin z

z2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðq=zÞ2

p ; ðD4bÞ

I<ðqÞ ¼
Z

M

0

dz
sin z

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ q2

p ; ðD4cÞ

recalling that q ≠ 0 by assumption and using the substi-
tution x ¼ z=q.
From (D4b), we have

I>ðqÞ ¼
Z

∞

M
dz

sin z
z2

þOðq2Þ

¼ sinM
M

þ
Z

∞

M
dz

cos z
z

þOðq2Þ; ðD5Þ

first expanding in q and then integrating by parts. From
(D4c), we have

I<ðqÞ ¼
Z

M

0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ q2

p þ
Z

M

0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ q2

p �
sin z
z

− 1

�

¼ arsinhðM=jqjÞ þ
Z

M

0

dz
z

�
sin z
z

− 1

�
þ oð1Þ

¼ lnð2M=jqjÞ þ
Z

M

0

dz
z

�
sin z
z

− 1

�
þ oð1Þ; ðD6Þ

first splitting the integrand, then evaluating the elementary
integral of the first term and taking the limit in the second
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term by dominated convergence, and finally expanding the
arsinh.
Combining (D5) and (D6) gives

I>ðqÞ þ I<ðqÞ ¼ lnð2=jqjÞ þ
Z

M

0

dz
z

�
sin z
z

− 1

�
þ sinM

M

þ lnM þ
Z

∞

M
dz

cos z
z

þ oð1Þ

¼ lnð2e1−γE=jqjÞ þ oð1Þ; ðD7Þ
where γE is Euler’s constant, and theM-independent sum of
the individually M-dependent terms has been evaluated by
taking the limit M → 0 and using the small argument
expansion of the cosine integral from 6.2.13 in [80]. Hence,

GðqÞ ¼ q lnð2e1−γE=jqjÞ þ oðqÞ; ðD8Þ

which is (4.15a).

3. Large argument form of H

To find the large argument form of H (4.14b), we first
substitute y ¼ 1þ r2 and then use the stationary point
expansion [78], obtaining

HðqÞ ¼ sgnðqÞ
Z

∞

0

dr
2e−jqjr2

ð1þ r2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ r2

p

¼ sgnðqÞ
ffiffiffiffiffiffiffiffi
π

2jqj
r

e−jqjð1þOðjqj−1ÞÞ; ðD9Þ

which is (4.15b).

APPENDIX E: ANALOGUE SPACETIME
ASYMPTOTICS

In this Appendix, we verify the asymptotic temperature
formulas (5.4) for the analogue spacetime implementation.
To verify (5.4), we use (3.13a), which is allowed because

the v → 1 limit (3.12) is uniform in E=a.
To verify (5.4b), we note from (4.3b) that

F oddðEÞ ¼ −
1

2π
ργð2ÊR=vÞ; ðE1Þ

where

ργðbÞ ¼
1

γ

Z
∞

0

dz
sinðbzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 − ð1 − γ−2Þsin2z
p : ðE2Þ

Writing x ¼ γz=
ffiffiffi
3

p
in (4.14a), we hence have

γðργðbÞ−Gð
ffiffiffi
3

p
b=γÞÞ

¼
Z

∞

0

dzsinðbzÞ
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2− ð1− γ−2Þsin2z

p −
1

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ−2þ z2=3

p �
:

ðE3Þ

When γ → ∞with fixed b, the right-hand side of (E3) tends
to hðbÞ, where

hðbÞ ≔
Z

∞

0

dz
sinðbzÞ

z

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðsin2zÞ=z2
p −

ffiffiffi
3

p

z

�
: ðE4Þ

Taking the limit under the integral can be justified by
breaking the integral to 0 < z < 1 and z > 1, using
dominated convergence for 0 < z < 1, and using argu-
ments similar to those in Appendix D for z > 1. Using
(4.15a), we hence have

γργðbÞ ¼
ffiffiffi
3

p
b ln

�
2e1−γEγffiffiffi

3
p jbj

�
þ hðbÞ þ oð1Þ; ðE5Þ

so that

F oddðEÞ ≈ −
ffiffiffi
3

p

π

ln γ
γ

Ê
â
; ðE6Þ

writing R ≈ 1=â as v → 1. Equation (5.4b) now follows
from (E6) and (4.3a).
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