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We analyze the thermodynamics of a quantum system in a trajectory of constant velocity that interacts
with a static thermal bath. The latter is modeled by a massless scalar field in a thermal state. We consider
two different couplings of the moving system to the heat bath, a coupling of the Unruh-DeWitt type and a
coupling that involves the time derivative of the field. We derive the master equation for the reduced
dynamics of the moving quantum system. It has the same form with the quantum optical master equation,
but with different coefficients that depend on velocity. This master equation has a unique asymptotic state
for each type of coupling, and it is characterized by a well-defined notion of heat-flow. Our analysis of the
second law of thermodynamics leads to a surprising equivalence: a moving heat bath is physically
equivalent to a mixture of heat baths at rest, each with a different temperature. There is no unique rule for
the Lorentz transformation of temperature. We propose that Lorentz transformations of thermodynamic
states are well defined in an extended thermodynamic space that is obtained as a convex hull of the standard
thermodynamic space.

DOI: 10.1103/PhysRevD.102.085005

I. INTRODUCTION

A. Motivation

In this paper, we analyze the thermodynamics of a
quantum system in a trajectory of constant velocity that
interacts with a static thermal bath. This system turns out
to have a well-defined notion of heat flow. More impor-
tantly, it manifests an intriguing property. The heat bath,
in motion in the reference frame of the quantum system,
is equivalent to a continuum of heat baths at rest with
respect to the moving system, each with a different
temperature.
This paper is partly motivated by the long-standing

puzzle of the relativistic transformations of temperature.
This puzzle originates from the early days of special
relativity. Von Mosengeil [1], Planck [2], and Einstein
[3] analyzed Lorentz transformations for a body of temper-
ature T in its rest frame. They proposed that the temperature
T 0 for an observer that moves at velocity v with respect to
the body is T 0 ¼ T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
< T. This view was accepted

for more than 50 years, until it was challenged by Ott [4].
He argued that T 0 ¼ T=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
> T. Arzeliès agreed with

Ott’s formula, but proposed a different law of transforma-
tion for the internal energy [5]. A few years later,
Landsberg proposed that the temperature is a Lorentz
scalar, i.e., T 0 ¼ T [6]. Cavalleri and Salgarelli agreed that
the temperature is a scalar, but they asserted that the

Clausius formula dQ ¼ TdS holds only in a system’s rest
frame [7]. In their perspective, the familiar rules of
thermodynamics are valid only in the rest frame.
The debate about the correct transformation rules for

thermodynamic variables has been raging ever since the
1960s, and still there is no consensus—for reviews see,
Ref. [8]. Part of the problem is the lack of concrete
operational ways of measuring thermodynamic quantities
in moving systems. In 1995, Costa andMatsas [9] proposed
a nonthermodynamic type of measurement: an Unruh-
DeWitt (UDW) detector moving with velocity v and
interacting with a thermal scalar field. An UDW detector
[10–12] is a quantum system that moves along a classical
trajectory, and interacts with a quantum field through a
dipole coupling. The UDW model and its generalizations
originate from studies of particle creation in black holes and
in accelerated reference frames.
The expression derived in Ref. [9] for the detection rate

of an UDW detector cannot be brought into the character-
istic Planckian form of black-body radiation. Landsberg
and Matsas took this as an indication that a universal and
continuous Lorentz transformation of temperature is
impossible [13]—see also [14] for a critique.
However, a particle detector is not a thermometer. The

expression for the detection rate that was employed in
Ref. [9] follows from time-dependent perturbation theory,
and it is valid at times much smaller than the relaxation
time of the detector. It describes a system that has not come
into equilibrium with the field bath. In contrast, ordinary
thermometers give reliable records only after they have
established equilibrium with the larger system.
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The ambiguous use of the word “detector” is often a
source of confusion. If a detector is literally viewed as a
measuring apparatus that records particles—and leaves
a macroscopic measurement record—then the perturbative
expression for the detection rate suffices [15]. However, the
UDW Hamiltonian can also be used to describe a small
microscopic system that interacts with a quantum field, for
example, an atom or a molecule. Rather misleadingly, these
systems are also referred to as detectors, even if they leave
no measurement records.
The latter type of systems must be described by the

theory of open quantum systems [16,17], which takes into
account dissipation, noise, and backreaction effects. In
open quantum systems, time evolution is described by a
master equation, which enables a thermodynamic analysis
[18,19]. For accelerated UDW detectors and the implica-
tions to the Unruh effect in this context, see [20–22].
We will use the theory of open quantum systems in order

to analyze the dynamics of moving thermometers, and,
more generally, the interaction of moving quantum thermo-
dynamic systems with thermal reservoirs.

B. Analysis and results

Our model consists of a small quantum system (denoted
by S). We will refer to S as a quantum probe. The center of
momentum (COM) of S moves at a constant velocity with
respect to a reference frame Σ. The Hamiltonian of S
internal degrees of freedom, i.e., degrees of freedom that
are not related to motion of the COM. The probe interacts
with a massless scalar field ϕ̂ðxÞ at a thermal state of
temperature T with respect to Σ.
We consider two different couplings of the small system

to the field bath: first, the standard UDW coupling, where S
couples to the field operator ϕ̂ðxÞ, and second, a coupling
of S to the time derivative of ϕ̂ðxÞ. The latter coupling
provides a more accurate representation of the dipole
interaction of atoms to the electromagnetic field.
Then, we construct the second-order master equation

that describes the reduced dynamics of the system S. Past
analyses of the open system dynamics of moving UDW
detectors have shown that non-Markovian effects may be
important [21–24], but their contribution is small at long
times. Hence, the Markovian approximation inherent in the
second-order master equation suffices for describing the
approach to equilibrium.
Our results are the following:
(i) The system S evolves according to the quantum-

optical master equation. The only difference is that
the coefficients of the master equation that represent
the mean number of bath quanta do not have the
usual Planckian form.

(ii) There exists unique asymptotic states for many
choices of self-dynamics for S. The asymptotic
states do not depend on the initial state of the

system or on the strength of the system-field
interaction (i.e., the dissipation rate). Still, they
are not universal: each type of coupling leads to a
different asymptotic state.

(iii) The average energy in the rest frame of S defines an
empirical temperature for the bath.

(iv) There is a well-defined notion of “hotness”; i.e., we
can say when the moving probe is hotter or colder
than the bath as reflected in the direction of the
heat flow.

(v) The second law of thermodynamics is satisfied; i.e.,
entropy production is positive.

(vi) The moving heat bath is equivalent to a continuum
of heat baths in the rest frame of S, with temper-
atures T 0 in the range

T
1 − jvj
1þ jvj ≤ T 0 ≤ T

1þ jvj
1 − jvj : ð1Þ

The contribution of each heat bath at temperature
T 0 to entropy production is weighted by a proba-
bility distribution that depends on the type of
coupling.

Evidently, there is no Lorentz transformation for temper-
ature. A static observer cannot assign a unique absolute
temperature to a moving heat bath. Nonetheless, the
moving heat bath still behaves like a thermodynamic
system, albeit with significant differences from ordinary
thermodynamics. First, we cannot assign a unique absolute
temperature to the bath, even if the empirical temperatures
are well defined. Second, asymptotic states for a given
temperature and velocity are not universal.
A spacetime-covariant thermodynamic description

likely requires additional physical observables, in order
to define an extended thermodynamic state space. We
propose that the extended state space contains convex
combination of ordinary thermodynamic states, for exam-
ple, convex combinations

P
i ciρ̂βi of Gibbs states ρ̂βi at

different temperatures βi. This idea appears natural in the
context of our results. However, further analysis is
required, in order to test this proposal and in order to
formulate a consistent relativistic thermodynamics for
quantum systems.
The structure of this paper is the following. In Sec. II,

we derive the master equation for a moving quantum
system that interacts with a massless scalar field in a
thermal state. In Sec. III, we identify the asymptotic states
for simple choices of the Hamiltonian. In Sec. IV, we
undertake a thermodynamic analysis of the master equa-
tion with an emphasis on the three laws of thermody-
namics. In Sec. IV, we propose a rule for the relativistic
transformation of thermodynamic states, and we construct
the associated state space. In the final section, we discuss
future directions.
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II. MASTER EQUATION FOR A MOVING
QUANTUM SYSTEM THAT INTERACTS

WITH A THERMAL BATH

A. The model

We consider a composite quantum system that consists
of a microscopic probe S and a quantum scalar field. The
system is described by a Hilbert spaceHS ⊗ Hϕ, whereHS

is the Hilbert space of the probe andHϕ is the Hilbert space
of the field.
The Hamiltonian is

Ĥ ¼ ĥ ⊗ Î þ Î ⊗ Ĥϕ þ V̂; ð2Þ

where ĥ is the Hamiltonian that generates time translations
with respect to the proper time parameter τ of S.
The Hamiltonian Ĥϕ describes a free massless scalar

field,

Ĥϕ ¼ 1

2

Z
d3xðπ̂2 þ ð∇ϕ̂Þ2Þ; ð3Þ

where π̂ðxÞ is the conjugate momentum of the field ϕ̂ðxÞ.
The Heisenberg picture fields are defined as ϕ̂ðXÞ ≔
eiĤϕtϕ̂ðxÞe−iĤϕt, where x ¼ ðt; xÞ.
The interaction term is of the general form,

V̂ ¼ λÂ ⊗ ÔðxðτÞÞ; ð4Þ

where λ is a coupling constant, Â is a self-adjoint operator
on HS, xðτÞ is the path of the detector, and ÔðxÞ is a local
composite operator for the scalar field. In the interaction
picture, V̂ involves the field operator ÔðxðτÞÞ. In this paper,
we focus on trajectories

xðτÞ ¼ ðcosh u; sinh u; 0; 0Þτ; ð5Þ

where u is the rapidity of the trajectory, with associated
velocity v ¼ tanh u.
We assume a factorized initial state ρ̂0 ⊗ ρ̂ϕ. We con-

sider a stationary, space-translation-invariant, and rotation-
invariant state for the quantum field, eventually to be
identified with a Gibbs state at temperature β−1,

ρ̂ϕ ¼ e−βĤϕ

Tre−βĤϕ
: ð6Þ

The master equation for the probe depends on the
Wightman function [25]

GðxÞ ≔ Tr½ÔðxÞÔð0Þρ̂ϕ�: ð7Þ

In this paper, we will consider rotation-invariant
coupling operators ÔðxÞ. In particular, we will analyze
two cases:

(i) ÔðxÞ ¼ ϕ̂ðxÞ. This is the usual UDW coupling;

(ii) ÔðxÞ ¼ _̂ϕðxÞ. This time-derivative (TD) coupling
best simulates the electromagnetic dipole interaction.1

The Wightman function (7) for the UDW coupling takes
the form

GUdWðxÞ

¼ G0ðxÞ þ
1

4π2r

Z
∞

0

dknk½sin½kðtþ rÞ� − sin½kðt − rÞ��;

ð8Þ
where r ¼ jxj,

G0ðxÞ ¼ − lim
ϵ→0þ

1

4π2½ðt − iϵÞ2 − r2� ð9Þ

is the Wightman function of the vacuum, and nk is the
expected number of particles of momentum k. Due to
spherical symmetry nk depends only on k ¼ jkj. For a
Gibbsian field state, nk ¼ ðeβk − 1Þ−1.
The Wightman function (7) for the TD coupling is

GTDðxÞ ¼ −
∂2

∂t2GUdWðxÞ: ð10Þ

In the open quantum systems description, the effect of
the environment is contained in the bath two-time corre-
lation function. In the present context, the bath correlation
function coincides with the Wightman function G½xðτÞ −
xðτ0Þ� evaluated at a pair of points, xðτÞ and xðτ0Þ, along the
trajectory of the probe. For paths given by Eq. (5), the bath
correlation function is static, i.e., G½xðτÞ − xðτ0Þ� is a
function gðτ − τ0Þ only of the difference τ − τ0 [26].
For the UDW coupling,

gUdWðτÞ¼− lim
ϵ→0þ

1

4π2ðτ− iϵÞ2

þ 1

4π2jτjsinhu
Z

∞

0

dknk½sinðeukτÞ−sinðe−ukτÞ�:

ð11Þ

For the TD coupling,

gTDðτÞ¼ lim
ϵ→0þ

1þ2coshð2uÞ
2π2ðτ− iϵÞ4

þ 1

4π2jτjsinhu
Z

∞

0

dkk2nk½sinðeukτÞ−sinðe−ukτÞ�:

ð12Þ

1The electromagnetic dipole coupling is of the form d · E,
where d is the dipole moment, and E ¼ _A is the electric field. If
we assume that the direction of the dipole moment fluctuates
homogeneously, then the Wightman function for the EM field
coincides with that of the scalar field with TD coupling, modulo a
multiplicative factor.
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B. The master equation

Given the Hamiltonian (2) and the factorized initial states,
the reduced dynamics of the probe is expressed in terms of
the second-order master equation. The master equation can
be derived in different ways. One way involves the van Hove
limit, i.e., the limit λ → 0 with λ2t fixed [16]. A different
approach involves the successive use of the Born, Markov
and rotating wave approximations [17].
To proceed, we define the “transition operators” as

Âω ¼
X

n;m;ϵm−ϵn¼ω

hnjÂjmijnihmj; ð13Þ

which are indexed by the set of all possible energy
differences ω ¼ ϵm − ϵn.
By construction, transition operators satisfy the identities

X
ω

Âω ¼ Â; Â−ω ¼ Â†
ω; ð14Þ

and the commutation relations

½ĥ; Âω� ¼ −ωÂω; ð15Þ

½ĥ; Â†
ω� ¼ ωÂω; ð16Þ

½ĥ; Â†
ωÂω� ¼ ½ĥ; ÂωÂ

†
ω� ¼ 0: ð17Þ

The second-order master equation for the reduced
density matrix ρ̂ of the probe is

∂ρ̂
∂τ ¼ −i½ĥ; ρ̂� þ λ2

X
ω

g̃ðωÞðÂωρ̂Â
†
ω − Â†

ωÂωρ̂Þ

þ λ2
X
ω

g̃�ðωÞðÂ†
ωρ̂Âω − ρ̂Â†

ωÂωÞ; ð18Þ

where

g̃ðωÞ ¼
Z

∞

0

dτeiωτgðτÞ: ð19Þ

We split g̃ðωÞ into its real and imaginary part while
absorbing the constant λ2: λ2g̃ðωÞ ¼ 1

2
ΓðωÞ þ iΔðωÞ,

where

ΓðωÞ ¼ λ2½g̃ðωÞ þ g̃�ðωÞ� ¼ 2λ2
Z

∞

0

dτ cosðωτÞgðτÞ;

ð20Þ

ΔðωÞ ¼ λ2

2i
½g̃ðωÞ − g̃�ðωÞ� ¼ λ2

Z
∞

0

dτ sinðωτÞgðτÞ: ð21Þ

Then, the master equation becomes

∂ρ̂
∂τ ¼ −i½ĥþ ĥLS; ρ̂�

þ
X
ω

ΓðωÞ
�
Âωρ̂Â

†
ω −

1

2
Â†
ωÂωρ̂ −

1

2
ρ̂Â†

ωÂω

�
; ð22Þ

where

ĥLS ≔
X
ω

ΔðωÞÂ†
ωÂω ð23Þ

is a correction to the Hamiltonian, which implements a
Lamb shift of the energy levels.
Equations (11) and (12) imply that ΓðωÞ is of the form

ΓðωÞ ¼ γðjωjÞ
�
1þ NðωÞ; ω > 0

NðjωjÞ; ω < 0
; ð24Þ

where the explicit form of γðωÞ and NðωÞ will be given in
Sec. II C.
The master equation becomes

∂ρ̂
∂τ ¼ −i½ĥþ ĥLS; ρ̂� þ

X
ω>0

γðωÞ½NðωÞ

þ 1�
�
Âωρ̂Â

†
ω −

1

2
Â†
ωÂωρ̂ −

1

2
ρ̂Â†

ωÂω

�

þ
X
ω>0

γðωÞNðωÞ
�
Â†
ωρ̂Âω −

1

2
ÂωÂ

†
ωρ̂ −

1

2
ρ̂ÂωÂ

†
ω

�
:

ð25Þ

Equation (25) is of the same form with the quantum
optical master Eq. [17]. The only difference is that the
expected number of quantaNðωÞ is not given by the Planck
distribution.

C. The coefficients in the master equation

1. UDW coupling

The coefficients γðωÞ and NðωÞ are defined for positive
ω as

γUdWðωÞ ¼
λ2

2π
ω; ð26Þ

NUdWðωÞ ¼
1

2ω sinh u

Z
ωeu

ωe−u
nkdk: ð27Þ
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In deriving Eq. (27), we used the identityZ
∞

0

dτ cosðωτÞ sinðaτÞτ−1 ¼ π

4
½sgnða−ωÞ þ sgnðaþωÞ�:

ð28Þ

For an initial thermal state of the field, Eq. (27) yields

NUdWðωÞ ¼
1

2βω sinh u
log

1 − e−βωe
u

1 − e−βωe
−u : ð29Þ

The function NUdWðωÞ has the following asymptotic
behavior.

(i) Low-velocity regime, juj ≪ 1: NUdWðωÞ ¼
nω þ 1

2
ωn0ωu2þ;….

(ii) High-velocity regime, juj ≫ 1: NUdWðωÞ ¼
1
βω e

−juj½juj − logðβωÞ�.
(iii) Low-temperature regime, βωe−juj ≫ 1: NUdWðωÞ ¼

e−βωe
−juj

2βω sinh juj.
(iv) High-temperature regime, βωejuj ≪ 1: NUdWðωÞ ¼

1
βω

u
sinhu.

In comparison, the Planck distribution nω behaves as e−βω

for βω ≫ 1 and as 1
βω for βω ≪ 1. It follows that

(i) NUdWðωÞ < nω, as βω → 0,
(ii) NUdWðωÞ > nω, as βω → ∞.
The contribution to the Lamb shift is

ΔUdWðωÞ ¼ sgnðωÞ
�
Δ0 þ

λ2

8π2 sinh u

×
Z

∞

0

dknk log

���� ðωþ ke−uÞðω − keuÞ
ðω − ke−uÞðωþ keuÞ

����
�
;

ð30Þ

where the integral Δ0 ¼ − λ2

4π2

R∞
0 dτ sinðjωjτÞ=τ2 diverges

at τ ¼ 0. We regularize by introducing a cutoff ϵ in the
lower range of integration. Then,

Δ0 ¼
λ2jωj
4π2

logðeγ−1jωjϵÞ; ð31Þ

where here γ stands for the Euler-Macheronni constant.

2. TD coupling

The coefficients γðωÞ and NðωÞ are defined for positive
ω as

γTDðωÞ ¼
λ2½1þ 2 coshð2uÞ�

6π
ω3; ð32Þ

NTDðωÞ ¼
3

2ω3 sinh u½1þ 2 coshð2uÞ�
Z

ωeu

ωe−u
nkk2dk: ð33Þ

For an initial thermal state of the field, Eq. (27) yields

NTDðωÞ ¼
3

2β3ω3 sinh u½1þ 2 coshð2uÞ�
× ½Fðβωe−uÞ − FðβωeuÞ�; ð34Þ

where the function

FðxÞ ¼ 2g3ðe−xÞ þ 2xg2ðe−xÞ þ x2g1ðe−xÞ ð35Þ
is expressed in terms of the polylogarithm functions
glðxÞ ¼

P
n¼1

xn

nl
. Note that g1ðxÞ ¼ − logð1 − xÞ, and that

glð1Þ ¼ ζðlÞ, where ζ is Riemann’s zeta function.
The function NTDðωÞ has the following asymptotic

behavior.
(i) Low-velocity regime, juj ≪ 1: NTDðωÞ ¼ nωþ

ð1
2
ωn0ω þ 2

3
nωÞu2þ;….

(ii) High-velocity regime, juj ≫ 1: NTDðωÞ¼ 6ζð3Þ
β3ω3 e−3juj.

(iii) High-frequency regime, βωe−juj ≫ 1: NTDðωÞ ¼
3e−βωe

−juj

2βω sinh juj½1þcoshð2uÞ�.
(iv) Low-frequency regime, βωejuj ≪ 1: NTDðωÞ ¼

1
βω

3 cosh u
1þ2 coshð2uÞ.

For small u,NTDðωÞ is practically indistinguishable from
NUdWðωÞ. For large u, NTDðωÞ is significantly smaller than
NUdWðωÞ. This behavior is demonstrated graphically
in Fig. 1.
The contribution to the Lamb shift is

ΔTDðωÞ ¼ sgnðωÞ
�
Δ̃0 þ

λ2

8π2 sinh u

×
Z

∞

0

dkk2nk log

���� ðωþ ke−uÞðω − keuÞ
ðω − ke−uÞðωþ keuÞ

����
�
;

ð36Þ
where the integral

Δ̃0 ¼
λ2½1þ 2 coshð2uÞ�

2π2

Z
∞

0

dτ sinðjωjτÞ=τ4 ð37Þ

diverges at τ ¼ 0. We regularize by introducing a cutoff ϵ in
the lower range of integration. As ϵ → 0,

Δ̃0 ¼
λ2½1þ 2 coshð2uÞ�jωj3

12π2

�
3

ðωϵÞ2 þ logðjωjϵeγ−1Þ
�
:

ð38Þ

D. Special limits

Nonrelativistic limit.—This limit corresponds to the regime
juj ≪ 1. By the analysis of the previous section, NðωÞ ¼
nω þOðjuj2Þ, and we recover the standard optical master
equation for a heat bath at temperature T. The first correction
is of order Oðjuj2Þ and it depends on the type of coupling.
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Ultrarelativistic limit.—This limit corresponds to
juj → ∞. In this regime, NðωÞ is suppressed exponentially
enjuj for some power n. Hence, very fast probes see the field
as though it is in its ground state.
Classical limit..—The function NðωÞ depends on ℏ only

through the combination ℏω. This means that there is no
classical limit (ℏ → 0). This is not surprising, the classical
limit does not exist even for the usual quantum optical master
equation. The reason is that there is no classical thermal state
for the electromagnetic field: the classical statistical mechan-
ics of the electromagnetic field is not consistent.
Hence, there is no way to relate our results to derivations

of the transformation laws for temperature that are based on
classical physics. To this end, it is necessary to consider a
thermal environment with a good classical limit. This is
the case, for example, of a bosonic or fermionic ideal gas,
with particles of finite mass. This reduces to a classical
ideal gas in the appropriate regime. The challenge there is
to construct a physically meaningful coupling between the
quantum probe and the environment. Wewill undertake this
work in a future publication. Note that even in such
systems, there is no a priori guarantee of a correspondence
to classical thermodynamics, at least within the approxi-
mation of the second-order master equation [27].
Stochastic limit.—If the probe can be described in terms

of a position and a momentum variable (for example, a
harmonic oscillator), then the reduced dynamics can be
solved using path integrals, through the Feynman-Vernon
influence functional method [28]. Indeed, in this case our
system is equivalent to a Caldeira-Leggett model [29] with

an ultra-Ohmic environment—see Ref. [30]. In these
systems, the influence functional technique allows one to
pass to a semiclassical limit of a particle moving under a
stochastic force with correlator given by a component of the
influence functional, known as the “noise kernel.” Hence,
one obtains the classical stochastic limit of a particle
moving under a stochastic force.
In principle, this type of analysis is possible in the present

system. We expect the noise kernel to depend explicitly on
the function NðωÞ. Hence, the semiclassical limit of the
probe would involve a Langevin equation for thermal noise
that explicitly depends on the probe’s velocity.

III. ASYMPTOTIC STATES

A. Two-level atom

We consider the special case of a two-level atom of
frequency Ω0. The Hamiltonian is ĥ ¼ 1

2
Ω0σz, and the

coupling operator is Â ¼ σ̂1. Then, there are only two
transition operators: ÂΩ0

corresponds to σ̂− and Â−Ω0

corresponds to σ̂þ. The master equation takes the form

∂ρ̂
∂τ ¼ −iΩ½σ̂3; ρ̂� þ Γ0½NðΩ0Þ

þ 1�
�
σ̂−ρ̂σ̂þ −

1

2
σ̂þσ̂−ρ̂ −

1

2
ρ̂σ̂þσ̂−

�

þ Γ0NðΩ0Þ
�
σ̂þρ̂σ̂− −

1

2
σ̂−σ̂þρ̂ −

1

2
ρ̂σ̂−σ̂þ

�
; ð39Þ

FIG. 1. (i)NUdW as a function of βω for different values of u. (ii) NTD as a function of βω for different values of u. (iii)NUdW vsNTD as
a function of βω, for u ¼ 0.4. (iv) NUdW vs NTD as a function of βω, for u ¼ 0.9.
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where Γ0 ≔ γðΩ0Þ is the decay coefficient for the atom in vacuum and Ω ¼ Ω0 þ 2ΔðΩ0Þ is the Lamb-shifted excitation
frequency.
For a general initial pure state jψ0i ¼ eiϕ cos θ

2
j1i þ sin θ

2
j0i, the solution to the master equation is

ρðτÞ ¼ 1

2

0
B@ 1þ e−Γ0ð2Nþ1Þτ cos θ − 1−e−Γ0ð2Nþ1Þτ

2Nþ1
e−

Γ0
2
ð2Nþ1Þτ−iΩτþiϕ sin θ

e−
Γ0
2
ð2Nþ1ÞτþiΩτ−iϕ sin θ 1 − e−Γ0ð2Nþ1Þτ cos θ þ 1−e−Γ0ð2Nþ1Þτ

2Nþ1

1
CA ð40Þ

where N ¼ NðΩ0Þ.
For an atom in the ground state (θ ¼ π), and for Γ0τ ≪ 1,

ρ̂11ðtÞ ¼ Γ0Nτ; i.e., the excitation rate is equal to Γ0NðΩ0Þ.
This reproduces the result of Ref. [9] for the UDW
coupling.
There is a unique asymptotic state

ρðτÞ ¼ 1

2NðΩ0Þ þ 1

�
NðΩ0Þ 0

0 NðΩ0Þ þ 1

�
: ð41Þ

The expectation value of energy is

hĥi ¼ −
Ω0

2½2NðΩ0Þ þ 1� : ð42Þ

The asymptotic state is not universal: it depends on
NðΩÞ, which depends on the type of coupling.

B. Harmonic oscillator

For an harmonic oscillator of mass m and frequency Ω0,
the Hamiltonian is ĥ ¼ Ω0â†â, and the coupling operator is
x̂ ¼ 1ffiffiffiffiffiffiffiffiffi

2mΩ0

p ðâþ â†Þ. There are only two transition oper-

ators ÂΩ0
¼ 1ffiffiffiffiffiffiffiffiffi

2mΩ0

p â and Â−Ω0
¼ 1ffiffiffiffiffiffiffiffiffi

2mΩ0

p â†.

The master equation is

d
dτ

ρ̂ðτÞ ¼ −iΩ0½â†â; ρ̂�

þ Γ0ðNðΩ0Þ þ 1Þ
�
â ρ̂ â† −

1

2
â†â ρ̂−

1

2
ρ̂â†â

�

þ Γ0NðΩ0Þ
�
â†ρ̂ â−

1

2
ââ†ρ̂ −

1

2
ρ̂ â â†

�
;

where Γ0 ¼ γðΩ0Þ
2mω0

.
There is a unique asymptotic state with matrix elements

in the energy basis

ρnn0 ¼
1

NðΩ0Þ þ 1

�
NðΩ0Þ

NðΩ0Þ þ 1

�
n
δnn0 ; ð43Þ

with mean energy

hĥi ¼ Ω0NðΩ0Þ: ð44Þ

Again, the asymptotic state depends only on NðΩ0Þ. It is
unique for a given coupling, but it differs for different
couplings.

C. Three-level atom

The last case considered here is that of a three-level atom
with energy levels jai; jbi; jci and associated energies
Ea < Eb < Ec. For a dipole coupling with the EM field,
one of the coupling constants for the three possible
transitions must be zero. We consider the case that the
transitions a ↔ b is forbidden. We denote the transition
a ↔ c as 1 with associated frequency Ω1 ¼ Ec − Ea
and coupling constant λ1, and the transition b ↔ c as 2
with associated frequency Ω2 ¼ Ec − Eb and coupling
constant λ2.
We choose the energy of the ground state Ea ¼ 0, so that

the self-Hamiltonian reads

ĥ ¼ ðΩ1 −Ω2Þjbihbj þΩ1jcihcj: ð45Þ

The interaction term is

V̂ ¼ ðλ1ðŝ1 þ ŝ†1Þ þ λ2ðŝ2 þ ŝ†2ÞÞ ⊗ ÔðxÞ; ð46Þ

where ŝ1 ¼ jaihcj and ŝ2 ¼ jbihcj are atomic transition
operators. They satisfy ŝ21 ¼ ŝ22 ¼ 0.
There are four transition operators: ÂΩ1

¼ λ1ŝ1, Â−Ω1
¼

λ1ŝ
†
1, ÂΩ2

¼ λ2ŝ2, and Â−Ω2
¼ λ2ŝ

†
2. The master equation is

d
dτ

ρ̂ ¼ −i½ĥ; ρ̂�

þ
X2
i¼1

�
ΓiðNi þ 1Þ

�
ŝiρ̂ŝ

†
i −

1

2
ŝ†i ŝiρ̂ −

1

2
ρ̂ŝ†i ŝi

�

þ ΓiNi

�
ŝ†i ρ̂ŝi −

1

2
ŝiŝ

†
i ρ̂ −

1

2
ρ̂ŝiŝ

†
i

��
; ð47Þ

where Γi ¼ γðΩiÞ, Ni ¼ NðΩiÞ, and
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ĥ ¼ ðΩ1 þ Δ1Þjcihcj þ ðΩ1 −Ω2 þ Δ2Þjbihbj
− ðΔ1 þ Δ2Þjaihaj; ð48Þ

with Δi ¼ ΔðΩiÞ.
The stationary solution at late times is diagonal,

ρaa ¼
ðN1 þ 1ÞN2

3N1N2 þ N1 þ N2

;

ρbb ¼
N1ðN2 þ 1Þ

3N1N2 þ N1 þ N2

;

ρcc ¼
N1N2

3N1N2 þ N1 þ N2

:

As in the previous cases, the stationary solution does not
depend on the strength of the interaction, but it depends on
the type of coupling through the parameters Ni.

D. General systems

In general, the existence of unique asymptotic solutions
to the master equation (25) depends on the system
Hamiltonian ĥ and on the operators Âω. The case of a
nondegenerate Hamiltonian ĥ is particularly important. Let
us denote by ϵn the eigenvalues and by jni the eigenvectors
of ĥ, labeled by n ¼ 0; 1; 2;…, so that ϵn < ϵn0 for n < n0.
Then the diagonal elements of the density matric,

pn ≔ hnjρ̂jni; ð49Þ

decouple from the off-diagonal ones, and they satisfy
Pauli’s master equation

dpn

dt
¼

X
m

ðTnmpm − TmnpnÞ; ð50Þ

with transition rates

Tnm ≔ γðjϵn − ϵmjÞjhmjÂjnij2

×

�
Nðjϵn − ϵmjÞ þ 1; m > n

Nðjϵn − ϵmjÞ n < m

	
: ð51Þ

Asymptotic states correspond to probability vectors pm that
are eigenvectors of Tnm.
The detailed balance condition is that, in equilibrium,

each independent summand in the right-hand side of
Eq. (50) vanishes. It implies that

pn

pm
¼ Nðjϵn − ϵmjÞ

Nðjϵn − ϵmjÞ þ 1
; ð52Þ

for n > m. Detailed balanced holds for all systems if
u ¼ 0, and it also holds for the systems studied in this
section. We find it plausible that it holds for a generic

nondegenerate Hamiltonian. A proof would require the
application/generalization of existing theorems about the
asymptotic states of dynamical semigroups [31,32].

E. Summary

Our analysis of the master equation has revealed the
following pattern.

(i) There is a unique asymptotic state for each self-
Hamiltonian ĥ.

(ii) The asymptotic state depends only on the function
NðωÞ. It does not depend on the relaxation time Γ−1

0

of the system, i.e., on the strength of the system-
reservoir coupling.

(iii) The asymptotic state is not universal. It depends on
the channel of interaction between the system and
the thermal environment, i.e., on the composite
operator ÔðxÞ that enters the coupling term (4).

IV. THERMODYNAMIC CHARACTERISTICS

A. The quantum probes as thermometers

An ensemble of quantum systems interacting with a
thermal reservoir is an elementary thermometer. The
average energy of those systems in equilibrium serves as
an empirical temperature for a bath. For example, an
ensemble of harmonic oscillators of frequency Ω interact-
ing with thermal reservoir is characterized by an empirical
temperature

θðT;ΩÞ ¼ Ω
eΩ=T − 1

: ð53Þ

The function (53) satisfies the main criterion for an
empirical temperature, namely, it is an increasing function
of the absolute temperature T.
The same reasoning applies to moving quantum systems

in interaction with a thermal reservoir. The average energy
in the rest frame of the quantum system still serves as an
empirical temperature that also depends on the rapidity u.
For a harmonic oscillator of frequency Ω,

θðT;Ω; uÞ ¼ ΩNðΩÞ: ð54Þ

The function (53) is also an increasing function of T, as can
be seen by Eqs. (27) and (29).
Hence, a physical system that can be used as a ther-

mometer when at rest with respect to a thermal reservoir
remains a thermometer when moving. What changes is the
explicit rule that connects the empirical temperature with
the absolute temperature T of the heat bath.

B. Heat transfer

The probe S can also be viewed as a thermodynamic
system, subject to the three laws of thermodynamics.
Consider a Markovian master equation of the form
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d
dt

ρ̂ ¼ −i½ĥðtÞ; ρ̂� þ L½ρ�; ð55Þ

where ĥðtÞ is the Hamiltonian of the probe and L is a
superoperator of the Lindblad-Kossakowski (LK) type
that generates nonunitary evolution. Equation (55) leads
to a nonequilibrium formulation of the first law of
thermodynamics [19],

d
dt

E ¼ q − P; ð56Þ

where E ¼ hĥi is the internal energy, P ≔ −Trðρ̂ dĥ
dtÞ is the

power provided to the system, and

q ¼ TrðL½ρ̂�ĥÞ ð57Þ

is the total heat current.
In the present context, dĥdt ¼ 0, hence, P ¼ 0. All changes

in the internal energy are due to the heat current. For the
master equation (25), the heat current is

q ¼
X
ω>0

γðωÞωfNðωÞhÂωÂ
†
ωi − ½NðωÞ þ 1�hÂ†

ωÂωig:

ð58Þ

In equilibrium, q ¼ 0. Hence, the equilibrium state satisfies
NðωÞhÂωÂ

†
ωi ¼ ½NðωÞ þ 1�hÂ†

ωÂωi for all ω.
Let the initial state of the moving system be thermal at

temperature T0 in the COM frame. We proceed to evaluate
the total heat transferred from the reservoir to the system,

ΔQ ¼ Eð∞Þ − Eð0Þ; ð59Þ

and the heat current (58) as a function of time.
For a qubit,

ΔQ ¼ Ω0

ð2n0 þ 1Þ½2NðΩ0Þ þ 1� ½NðΩ0Þ − n0�; ð60Þ

where n0 ¼ ðe
Ω0
T0 − 1Þ−1, and

q ¼ 1

2n0 þ 1
Γ0Ω0e−Γ0½1þ2NðΩ0Þ�τ½NðΩ0Þ − n0�: ð61Þ

For a harmonic oscillator,

ΔQ ¼ Ω0½NðΩ0Þ − n0�; ð62Þ

and

q ¼ Γ0Ω0e−Γ0τ½NðΩ0Þ − n0�: ð63Þ

The systems above have a consistent thermodynamical
behavior.2 IfΔQ > 0, then the initial state is colder than the
final; therefore, there is positive heat transfer, and the heat
current is positive at all times. An analogous statement
holds for ΔQ < 0.
Heat flows even when T ¼ T0. In Fig. 2, we plot the heat

transferΔQ in the qubit system for T ¼ T0, as a function of
u. We note that ΔQ < 0 for βω < 1. From the perspective
of the rest frame of S, a moving heat bath at sufficiently
high temperature is always colder than a stationary one.
In some axiomatic approaches to thermodynamics [33],

the notion of “hotness” is introduced as a primitive
structure. Hotness is an order relation ≼ on the set Γ of
thermodynamic states: A ≼ B if there is (non-negative) heat
flow from A to B when two bodies on states A and B are
brought in contact. The order relation is total, i.e., for any
pair of states, either A ≼ B or B ≼ A. This property enables
us to express ≼ in terms of the inequality relation of real
numbers and, hence, to introduce the notion of temperature.
The results of this section strongly suggest that the

notion of hotness could also be meaningful on an extended
thermodynamic state space Γ̃ that includes information
about the motion of the system’s COM. This means that the
order relation ≼ can be extended to Γ̃.
Furthermore, as the sign of heat flow depends only on the

sign of the difference NðΩ0Þ − n0, our results are compat-
ible with the idea that ≼ is a total order also on Γ̃. However,
this assertion is too strong: it implies a universal notion of
temperature that also incorporates the effects of the COM
motion. We have not found such a candidate for temper-
ature in our study. Further research is necessary in order
to understand the properties of the proposed notion of
hotness.

C. Zeroth law of thermodynamics

The existence of a unique asymptotic state for each
Hamiltonian ĥ is a necessary consequence of the zeroth law
of thermodynamics. Any system in contact with a thermal
reservoir of temperature T at rest reaches equilibrium at
temperature T.
Two states, A and B, are in thermal equilibrium (A ∼ B),

if A ≼ B and B ≼ A, i.e., if there is no heat flow when they
are brought into contact.
Consider two systems in states A and B, in thermal

equilibrium with the same reservoir C. If the systems are
removed from the reservoir and they are brought into
thermal contact with each other, there is no heat flow. This
manifests the crucial feature of the zeroth law of

2The reader may worry that a single harmonic oscillator or a
single qubit is not a thermodynamic system. However, the same
results hold for a collection of N qubits or harmonic oscillators,
with mutual interactions much weaker that the interaction with
the bath, i.e., for a “dilute gas” of qubits or harmonic oscillators,
which is a thermodynamic system for N ≫ 1.
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thermodynamics, namely this: if A ∼ C and B ∼ C, then
A ∼ B. This transitivity property is inherent in the definition
of the order relation ≼.
Next, we consider two systems in states A and B that

move with the same velocity v with respect to a thermal
reservoir (system C). System A interacts with the reservoir
through the UDW coupling, while system B interacts
through the TD coupling. A and B reach the equilibrium
state, and then they are removed from the reservoir. They
are at rest with each other and they are brought into contact.
Systems A and B have different energy, while their

self-Hamiltonians are identical, and the values of other
extensive quantities can be taken to be equal. In usual
thermodynamics, the value of energy and the other exten-
sive quantities uniquely define all thermodynamic poten-
tials and, hence, the notion of thermal equilibrium. This
would imply that the systems A and B are not in thermal
equilibrium with each other: they will exchange heat until
they are brought into a new equilibrium state. There is no
transitivity for three systems A, B, andC if one of them is in
motion with respect to the other.
Hence, in order to compare systems that move with

respect to each other, we must either abandon the zeroth
law of thermodynamics or introduce additional variables to
describe thermodynamic states. The zeroth law of thermo-
dynamics is a consequence of the partial ordering relation
≼ on Γ̃, which is reasonably well justified by our previous
analysis. For this reason, we believe that the zeroth law is
preserved and that the thermodynamic description of

moving systems requires the introduction of additional
variables, beyond the components of the four velocity that
are employed in the van Kampen–Israel formalism [34,35].
Indeed, such variables emerge from our account of the
second law of thermodynamics.

D. Directional averaging and
directional temperature

Next, we present an important identity that is satisfied by
the function NðωÞ and it is crucial to the thermodynamic
interpretation of the master equation (25). To this end, we
first define the notion of directional averaging. Let V be the
set of null vectors pμ ¼ ðjpj; pÞ, and f∶R → R a function
of ω ¼ jpj. Consider a Lorentz boost of rapidity u along a
direction n. In the boosted frame, the energy is ω0 ¼
ω cosh u − p · n sinh u ¼ ωðcoshu − s · n sinhuÞ, where
s ¼ p=ω. We define the directional averaging hfðωÞiu as

hfðωÞiu ≔
Z

dμðsÞfðω0Þ; ð64Þ

where dμðsÞ is the invariant, normalized measure on the
unit sphere. The directional averaging of f does not depend
on the direction n of the boost. Defining ξ ≔ s · n, Eq. (64)
becomes

hfðωÞiu ¼
1

2

Z
1

−1
dξf½ωðcoshu − ξ sinh uÞ�: ð65Þ

FIG. 2. The heat transfer ΔQ for a qubit at temperature T0 ¼ T as a function of u for different values of βω. The left plot describes a
qubit interacting with the field bath through the UDW coupling and the right one describes a qubit interacting with the field bath through
the TD coupling.
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With this definition,

NUdWðωÞ ¼ hnðωÞiu; ð66Þ

where nðωÞ ¼ ðeβω − 1Þ−1 is the Planck distribution.
Indeed,

hnðωÞiu ¼
1

2

X∞
m¼1

Z
1

−1
dξe−mωðcoshu−ξ sinhuÞ;

¼ 1

2βω sinh u

X∞
m¼1

�
e−mβωe−u

m
−
e−mβωeu

m

�

¼ NUdWðωÞ: ð67Þ

Similarly, we find that

NTDðωÞ ¼
3hω2nðωÞiu

ω2½1þ 2 coshð2uÞ� : ð68Þ

We define the directional temperature as

Tξ ≔
T

coshu − ξ sinh u
; ð69Þ

or equivalently βξ ≔ βðcosh u − ξ sinh uÞ. For each
u, Te−juj ≤ Tξ ≤ Te−juj.
Then, NðωÞ can be written as a weighted average of the

Planck distribution for varying temperatures Tξ,

NðωÞ ¼ 1

2

Z
1

−1
dξ

wðξÞ
eβξω − 1

; ð70Þ

where wðξÞ is a probability density on ½−1; 1Þ that depends
on the coupling:

wUdWðξÞ ¼ 1; ð71Þ

wTDðξÞ ¼
3ðcosh u − ξ sinh uÞ2

1þ 2 coshð2uÞ : ð72Þ

E. Second law of thermodynamics

Equation (70) implies that the master equation (25) can
be expressed as

∂ρ̂
∂τ ¼ −i½ĥþ ĥLS; ρ̂� þ

1

2

Z
1

−1
dξwðξÞLβξ ½ρ̂�; ð73Þ

where

Lβξ ½ρ̂� ¼
X
ω>0

γðωÞ
1 − e−βξω

�
Âωρ̂Â

†
ω −

1

2
Â†
ωÂωρ̂ −

1

2
ρ̂Â†

ωÂω

�

þ
X
ω>0

γðωÞ
eβξω − 1

�
Â†
ωρ̂Âω −

1

2
ÂωÂ

†
ωρ̂ −

1

2
ρ̂ÂωÂ

†
ω

�
;

ð74Þ

is a LK map for a thermal reservoir at inverse temper-
ature βξ.
Hence, Eq. (25) can be interpreted as a master equation

for a system in contact with a continuum of different
reservoirs at temperatures Tξ.
For a thermal reservoir at temperature T, the thermo-

dynamic entropy S coincides with the von Neumann
entropy SvN ≔ −Trρ̂ log ρ, and it satisfies the balance
equation

dS
dt

− βqβ ¼ σβ; ð75Þ

where qβ ¼ ðLβ½ρ̂�ĥÞ is the heat flux, and σ is the total
entropy production [36]. The LK operator Lβ for a thermal
reservoir must have a Gibbsian equilibrium state

ρ̂β ¼ e−βĥ

Tre−βĥ
. Then, entropy production is given by [36]

σβ ¼ −TrðLβ½ρ̂�ðlog ρ̂ − log ρ̂βÞ ≥ 0: ð76Þ

Note that σβ ¼ −β dF
dt , where F is the Helmholz free energy

of the total system that includes the probe and the reservoir
at temperature β−1.
In Eq. (73), the LK map is a weighted average of the LK

maps for different thermal reservoirs. Since entropy pro-
duction is a linear functional of the LKmap, we can express
the entropy production associated to Eq. (73) as an average
of σβ, Eq. (76),

σ ¼ 1

2

Z
1

−1
dξwðξÞσβξ : ð77Þ

It follows that

σ ¼ −TrðL½ρ̂� log ρ̂Þ − 1

2

Z
1

−1
dξwðξÞβξTrðLβξ ½ρ̂�ĥÞ: ð78Þ

The total produced entropy is given by

ΔStot ¼ SvN½ρ̂ð∞Þ� − SvN ½ρ̂ð0Þ�

−
1

2

Z
1

−1
dξwðξÞβξ½Eξ − Eð0Þ�; ð79Þ

where Eξ ¼ Trðρ̂βξ ĥÞ.
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Plots of the entropy production as a function of t are
given in Fig. 3, and of the total produced entropy as a
function of u in Fig. 4.

V. RELATIVISTIC TRANSFORMATIONS FOR
THERMODYNAMIC STATES

A. Relativistic transformation of Gibbs states

Equation (73) implies the following equivalence for
an quantum open system. The nonequilibrium dynamics
of a heat bath at temperature T0 moving with velocity −v ¼
− tanhu is equivalent to the nonequilibrium dynamics of a
continuum of heat baths at rest, and with temperatures
Tξ ∈ ½T0e−juj; T0ejuj�. The different baths are weighted by a
system-specific probability distribution wðξÞ.
This leads to the conjecture that the effect of a Lorentz

boost with rapidity u on a Gibbs state ρ̂β is a convex
combination of Gibbs states ρ̂βξ with a weight wðξÞ,

ρ̂β →
1

2

Z
1

−1
dξwðξÞρ̂βξ : ð80Þ

Obviously, this transformation is different from the
unitary transformation of the Gibbs state through a unitary
representation of the Lorentz group ÛðΛÞ,

ρ̂β → Û†ðΛÞρ̂βÛðΛÞ: ð81Þ

The latter transformation does not change the thermody-
namic description of the system, as the partition function is
invariant under unitary transformations.
Equation (80) should not be taken literally. It refers only

to the thermodynamic level of description; i.e., to properties
of the Gibbs state that are relevant to thermodynamic
properties. A more precise version of (80) is the following.
Let Bth be the subset of operators on the Hilbert space that
describe thermodynamic observables. Then, the that the
expectation value hÂiu for any Â ∈ Bth in the moving frame
should be given by

hÂiu ¼
1

2

Z
1

−1
dξwðξÞTrðρ̂βξÂÞ: ð82Þ

Observables outside Bth are not constrained.3

Equation (82) is also supported by the following proper-
ties of the field correlation functions. Consider the thermal
Hadamard function of the massless scalar field, defined by
GβðxÞ ¼ 1

2
Trðρ̂βfϕ̂ðxÞ; ϕ̂ð0ÞgÞ,

Gβðt; rÞ ¼ −
1

4π2
X∞
n¼−∞

1

ðtþ inβÞ2 − r2
ð83Þ

FIG. 3. The dimensionless entropy production σ=γ0 of a qubit as a function of dimensionless time γ0t. For the UDW coupling,
γ0 ¼ λ2

2π ω, while for the TD coupling γ0 ¼ λ2

6π ω
3. The temperatures T0 and T alternate values 33ω−1 and ω−1.

3Note that in many approaches to nonequilibrium thermody-
namics, the microcanonical state is obtained as an asymptotic
state, only with respect to a small subset of macroscopic
observables that have a thermodynamic interpretation—see, for
example, [37].
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Equation (83) satisfies the Kubo-Martin-Schwinger (KMS)
condition

Gβðt − iβ; rÞ ¼ Gβðt; rÞ: ð84Þ

Next, consider the Lorentz transformed Hadamard function
Gu

βðxÞ ≔ GβðΛ−1
u xÞ, where Λu is a Lorentz boost of

rapidity u in the direction 1,

Λuðt; x1; x2; x2Þ
¼ ðt cosh u − x1 sinh u; x1 cosh u − t sinh u; x2; x3Þ:

ð85Þ

We obtain

Gu
βðt; rÞ

¼ −
1

4π2
X∞
n¼−∞

1

t2 − r2 − n2β2 þ 2inβðt cosh uþ x1 sinh uÞ
:

ð86Þ

Equation (86) does not satisfy the KMS condition.
However, the probabilities for local measurements of the
field are evaluated for r ¼ 0,

Gu
βðt; 0Þ ¼ −

1

4π2
X∞
n¼−∞

1

t2 − n2β2 þ 2inβt cosh u
: ð87Þ

Then, it is straightforward to prove that

Gu
βðt; 0Þ ¼

1

2

Z
1

−1
dξGβξðt; 0Þ; ð88Þ

i.e., the boosted Hadamard function is a convex combina-
tion of functions that satisfy the KMS condition. The same
holds for the Hadamard function for the TD coupling.
Equation (88) justifies Eq. (82) for the observables of

the form

Âx ¼
Z

dtdt0aðt; t0Þϕ̂ðt; xÞϕ̂ðt0; xÞ: ð89Þ

This class of observables includes ones that correspond
to localized measurements of particle number and energy
[15,38–40]. These observables can be used to define
thermodynamic variables like particle number density or
energy density.

B. An extended thermodynamic space

In Sec. IV.3, we showed that the applicability of the
zeroth law of thermodynamics to moving systems requires
a significant extension of the thermodynamic state space.
Here, we present such an extension that is consistent with
the relativistic transformation law discussed in Sec. V 1.
First, we recall how the thermodynamic state space and

the thermodynamic potentials of a quantum system are
constructed from the canonical distribution. Let ĤðXÞ be
the Hamiltonian that of the system in the COM frame; X are

FIG. 4. Total produced entropy ΔStot as a function of the rapidity u. The temperatures T0 and T alternate values 33ω−1 and ω−1.
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thermodynamic control parameters like volume or external
fields. The thermodynamic state space Γ in the Helmholz
representation has elements ðβ; XÞ, and it is in one-to-one
correspondence with the set of all Gibbs states

ρ̂ðβ; XÞ ¼ e−βĤðXÞ
Zðβ;XÞ, where Zðβ; XÞ ¼ e−βĤðXÞ is the partition

function. The thermodynamical potentials on Γ can be
derived by identifying the expectation hĤi with the internal
energy, and the von Neumann entropy SvN ¼ −Trρ̂ ln ρ̂
with the thermodynamic entropy.
Next, we consider the space Γ̃ that is a convex hull of Γ,

constructed through the Gibbs states. That is, Γ̃ is the set of
all density matrices, ρ̂ ¼ P

i ciρ̂ðβi; XiÞ, for all sequences
fcig such that 0 ≤ ci ≤ 1 and

P
i ci ¼ 1. Again, we

construct the thermodynamic potentials on Γ̃ by identifying
hĤi with the internal energy and SvN with the thermody-
namic entropy.
By construction, the map (80) is well defined on Γ̃. It

maps all extreme points of Γ̃ (i.e., Gibbs states), to points in
the interior of Γ̃. Its action can be extended to any ρ̂ ∈ Γ̃
by linearity.
The first law of thermodynamics on Γ̃ is well defined

since internal energy and entropy are well defined. Our
construction of Γ̃ is compatible with the analysis of the
zeroth law in Sec. IV.3, and it enables a representation of
the Lorentz boosts as discussed in Sec. V 1. It is therefore a
natural candidate for an extended thermodynamic state
space that also takes into account the COM motion of
thermodynamic systems.
It is possible that the extended state space Γ̃ constructed

here is larger than needed. For example, the map (80) is
well defined on a subset of Γ̃ that consists of states of the
form ρ̂ ¼ P

i ciρ̂ðβi; XÞ; i.e., the convex combinations
involve only different values of temperature and not of
X. However, our preliminary analysis serves to highlight
the key point of the analysis of the second law in Sec. IV E:
thermodynamic transformations between different Lorentz

frames can be implemented in terms of convex combina-
tions of Gibbs states.

VI. CONCLUSIONS

We analyzed the quantum thermodynamics of moving
systems in interaction with a heat bath. We showed that
these systems are well behaved thermodynamically, in
the sense that they have a consistent notion of heat flow.
There is no relativistic rule for transformation of temper-
ature; however, a moving heat bath is equivalent to a
continuum of stationary heat baths, as far as the non-
equilibrium dynamics of the system is concerned. This
led us to the proposal of an extended thermodynamic
state space in which the Lorentz transformations can be
well implemented.
Our results are derived using specific models rather than

general mathematical principles. It is therefore necessary to
develop models that deal with more elaborate cases. We
must consider other types of thermal bath, for example,
relativistic gases of massive particles. Furthermore, we
must generalize the present results to extended quantum
systems that are not defined by a pointlike trajectory. This is
essential for incorporating observables like volume and
pressure in the thermodynamic description. This will
enable us to connect directly with the traditional accounts
of Lorentz transformation for thermodynamic variables.
One possible approach towards this goal is to adopt the
methods and techniques used in Ref. [39] for nonpointlike
detectors.
If our conjecture about the relativistic transformation

rule is confirmed by other models, it will be necessary to
look for a more fundamental justification. This could
be provided by an analysis of quantum field two-point
functions like Eq. (7) for general composite operators ÔðxÞ
and KMS states. Furthermore, it is important to consider
possible experimental implementations of the models
presented here.
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