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We construct explicit mode expansions of various tree-level propagators in the Rindler–de Sitter
universe, also known as the static (or compact) patch of the de Sitter spacetime. We construct in particular
the Wightman functions for thermal states having a generic temperature T. We give a fresh simple proof
that the only thermal Wightman propagator that respects the de Sitter isometry is the restriction to
the Rindler–de Sitter wedge of the propagator for the Bunch-Davies state. It is the thermal state with
T ¼ ð2πÞ−1 in the units of de Sitter curvature. We show that propagators with T ≠ ð2πÞ−1 are only time
translation invariant and have extra singularities on the boundary of the static patch. We also construct the
expansions for the so-called alpha-vacua in the static patch and discuss the flat limit.
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I. INTRODUCTION

Notwithstanding the existence of a vast literature on de
Sitter quantum fields there is still no consensus as regard to
their infrared behavior which is very much different from
the behavior of Minkowski and anti–de Sitter fields. The
root of the problem is the absence of a globally defined
timelike Killing vector field on the de Sitter manifold: the
components of the metric in general depend on the time
variable t of the chosen coordinate system.
The nonstationarity of the de Sitter metric indicates that

to compute loop quantum corrections one should make use
of the Schwinger-Keldysh rather than the Feynman dia-
grammatic technique; in the first step, initial data have to be
imposed on a Cauchy surface at some time t0 to define the
correlation functions. No matter what state is chosen,
secular growing infrared contributions appear in the loops
(see e.g., [1] for a review); these effects are global and
sensitive to the initial conditions [1–4]. Summarizing, when
quantizing fields in curved space-times, the field dynamics
may and in general does depend on the choice of coor-
dinates through the choice of the initial data and this is
crucial, in particular, for understanding the properties of de
Sitter quantum physics.
Cosmologists usually make use either of the spatially

flat Poincaré coordinates [5–7] or of the global spherical

coordinates [6–8] for the de Sitter manifold. To build
correlation functions, the common initial choice is the
Bunch-Davies (also called Euclidean) de Sitter invariant
state [9–14]. What makes it special is that this is the only
state among the de Sitter invariant ones—the so-called
alpha vacua [15–17]—to be maximally analytic [18,19].
There is however a particular chart—the “static patch”

discovered by de Sitter in 1917 [20]—which admits a
timelike Killing vector field (see Fig. 1). The field of course
is not globally timelike: it becomes lightlike on the
boundary of the static patch (the horizons) and spacelike
beyond it. A celebrated result by Gibbons and Hawking1

[14,18,19,22,23] says that the restriction to the static patch
of the Bunch-Davies state is a thermal equilibrium state at
the temperature 1=2πR with respect to the relevant time
coordinate, where R is the de Sitter radius.
As one can see, it is a very specific statement that (of

course) is true only when all the above conditions are
fulfilled. Nonetheless, it is not uncommon to hear or read the
(incorrect) general statement that the de Sitter space has a
temperature, which is sometimes taken as the starting point
of vague speculations about cosmology and quantum gravity.
Apart from the Gibbons-Hawking result, not very much

is known about quantum fields in the Rindler–de Sitter
wedge (the static patch). The relevance of this model for
cosmology and black hole physics makes this lack of
knowledge even more surprising.
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1This result was actually predated by another important result
by Figari et al. [21] who studied interacting quantum fields in the
wedge in two dimensions by applying constructive methods on
the Euclidean sphere.

PHYSICAL REVIEW D 102, 085003 (2020)

2470-0010=2020=102(8)=085003(14) 085003-1 Published by the American Physical Society

https://orcid.org/0000-0001-7104-3145
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.085003&domain=pdf&date_stamp=2020-10-09
https://doi.org/10.1103/PhysRevD.102.085003
https://doi.org/10.1103/PhysRevD.102.085003
https://doi.org/10.1103/PhysRevD.102.085003
https://doi.org/10.1103/PhysRevD.102.085003
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


In this paper, we partially fill this gap by constructing all
the time translation invariant states at tree level. In
particular, we produce new (to the best of our knowledge)
formulas giving explicit mode expansions of the correlation
functions where the coordinates of the static patch are
separated. This is an obviously necessary preliminary step
to apply perturbation theory and calculate loops as
described above.
Our class of equilibrium states contains in particular all

the thermal states, and we give a new direct proof that the
complete de Sitter invariance is recovered only at
T ¼ 1=2πR. All the other states, including the zero temper-
ature vacuum (pure) state, are not de Sitter invariant and
have unusual singularities at the horizon, giving retrospec-
tively some support to Einstein’s suspicions about the
equator of the patch [24].
We restrict our attention to the two-dimensional case to

avoid unnecessary complications in the equations. Most of
our results can be straightforwardly extended to other
dimensions. Loop corrections to tree-level propagators will
be investigated in a companion paper.

II. GEOMETRY

The coordinate system which is of interest for us here
was introduced as early as 1917 by Willem de Sitter in the
course of the famous debate on the relativity of inertia [24].

By visualizing the two-dimensional de Sitter space as the
one-sheeted hyperboloid embedded in a three-dimensional
ambient Minkowski space

dS2¼fX∈R3; XαXα ¼X2
0−X2

1−X2
2 ¼−R2g ð2:1Þ

(capital Xα denote the coordinates of a given Lorentzian
frame of the ambient spacetime), the de Sitter static
coordinates are

X

�
t
R
;
x
R

�
¼

8>><
>>:

X0 ¼ R sinh t
R sech

x
R

X1 ¼ R tanh x
R ¼ u

X2 ¼ R cosh t
R sech

x
R

;

t ∈ ð−∞;∞Þ; x ∈ ð−∞;∞Þ: ð2:2Þ

In the following, we will set R ¼ 1 and tanh x ¼ u.
From a group theoretical viewpoint, the new time

coordinate t parametrizes the one-parameter subgroup of
the de Sitter group stabilizing the equator. The action of that
subgroup to points of any spherical spatial section con-
taining the equator gives coordinates to two opposite static
patches. In two dimensions, the spatial sections are ellipses;
the equator degenerates in the two points where all the
ellipses meet (see Fig. 1). A static patch is in fact the
intersection of the de Sitter manifold with a Rindler wedge
in one dimension more and this is why we also call it as
Rindler–de Sitter wedge. The above coordinates thus cover
only the region fjX1jh1g ∩ fX2ijX0jg of the real de Sitter
manifold, the right wedge in Fig. 1, the shaded region
in Fig. 2.
A Rindler–de Sitter wedge is itself a globally hyperbolic

space-time, but a Cauchy surface for thewedge is incomplete
with respect to the whole de Sitter manifold, being only “one
half” of a bona fide Cauchy surface2; see Figs. 1 and 2. On
the other hand, quantization in the static coordinates has an
advantage in comparison with other coordinate systems: the
Hamiltonian operator is time independent. The metric

ds2 ¼ dt2 − dx2

cosh x2
ð2:3Þ

is time independent and conformal to the flat metric. The
static patch is bordered by a bifurcate Killing horizon

x → �∞; t ¼ �x;

where the metric degenerates. The corresponding Killing
vector is not timelike when extended outside the static patch.
The de Sitter invariant scalar product is given by

FIG. 1. The static patch and its opposite represented by
embedding the two-dimensional de Sitter manifold in a three-
dimensional Minkowski spacetime. The right (left) static patch is
the intersection of the de Sitter manifold with the right (left)
wedge of the ambient spacetime. The integral curves of the
Killing vector field are the vertical hyperbolae obtained by
intersecting the manifold with the planes X1 ¼ const.

2In saying this, we suppose that the geodesical completion of
the wedge is the de Sitter manifold. Would we suppose that the
geodesical completion be, say, its double covering, the result
would change completely. In particular, there would be no
thermal state at all [25].
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ζ ¼ ζ12 ¼ Xα
1X2α ¼ −

coshðt1 − t2Þ þ sinh x1 sinh x2
cosh x1 cosh x2

:

ð2:4Þ

The geodesic distances L and ζ are related as follows: ζ ¼
− coshðLÞ for timelike geodesics, ζ ¼ cosðLÞ for spacelike
ones, ζ ¼ −1 for lightlike separations or coincident points.

III. CANONICAL QUANTIZATION

In this section, we outline the canonical quantization of
the Klein-Gordon field in the static chart coordinates,

�
∂2
t − ∂2

x þ
m2

cosh2x

�
ϕðt; xÞ ¼ 0; ð3:1Þ

½ϕðt; x1Þ;ϕðt; x2Þ� ¼ 0;

½ϕðt; x1Þ; _ϕðt; x2Þ� ¼ iδðx1 − x2Þ: ð3:2Þ

The static chart is in itself a globally hyperbolic manifold,
though geodesically incomplete. We may apply standard
methods of canonical quantization and look for a complete
set of modes by separating the variables. Of course, the so-
constructed set of modes will be incomplete when consid-
ered with respect to the whole de Sitter manifold [26,27].
Let us consider factorized modes which have positive

frequencies with respect to the time coordinate t,

φðt; xÞ ¼ e−iωtψωðuÞ; u ¼ tanh x: ð3:3Þ

ψωðuÞ are eigenfunctions of the continuous spectrum of the
well-known quantum mechanical scattering problem,

�
−∂2

x þ
m2

cosh2x

�
ψωðuÞ ¼ ω2ψωðuÞ; u ¼ tanh x;

m2 ¼ 1

4
þ ν2: ð3:4Þ

For any given ω ≥ 0, the Ferrers functions Piω
−1
2
þiν

ð�uÞ—
also known as Legendre functions on the cut [28]—are two
independent solutions of the above equation. The double
degeneracy of the energy level ω points toward the
introduction of two pairs of creation and annihilation
operators for each level,

½aω1
; a†ω2

� ¼ δðω1 − ω2Þ; ½bω1
; b†ω2

� ¼ δðω1 − ω2Þ;
½aω1

; bω2
� ¼ ½aω1

; b†ω2
� ¼ 0: ð3:5Þ

The mode expansion of the field operator ϕðt; xÞ can then
be written as follows:

ϕðt; xÞ ¼
Z

∞

0

dω
2π

½e−iωtðψωðuÞaω þ ψωð−uÞbωÞ

þ eiωtðψ�
ωðuÞa†ω þ ψ�

ωð−uÞb†ωÞ�; ð3:6Þ
where

ψωðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðπωÞ

p
Γ
�
1

2
þ iν − iω

�

× Γ
�
1

2
− iν − iω

�
Piω
−1
2
þiν

ðuÞ: ð3:7Þ

The normalization was chosen according with the com-
pleteness relation (A1) shown in the Appendix. At large
positive x, the wave

ψωðtanh xÞ ∼ eiωx x → ∞ ð3:8Þ

is purely right moving (at large negative x → −∞, the wave
ψωð− tanh xÞ ∼ e−iωx is purely left moving).
By normal ordering with respect to the vacuum of the aω

and bω operators, we get the free Hamiltonian in the
standard form

∶H ≔
Z þ∞

−∞
dx

ffiffiffi
g

p
∶T0

0 ≔
Z þ∞

0

dωωða†ωaω þ b†ωbωÞ:

ð3:9Þ
Note that the range of integration over ω starts from zero
(rather than m as for a massive field in flat space). This is
because the “mass” term in the action

Sm ¼
Z

d2x
ffiffiffi
g

p
m2 φ2ðt; xÞ

vanishes near the horizon [recall that
ffiffiffi
g

p ¼ ðcosh xÞ−2].

A. Thermal two-point functions

The quantum mechanical average over a thermal state of
inverse temperature β is given by

hOiβ ¼
Tr ρO
Tr ρ

; ρ≡ e−βH: ð3:10Þ

FIG. 2. Penrose diagram of the de Sitter manifold with Cauchy
surfaces of different patches. A denotes a Cauchy surface for the
expanding Poincaré patch, B for the static patch, and C for the
global de Sitter space. The static patch is bordered by a bifurcate
Killing horizon.
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Although the previous expression is ill-defined in quantum field theory, it still allows to compute the thermal two-point
function at inverse temperature β by assuming the Bose-Einstein distribution of the energy levels,

ha†ωaω0 iβ ¼ hb†ωbω0 iβ ¼ ðeβω − 1Þ−1δðω − ω0Þ: ð3:11Þ

Equations (3.6) and (3.9) give the following expression:

Wβðt1 − t2; x1; x2Þ ¼ hϕðt1; x1Þϕðt2; x2Þiβ ¼
Z

∞

0

dω
4π2

�
e−iωðt1−t2Þ

1 − e−βω
ðψωðu1Þψ�

ωðu2Þ

þ ψωð−u1Þψ�
ωð−u2ÞÞ þ

eiωðt1−t2Þ

eβω − 1
ðψ�

ωðu1Þψωðu2Þ þ ψ�
ωð−u1Þψωð−u2ÞÞ

�

¼
Z

∞

−∞
e−iωðt1−t2Þ

1 − e−2πω

1 − e−βω
P̃νðω; u1; u2Þdω; ð3:12Þ

where

P̃νðω; u1; u2Þ ¼
eπωðPiω

−1
2
þiν

ðu1ÞP−iω
−1
2
−iνðu2Þ þ Piω

−1
2
þiν

ð−u1ÞP−iω
−1
2
−iνð−u2ÞÞ

8 cosh πðν − ωÞcosh πðνþ ωÞ : ð3:13Þ

The states defined by the above two-point functions are
mixed. The only pure state is obtained in the limit β → ∞.
In Sec. V, we will prove that for β ¼ 2π, the above two-

point function is de Sitter invariant and coincides with the
restriction to the static patch of the Bunch-Davies two-point
function,

W2πðt1 − t2; x1; x2Þ ¼ WBDðζÞ ¼
1

4 cosh πν
P−1

2
þiνðζÞ;

ð3:14Þ

where ζ is the de Sitter invariant variable defined in (2.4).
On the other hand, for arbitrary β, the two-point function
Wβðt1 − t2; x1; x2Þ and its permuted function do not respect
the de Sitter isometry because their periodicity thermal
property in imaginary time t → tþ iβ is incompatible with
the geometry of the global de Sitter manifold, the only
exception being β ¼ 2π.

IV. MODE EXPANSION OF THE HOLOMORPHIC
PLANEPLANE WAVES

Let us now move to the complex two-dimensional de
Sitter spacetime,

dSc2 ¼ fZ ∈ C3; Z2
0 − Z2

1 − Z2
2 ¼ −1g: ð4:1Þ

We may use the same coordinate chart as in Eq. (2.2),

Zðt; xÞ ¼
8<
:

Z0 ¼ sinh t sechx

Z1 ¼ tanh x

Z2 ¼ cosh t sechx

; ð4:2Þ

but now t and x are complex. In particular,

(1) For 0 < Imt < π and x ∈ R, the point Zðt; xÞ
belongs to the forward tube

T þ ¼ fZ ¼ X þ iY ∈ dSc2; Y2 > 0; Y0 > 0g:
ð4:3Þ

(ii) For − π < Imt < 0 and x ∈ R, the point Zðt; xÞ
belongs to the backward tube

T − ¼ fZ ¼ X þ iY ∈ dSc2; Y2 > 0; Y0 < 0g:
ð4:4Þ

There exists a remarkable set of solutions of the de Sitter
Klein-Gordon equation which may be interpreted as de
Sitter plane waves [18,19,29]. Their definition makes no
appeal to any particular coordinate system and may be
given just in terms of the ambient space-time coordinates:
given a forward pointing lightlike real vector ξ in the
ambient space-time3 and a complex number λ ∈ C, let us
construct the homogeneous function

Z ∈ dSc2∶ Z ↦ ðξ · ZÞλ: ð4:5Þ

For any given ξ and λ, the above functions are holomorphic
in the tuboids T � [18,19] and satisfy the massive (com-
plex) de Sitter Klein-Gordon equation,

ð□ − λðλ − 1ÞÞðξ · ZÞλ ¼ 0 ð4:6Þ

3ξ is a real vector belonging to the forward light cone
Cþ ¼ fξ ∈ R3; ðξ0Þ2 − ðξ1Þ2 − ðξ2Þ2 ¼ 0; ξ0 > 0g.
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(we may write λ ¼ − 1
2
þ iν; in the following, we will take

for simplicity ν ∈ R). The boundary values

ðξ · XÞλ� ¼ lim
Z∈T �;Z→X

ðξ · ZÞλ ð4:7Þ

are homogeneous distributions of degree λ in the ambient
spacetime and their restrictions to the real manifold dS2 are
solutions of the real de Sitter Klein-Gordon equation. All
these objects are entire functions of λ.
Let us now expand the above plane wave into modes of

the static patch. The first thing to be done is to choose a

basis manifold of the forward light cone; the convenient
choice is the hyperbolic basis Γ ¼ Γl ∪ Γr “parallel” to the
coordinate system (2.2) of the static chart,

ξlðwÞ ¼
8<
:

ξ0 ¼ coshw

ξ1 ¼ −1
ξ2 ¼ sinhw

ξrðwÞ ¼
8<
:

ξ0 ¼ coshw

ξ1 ¼ þ1

ξ2 ¼ sinhw

:

ð4:8Þ

With all the above specifications, we get

ξl · Z ¼ tanh xþ sechx sinhðt − wÞ; ξr · Z ¼ − tanh xþ sechx sinhðtþ wÞ: ð4:9Þ

Let us take Zðtþ iϵ; xÞ with t real. Since Zðtþ iϵ; xÞ ∈ T þ, the wave ðξl · ZÞλ is a regular function of t decreasing at
infinity; its Fourier transform is given by

Z
∞

−∞
e−iωtðξlðwÞ · Zðtþ iϵ; xÞÞ−1

2
þiνdt ¼ 2e−iωwΓð1

2
− iνþ iωÞ

Γð1
2
− iνÞ e

1
2
πωðe−πωQ−iω

−1
2
−iνðuþ iϵÞÞ: ð4:10Þ

Here Q is the associated Legendre function of the second kind4 [28] defined on the complex plane cut on the real axis from
−∞ to 1. Inversion gives

ðξlðwÞ · Zðtþ iϵ; xÞÞ−1
2
þiν ¼ 1

π

Z
∞

−∞
eiωðt−wÞ

Γð1
2
− iνþ iωÞ
Γð1

2
− iνÞ e

1
2
πωðe−πωQ−iω

−1
2
−iνðuþ iϵÞÞdω: ð4:12Þ

For Z ∈ T −, an analogous computation gives

ðξlðwÞ · Zðt − iϵ; xÞÞ−1
2
−iν ¼ 1

π

Z
e−iωðt−wÞ

Γð1
2
þ iν − iωÞ
Γð1

2
þ iνÞ e

1
2
πωðeπωQiω

−1
2
þiν

ðu − iϵÞÞdω: ð4:13Þ

Similarly,

ðξrðwÞ · Zðt� iϵ; xÞÞ−1
2
�iν ¼ � e−νπ

iπ

Z
e�iωðtþwÞ Γð12 ∓ iν� iωÞ

Γð1
2
∓ iνÞ e

1
2
πωðe∓πωQ∓iω

−1
2
∓iν

ðu ∓ iϵÞÞdω: ð4:14Þ

V. MODE EXPANSIONS OF THE MAXIMALLY ANALYTIC TWO-POINT FUNCTION

The maximally analytic (Bunch-Davies) two-point function admits the following global manifestly de Sitter invariant
integral representation, valid for Z1 ∈ T − and Z2 ∈ T þ [18,19]:

WBDðZ1; Z2Þ ¼
eπν

8π cosh πν

Z
Σ
ðξ · Z1Þ−1

2
−iνðξ · Z2Þ−1

2
þiνdσðξÞ: ð5:1Þ

Here Σ is any basis manifold of the forward light cone Cþ and dσ the corresponding induced measure [18]. In the symbol

WBD referring to the Bunch-Davies Wightman function, we left the mass parameter is m ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1
4
þ ν2

q
implicit.

4Note that the above Legendre functions are related by complex conjugation as follows:

�
Q−iω

−1
2
−iνðuþ iϵÞ

�� ¼ e2πωQiω
−1
2
þiν

ðu − iϵÞ: ð4:11Þ
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By using the static coordinates (2.2), the basis Γ ¼ Γl ∪ Γr for the light cone (with dσΓi
¼ dw) and by inserting

Eqs. (4.12)–(4.14) in Eq. (5.1), we get that the boundary value on the reals in the static chart of the above global
holomorphic two-point function can be represented as follows:

WBDðX1; X2Þ ¼
Z

∞

−∞
e−iωðt1−t2ÞW̃BDðω; u1; u2Þdω; ð5:2Þ

W̃BDðω; u1; u2Þ ¼
eπω

4π2 cosh πðν − ωÞ ½e
πνQiω

−1
2
þiν

ðu1 − iϵÞQ−iω
−1
2
−iνðu2 þ iϵÞ þ e−πνQiω

−1
2
þiν

ðu1 þ iϵÞQ−iω
−1
2
−iνðu2 − iϵÞ�: ð5:3Þ

By using the identity [28]

Qiω
−1
2
þiν

ðu� i0Þ ¼ π

2 coshðπðνþ ωÞÞ e
−πω∓πω

2 ð∓ ie�πðνþωÞPiω
−1
2
þiν

ðuÞ þ Piω
−1
2
þiν

ð−uÞÞ; ð5:4Þ

a straightforward calculation shows that

W̃BDðω; u1; u2Þ ¼ P̃νðω; u1; u2Þ: ð5:5Þ

When β ¼ 2π, Eqs. (3.12) and (5.3) do coincide proving the claimed identification.
The permuted two-point function is in turn represented as follows:

WBDðX2; X1Þ ¼
Z

∞

−∞
e−iωðt1−t2ÞP̃νð−ω; u2; u1Þdω ¼

Z
∞

−∞
e−iωðt1−t2Þe−2πωP̃νðω; u1; u2Þdω: ð5:6Þ

In the above chain of identities, we changed the integration variable ω → −ω and—in the second step—used the symmetry
of the two-point function ν → −ν. As a by-product—by the Riemann-Lebesgue theorem—we get also the following crucial
identity (which may also be checked directly):

P̃νð−ω; u2; u1Þ ¼ e−2πωP̃νðω; u1; u2Þ: ð5:7Þ

Equation (5.6) encodes the Kubo-Martin-Schwinger property of the restriction of the maximal analytic two-point function
(5.3) to the static patch: a geodetic observer in the static patch “perceives” a thermal bath of particles at inverse
temperature 2πR.

VI. MORE ABOUT THE VACUUM OF THE STATIC GEODETIC OBSERVER

By using Eqs. (5.2) and (5.6), we obtain the following new integral representation of the covariant commutator in the
static chart:

CνðX1; X2Þ ¼ WBDðX1; X2Þ −WBDðX2; X1Þ ¼
Z

∞

−∞
e−iωðt1−t2ÞC̃νðω; u1; u2Þdω; ð6:1Þ

where

C̃νðω; u1; u2Þ ¼ ð1 − e−2πωÞP̃νðω; u1; u2Þ ¼ −C̃νð−ω; u2; x1Þ: ð6:2Þ

Let us take the zero temperature limit β → ∞ in Eq. (3.12); only positive energies survive,

W∞ðX1; X2Þ ¼
Z

∞

0

e−iωðt1−t2Þð1 − e−2πωÞP̃νðω; u1; u2Þdω

¼
Z

∞

−∞
e−iωðt1−t2ÞθðωÞC̃νðω; u1; u2Þdω: ð6:3Þ

θðωÞ is Heaviside’s step function. The above equation points toward the following natural family of Rindler–de Sitter
positive frequency modes (ω ≥ 0):
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φω;1ðt; uÞ ¼ e
1
2
πνeπω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh πω
2π3

r
Γ
�
1

2
− iνþ iω

�
e−iωtQiω

−1
2
þiν

ðu − iϵÞ;

φω;2ðt; uÞ ¼ e−
1
2
πνeπω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh πω
2π3

r
Γ
�
1

2
− iνþ iω

�
e−iωtQiω

−1
2
þiν

ðuþ iϵÞ;

φ�
ω;1ðt; uÞ ¼ e

1
2
πνe−πω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh πω
2π3

r
Γ
�
1

2
þ iν − iω

�
eiωtQ−iω

−1
2
−iνðuþ iϵÞ;

φ�
ω;2ðt; uÞ ¼ e−

1
2
πνe−πω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh πω
2π3

r
Γ
�
1

2
þ iν − iω

�
eiωtQ−iω

−1
2
−iνðu − iϵÞ; ð6:4Þ

equivalent to the one used in Sec. III. Using the above modes, we may represent the field operator in the static patch in the
usual way,

ϕðt; xÞ ¼
Z

∞

0

ðφω;1ðt; uÞa1ðωÞ þ φω;2ðt; uÞa2ðωÞ þ φ�
ω;1ðt; uÞa†1ðωÞ þ φ�

ω;2ðt; uÞa†2ðωÞÞdω: ð6:5Þ

The state W∞ðX1; X2Þ is characterized by the conditions a1ðωÞΨ0 ¼ a2ðωÞΨ0 ¼ 0; it is a pure state,

W∞ðX1; X2Þ ¼
X
i

Z
∞

0

φω;iðt1; u1Þφ�
ω;iðt2; u2Þdω: ð6:6Þ

Positive definiteness is also clear from (6.6). The state defined by W∞ may be interpreted as the vacuum state for the
geodesic observer in the Rindler–de Sitter wedge and is the close analogous of the fulling vacuum of Rindler quantum field
theory [30,31].
Finally, the covariant commutator (6.1), which is of course independent from the chosen state, can be written as follows:

CνðX1; X2Þ ¼ W∞ðX1; X2Þ −W∞ðX2; X1Þ

¼
X2
i¼1

Z
∞

0

½φω;iðt1; u1Þφ�
ω;iðt2; u2Þ − φω;iðt2; u2Þφ�

ω;iðt1; u1Þ�dω: ð6:7Þ

VII. OTHER TIME-TRANSLATION
INVARIANT STATES

More generally, we may introduce the two-point func-
tions

WFðX1; X2Þ ¼
Z

∞

−∞
e−iωðt1−t2ÞFðωÞC̃νðω; u1; u2Þdω;

ð7:1Þ

WFðX2; X1Þ ¼
Z

∞

−∞
e−iωðt1−t2ÞFð−ωÞC̃νð−ω; u2; u1Þdω;

ð7:2Þ

where FðωÞ is a real function or a distribution such that the
product FðωÞC̃ðω; u1; u2Þ is well defined. Equation (6.2)
implies that it must be

FðωÞ þ Fð−ωÞ ¼ 1: ð7:3Þ

In particular,

(1) The vacuum (6.3) of the static geodetic observer
corresponds to

FðωÞ ¼ θðωÞ: ð7:4Þ

(2) The Bunch-Davies maximally analytic state (5.3)
corresponds to

FðωÞ ¼ 1

1 − e−2πω
: ð7:5Þ

(3) An antisymmetric function βð−ωÞ ¼ −βðωÞ defines
a time invariant state

FðωÞ ¼ 1

1 − e−βðωÞ
: ð7:6Þ

(4) The thermal equilibrium state (3.12) at inverse
temperature β corresponds to βðωÞ ¼ βω.

All the above two-point functions have the following
general structure:
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WðX1; X2Þ ¼
X
i¼1;2

Z
∞

0

cosh2ðγðωÞÞφω;iðt1; u1Þφ�
ω;iðt2; u2Þdωþ

X
i¼1;2

Z
∞

0

sinh2ðγðωÞÞφ�
ω;iðt1; u1Þφω;iðt2; u2Þdω; ð7:7Þ

with in particular cosh γðωÞ ¼ ð1 − e−βωÞ−1
2 for the thermal state,

WβðX1; X2Þ ¼
X
i¼1;2

Z
∞

0

φω;iðt1; u1Þφ�
ω;iðt2; u2Þ

1 − e−βω
dωþ

X
i¼1;2

Z
∞

0

φ�
ω;iðt1; u1Þφω;iðt2; u2Þ

eβω − 1
dω: ð7:8Þ

The latter formula in turn allows to write Wβðt; x1; x2Þ as a Matsubara sum over imaginary frequencies as follows:

WβðX1; X2Þ ¼
X∞
n¼0

W∞ðt1 − inβ; x1; t2; x2Þ þ
X∞
n¼1

W∞ðt2; x2; t1 þ inβ; x1Þ: ð7:9Þ

The above representations clearly show that all such states (but the vacuum γ ¼ 0) are mixed states. In particular, the
maximally analytic Bunch-Davies two-point function is written as

WBDðX1; X2Þ ¼
X
i¼1;2

Z
∞

0

φω;iðt1; u1Þφ�
ω;iðt2; u2Þ

1 − e−2πω
dωþ

X
i¼1;2

Z
∞

0

φ�
ω;iðt1; u1Þφω;iðt2; u2Þ

e2πω − 1
dω: ð7:10Þ

These are simple examples of what has been called a
generalized Bogoliubov transformation [26,27], a construc-
tion that directly provides mixed states by suitably extend-
ing the canonical quantization formalism.

VIII. ALPHA STATES IN THE STATIC CHART

The set of states (7) does not contain every time
translation invariant state. There is still the freedom to
add to the two-point function a symmetric part that, as such,
does not contribute to the commutator. The so-called
α-vacua [4,12,16,17,32] belong to this second class of
states. Let us briefly sketch their construction in the static
patch coordinates.
The two-point Wightman functions of the α-vacua may

be written in terms of the Bunch-Davies two-point function
as follows [17,32]:

WðαÞðX1; X2Þ
¼ cosh2αWBDðX1; X2Þ þ sinh2αWBDðX2; X1Þ

þ 1

2
sinh 2α½WBDðX1;−X2Þ þWBDð−X1; X2Þ�: ð8:1Þ

We are left with the task of expandingWBDðX1;−X2Þ in the
modes (6.4). To do it, let us introduce the parity auto-
morphism of the static patch,

Xðt; xÞ → X̃ðt; xÞ ¼ Xðt;−xÞ: ð8:2Þ

The curve s → X̃ðtþ is; xÞ for 0 < s < π is entirely con-
tained in T þ and ends at

X̃ðtþ iπ; xÞ ¼ −Xðt; xÞ ð8:3Þ

in the left Rindler–de Sitter wedge (see Fig. 1). Similarly,
the curve s → X̃ðtþ is; xÞ for 0 > s > −π is entirely
contained in T − and ends again at X̃ðt−iπ;xÞ¼−Xðt;xÞ
but from the opposite tube.
Given any two points X1 and X2 in the right Rindler–de

Sitter wedge, we may use again the maximally analytic
global two-point function (5.1) and get

WBDðX1;−X2Þ ¼ WBDðX1; X̃2ðt2 þ iπ; x2ÞÞ ¼ WBDð−X1; X2Þ ¼ WBDðX̃1ðt1 − iπ; x1Þ; X2Þ

¼ −
i

4π2

Z
∞

−∞

e−iωðt1−t2Þ

cosh πðν − ωÞQ
iω
−1
2
þiν

ðu1 − iϵÞQ−iω
−1
2
−iνðu2 − iϵÞdω

þ i
4π2

Z
∞

−∞

e−iωðt1−t2Þ

cosh πðν − ωÞQ
iω
−1
2
þiν

ðu1 þ iϵÞQ−iω
−1
2
−iνðu2 þ iϵÞdω ð8:4Þ
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¼ −i
Z

∞

0

φω;1ðt1; x1Þφ�
ω;2ðt2; x2Þ − φω;2ðt1; x1Þφ�

ω;1ðt2; x2Þ
2 sinh πω

dω

þ i
Z

∞

0

φ�
ω;1ðt1; u1Þφω;2ðt2; u2Þ − φ�

ω;2ðt1; u1Þφω;1ðt2; u2Þ
2 sinh πω

dω: ð8:5Þ

In the second step, we used Eq. (7.10) and the following relations:

φω;1ðt� iπ;−uÞ ¼ ie�πωφω;2ðt; uÞ; φω;2ðt� iπ;−uÞ ¼ −ie�πωφω;1ðt; uÞ;
φ�
ω;1ðt� iπ;−uÞ ¼ −ie∓πωφ�

ω;2ðt; uÞ; φ�
ω;2ðt� iπ;−uÞ ¼ ie∓πωφ�

ω;1ðt; uÞ: ð8:6Þ

Integration is (8.5), the over positive energies only. Putting everything together, we get

WðαÞðX1; X2Þ ¼
X
i

Z
∞

0

cosh2ðγðωÞÞφω;iðt1; u1Þφ�
ω;iðt2; u2Þdω

þ
X
i

Z
∞

0

sinh2ðγðωÞÞφ�
ω;iðt1; u1Þφω;iðt2; u2Þdω

− i sinh 2α
Z

∞

0

φω;1ðt1; x1Þφ�
ω;2ðt2; x2Þ − φω;2ðt1; x1Þφ�

ω;1ðt2; x2Þ
2 sinh πω

dω

þ i sinh 2α
Z

∞

0

φ�
ω;1ðt1; u1Þφω;2ðt2; u2Þ − φ�

ω;2ðt1; u1Þφω;1ðt2; u2Þ
2 sinh πω

dω; ð8:7Þ

where

coshðγðωÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eπω cosh2 αþ e−πω sinh2 α

2 sinhðπωÞ

s
: ð8:8Þ

As expected, the α-vacua are translation invariant with
respect to the time variable of the Rindler—de Sitter
wedge; here the generalized Bogoliubov transformation
of the positive energy modes is more general than the one
exhibited in Eq. (7.7). The extra terms that do not
contribute to the commutator are altogether symmetric in
the exchange of X1 and X2.

IX. MORE ABOUT THERMAL PROPAGATORS

In this section, we examine some properties of the
thermal correlation functions and discuss various limiting
behaviors. This study is to better characterize them and also
to lay the ground for the study of the IR loop contributions
which will be the matter of a companion paper.

A. Wightman propagators for large timelike separation

Let us consider the limit t ¼ t1 − t2 → ∞, x1 ¼ x2 ¼ 0
(the general case x1 ≠ x2 being essentially the same). The
integrand in Eq. (3.12) has poles at

ω ¼ �ν −
i
2
þ in; n ∈ Z; ω ¼ 2πik

β
;

k ∈ Z; k ≠ 0: ð9:1Þ

In Eq. (3.12), there is no pole at ω ¼ 0; still, ω ¼ 0 has a
role to play in calculating the spacelike asymptotics.
In the limit t → ∞, the leading contributions come from

the poles which are closer to the real axis,

Wβðt; x1 ¼ x2 ¼ 0Þ

≈
	 e−

t
2ðCþeiνt þ C−e−iνtÞ for β < 4π

Cβe
−t2πβ for β > 4π

; ð9:2Þ

where

Cþ ¼ C�
− ¼ 1 − e−2πðνþi

2
Þ

1 − e−βðνþi
2
Þ
e−πνΓðiνÞΓð1

2
− iνÞ

2π
ffiffiffi
π

p ; ð9:3Þ

Cβ ¼
sinð2π2β Þ
4π2β





Γ
�
1

4
−
iν
2
−
π

β

�
Γ
�
1

4
−
iν
2
þ π

β

�



2: ð9:4Þ

The asymptotic behavior of the propagator changes at
β ¼ 4π. In the limit β → ∞, the constant Cβ tends to zero
and the Wightman function asymptotics are given again in
the upper line in (9.2).
The first set of poles in (9.1) is also actually related to the

transmission and reflection coefficients of the quantum
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mechanical scattering problem (3.4). For instance, a
straightforward computation based on Eqs. (9.6) and
(9.7) gives the transmission coefficient

T ¼ sinh2ðπωÞ
cosh½πðν − ωÞ� cosh½πðνþ ωÞ� : ð9:5Þ

The second set of poles in (9.1) depends also on the inverse
temperature β. As β increases, the poles move toward the
real axis. When β > 4π poles of the second set dominate,
the large t behavior of the propagator changes accordingly.

B. Large spacelike separation

We now evaluate the asymptotic behaviour of the
correlators when one of the spacelike coordinates goes
to infinity in two distinct ways.
By use of the asymptotic behaviour of the Ferrers

function at x → ∞, we get

Piω
−1
2
þiν

ðtanh xÞ ≈
x→∞

eiωx

Γð1 − iωÞ ; ð9:6Þ

Piω
−1
2
þiν

ð− tanh xÞ ≈
x→∞

�
Γð−iωÞe−iωx

Γð1
2
þ iν − iωÞΓð1

2
− iν − iωÞ þ

coshðνπÞΓðiωÞeiωx
π

�
: ð9:7Þ

The singularities at ω ¼ 0 in the latter equation cancel each other, but, in the limit under consideration, the two terms
contribute separately. By substituting the above expressions into (3.12) and making the shift ω → ωþ iϵ, we see that the
dominant contribution comes from the lower half plane. We get that in the limit x1 → ∞ the Wightman propagator still
depends on the temperature,

lim
x2→∞

Wβðt1 − t2; x1; x2Þ ¼
2π

β

1

4 cosh νπ
P−1

2
þiνð− tanh x1Þ ¼

2π

β
WBDð− tanh x1Þ: ð9:8Þ

Alternatively, we may consider the formal Taylor expansion of Eq. (3.12),

Wβðt; x1; x2Þ ¼
2π

β
WBDðζÞ þ

�
π −

2π2

β

�
i
∂
∂tWBDðζÞ

−
�
πβ

6
þ 4π3

3β
− π2

� ∂2

∂t2WBDðζÞ −
�
−
π2β

6
−
2π4

3β
þ 2π3

3

�
i
∂3

∂t3WBDðζÞ þ…: ð9:9Þ

For β ¼ 2π, all the de Sitter breaking terms (i.e., every term
but the first) at the rhs cancel, as expected. Also, when
t ¼ t1 − t2 is held constant and either x1 or x2 tends to plus
or minus infinity, only the first terms at the rhs survive, with
ζ ¼ − tanh x.

C. Lightlike separation

For lightlike separations, the propagators should behave
as in Minkowski space. In the Bunch-Davies invariant case,
this comes immediately from Eq. (3.14),

WBDðζ ≈−1Þ≈−
1

4π
logð1þ ζÞ≈−

1

4π
log½t2 − ðx1 − x2Þ2�:

ð9:10Þ

For arbitrary β at lightlike separation, large values of ω’s
dominate in the integral (3.12). For large ω, we may
approximate Piω

−1
2
þiν

ðtanh x1Þ ≈ eiωx1=Γð1 − iωÞ and get the

leading term

Wβðt; x1; x2Þ ≈
Z

∞

1

dω
2π

e−iωt

2ω
ðe−iωðx1−x2Þ þ eiωðx1−x2ÞÞ

≈ −
1

4π
log½t2 − ðx2 − x1Þ2�:

The cutoff in this integral is order of R—the radius of the de
Sitter universe, which we set equal to one. The approxi-
mation works for jωj much larger than m and R. The
dependence on the temperature is lost in this high energy
limit: only the Hadamard term survives.

D. Anomalous singularities at the horizon

When the temperature is an integer multiple of the
Hawking-Gibbons temperature, i.e., when β ¼ 2π=N, we
may use Eq. (3.12) to derive another representation of the
two-point function as a finite sum of Legendre functions [as
opposed to the infinite Matsubara-type series (7.9)]; this is
obtained by translating the Bunch-Davies maximal analytic
two-point function in the imaginary time variable within the
analyticity strip ð−2π < Imt < 0Þ (see also [4,33]),
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W2π
N
ðt1 − t2; x1; x2Þ

¼
Z þ∞

−∞
e−iωðt1−t2Þ

1 − e−2πω

1 − e−
2πω
N

P̃ω;νðu1; u2Þdω

¼ 1

4 cosh πν
P−1

2
þiνðζðt1 − t2 − iϵ; x1; x2ÞÞ

þ 1

4 cosh πν

XN−1

n¼1

P−1
2
þiν

�
ζ

�
t1 − t2 − i

2πn
N

; x1; x2

��
:

ð9:11Þ
The first term on the rhs is exactly the Bunch-Davies de
Sitter invariant Wightman function; this is singular at
ζ ¼ −1. The extra terms become singular when the two
points approach either the left or the right horizon,

X1 ¼ Xðλþ c1; λÞ; X2 ¼ Xðλþ c2; λþ ΔλÞ: ð9:12Þ

In the limit λ → �∞, the above events belong to the
horizons. Then,

ζ

�
c1 − c2 − i

2πn
N

; λ; λþ Δλ
�

¼ −
cosh ðc1 − c2 − i 2πnN Þ þ sinh λ sinhðλþ ΔλÞ

cosh λ coshðλþ ΔλÞ → −1:

For generic β, the limit λ → ∞ may be obtained by per-
forming manipulations similar to those which led to (9.8),

Wβðλ → ∞Þ ≈ −
1

2

Z þ∞

−∞
dω

×
1

ðeβðωþi0Þ − 1Þ sinh πðωþ i0Þ e
−2iωλ:

Due to presence of the double pole at ω ¼ −i0, the answer
is as follows:

Wβðλ → ∞Þ ≈ 2π

β

λ

π
≈
2π

β
WBDðλ → ∞Þ:

Note that taking in Eq. (9.11) the horizon limit also
gives W2π

N
ðλ → ∞Þ ≈ NWBDðλ → ∞Þ.

A remarkable fact is the following: for lightlike sepa-
rations inside the static patch, the dominant contribution to
the propagator comes from large ω’s; on the contrary, at the
horizon, small ω’s provide the leading contribution. This is
because the horizon is the boundary of the patch; the main
contribution comes from the infrared rather than ultraviolet
frequencies.

E. Flat space limit

Here we consider the flat space limit, i.e., we let the de
Sitter radius go to infinity ðR → ∞Þ. Let us start by
discussing the flat limit of the modes (4.5) and of the
Bunch-Davies two-point function, following the treatment
given in [18]. To this aim, it is better to use another orbital
basis of the forward light cone Cþ,

ξþðkÞ ¼

8>><
>>:

ξ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2=m

p
ξ1 ¼ k=m

ξ2 ¼ −1

ξ−ðkÞ ¼

8>><
>>:

ξ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2=m

p
ξ1 ¼ −k=m
ξ2 ¼ þ1

; ð9:13Þ

lim
R→∞

�
ξþðkÞ · Xðt−iϵR ; xRÞ

R

�−1
2
−imR

¼ e−it
ffiffiffiffiffiffiffiffiffiffi
k2þm2

p
þikx; ð9:14Þ

lim
R→∞

�
ξ−ðkÞ · Xðt−iϵR ; xRÞ

R

�−1
2
−imR

¼ 0; ð9:15Þ

and so on (recall that ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2R2 − 1

4

q
).

It follows that when R → ∞ [18],

WBD

�
X

�
t1 − iϵ
R

;
x1
R

�
; X

�
t2 þ iϵ

R
;
x2
R

��
→

1

4π

Z
∞

−∞
e−i

ffiffiffiffiffiffiffiffiffiffi
k2þm2

p
ðt1−t2−iϵÞþikðx1−x2Þ dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
p ; ð9:16Þ

which is the standard Fourier representation of the (positive energy) Wightman function in Minkowski space.
To find the flat limit of the Wightman functionWβ for arbitrary β in the same way, we may start by rewriting the integral

representation (3.12) in the following way:

Wβðt; x1; x2Þ ¼
Z

∞

0

dω

�
e−iωtP̃R

ν ðω; x1; x2Þ
1 − e−2πRω

1 − e−βω
þ eiωtP̃R

ν ðω; x1; x2Þ
1 − e−2πRω

eβω − 1

�
; ð9:17Þ

the superscript R indicates explicitly the restored dependence of (3.12) on the radius R. For β ¼ 2πR, the limit R → ∞
(formally) gives
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lim
R→∞

WBDðt; x1; x2Þ ¼
Z

∞

0

dωe−iωtP̃∞
ν ðω; x1; x2Þ: ð9:18Þ

Taking into account Eq. (9.16), it follows that

lim
R→∞

Wβðt; x1; x2Þ ¼
Z

∞

0

dω

�
e−iωtP∞

ν ðω; x1; x2Þ
1

1 − e−βω
þ eiωtP∞

ν ðω; x1; x2Þ
1

eβω − 1

�

¼
Z

∞

−∞

dk

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
"
e−i

ffiffiffiffiffiffiffiffiffiffi
k2þm2

p
tþikðx1−x2Þ

1 − e−β
ffiffiffiffiffiffiffiffiffiffi
k2þm2

p þ ei
ffiffiffiffiffiffiffiffiffiffi
k2þm2

p
t−ikðx1−x2Þ

eβ
ffiffiffiffiffiffiffiffiffiffi
k2þm2

p
− 1

#
; ð9:19Þ

which is precisely the flat space thermal propagator with
temperature 1=β. In the Bunch-Davies, the temperature
scales together with R and this maintains invariance at
every stage, while in generic case, β does not scale with R.
On the other hand, scaling β ¼ β0R with constant β0
provides in the vacuum positive energy Wightman func-
tion. This is true also for β ¼ ∞.

X. CONCLUSIONS AND OUTLOOK

Cauchy surfaces in the Rindler–de Sitter wedge are not
Cauchy’s for the geodesically complete global de Sitter
universe. Giving initial data on such surfaces completely
determines the classical dynamics of fields in the Rindler–
de Sitter wedge only. By applying the formalism of
canonical quantization and Bogoliubov transformations,
we may construct all the pure Fock states representing
quantum Klein-Gordon fields in the wedge. Generalized
Bogoliubov transformations [26,27], however, allow for the
construction of a much wider set of states which are,
generally speaking, mixed. In this paper, we have explicitly
constructed all the above states by separating the variables
in the static chart (2.2); the construction was exhibited for
the two-dimensional de Sitter space not to burden the
presentation with unnecessary complications.
In particular, we gave integral representations of all the

Kubo-Martin-Schwinger states including the Bunch-Davies
state at temperatureT ¼ 1=2πR.All of themaredirectly seen
to be mixed states, the only pure state in that family being
obtained in the zero temperature limit. We also provided
explicit formulas for the alpha states which include also
nondiagonal terms.
The thermal propagators have unusual pathological sin-

gularities on the horizons (vaguely remembering Einstein’s
suspicionsabout thepresenceofmatter on thehorizons [24]).
We mention also that, while these propagators obey the
fluctuation-dissipation theorem, the de Sitter invariant
Bunch-Davies state, restricted to thewedge, does not possess
at least one of the properties of Minkowskian thermal states
[34], because de Sitter invariance forbids the Debye screen-
ing. So there is room for further study.

The important question for cosmology is: what about the
initial state of our Universe? The difference between the
static patch, the Poincaré patch, and the global de Sitter
universe [1,2] will appear in the infrared loops which are
sensitive to the initial (and to the boundary conditions).
In flat space-time (at least in a box), an initial arbitrary

state (within a reasonable class) will thermalize sooner or
latter. The temperature of the final state depends on the
initial conditions and may be arbitrary. What about thermal-
ization in de Sitter space? Is there thermalization to a state
with an arbitrary temperature? How does the answer to
these questions depends on the choice of patch (type of
initial Cauchy surface)?
To answer these questions, one has to resum secularly

growing loop corrections. It is the Boltzmann’s equation
which allows to do that in Minkowski space [1]. What is the
analog of the flat space Boltzmann’s equation in the static
de Sitter space?
We will address some of the above questions in a

forthcoming companion paper.
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APPENDIX: COMPLETENESS RELATION OF
ASSOCIATED LEGENDRE FUNCTIONS ON THE

CUT

Here we provide an explicit (formal) calculation of the
canonical commutation relations (3.2) which, by introduc-
ing cos θ ¼ tanh x ¼ u, we rewrite as follows:
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sin θ1 sin θ2δðcos θ1 − cos θ2Þ ¼
Z

∞

−∞

ωdω
4π sinhðπνÞΓ

�
1

2
þ iν − iω

�
Γ
�
1

2
− iνþ iω

�

×

�
Piω
−1
2
þiν

ðcos θ1Þ
�
Piω
−1
2
þiν

ðcos θ2Þ
��

þ Piω
−1
2
þiν

ð− cos θ1Þ
�
Piω
−1
2
þiν

ð− cos θ2Þ
���

: ðA1Þ

Using the holomorphic plane waves introduced in Sec. IV, we get the following integral representation for Piω
−1
2
þiν

ðcos θÞ
[see Eq. (4.10) and the following ones]:

Piω
−1
2
þiν

ðcos θÞ ¼ iΓð1
2
þ iνÞ

2πΓð1
2
þ iν − iωÞ

Z
∞

−∞
dte−iωtΔfðt; θÞ; ðA2Þ

where we set

f�ðt; θÞ ¼ ðξlð0Þ · Zðt� iϵ; θÞÞ−1
2
−iν ¼ ½cos θ þ sin θ sinhðt� iϵÞ�−1

2
−iν; ðA3Þ

Δfðt; θÞ ¼ ðfþðt; θÞ − f−ðt; θÞÞ: ðA4Þ

Piω
−1
2
þiν

ðcos θÞ is therefore the Fourier transform of the discontinuity of the holomorphic plane waves on the real de Sitter

manifold. Let us insert (A2) in Eq. (A1); let us consider for instance the first term on the rhs of Eq. (A1). By performing the
integration over ω, we get

ðA:1Þ ¼ −
i

16πsinh2πν

Z
∞

−∞
dt½ð∂tΔfðt; θ1ÞÞΔfðt; θ1Þ� − Δfðt; θ1Þ∂tΔfðt; θ2Þ��þ

−
i

16πsinh2πν

Z
∞

−∞
dt½ð∂tΔfðt; π − θ1ÞÞΔfðt; π − θ1Þ� − Δfðt; π − θ1Þ∂tΔfðt; π − θ2Þ��

¼ −
i

16πsinh2πν

X
k¼−�

Z
∞

−∞
dt½ð∂tfkðt; θ1ÞÞfkðt; θ1Þ� − fkðt; θ1Þ∂tfkðt; θ2Þ��þ

−
i

16πsinh2πν

X
k¼−�

Z
∞

−∞
dt½ð∂tfkðt; π − θ1ÞÞfkðt; π − θ1Þ� − fkðt; π − θ1Þ∂tfkðt; θ2Þ��: ðA5Þ

In the second step, we used the analyticity properties of the plane waves; this simplification is valid in the two-dimensional
spacetime and in any even dimensional spacetime as well. By introducing the Mellin representation of the plane wave,

f�ðt; θÞ ¼
e∓iπ

2
ð1
2
þiνÞ

Γð1
2
þ iνÞ

Z
∞

0

du u−
1
2
þiνe�iuðcos θþsin θ sinhðt�iϵÞÞ; 0 < θ < π; ðA6Þ

a few easy integrations show the validity of Eq. (A1) and the completeness of the modes.
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