
 

BPS solitons with internal structure in the gauged Oð3Þ sigma model
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We investigate the existence of self-dual solitons with internal structure in a gauged Oð3Þ nonlinear
sigma model immersed in a dielectric medium generated by a real scalar field (dubbed the source field).
We consider rotationally symmetric configurations and applying the Bogomol’nyi-Prasad-Sommerfield
formalism to obtain the energy lower bound and the respective first-order differential equations (or self-
dual equations). By solving such a system of equations for three different dielectric media, we find the
internal structure generates relevant changes in the soliton profiles when compared with the ones obtained
without the presence of the dielectric medium.
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I. INTRODUCTION

Vortex solutions, in the field theory context, were found
in the Maxwell-Higgs model by Nielsen and Olesen,
relating them to the Nambu string in the strong-coupling
realm [1], besides in the nonrelativistic limit the Abrikosov
[2,3] superconducting vortices emerge naturally. In par-
ticular, the type-II superconductors present vortex states
possessing quantized magnetic flux, which was confirmed
experimentally by Essmann and Träuble [4]. An interesting
fact about soliton solutions is that in some special situations
can be obtained via a system of first-order differential
equations attained employing a technique known as the
Bogomol’nyi-Prasad-Sommerfield (BPS) formalism, also
determining the minimum value of the system energy
(the Bogomol’nyi bound) [5,6]. In connection with the
Abrikosov study, the BPS limit is the interface between the
two superconductor phases, such as it was studied by
Bogomol’nyi in [6] and by de Vega and Schaposnik [7]
using an alternative technique. Furthermore, the existence
of vortex solutions supporting both electric and magnetic
fields also have proposed in scenarios involving the Chern-
Simons action [8–12].
Vortexlike structures also emerge in the (1þ 2)-

dimensional gauged sigma Oð3Þ model. The nonlinear
sigma model has aroused the interest of lots of researchers
due to its wide range of applications in condensed matter

physics [13–15]. Moreover, there is a close connection
between the Oð3Þ and CPð1Þ models, such as shown in
Refs. [16–18]. Despite the model possesses a self-dual
structure, the resulting topological solitons are scale-
invariant, consequently do not represent particles in the
context of quantum field theory [19].
A first intent, proposed by Schroers, breaks the scale

invariance couplingminimally the sigma field to theMaxwell
gauge field and introducing a potential that preserves the self-
dual structure [20]. This way, his approach generated a new
class of topological solitons with nonquantized magnetic
flux. Subsequently, Ghosh [21] studied this new type of
soliton by coupling the sigma field to theUð1ÞChern-Simons
gauge field and, as expected, the solitons engendered—
topological or nontopological—are electrically charged. For
both models, the homotopy group π2ðS2Þ characterizes the
soliton solutions. A second approach byMukherjee explores
the breaking of the scale-invariance by adopting a self-
interaction potential leading to the spontaneous breaking
of the Abelian local gauge symmetry. Consequently, the
topological solitons possessing quantized magnetic flux are
classified through the fundamental homotopy group π1ðS1Þ
[22,23]. These solitons also were investigated in scenarios
where the sigma field is coupled nonminimally to a gauge
field [24] and in Lorentz-violating sigma-models [25]. The
BPS structure of the gaugedOð3Þ sigmamodel has also been
discussed in Ref. [26].
Moreover, other new vortex solutions are found pro-

moting the extension of the Uð1Þ symmetry, for example,
in the Maxwell-Higgs model [27,28]. There are other
interesting examples in the literature as the extended
groups Uð1Þ × Z2 [29] and CPð2Þ × Z2 [30], being
obtained through the introduction of a real scalar field,
allowing the description of self-dual vortices in a dielec-
tric medium. Such new objects can be of great utility in the
study of metamaterials [31–33].
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Motivated by these discussions, we are searching for
the occurrence of such first-order structures, but now
in the context of the gauged nonlinear sigma Oð3Þ model,
where its subgroup SOð2Þ is enlarged as SOð2Þ × Z2. The
corresponding extra scalar field is coupled to the gauge one
by mean of a generalized dielectric function multiplying the
Maxwell term. We present our results as follows: In Sec. II,
we introduce the model, and next, by considering rota-
tionally symmetric configurations, we implement the BPS
formalism that provides the energy lower bound and the
corresponding first-order equations. In Sec. III, we discuss
three distinct scenarios by selecting the dielectric medium.
After solving the BPS system of equations, we highlight the
main new characteristics presented by the self-dual sol-
itons. Lastly, in Sec. IV, we make our final comments and
conclusions.

II. THE MODEL

Our starting point is a (2þ 1)-dimensional extended
gauged Oð3Þ sigma model defined by the following
Lagrangian density:

L¼−
ΣðχÞ
4

FμνFμνþ1

2
Dμϕ⃗ ·Dμϕ⃗þ1

2
∂μχ∂μχ−Vðn̂ ·ϕ;χÞ;

ð1Þ

where the sigma field ϕ⃗ ¼ ðϕ1;ϕ2;ϕ3Þ is a triplet of real
scalar fields whose norm is fixed to be ϕ⃗ · ϕ⃗ ¼ 1. The
tensor Fμν ¼ ∂μAν − ∂νAμ is the electromagnetic field
strength tensor of the Uð1Þ gauge field Aμ. The sigma
and gauge fields are minimally coupling via the covariant
derivative defined as

Dμϕ⃗ ¼ ∂μϕ⃗ − Aμn̂ × ϕ⃗; ð2Þ

with n̂ being an unit vector in the internal space. The
potential Vðn̂ · ϕ⃗; χÞ is always a non-negative function and
stands for some appropriate interaction between the sigma
field and the neutral scalar field χ. Further, we have
supposed this latter field coupled to gauge sector through
a dielectric function ΣðχÞ, which is also a non-negative real
function. It is worthwhile to point out in absence of the
scalar field χ we recover the standard gauged Oð3Þ sigma
model studied in Ref. [23].
The sigma-model term is invariant under the global

SOð3Þ symmetry, whereas the potential breaks partially it,
preserving only the subgroup SOð2Þ of the target space, a
scenario similar to that of the configurations studied in
Ref. [23]. Thus, the field configurations classify through
the fundamental homotopy group π1ðS1Þ ≅ Z, with the
respective degree or topological charge defined by,

deg½ϕ⃗� ¼ 1

4π

Z
d2xq; ð3Þ

where q ¼ ϕ⃗ · ð∂1ϕ⃗ × ∂2ϕ⃗Þ is the topological charge
density.
We are interested in the search for stationary solutions of

the model described by the Lagrangian density (1) with the
corresponding Gauss’s law telling us whether the solution
carries only magnetic flux or both magnetic flux and
electrical charge. In this sense, we present the gauge field
equation of motion

∂νðΣFνμÞ ¼ ðn̂ × ϕ⃗Þ · ðDμϕ⃗Þ; ð4Þ

from which we obtain the stationary Gauss law given by

∂kðΣ∂kA0Þ ¼ A0½1 − ðn̂ · ϕ⃗Þ2�: ð5Þ

Here, we observe the gauge condition A0 ¼ 0 identically
satisfies the Gauss law allowing us to choose this condition
for our following analysis. This way, the resulting con-
figurations are magnetic flux carriers possessing a null
electric charge.
To investigate stationary solutions we set n̂ ¼ ð0; 0; 1Þ

and we assume the well-known hedgehog ansatz for ϕ⃗,

ϕ⃗ðr; θÞ ¼

0
B@

sin fðrÞ cosðNθÞ
sin fðrÞ sinðNθÞ

cos fðrÞ

1
CA; ð6Þ

where ðr; θÞ represent the polar coordinates. Furthermore,
for the gauge field components and the neutral scalar field
we set

Ai ¼ ϵij
xj
r2
½aðrÞ − N�; χ ¼ χðrÞ; ð7Þ

respectively. The quantity N is the called winding number,
being N ∈ Zn0. The real functions fðrÞ, aðrÞ, and χðrÞ are
well behaved satisfying the following boundary conditions
in r ¼ 0:

fð0Þ ¼ 0; að0Þ ¼ N; χð0Þ ¼ χ0; ð8Þ

whereas for the asymptotic limit we require

lim
r→∞

fðrÞ¼ π

2
; lim

r→∞
aðrÞ¼ 0; lim

r→∞
χðrÞ¼ χ∞; ð9Þ

where χ0 and χ∞ are finite constants. Of course, the set of
boundary conditions established above is consistent with
the vacuum configurations of the fields and ensures the
finiteness of the energy.
The corresponding topological charge density of the

field configuration ϕ⃗ defined by the map Eq. (6) is
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q ¼ −
N
r
d
dr

cos f; ð10Þ

whose integration [using the boundary (8) and (9)] provides
the topological charge of the solitons

deg½ϕ⃗� ¼ N
2
; ð11Þ

implying that the map (6) only covers one-half of the target
space, i.e., the northern hemisphere of the internal space.
The coverage of the southern hemisphere is related to the
respective antisoliton with charge −N=2.
The other stationary Euler-Lagrange equations associ-

ated with the Lagrangian density (1), under the gauge
condition A0 ¼ 0, are written below. From (4) we get the
Ampère law

ðΣBÞ0 þ a
r
sin2 f ¼ 0; ð12Þ

where the magnetic field in terms of the quoted ansatz
becomes

B ¼ −
a0

r
: ð13Þ

The prime symbol stands for the derivative with respect to
the radial coordinate r.
Further, the field equations for the sigma and scalar field

profiles, fðrÞ and χðrÞ, are

1

r
ðrf0Þ0 ¼ a2

2r2
sinð2fÞ þ Vf; ð14Þ

and

1

r
ðrχ0Þ0 − 1

2
B2Σχ ¼ Vχ ; ð15Þ

respectively. Above, we have defined Vf ¼ ∂V=∂f,
Σχ ¼ ∂Σ=∂χ, and Vχ ¼ ∂V=∂χ.
We now proceed to the implementation of the BPS

formalism. For this, we begin by writing the corresponding
energy density of the model (1), namely,

ε ¼ 1

2
ΣB2 þ 1

2
ðf0Þ2 þ a2

2r2
sin2 f þ 1

2
ðχ0Þ2 þ V: ð16Þ

To implement the BPS procedure [6], we introduce two
auxiliary functions U ≡UðfÞ and W ≡WðχÞ, such that
Eq. (16) can be rewritten as

ε ¼ 1

2Σ
ðΣB ∓ UÞ2 þ 1

2

�
f0 ∓ a

r
sin f

�
2

þ 1

2

�
χ0 ∓ Wχ

r

�
2

þ V −
U2

2Σ
−
W2

χ

2r2

∓ a0

r
U ∓ a

r
ðcos fÞ0 � 1

r
W 0; ð17Þ

being Wχ ¼ ∂W=∂χ. The two first terms in the third
row of Eq. (17) can be rewritten as a total derivative by
assuming the constraint U0 ¼ ðcos fÞ0, allowing to obtain
the explicit form for UðfÞ:

UðfÞ ¼ cos f; ð18Þ

where, without loss of generality, we have taken the
integration constant to be zero.
Also, we choose the self-dual potential as

Vðf; χÞ ¼ U2

2Σ
þW2

χ

2r2
¼ 1

2Σ
cos2 f þW2

χ

2r2
: ð19Þ

The function WðχÞ acts as a “superpotential” for the
scalar field χ, allowing us to find solutions satisfying first-
order differential equations. It is important to mention that
the presence of the neutral scalar field χ in Eq. (1) demands
the insertion of a term, being an explicit function of the
radial coordinate r, into the potential Vðf; χÞ whose finality
is the full implementation of the BPS formalism. The
explicit presence of the radial coordinate in the potential [as
in Eq. (19)] was previously considered (within the context
of an effective model) in Ref. [34] to circumvent the
Derrick-Hobart theorem [35,36]. Furthermore, such an
approach already has been used in different contexts,
e.g., Maxwell-Higgs [29,37], magnetic monopoles [38],
and gauged CPð2Þ [30].
By using the two last considerations the energy density

(17) becomes

ε ¼ εBPS þ
1

2Σ
ðΣB ∓ cos fÞ2

þ 1

2

�
f0 ∓ a

r
sin f

�
2

þ 1

2

�
χ0 ∓ Wχ

r

�
2

; ð20Þ

where we have defined the BPS energy density as

εBPS ¼ ∓ 1

r
ða cos f −WÞ0: ð21Þ

This way, from (20), we write the total energy as follows

E ¼ 2π

Z
∞

0

drrεðrÞ ¼ EBPS þ Ē; ð22Þ

with the BPS total energy (Bogomol’nyi bound)
given by
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EBPS ¼ ∓2π

Z
∞

0

drrεBPSðrÞ

¼ �2πðN þ ΔWÞ ≥ 0; ð23Þ

where we have used the boundary conditions (8) and (9),
and also defined ΔW ¼ Wðχ∞Þ −Wðχ0Þ. The upper
(lower) sign describes the self-dual solitons (antisolitons)
corresponding to N and ΔW positive (negative) quantities.
Although we have not chosen until then the explicit form
for the superpotential WðχÞ and dielectric function ΣðχÞ,
we emphasize that the BPS total energy depends only on
the boundary conditions of WðχÞ, besides, of course, the
winding number N.
Coming back to Eq. (22), the second term reads

Ē ¼ 2π

Z
∞

0

drr

�
1

2Σ
ðΣB ∓ cos fÞ2

þ 1

2

�
f0 ∓ a

r
sin f

�
2

þ 1

2

�
χ0 ∓ Wχ

r

�
2
�
; ð24Þ

such that the total energy (22) has a bound E ≥ EBPS which
is saturated when Ē ¼ 0, i.e., the solutions obeys the first-
order differential equations or

f0 ¼ � a
r
sin f; ð25Þ

B ¼ −
a0

r
¼ � cos f

ΣðχÞ ; ð26Þ

χ0 ¼ �Wχ

r
: ð27Þ

This set is called self-dual or BPS equations, where the
(lower) upper sign stands for (anti) solitons with (N < 0)
N > 0. Therefore, the BPS system ensures the energy lower
bound and the stability of the corresponding field configu-
rations. A comment not least is that indeed Eqs. (25)–(27)
satisfy the set of Euler-Lagrange equations (12), (14), and
(15) associated with Lagrangian density (1) as well.
The BPS formalism engenders an interesting structure

for the self-dual system, once it separates the dynamics of
the scalar field χ depending only on the superpotential
WðχÞ and not involving the fields fðrÞ and aðrÞ, as we can
observe in Eq. (27). The remaining two equations describe
the soliton of the gauged sigma field (introduced in
Ref. [23]) under the effects of the dielectric function
ΣðχÞ. Consequently, such a BPS structure enables us to
study interesting physical scenarios by adequately selecting
the superpotential and the dielectric medium (see the next
section).
Furthermore, by using the first-order equations, the BPS

energy density (21) can be rewritten in the form

εBPS ¼ εΣ þ εχ ; ð28Þ

where we have defined

εΣ ¼ ΣB2 þ a2

r2
sin2 f and εχ ¼

W2
χ

r2
; ð29Þ

respectively. The εΣ standing for the energy density
associated with the new solitons while εχ is the contribution
belonging to the field χ.
Below, after solving Eq. (27) for a given superpotential

WðχÞ supporting kinklike solutions for the field χ, we shall
address some interesting scenarios by choosing some
different dielectric functions ΣðχÞ driving the internal
structure of the new solitons.

III. SOME SCENARIOS WITH INTERNAL
STRUCTURES

We shall consider some internal structure scenarios by
choosing a specific form of the χ field that introduces
additional nonlinearities to the original sigma model,
allowing us to analyze how the shape of the original
solitons is modified. For this purpose, we consider the
following superpotential:

WðχÞ ¼ αχ −
α

3
χ3; ð30Þ

where α is a positive parameter. The particular case α ¼ 1
has been previously approached in different contexts as
global defect structures [34], skyrmionlike configurations
[39,40], massless Dirac fermions [41], magnetic monop-
oles [38] and vortices with internal structures [29,30]. On
the other hand, arbitrary values of α were used to discuss
the solutions into a multilayered structure [37].
Then, by assuming the superpotential (30), the BPS

equation (27) results

χ0 ¼ � α

r
ð1 − χ2Þ; ð31Þ

which implies in the exact kinklike solution

χðrÞ ¼ � r2α − r2α0
r2α þ r2α0

; ð32Þ

where r0 is an arbitrary positive constant. Besides the
solution satisfies χðr0Þ ¼ 0, it fixes the boundary conditions
for the neutral field: χð0Þ¼ χ0¼∓1 and χð∞Þ ¼ χ∞ ¼ �1.
Under such considerations, the BPS bound for the

energy (23) becomes

EBPS ¼ 2πjNj þ 8

3
απ; ð33Þ

where the second term is the contribution from the neutral
scalar field. Similarly, the magnetic flux reads
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Φ ¼
Z

d2xB ¼ 2πjNj: ð34Þ

For our study, in the remaining of the manuscript, we
only consider the soliton solutions, i.e., N > 0.

A. First scenario

We begin by setting the dielectric function to be used in
our first scenario,

ΣðχÞ ¼ 1

1 − χ2
: ð35Þ

We note that the dielectric function diverges at the
boundary values but, despite that, the BPS energy density
BPS (28) remains finite because of the magnetic field BðrÞ
controls these singularities (as we see later).
Within this scenario, we only consider the kink solution

(32) with α ¼ 1 because there are not solutions acceptable
physically when α ≥ 2. Thus, the dielectric function (35)
becomes

ΣðχÞ ¼ ðr2 þ r20Þ2
4r2r20

: ð36Þ

To obtain the corresponding BPS solutions to the sigma
and gauge fields, we must solve Eqs. (25) and (26) by
considering the dielectric function (36). Thus, the new
system reads

f0 ¼ a
r
sin f; ð37Þ

−
a0

r
¼ 4r2r20

ðr2 þ r20Þ2
cos f; ð38Þ

where (13) also has been used. The system above must be
solved obeying the boundary conditions of the fields aðrÞ
and fðrÞ, namely Eqs. (8) and (9).
We now show the field behaviors in the proximity

of the boundary values. Near the origin, the sigma field
behaves as

fðrÞ ≈ fNrN −
fNrNþ4

4r20
þ 2fNrNþ6

9r40
−
ðfNÞ3r3N

12

þ ðN2 þ 4N þ 12ÞðfNÞ3r3Nþ4

16ðN þ 2Þ2r20
þ ðfNÞ5r5N

80
−
ðfNÞ7r7N

448
; ð39Þ

where fN is a positive parameter, which can be determined
numerically. For the gauge field profile, we have

aðrÞ ≈ N −
r4

r20
þ 4r6

3r40
−
3r8

2r60
þ ðfNÞ2r2Nþ4

ðN þ 2Þr20
−
2ðfNÞ2r2Nþ6

ðN þ 3Þr40
−
ðfNÞ4r4Nþ4

8ðN þ 1Þr20
: ð40Þ

Both expressions above guarantee at least the three first
lowest-order terms for all values of N.
The behavior of the fields in the asymptotic limit is

given by

fðrÞ ≈ π

2
− C∞r−2r0 ; ð41Þ

aðrÞ ≈ 2r0C∞r−2r0 ; ð42Þ

where C∞ is a positive constant whose value depends on
the winding number. We point out the asymptotic behavior
in the original gauged sigma model [23] follows an
exponential-law decay, which is very similar to the one
shown by the Abrikosov-Nielsen-Olesen vortices [1,2].
However, in this case, the dielectric medium changes the
asymptotic behavior of the field profiles that now follow a
power-law decay.
In what follows, we present the numerical solution of the

system formed by Eqs. (37) and (38) for some values of N
and r0. The resulting field profiles for the gauge and sigma
fields, magnetic field, and energy density εΣðrÞ are shown
in Figs. 1–4.
Without loss of generality, we consider the field profiles

fðrÞ and aðrÞ for the winding number N ¼ 1 and distinct
values of r0, see Fig. 1. We remark that both profiles are
well-behaved according to the respective boundary values,
but a new effect is observed in the gauge field profiles when
compared to the ones found without the dielectric medium.
Such an effect is a plateau extending from the origin whose
length increases as r0 grows, and it directly impacts the
shape of the magnetic field profile.
Figure 2 shows the magnetic field profiles for different

values of N and r0. Differently to the case without the
dielectric medium (i.e., from standard sigma model [20]),
the magnetic field is null at r ¼ 0 and the profiles acquire
the format of rings centered at the origin. By considering a

fixed r0, there is a winding number NðBÞ
0 (e.g., NðBÞ

0 ¼ 8 in
Fig. 2) allowing us to distinguish the behavior of the

FIG. 1. The profiles fðrÞ (left) and aðrÞ (right) for N ¼ 1,
r0 ¼ 1 (solid line) and r0 ¼ 5 (dashed line).
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profiles. For N ≤ NðBÞ
0 , the maximum amplitude (located at

r ¼ r� ≤ r0) increases as N grows meanwhile runs far

away from the origin until that at N ¼ NðBÞ
0 attains the

maximum value equal to unity (the one in the standard
sigma model) and becomes located at r� ¼ r0. Already for

N > NðBÞ
0 , the maximum amplitude remains located at r� ¼

r0 and with the same maximum value (see the left-hand side
in Fig. 2). On the other hand, for a fixedN, the maximum of
the ring decreases as r0 increases (see the right-hand side in
Fig. 2). Alternatively, a planar depiction provides a better
view of the ringlike structure of the magnetic field, such as
shown in Fig. 3.
The null value at the origin of the magnetic field is

corroborated by the behavior at r ¼ 0 given by

BðrÞ ≈ 4r2

r20
−
8r4

r40
þ 12r6

r60
−
2ðfNÞ2r2Nþ2

r20

þ 4ðfNÞ2r2Nþ4

r40
þ ðfNÞ4r4Nþ2

2r20
; ð43Þ

valid at least for the three first lowest-order terms.
In this scenario, the magnetic field behaves very sim-

ilarly to the one presented in the Chern-Simons-Higgs
model [9] despite the magnetic field vanishes asymptoti-
cally following a power law,

BðrÞ ≈ 4C∞r20
r2þ2r0

: ð44Þ

Concerning the energy density εΣðrÞ, its behavior near
the origin (valid at least for the three first lowest-order
terms) is given by

εΣðrÞ ≈ N2ðfNÞ2r2N−2 þ 4r2

r20
−
8r4

r40

−
N2ðfNÞ4r4N−2

2
þ 3N2ðfNÞ6r6N−2

16

−
ðN2 þ 4N þ 8ÞðfNÞ2r2Nþ2

2r20
; ð45Þ

in according to the profiles shown in Fig. 4. On the left-
hand side, for a fixed r0 and N ¼ 1, the εΣ profiles are non-
null at the origin, having a lumplike format with the center
slightly away from r ¼ 0. However, with a fixed r0 and
N ≥ 2, they are nulls at r ¼ 0, acquiring a ringlike format.
Further, on the right of Fig. 4, we observe that, for N ¼ 1,
the values of εΣð0Þ ¼ f21 decrease as r0 grows, and for
sufficiently large values of r0 decays as r−10 (see inset).
Already for the asymptotic limit, the energy density εΣ
follows the behavior

εΣðrÞ ≈
8ðC∞Þ2r20
r2þ4r0

; ð46Þ

valid for any value N.

B. Second scenario

In this section, we analyze the BPS configurations
arising in a second dielectric medium mapped by the
function

ΣðχÞ ¼ 1

χ2
¼ ðr2α þ r2α0 Þ2

ðr2α − r2α0 Þ2 ; ð47Þ

where the kink χðrÞ is given by Eq. (32). Distinctly to the
previous case, the dielectric function is finite at r ¼ 0 and

FIG. 2. The magnetic field profiles are depicted for some values
of N and r0. There are exhibited the ones obtained both in the
presence (color lines) and in the absence of the dielectric function
(black lines). On the left, we depict for r0 ¼ 2, N ¼ 1 (solid line),
N ¼ 2 (dashed line), N ¼ 8 (dot-dashed line) and N ¼ 15 (long-
dashed line). On the right, for N ¼ 1, r0 ¼ 1 (dot-dashed line),
r0 ¼ 2 (solid line) and r0 ¼ 3 (dotted line).

FIG. 3. The magnetic field depicted in the plane for N ¼ 1,
r0 ¼ 1 (a) and r0 ¼ 2 (b).

FIG. 4. The profiles for the energy density εΣðrÞ. There are
exhibited the ones obtained both in the presence (color lines) and
in the absence of the dielectric function (black lines). On the left,
the conventions are as in Fig. 2. On the right, we depict εΣð0Þ v.s.
r0. The insertion shows ln εΣð0Þ v.s. ln r0.
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r → ∞, but possesses a divergence at r ¼ r0. The existence
of self-dual configurations with finite energy density (28) is
not affected by such a singularity. Indeed, this is quickly
verified by analyzing the BPS equation (26) after substitut-
ing Eq. (47), which leads us to

BðrÞ ¼ ðr2α − r2α0 Þ2
ðr2α þ r2α0 Þ2 cos f; ð48Þ

showing the magnetic field is null in r ¼ r0, Bðr0Þ ¼ 0,
consequently, the term ΣB2 in (28) becomes not singular
and the total BPS energy (33) remains finite. Further, we
here point out the vanishing of the magnetic field in this
particular point will reveal the strong influence of the
dielectric medium in the structure of the new soliton
solutions.
The set of BPS equations describing the new solitons in

this second scenario is given by

f0 ¼ a
r
sin f; ð49Þ

−
a0

r
¼ ðr2α − r2α0 Þ2

ðr2α þ r2α0 Þ2 cos f: ð50Þ

For a clearer understanding of the field behaviors near
the boundary values (8) and (9), we need to solve Eqs. (49)
and (50). This way, we first obtain the behaviors of the
sigma and gauge fields near the origin,

fðrÞ ≈ fNrN −
fNrNþ2

4
þ fNrNþ4

32
−
ðfNÞ3r3N

12

þ ðN2 þ 2N þ 3ÞðfNÞ3r3Nþ2

16ðN þ 1Þ2 þ ðfNÞ5r5N
80

þ fNrNþ2αþ2

ðαþ 1Þ2r2α0
; ð51Þ

and

aðrÞ ≈ N −
r2

2
þ ðfNÞ2r2Nþ2

4ðN þ 1Þ −
ðfNÞ2r2Nþ4

8ðN þ 2Þ

þ 2r2αþ2

ðαþ 1Þr2α0
−

4r4αþ2

ð2αþ 1Þr4α0
þ…

−
ðfNÞ2r2Nþ2αþ2

ðN þ αþ 1Þr2α0
−
ðfNÞ4r4Nþ2

16ð2N þ 1Þ ; ð52Þ

respectively, where the quantity fN stands for a positive
constant. These expressions guarantee at least the three first
lowest-order terms of the behavior of the field profiles.
Meanwhile, for r → ∞ and all values of N and α, the

behavior of the field profiles obeys

fðrÞ ≈ π

2
− C∞r−1=2e−r; ð53Þ

aðrÞ ≈ C∞r1=2e−r; ð54Þ
being C∞ a positive constant. Interestingly, in this case, the
asymptotic behavior of the field profiles is very similar to
the one shown by the Abrikosov-Nielsen-Olesen vortices
[1,2], i.e., the dielectric medium does not change the
asymptotic behavior which remains the same of the original
gauged sigma model [22].
In what follows, we show the numerical solutions of the

system formed by Eqs. (49) and (50). ForN ¼ 1, α ¼ 1, and
different values of r0, the gauge and sigma field profiles are
depicted in Fig. 5 (the value α ¼ 1 is enough to investigate
themain features of the field profiles in the current scenario).
The novelty arises in the gauge field profiles that exhibit a
quirky behavior: the emergence of a plateau effect around r0
implying in important modifications in the magnetic field
behavior, as we will notice afterward.
Figure 6 depicts the magnetic field profiles for distinct

values of the parameters r0 and α and the corresponding
ones of the standard sigma model. Unlike the previous
scenario, we now see that the dielectric medium causes a
second maximum located at r� > r0, whose amplitude is
lower than the first one located at the origin. The absolute
maximum at r ¼ 0 is verified explicitly by the magnetic
field behavior, which reads as,

BðrÞ ≈ 1 −
ðfNÞ2r2N

2
þ ðfNÞ2r2Nþ2

4
−
4r2α

r2α0

þ 8r4α

r4α0
þ 2ðfNÞ2r2Nþ2α

r2α0
þ ðfNÞ4r4N

8
; ð55Þ

FIG. 5. The profiles fðrÞ (left) and aðrÞ (right) for N ¼ 1 and
α ¼ 1: r0 ¼ 1 (solid line) and r0 ¼ 2 (dashed line).

FIG. 6. The magnetic field profiles for the sigma model for both
in the presence (color line) and absence (black line) of the
dielectric function (47) with fixed value N ¼ 1. For the case with
a dielectric medium, we depict r0 ¼ 0.5 (left) and r0 ¼ 1 (right)
with α ¼ 1 (solid line) and α ¼ 2 (dashed line).
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ensuring at least the two first lowest-order terms. The
magnetic field profiles appear similar to the Nielsen-Olesen
configurations for 0 ≤ r ≤ r0 while in the region r > r0
resembles the ones in the Chern-Simons-Higgs model. In
the last region, the corresponding behavior for r → ∞ reads

BðrÞ ≈ C∞r−1=2e−r; ð56Þ
being similar to the one presented in the absence of the
dielectric medium. Alternatively, Fig. 7 provides an over-
view of the effects induced in the magnetic field profiles by
the dielectric function (47) via the parameters r0 and α. We
note that r0 controls the internal size of the structures, while
α controls the core size and the maximum of the external
ring surrounding it, such that they increase as α grows.
Figure 8 depicts the profiles of the energy density εΣ that

allows us to analyze, in the present scenario, its main
features. Our numerical results are better understood or
complemented by the behavior at the boundary values.
Thus, near the origin, it is given by

εΣðrÞ ≈ 1þ N2ðfNÞ2r2N−2 −
ðN2 þ 2N þ 2ÞðfNÞ2r2N

2

−
4r2α

r2α0
−
N2ðfNÞ4r4N−2

2
þ 16α2r4α−2

r4α0
; ð57Þ

guaranteeing at least the two first lowest-order terms.
Further, for r → ∞, εΣ behaves as

εΣðrÞ ≈ 2ðC∞Þ2r−1e−2r: ð58Þ

On the left-hand side of Fig. 8, for N ¼ 1, the profiles
of εΣ are lumps centered at the origin whose amplitude
εΣð0Þ ¼ 1þ ðf1Þ2 increases as r0 grows until that, for

sufficiently large values of r0 (see inset), it saturates
attaining the value corresponding to the standard sigma
model (the solid black line). Conversely, for N ≥ 2, we will
always have εΣð0Þ ¼ 1, as shown on the right of Fig. 8.
There, for a fixed r0 and increasing values of N, we observe
the profiles of εΣ acquire a local minimum at r� < r0 that
becomes null and remains localized at r� ¼ r0 for all
N ≥ N� (e.g., N� ¼ 5 in Fig. 8).

C. Third scenario

Motivated by Ref. [37], we now consider the dielectric
function as follows

ΣðχÞ ¼ 1þ λ2

λ2 þ cos2 ðmπχÞ ; ð59Þ

where m ∈ N and λ ∈ R. We remark that for very large
values of λ the dielectric function ΣðχÞ → 1 which means
we recover the standard sigma model.
As in the previous scenarios, we have a set of BPS

equations,

f0 ¼ a
r
sin f; ð60Þ

−
a0

r
¼

λ2 þ cos2 ðmπ
r2α−r2α

0

r2αþr2α
0

Þ
1þ λ2

cos f; ð61Þ

whose solutions, under the boundary conditions (8) and (9),
provide the self-dual solitons in the current scenario.
We now compute the approximated solutions for the

field profiles, which characterize their behaviors near the
boundaries. At the origin, the sigma field and gauge field
profiles behave as

fðrÞ ≈ fNrN −
fNrNþ2

4
−
ðfNÞ3r3N

12
þ � � �

þ m2π2fNrNþ4αþ2

ð2αþ 1Þ2ðλ2 þ 1Þr4α0
; ð62Þ

FIG. 7. The magnetic field depicted in the plane for r0 ¼ 0.5,
α ¼ 1 (a) and α ¼ 2 (b), and r0 ¼ 1, α ¼ 1 (c) and α ¼ 2 (d).

FIG. 8. The profiles for the energy density εΣðrÞ in both cases
in the presence (color line), by fixing α ¼ 1, and absence (black
line) of the dielectric function (47). On the left, it is depicted
N ¼ 1, r0 ¼ 1 (solid line) and r0 ¼ 3 (dashed line); (inset) we
have εΣð0Þ vs r0 for the dielectric function (47) with N ¼ 1. On
the right, profiles for r0 ¼ 1 with N ¼ 2 (solid line), N ¼ 5
(dashed line), N ¼ 20 (long-dashed line), and N ¼ 30 (dot-
dashed line).
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aðrÞ ≈ N −
r2

2
þ ðfNÞ2r2Nþ2

4ðN þ 1Þ þ � � �

þ 2m2π2r4αþ2

ð2αþ 1Þðλ2 þ 1Þr4α0
; ð63Þ

respectively, where fN is a positive real number. The
expressions above guarantee at least the two lowest-order
terms and the lowest contribution coming from the dielec-
tric function. On the other hand, the behaviors for r → ∞
coinciding with the ones obtained in Eqs. (53) and (54),
respectively.
For the magnetic field and the energy density εΣðrÞ, the

behaviors in r ¼ 0 obey the expressions given by

BðrÞ ≈ 1 −
ðfNÞ2
2

r2N þ � � � þ 4m2π2r4α

ðλ2 þ 1Þr4α0
; ð64Þ

εΣðrÞ ≈ 1þ N2ðfNÞ2r2N−2 −
ðN2 þ 2N þ 2ÞðfNÞ2r2N

2

−
N2ðfNÞ4r4N−2

2
þ � � � − 4m2π2r4α

ðλ2 þ 1Þr4α0
; ð65Þ

respectively. Already, for r → ∞, the behaviors are the very
same as the ones given in Eqs. (56) and (58), respectively,
found in the previous scenario.
Next, we investigate numerically how the dielectric

function (59) modifies the soliton profiles of the standard

sigma model. The analysis considers two situations depen-
ding on the λ parameter: the first one associated with λ ¼ 0
and the second case related to λ ≠ 0.

1. Simplest case: λ= 0
In the current scenario, Figs. 9 and 10 depict the

numerical profiles for the sigma and gauge fields. We
highlight the role played by the parameters m and α whose
effects are more notorious in the gauge field profiles. The
first one causes the arising of 2m-plateaus and the second
one profiles more localized around the origin when α
grows, respectively, both producing relevant effects in
the magnetic field structure. In this sense, Figs. 11 and 12
show the magnetic field profiles for distinct values of the

FIG. 10. The gauge field profiles aðrÞ with fixed values N ¼ 1
and λ ¼ 0. Left: profiles for α ¼ 1,m ¼ 1with r0 ¼ 1 (solid line)
and r0 ¼ 2 (dashed line). Right: profiles for r0 ¼ 1, m ¼ 2 with
α ¼ 1 (solid line) and α ¼ 3 (dashed line).

FIG. 9. The sigma field profiles fðrÞ forN ¼ 1 and λ ¼ 0. Left:
profiles for α ¼ 1, m ¼ 1 with r0 ¼ 1 (solid line) and r0 ¼ 5
(dashed line). Right: profiles for r0 ¼ 1, m ¼ 2 with α ¼ 1 (solid
line) and α ¼ 2 (dashed line).

FIG. 11. The magnetic field profiles for both in the presence
(color line) and absence (black line) of the dielectric function
(59). We have λ ¼ 0, N ¼ 1, r0 ¼ 1, α ¼ 1 (top) and α ¼ 2
(bottom) with m ¼ 1 (left) and m ¼ 2 (right).

FIG. 12. The magnetic field depicted in the plane with values
fixed for N ¼ 1 and λ ¼ 0. We display m ¼ 1, r0 ¼ 1, α ¼ 1 (a)
and α ¼ 2 (b), and r0 ¼ 2, α ¼ 2 (c). Following, we have m ¼ 2,
r0 ¼ 1, α ¼ 1 (d) and α ¼ 2 (e), and r0 ¼ 2, α ¼ 2 (f).
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parameters r0, α, andm, comparing with the corresponding
profile of the standard sigma model (black lines). Similarly
to the previous scenarios, we notice the parameter r0
controls both the intensity and width of the structures,
while the radius of their respective cores increases as α
grows. Nevertheless, the additional parameter m associated
with the 2m-plateaus of the gauge field determines an equal
number of external rings to the core.
The effects of r0 and α on the energy density εΣ are

similar, albeit less intense, to the ones exhibited by the
magnetic field in Fig. 11. This way, in Fig. 13, we only draw
the profiles for different values of N and m, and some
corresponding to the ones in the standard sigma model
(black lines). At the origin, the density εΣ is always non-null
and has the following behavior according the N values: it is
εΣð0Þ ¼ 1þ ðf1Þ2 for N ¼ 1 and εΣð0Þ ¼ 1 for N ≥ 2. On
the right-hand side of the figure, such as in themagnetic field
case, we see several ringlike structures that are associated
with them value and become more noticeable when N ≥ 2.
We also observe that for large values of N, the border of the
profile follows the format of the one belonging to the
standard sigma model (on the right, e.g., see the profile
for N ¼ 40).

2. Nonvanishing case: λ ≠ 0

We now present a brief analysis of the case λ ≠ 0. As
already mentioned, for sufficiently large values of λ, we

recuperate the standard gauged sigma model, i.e., the
dielectric function approaches to the unit value. Figure 14
shows such behavior for the profiles of the sigma and gauge
fields, which become more localized around the origin as λ
increases. In Fig. 15, the planar depict of the magnetic field
also shows such a diminishing effect. Consequently, in the
present scenario, the internal structure diminishes as λ
increases until that, in the limit of sufficiently large values,
the configurations match the ones of the standard gauged
sigma model.

IV. CONCLUSIONS AND REMARKS

We have studied the existence of new topological
magnetic solitons living into a dielectric medium Σ. To
describe these structures, we have considered a gauged
sigma model containing an extra real scalar field (source
field χ) that characterizes the dielectric properties of the
medium, Σ≡ ΣðχÞ. Stable solitons are obtained by follow-
ing the BPS technique, whose implementation is only
possible by introducing a superpotentialWðχÞ in the source
sector, allowing us to decouple it from both the gauge and
sigma sectors.
Even without knowing an explicit form of both the

dielectric function ΣðχÞ and superpotential WðχÞ, we have
found first-order equations, which are also solutions of the
Euler-Lagrange ones. Because of the arbitrariness of these
functions, we point out that the proposed model can fit a
variety of physical environments. In our analysis, we have
adopted the superpotential (30) that supports kinklike
solutions for the source field that allows us to investigate
solitons with internal structure in three distinct scenarios.
The superpotential introduces the parameter α > 0 and,
by solving the BPS equation (27), we obtain the kink

FIG. 13. The profiles for energy density εΣðrÞ in both cases in
the presence (color line) and absence (black line) of the dielectric
function (59), by setting λ ¼ 0, α ¼ 1, r0 ¼ 1. On the left,
profiles for m ¼ 1, N ¼ 1 (solid line) and N ¼ 2 (dashed line).
On the right, for m ¼ 2, N ¼ 5 (solid line), N ¼ 20 (long-dashed
line) and N ¼ 40 (dot-dashed line).

FIG. 14. The solitons solution fðrÞ (left) and aðrÞ (right),
comparing with the standard sigma model (solid black line), all
with N ¼ 1. Under the dielectric function (59), we set α ¼ 1,
r0 ¼ 1, m ¼ 1 for λ ¼ 0.2 (color solid line), λ ¼ 0.8 (dashed
line), and λ ¼ 1.5 (long-dashed line).

FIG. 15. The magnetic field depicted in the plane for both in the
presence (color plot) and absence (black plot) of the dielectric
function (59). The conventions are as in Fig. 14, being λ ¼ 0.2
(a), λ ¼ 0.8 (b) λ ¼ 1.5 (c) and standard sigma model (d).
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solution (32) presenting a second parameter r0, which
characterizes the kink radius where χðr0Þ ¼ 0. Further, the
dielectric function ΣðχÞ, theoretically, could introduce a set
of additional parameters.
In the first scenario, we only study the case α ¼ 1

because we have perceived there are not solutions valid for
α ≥ 2. Here, the kink radius r0 indicates the position of the
maximum amplitude attained by both the magnetic field
and energy density εΣ for sufficiently large winding
numbers. Additionally, we found that the profiles are quite
similar to the ones of the Chern-Simons vortices [9], the
ones in some generalized Maxwell-Higgs model [29], and
the solitons with an internal structure of the gauged CPð2Þ
model studied in Ref. [30].
In the second scenario, we have discussed the formation

of solitons whose magnetic field has a distribution com-
posed by a core with a maximum amplitude around which
is formed a ring with a maximum having a lower intensity.
The magnetic field is null at r ¼ r0, so it separates the core
from the ring. Furthermore, the magnetic field profiles in
the range 0 ≤ r ≤ r0 remind us of the ones found by
Nielsen-Olesen [1], whereas for r > r0 they resemble the
behavior of the Chern-Simons vortices, including typical
exponential decay, here occurring yet in the presence of the
dielectric medium. Also, we have realized the parameter α
plays the role of controlling the core size and the maximum
intensity of the external ring. On the other hand, the profiles
of the energy density εΣ, for sufficiently large values of N,
also vanish at r0 and present a behavior very similar to the
one described for the magnetic field.

In the third and last scenario, we have introduced an
oscillating dielectric function controlled via two extra
parameters (m ∈ Z and λ ∈ R) to describe a multilayered
system. The value λ ¼ 0 generates a dielectric system
producing amore notable formation of the internal structures
than for λ ≠ 0. In the latter case, the emergent internal
structure becomesmore relevant for small values of λ than the
big ones, such that, for sufficiently large values, the dielectric
effects diminish rapidly and, so we recover the realm of the
usual gauged sigma model. In both cases, the arising of 2m-
plateaus along the gauge field profile implies in the same
number of magnetic rings surrounding the soliton-core.
Finally, we are studying the possible existence of BPS

charged vortices (maybe behaving as anions) in the
presence of dielectric media in the realm of the gauged
Oð3Þ sigma model with Chern-Simons term [21]. Advances
in this direction will be reported elsewhere.
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