
 

Physics in precision-dependent normal neighborhoods
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We introduce a procedure to determine the size and shape of normal neighborhoods in any spacetimes
and their dependence on the precision of the measurements performed by arbitrary observers. As an
example, we consider the Schwarzschild geometry in Riemann and Fermi normal coordinates and
determine the size and shape of normal neighborhoods in the vicinity of the event horizon. Depending on
the observers, normal neighborhoods extend to the event horizon and even beyond into the black hole
interior. It is shown that the causal structure supported by normal neighborhoods across an event horizon is
consistent with general relativity. In particular, normal neighborhoods reaching over an event horizon are
void of the Schwarzschild coordinate singularity. In addition, we introduce a new variant of normal
coordinates which we call Fermi normal coordinates around a point, unifying features of Riemann and
Fermi normal coordinates, and analyze their neighborhoods.
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I. INTRODUCTION

Experiments and observations are based on measurement
processes with a desired accuracy that depend only to a
certain extent on the spacetime geometry. Normal neigh-
borhoods are associated with normal coordinate systems,
which allow one to accommodate just the right amount of
geometrical data to describe observables with a given
accuracy, provided the system under investigation fits into
such a neighborhood. Therefore, they enjoy widespread use
in many fields of physics.
For instance, tidal disruption events taking place when

stars pass nearby black holes are conveniently described in
normal neighborhoods. As the tidal forces disrupt the star
and strip gas from it, bright and characteristic flares are
emitted [1–3], which can be used to detect and characterize
the corresponding black hole.
The polynomial nature of normal coordinates allows for

a systematic description of physical processes in curved
spacetimes. In particular, using normal coordinates, the
geometrical content encoded in the dynamical system
under investigation can be locally approximated, granting
approximate solutions to differential equations which
cannot be solved on the exact spacetime geometry.
One has to keep in mind, however, that just as the weak-

field approximation is only a local approximation of
spacetime, this is similarly (almost) always the case for
normal coordinates. Since the infinite normal coordinate
expansions usually have to be truncated at some finite

order, their validity is restricted to a finite spacetime patch.
Therefore, whenever experimental or observational data of
a physical system with a given size is to be computed in
normal coordinate systems, it is crucial to know their
domain of validity and whether the physical system fits into
this domain given a desired accuracy. This is also an
important question for describing the aforementioned tidal
disruption events, which can be seen from [1] stating so
directly: “Since the size of the FNC [Fermi normal
coordinate] domain is necessarily limited, there is a limit
on how long a disrupted star or stripped gas can be
followed” (FNCs are a special choice of normal coordinate
systems). For such systems to be describable in normal
coordinates, it is obviously required that the normal
neighborhood encompasses the disrupted star (and possibly
also the star debris). Unfortunately, as of yet this question
concerning normal coordinate patch sizes has not been
answered satisfactorily in the literature.
The size of normal neighborhoods has until now only

been estimated based on curvature arguments; see, for
example, [4–7]. Such an estimate is sufficient for calcu-
lations aiming for a proof of concept, i.e., when the
physical system can always be chosen sufficiently small
as, for instance, in [8–11]. However, for generic experi-
ments or observations, and as will be seen in the example of
tidal disruption events, this estimate is insufficient.
Nevertheless, concrete and quantitative calculations con-
cerning the domain of validity of normal coordinate
systems and the error that arises from truncating the infinite
expansions have not been a focus of discussion in the past.
This is the main motivation for this article: We show how
the shape and size of a normal neighborhood in any
spacetime geometry can be calculated explicitly. For that
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purpose, we consider all observables of interest together
with a precision specification, i.e., given a lower resolution
bound on the experimental or observational data, we
neglect all curvature contributions below the chosen sensi-
tivity. This will restrict the normal coordinates to some
spacetime patch of finite size. The spacetime metric is
considered as a geometric building block in the construc-
tion of observables. The Mathematica code we wrote to
calculate the patch sizes for this article is provided at [12].
An interesting class of spacetimes is the one that contains

horizons and singularities. Therefore, we exemplarily apply
our method to the geometry of Schwarzschild black holes
and discuss how the resulting patch sizes are seen by
arbitrary observers in their corresponding coordinate sys-
tems. Additionally, we examine causality in normal coor-
dinate patches encompassing the event horizon.
For the example of tidal interactions as discussed in [1],

we determine whether the complete star can be included in
a normal neighborhood, given the mass and radius of the
star and the black hole in question, as well as their relative
distance. This example turns out to be quite instructive as it
demands a careful calculation of shape and size of the
normal neighborhood in accordance with an external
precision requirement. This will be elaborated at the end
of Sec. VII.
A further important topic within the range of black hole

tidal interactions are astrophysical jets, especially those of
galactic nuclei where the central body is suspected to be a
supermassive, rotating black hole. As, for example, in [13],
the effects of the black hole’s tidal forces on the jet particles
are used to characterize the black hole. The effects of
gravitational waves on systems such as LIGO can also be
calculated using normal coordinates. Although the pertur-
bation of Minkowski spacetime is small, the actual
high-precision experiment seems not to fit in a normal
neighborhood according to naive size estimates [6]. Normal
coordinates are also employed outside astrophysics and
general relativity. An example from biophysics/statistical
mechanics is given in [14], where normal coordinates are
employed to describe diffusion processes on the curved
manifolds of cell membranes. A vast subject on its own
concerns applications in gauge theories with external fields
using the celebrated Fock-Schwinger gauge. This gauge is
the analogue to normal coordinates in the sense that it uses
Taylor expansions to approximate the gauge field [15]. The
very same procedure presented in this article for normal
coordinates can be used to find the domain of validity of the
Fock-Schwinger gauge.
We also propose a new variant of Fermi normal coor-

dinates that can be used if solving the geodesic equation for
the central geodesic in the exact geometry is not possible.
In this case, the central geodesic can be computed in terms
of a Taylor expanded metric. The result will be a temporally
Taylor expanded geodesic that can then be used to set up
FNC as usual. These “FNC around a point” (FNCP) only

require geometrical information at a point, as opposed to
the usual “FNC along a geodesic.”
This article is organized as follows: Sec. II contains a

short summary of the key aspects of Riemann normal
coordinates (RNC). In Sec. III we then present our method
for finding the patch size of RNC neighborhoods.
Following this, we show sample calculations for the patch
size in Sec. IV and also establish the connection between
our result and the familiar patch size estimate presented, for
example, in [5] or [6]. In Sec. V we discuss FNC and FNCP
as well as their domains of validity. In Sec. VI we then
compute RNC patches in the geometry of a Schwarzschild
black hole, discuss the dependence of those patches on the
observer with the Schwarzschild and Painlevé-Gullstrand
observer as explicit examples. For the latter we also analyze
the causal structure in patches ranging across the horizon.
Finally, in Sec. VII we give our conclusion.
Conventions: Throughout this article, global coordinates

xa assigned to the spacetime and their indices will be
denoted by Roman letters, while normal coordinates ξα

and their indices will be written as Greek letters.
Furthermore, whenever an x or ξ dependence of a tensor
is not explicitly denoted, the tensor is to be understood as
evaluated at the normal coordinate expansion point (ξ ¼ 0).
We choose (anti)symmetrization of n indices to be defined
without the 1=n! prefactors. Also, we always parametrize
curves affinely using their proper length τ and choose as a
parameter for null curves the eigentime of the observer in
question. Finally, we choose the signature diagð−;þ;þ;þÞ,
Planck units with c ¼ G ¼ 1, and the convention for the
Riemann curvature tensor Ra

bcd ¼ Γa
b½d;c� þ Γi

b½dΓa
c�i.

II. PRELIMINARIES

According to the principle of relativity, the laws of
physics are independent of the observer describing an
experiment if the experiment moves uniformly with respect
to this observer [16]. For accelerating experiments one can
use the equivalence principle which states that gravitational
and inertial mass are equal such that an observer cannot
differentiate whether the experiment is accelerating or
placed in a homogeneous gravitational field [17].
For objects with finite size both principles apply only if

the whole object moves or accelerates uniformly.
Nevertheless, this always holds for pointlike objects which
allows us to locally rewrite the effects of an inhomogeneous
gravitational field as an acceleration [17].
Therefore, in a small neighborhood in which the gravi-

tational field and thus the metric are sufficiently homo-
geneous, the metric can be brought into Minkowski form by
choosing the coordinates in which a freely falling observer
is at rest. Normal coordinate systems possess this property.
For larger neighborhoods in which the Minkowski metric is
insufficient, one can approximate the inhomogeneity of the
gravitational field with a Taylor expansion. This results in
correction terms to the Minkowski metric. Usually, one has
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to truncate this infinite expansion after some order, which
will in turn result in a mismatch of the approximated metric,
compared to the full one, that increases with distance from
the reference point. In order for this truncated metric to still
be a viable description of the background, it therefore has to
be restricted to a domain of validity of finite extent where
the mismatch is negligibly small.
One coordinate manifestation of the above procedure are

Riemann normal coordinates, which are constructed via
what is called the exponential map. Wewill give a summary
of their construction following [18,19]. For a point p on the
connected, smooth manifold M, let γvðτÞ with γvð0Þ ¼ p
and dτγvj0 ¼ v be the geodesics that “pass through p with
velocity v.” Following some γv for a fixed yet arbitrary
length τ0, the point γvðτ0Þ is reached and receives, by the
exponential map, the coordinates v. The exponential map
(at p) is thus defined as expp ∶TpM → M, v ↦ γvðτ0Þwith
TpM the tangent space onM at p. The rescaling property of
geodesics γvðaτÞ ¼ γavðτÞ, a ∈ R, ensures that the par-
ticular choice of τ0 is irrelevant. Larger τ0 only exclude
some v in TpM, but the same region around p in M is
covered by the exponential map.
Subsequently, the γv are Taylor expanded around p, i.e.,

τ ¼ 0, which gives

γavðτÞ ¼ pa þ vaτ −
1

2
Γa

mnvmvnτ2

−
1

6
ðΓa

mn;r − 2Γa
msΓs

nrÞvmvnvrτ3 þ � � � ; ð1Þ

where the geodesic equation was used once for 1=2d2τ γjp
and twice for 1=6d3τ γjp. In general, one uses the geodesic
equation n − 1 times for the order n coefficients 1=n!dnτ γjp.
Now the 4-velocity is expanded in arbitrary vectors va ¼
λαγa;α ¼ λαeaα with λα ∈ Rð1;3Þ the transformed velocity
components and eaα the vierbein at p. The RNC fξαg are
now introduced as ξαðτÞ ¼ τλα. Consequently, the RNC
coordinate transformation induced by (1) takes the form of
a series:

γavðξÞ ¼ pa þ ξαeaα −
1

2
Γa

mnemμ enνξμξν

−
1

6
ðΓa

mn;r − 2Γa
msΓs

nrÞemμ enνerϱξμξνξϱ þ � � � : ð2Þ

Note that the geodesics γv get mapped onto straight lines
τðλ0; λ1; λ2; λ3Þ in RNC by the exponential map.
Furthermore, due to the normalization of v and the ortho-
gonality of thevierbein gabeaαebβ ¼ ηαβ, the λα are normalized

with respect to the Minkowski metric 1 ¼ gabvavb ¼
gabeaαebβλ

αλβ ¼ ηαβλ
αλβ.

The coordinate transformation (2) gives rise to many
RNC-specific geometrical identities. Important examples
are the two types of identities concerning the nth deriva-
tives of the Christoffel symbol:

ðiÞ ∂ðμ1 � � � ∂μmΓ
α
βγÞ ¼ 0; m ∈ N0; ð3Þ

ðiiÞ ∂ðμ1Γ
α
βÞγ ¼

1

3
Rαðβμ1Þγ; ð4aÞ

∂ðμ1∂μ2Γ
α
βÞγ ¼

1

2
∂ðμ1R

α
μ2βÞγ;…: ð4bÞ

The m ¼ 0 case in (3) yields the vanishing Christoffel
symbol at the origin. The infinitely many relations of the
second type will be denoted as fð4Þg. These identities can
then be used to determine the coefficients of a metric Taylor
expansion in ξ. Up to the so-called adiabatic order 3 of the
expansion in ξ, the well-known RNC metric series reads

gð3Þαβ ðξÞ ¼ ηαβ −
1

3
Rαμβνξ

μξν −
1

6
Rαμβν;ϱξ

μξνξϱ; ð5Þ

where we denoted the adiabatic order of the truncated
metric series in the superscript.
Another way of constructing normal coordinates are

FNC developed in [4], where one requires geometrical
information along (some interval of) a geodesic. This
geodesic then serves as a collection of reference points
such that RNC can be set up in the orthogonal directions at
every point of the curve. FNC can therefore take into
account a preferred curve of a physical system given by this
central geodesic.
In theory, the metric of RNC and FNC can be found up to

arbitrary order by Taylor expanding and using the identities
(3) and fð4Þg, but for calculational purposes one usually
has to truncate the series expansion after some order. This
will, as discussed above, restrict the series’s validity to
some limited spacetime patch. For example, when truncat-
ing the RNC metric (5) after adiabatic order 2, we require
the third term to be negligibly small compared to the first
two. This then restricts the possible values of ξ, resulting in
a finite patch size.

III. METHOD FOR FINDING THE PATCH SIZE
OF RNC NEIGHBORHOODS

We will now give a short description how to generally
determine the size of an RNC neighborhood. After this, we
will discuss each step in greater detail. The following
procedure introduces the steps necessary to calculate
concrete RNC patch sizes in which the metric and all
other tensors of interest are valid given a quantified
precision requirement:
Step 1: Use the geometric identities (3) and fð4Þg to

calculate the RNC metric gðξÞ up to adiabatic order nþ 1
in ξ with n being the desired order.
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Step 2: Require the nþ 1 order terms to be negligible
compared to the metric gðξÞ truncated after the order n
denoted by gðnÞðξÞ. This demand restricts the RNC patch.
Step 3: Build all tensors TðgðnÞðξÞÞ of interest (e.g., the

Riemann curvature tensor) using the metric expansion up to
order n.
Step 4: Demand the calculated TðgðnÞðξÞÞ coincide with

their usual Taylor expansions in ξ, thus introducing addi-
tional conditions. Take the most restrictive condition of
these together with Step 2 to determine the patch size.
Step 5: Compute the patch size along a geodesic γv as

seen by the observer corresponding to some x-coordinate
system by finding the straight line in RNC corresponding to
γv and determining the line’s proper length using the RNC
conditions from Steps 2 and 4. Then reparametrize γv with
the observer’s eigentime and plug in the maximal eigentime
determined by the maximal proper length.

A. Comments

In the following we discuss extensively each of the above
steps and the details of our procedure. In Sec. IVAwe then
show as an example how the procedure can be applied to
determine the patch size for n ¼ 2 and the Riemann tensor
being the additional tensor of interest.
Step 1: The determined gðnÞ-patch size becomes more

accurate the more higher order terms are computed and
used for the later comparison with gðnÞ. Perfect accuracy is
therefore achieved when comparing gð∞Þ − gðnÞ with gðnÞ.
For most applications, however, using the order nþ 1 term
of the metric gðξÞ denoted by Ogðξnþ1Þ is sufficient.
Important examples where this is insufficient are
Minkowski patches in close vicinity to a black hole of
any mass. In this case it is mandatory to calculate the metric
at least up to order 3. We will discuss this in detail in
Sec. VI B.
Step 2: This restriction is always necessary when the

infinite metric expansion is inaccessible and a truncation
has to be performed. The smallness demand for every
metric component then reads

jOgαβðξnþ1Þj ≤ εjgðnÞαβ ðξÞj; ð6Þ

where a smallness-parameter ε ∈�0; 1�, usually ε ≪ 1, was
introduced to encode what we mean by “negligibly small”
and to reflect the maximal metric mismatch allowed by the
RNC application in question.
Consider a metric-dependent observable, for instance,

the length of a curve, which is to be given up to a precision
ε̃. In a measurement process, this corresponds to an
observer with a metric-responsive detector of resolution
ε̃measuring this observable, for example, a ruler measuring
the curve length. Given an observable depending linearly
on the metric, we have in the smallness condition (6) a
linear dependence on ε̃ as well with ε ¼ ε̃. For the example

of the curve length, we have a dependence of the observ-
able on

ffiffiffĩ
ε

p
and therefore ε ¼ ε̃2. Due to the resulting

precision ε in the metric, higher order terms in the metric
expansion contributing less than ε can be neglected in all
calculations (their contribution is below the precision ε̃ of
the observable and the resolution of the corresponding
detector). Conversely, for a given adiabatic order, the
precision ε̃ of the observable restricts the applicability of
the RNC to some spacetime patch of finite size around the
origin, since for greater distances terms of higher adiabatic
order in the metric series will become too large and (6) will
be violated for the given εðε̃Þ.
The patch size determined by (6) does not always give

the real domain of validity for gðnÞ, however. In regions of
quickly varying background curvature, such as for refer-
ence points near a physical singularity, terms of adiabatic
order larger than nþ 1 in the metric expansion which
depend on higher order derivatives of the Riemann tensor
will already become important for small distances to the
reference point. If ε is chosen too large in such cases,
the patch determined by (6) will extend far enough for the
higher order terms, which are neglected in (6), to contribute
considerably in the metric series. The real error introduced
by neglecting terms of order higher than n therefore grows
much larger than ε within the patch given by (6). When
setting up RNC patches given such a quick varying of the
curvature, we can show the insufficiency of (6) in this case
by checking for physically unreasonable results after
translating the RNC patch size to some other x frame
according to Step 5 (as we will show explicitly in
Sec. VI B). This reasoning can be difficult to employ,
however, as there is no way to determine a priori which
physical quantities are suitable for this assessment.
Nevertheless, if we can thus ascertain the necessity to
consider higher orders of the metric expansion and calcu-
lating the patch size with (6) for some higher orderN > n is
undesirable, for instance, because using gðNÞ leads to
extensive computational effort in further calculations, we
extend (6) and demand instead

jOgαβðξnþkÞ þ � � � þOgαβðξnþ1Þj ≤ εjgαβðnÞðξÞj; ð7Þ

with suitable N ∋ k ≥ 2 [for n ¼ 0 and k ¼ 2 this is
equivalent to (6)]. The left-hand side in (7) equals
jgαβðnþkÞðξÞ − gαβðnÞðξÞj, and we would achieve the exact
patch size for k → ∞. Note that the triangle inequality
should not be employed here, because OgαβðξnþiÞ and
OgαβðξnþjÞ for i ≠ j can enter with different signs, and
therefore the resulting patch size would be smaller than it
actually is.
If spacetime regions of very quickly varying curvature

are to be covered by the RNC, large k [or, if (6) is to be
used, much larger n than initially desired] may be necessary
to achieve the patch size. Calculating the metric series up to

HOEGL, HOFMANN, and KOEGLER PHYS. REV. D 102, 084065 (2020)

084065-4



much higher orders than initially desired may be incon-
venient, however. In this case, we can instead also reduce
the maximal error ε we allow for the approximation, thus
ensuring that the patch will not reach too far and that higher
order terms are negligible. To obtain this upper bound on ε
for some k0 smaller than what would actually be required
for (7) to give the patch size, we proceed as follows: First,
we calculate the patch sizes using (7) with k ¼ k0 and k ¼ 1
[note that k ¼ 1 corresponds to employing (6)]. We will
denote the RNC configurations which satisfy the above

conditions and therefore lie within the patches by ξðnÞnðnþk0Þ
and ξðnÞnðnþ1Þ ¼ ξðnÞ, respectively. In the subscript, we denote
the terms of maximal order nþ k0 (and nþ 1) taken into
consideration by “dropping them” from the metric series by

nðnþ k0Þ [and nðnþ 1Þ]. Second, we compare ξðnÞnðnþk0Þ with

ξðnÞ and demand they agree up toOðεÞ. This corresponds to
the patch obtained using (6) being small enough such that
terms until order nþ k0 remain negligible. Third, if we

understand ξðnÞnðnþk0Þ and ξ
ðnÞ as functions of ε, we can obtain

the upper bound on ε for order nwith terms only up to order
nþ k0 taken into account by requiring the aforementioned

accordance of the patch sizes: ðξðnÞnðkÞ=ξ
ðnÞÞðεÞ ¼ 1þ δ,

demanding jδj ≪ ε.
When comparing the order nþ 1 terms Ogαβðξnþ1Þ with

gðnÞαβ ðξÞ, we want to take into account that the metric tensor
itself is not an observable. Rather, the metric is completely
contracted in the action of physical systems such as point
particles or scalar fields. This action then serves as the
starting point of calculations which yield metric-sensitive
observables. Taking this into account allows us to deal with
certain pathological behaviors of the truncated metric
expansion. For example, it is, in fact, possible that an

off-diagonal component gðnÞαβ ðξÞ becomes small compared

to Ogαβðξnþ1Þ in some RNC regions or that gðnÞαβ ðξÞ even
vanishes for certain ξ configurations. We see that in such
cases the right-hand sides of (6) and (7) vanish, resulting in
minimal or even vanishing ξ on the left-hand side. In the
action, such minimal contributions (at order n) will be
irrelevant, however, and the minimal patch sizes derived
thereof are consequently too restrictive. We therefore
compare Ogαβðξnþ1Þ with the maximum of all components
at order n which have to occur in the action as well, i.e., the
corresponding diagonal terms. Thus, Eq. (6) becomes

jOgαβðξnþ1Þj ≤ εmaxdiagα;β fjgðnÞαβ ðξÞjg; ð8Þ

where we use maxdiagα;β fgαβg as a shortened notation for
maxfgαβ; gαα; gββg with gαα and gββ denoting the diagonal
components to an off-diagonal component gαβ ðα ≠ βÞ.

Diagonal components therefore still get compared only
with each other.
Condition (8) can, of course, also be extended analo-

gously to (7), and we have

jOgαβðξnþkÞ þOgαβðξnþk−1Þ þ � � � þOgαβðξnþ1Þj
≤ εmaxdiagα;β fjgðnÞαβ ðξÞjg; ð9Þ

with again some appropriate N ∋ k ≥ 2.
Other metric contractions than the action will yield

different comparison methods. If the specific contraction
of the metric is unclear or too complicated, one is confined

to comparing Ogαβðξnþ1Þ just with gðnÞαβ ðξÞ as given in (6)

[or (7)]. If in this case gðnÞαβ ðξÞ vanishes, one compares
Ogαβðξnþ1Þ [or the corresponding sum in (7)] with the
minimum of the truncated sums of all other components.
After Step 2 it is already possible to employ the RNC

within the determined domain of validity. One only has to
take into account that using a truncated metric to calculate
other tensors TðgðnÞðξÞÞ will result in expansions of the T
that are not only truncated as well, but also contain
additional terms if T does not depend linearly on g.
These terms can never match the usual Taylor expansions
of the T. We will show this in detail for the Riemann tensor
in Sec. IVA. One therefore has to compute every tensor of
interest individually and use the resulting expression
instead of a Taylor expansion. If one does not wish to
take the mismatch terms into account, Steps 3 and 4 are
required.
Step 4: After having computed all other tensors

TðgðnÞðξÞÞ of interest in Step 3, we demand the obtained
expressions coincide with the usual Taylor expansions.
Since TðgðnÞðξÞÞ was calculated using a metric which was
truncated after order n, any TðgðnÞðξÞÞ can only agree with
its usual Taylor series up to some orderm ≤ n. We therefore
require that the order mþ 1 terms, both of the usual Taylor
expansion and of TðgðnÞðξÞÞ, be small compared to the
Taylor expansion of T truncated after order m. The higher
order terms of TðgðnÞðξÞÞ are the aforementioned mismatch
terms. This demand for the Taylor series and TðgðnÞðξÞÞ is
analogous to (6) for the metric.
Here, the problem of small or vanishing Taylor expan-

sions of some T components up to order m and corre-
sponding nonvanishing order mþ 1 terms of the Taylor
expansion and/or TðgðnÞðξÞÞ may also occur. In theory, one
could again develop for all T a comparison method that is
analogous to the one for the metric and depends on the
possible truncations of T in the specific application.
However, there is no distinguished contraction of an
arbitrary T, as the action for the metric, and such summa-
tions of the T components become arbitrarily complex. As
a consequence, we will here, whenever some Taylor
expansion up to order m vanishes, compare the
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corresponding nonvanishing order mþ 1 terms with the
minimum of all nonvanishing Taylor expansions.
All in all, we find two sets of restrictions for every T, one

from the Taylor expansion and one from TðgðnÞÞ. The patch
size is then determined as the minimum of the conditions
from Steps 2 and 4. The reason behind this is that we used
the conditions from Step 2 to restrict the RNC patch such
that the metric mismatch is small. Thus we ensured the
validity of the truncated metric used to calculate TðgðnÞÞ in
Step 3. The additional conditions from Step 4 therefore
implicitly require those from Step 2. It is furthermore
important to note that, as a consequence, the conditions
from Step 4 together with Step 2 will always be more
restrictive than those from Step 2 alone. This is because
using an already truncated metric expansion to calculate
TðgðnÞÞ introduces yet another mismatch compared to the
full expansion of T.
Step 5: Simply plugging the RNC conditions into the

coordinate transformation (2) will produce unreasonable
results, as the RNC observer is in general located at some
different reference point than the observer corresponding to
the x coordinates. For the same reason, one can in general
not calculate the extent of the RNC patch along some γv
using its proper length τ as a curve parameter. τ only serves
as a clock for an observer moving along γv. Any other
observer comes with a different clock (eigentime) that they
use as curve parameters.
In order to translate the patch size to another observer in

x coordinates with the eigentime x0 ¼ tobs, i.e., to examine
the x-coordinate patch in which the other observer can
describe physics using RNC, we therefore proceed as
follows: First, we choose some geodesic γv employed
for the exponential map (in x coordinates) along which
wewish to determine the patch size. As discussed in Sec. II,
γv gets mapped onto a straight line in RNC that is given by
ξα ¼ λατ, where we find the transformed 4-velocity λα ¼
vaeαa using the inverse vierbein.
Second, we determine the maximal proper length along

γv within the RNC patch τðnÞγv by requiring the correspond-
ing line in the RNC to remain in the domain of validity. For

that, we consider the neighborhood ΣðnÞ
ε of ξðnÞ around the

origin in RNC allowed by the ξ conditions computed in the
previous steps. This patch in normal coordinate space is the
domain of validity. The RNC patch’s boundary is described

as an implicit surface by ∂ΣðnÞ
ε ðξαÞ ¼ 0. It marks the RNC

region corresponding to the maximal error ε one wants to
allow for the approximation and therefore gives the

maximal ξαðnÞ. We now obtain τðnÞγv by computing the
intersection of the straight line corresponding to γv with

this surface ∂ΣðnÞ
ε ðλατðnÞγv Þ ¼ 0.

Third, we reparametrize γvðτγvÞ by the observer’s eigen-

time tobs and compute the maximal eigentime tðnÞobsðτðnÞγv Þ
along this geodesic. By plugging this into γvðtobsÞ we

obtain the maximal extent of the RNC patch along this
geodesic γv as seen by the given observer.
We will elaborate the dependence of patch sizes on the

observer in detail for the geometry of a Schwarzschild
black hole in Sec. VI.

IV. RIEMANN NORMAL COORDINATES

A. Applying the method for order n= 2

We now provide sample calculations for Steps 1 to 4 for
an expansion of the metric up to n ¼ 2 and the Riemann
tensor being the tensor of interest. Also, we employ
condition (8) for the metric. We thus derive the restrictions
defining the patch in which the metric, contracted in an
action or a comparable object, and the curvature tensor are
approximated well by the RNCmetric expanded up to order
2. In Sec. VI we will apply these conditions to the geometry
of a Schwarzschild black hole and perform Step 5 in detail.
Step 1: From (3) with m ¼ 0, one obtains the first order

coefficient of the metric expansion gαβ;μ ¼ ΓðαβÞμ ¼ 0. For
the second order coefficient one uses gαβ;μν ¼ ΓðαβÞμ;ν ¼ 0

and plugs (4a) into (3) with m ¼ 1. An analogous calcu-
lation using (4b) and (3) with m ¼ 2 yields the third order
term of the metric (and correspondingly for higher orders).
The metric up to order 3 gð3ÞðξÞ is given in (5).
Step 2: For (5) up to order 2 to be the correct metric to be

used in an action, we demand that (8) hold. This gives the
condition

jRαμβν;ϱξ
μξνξϱj ≤ 2εmaxdiagα;β fj3ηαβ − Rαμβνξ

μξνjg; ð10Þ

with the notation maxdiagα;β as introduced in (8).
In general, the easiest method to deduce concrete ξ

restrictions from conditions such as (10) is to first consider
the conditions along the axes, i.e., to determine ξαðnÞjξμ¼0,
∀ μ ≠ α. Then, an iterative procedure considering all
possible ξα − ξβ combinations with only two, one, and
finally no ξ set to 0 that only alters the axial conditions
when necessary produces the final ξ conditions defining

ΣðnÞ
ε . We will show this in detail in Sec. VI B.
Step 3: We compute the Riemann tensor Rαβγδðgð2ÞðξÞÞ

as the tensor of interest. Using the intermediate results
Γαβγðgð2ÞðξÞÞ ¼ −1=3RαðβγÞμξμ and Γα

βγðgð2ÞðξÞÞ ¼
−1=3RαðβγÞμξμ − 1=9Rα

μσνRσðβγÞϱξμξνξϱ we obtain

Rαβγδðgð2ÞðξÞÞ

¼ Rαβγδ þ
1

9
ðRαðγϱÞμRϱðβδÞν − γ ↔ δÞξμξν þ � � � : ð11Þ

The neglected terms contain the contraction of two
Riemann tensors with two ξ’s in higher orders.
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Step 4: Comparing (11) with the usual Taylor expansion
RαβγδðξÞ ¼ Rαβγδ þ Rαβγδ;μξ

μ þ � � � and demanding they
coincide, we find the two additional conditions

jðRαðγϱÞμRϱðβδÞν − γ ↔ δÞξμξνj ≤ 9εjRαβγδj; ð12Þ

jRαβγδ;μξ
μj ≤ εjRαβγδj: ð13Þ

We used here the same ε as for the metric in (6), but since
the precision requirement for the Riemann tensor may
correspond to the resolution of a different observable, we
can in principle also have another maximal error. It is here
important to note that (12) compares terms of quadratic
order in ξ with ξ-independent terms, meaning it will restrict
the domain of validity only with a factor

ffiffiffi
ε

p
, while in (13) a

factor ε enters. Also, from the calculations leading to (11)
we see that using only the Minkowski metric η ¼ gð0Þ
yields a nonexistent patch size for the Riemann tensor,
because the metric derivatives vanish in this case. This
shows that the domain of validity for the coordinate
independent Kretschmann scalar is also nonexistent for
n ¼ 0, whereas for n ¼ 2 the correct value is reestablished
at the reference point. This reflects the fact that obtaining
curvature information of a manifold always requires a
neighborhood of finite size.
The patch size from Step 4 together with Step 2 is now

determined by the minimum of the ξ over the conditions
(10), (12), and (13).

B. Literature estimate for the patch size

We can establish the connection between our concrete
calculations for the domain of validity and the patch size
estimate from the literature by means of several trivializing
estimates for the η-patch size determined by (7) with n ¼ 0

and k ¼ 3. Let us first demand that not the sum of Ogαβðξ2Þ
and Ogαβðξ3Þ be negligible compared to the Minkowski
metric, but rather that this holds for both terms individually.
Also, let us consider only the dependence of the terms on
the Riemann tensor and its derivatives as well as on powers
of ξ; i.e., we will neglect all prefactors and all index
contractions. Furthermore, since ηαβλ

αλβ ¼ 1 restricts the
components λα to be maximal �1, let us set λ to 1 for each
direction in order to consider the maximal extent of the η-
patch independent of directions. As a consequence, we can
consider τð0Þ instead of ξαð0Þ. In order to avoid overesti-
mating the patch size, let us compare all nonvanishing
curvature components and derivatives with each other.
Finally, let us also ignore the dependence on ε and only
demand general smallness of higher order terms. We thus
find the estimate for the RNC patch size from the literature
(see, for example, [5,6]), given as a restriction on the
distance from the reference point along any geodesic:

τð0Þ ≪ min

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffijRαβγδj

p ;
jRαβγδj
jRμνϱσ;χ j

�
∀ α; β;…; χ: ð14Þ

The minimum is here to be taken over all possible non-
vanishing components of the Riemann tensor and its
derivatives, i.e., over all possible combinations of the
independent indices α;…; χ which describe nonzero
components.
In the literature, these two conditions on the metric are

found by estimating the RNC validity using the curvature
radius, i.e., the length scale at which, for example, geodesic
deviation becomes important, and demanding curvature to
not change significantly within the patch compared to the
reference point. Since higher order parameters of the metric
expansion are given by higher derivatives of the Riemann
tensor and polynomials of lower order parameters, it is then
argued that (14) ensures that η will always be the dominant
term of the metric expansion.
We see, however, that greatly simplifying assumptions

were necessary to reach the patch size estimate (14) from
our concrete conditions and that the usual reasoning behind
this estimate is also based on uncertain assumptions.
Furthermore, (14) only gives a rough estimate of the
domain of validity instead of a concrete maximal value
for τð0Þ and only describes the η-patch size. It cannot
account for metric expansions up to higher orders, which
will be valid on larger patches.
In Sec. VI B we will compare the results of (14) with our

results obtained using (9) with n ¼ 0 and k ¼ 3 for the
geometry of a Schwarzschild black hole.

V. FERMI NORMAL COORDINATES

Fermi normal coordinates as developed in [4] are another
set of normal coordinates. Their construction relies on a
given geodesic γðτÞ. If the geodesic γ is obtained along
some interval by solving the geodesic equation in x space
given some initial conditions, the usual FNC prescription
along this geodesic can be employed.

A. Fermi normal coordinates along a geodesic

Given some arbitrary reference point on the geodesic
p ¼ γð0Þ, the FNC assigned to a point q are obtained as
illustrated in Fig. 1: Starting at p, γ is followed for the
length τ ¼ ξ0 until γðξ0Þ, where an RNC expansion is
performed in the orthogonal directions. These orthogonal
RNC are represented by the geodesic ωξ0ðζÞ with ωξ0ð0Þ ¼
γðξ0Þ and dζωξ0 j0 ¼ v⊥dτγjξ0 that reaches q after some
length ζ0. Since the RNC expansion is orthogonal and
describes the spatial part of the FNC, we will label the
associated coordinates by indices ᾱ and distinguish them
from ξ0 coming from the central geodesic γ. The point q
then receives the coordinates ðξ0; ξ1̄; ξ2̄; ξ3̄Þ with ξᾱ ¼ ζλᾱ,
where the λᾱ are obtained as for RNC by expanding v in
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terms of the vierbein at γðξ0Þ, va ¼ λᾱeaᾱðξ0Þ, and therefore
satisfy ηᾱ β̄λ

ᾱλβ̄ ¼ 1.
The vierbein eaαðξ0Þ at γðξ0Þ is obtained from an initial

vierbein eaα at p by parallel transport. For this initial
vierbein one chooses ea0 ¼ dτγj0 and fixes the remaining
eaᾱ by requiring orthonormality. By this construction
ea0ðτÞ ¼ dτγðτÞ holds on the whole of γ and v is expanded
only in terms of the “orthogonal part” of the vierbein.
By this construction, the interval of the central geodesic γ

gets mapped onto the line ðξ0; 0; 0; 0Þwith ξ0 ∈ U ⊆ R and
the orthogonal geodesics get mapped onto the straight lines
ζð0; λ1̄; λ2̄; λ3̄Þ at every point γðξ0Þ. Thus, FNC cover a
tubular region around the central geodesic.
Due to the reliance of FNC on the RNC construction,

their coordinate transformation and metric expansion are, in
close analogy to (2) and (5), given by

xa ¼ pa þ γðξ0Þ þ ξᾱeaᾱðξ0Þ þ � � � ; ð15Þ

gαβðξÞ ¼ ηαβ − Gðα; βÞRαμ̄βν̄ðξ0Þξμ̄ξν̄ þ � � � ; ð16Þ

with symmetric G defined as Gð0; 0Þ ¼ 1, Gð0; ᾱÞ ¼ 2=3,
and Gðᾱ; β̄Þ ¼ 1=3 (see [4]). Since every point γðξ0Þ of the
central geodesic serves as a reference point for an orthogo-
nal RNC expansion, the Riemann tensor (and its derivatives
appearing in higher order terms of the metric) have to be
evaluated at every γðξ0Þ. Therefore, additional geometrical
information is required along the interval of γ in contrast to
a single reference point as for RNC.

Notice Gðᾱ; β̄Þ ¼ 1=3, which encodes both FNC con-
taining standard RNC expansions in the orthogonal direc-
tions at every ξ0 and the tubelike “shape of FNC.” From this
it also follows that we can use our previous results on RNC
patch sizes to find the domain of validity of FNC. The
extent of a tubelike region is naturally given by its diameter.
In case of the FNC tube, this diameter is constituted by
the time-dependent orthogonal validity around every
ðξ0; 0; 0; 0Þ, which is in turn given by the time-dependent
patch sizes of the orthogonal RNC patches for every ξ0.
For the explicit calculations we therefore restrict our-

selves to the spatial part gᾱ β̄ of the metric (16) and employ
it for Steps 1 to 4 from RNC. This yields conditions
analogous to (10), (12), and (13) for every ξ0; i.e., they are
given in terms of Rᾱ β̄ γ̄ δ̄ðξ0Þ instead of Rαβγδjp. Since FNC
follow the central geodesic for some time interval or even in
its entirety, integrating the ξ0-dependent patch sizes over
this time results in the tubelike domain of validity for FNC.
In other coordinate systems the time-dependent RNC

patch will be more intricately shaped, but the concept of
integrating over the time-dependent patch size of an RNC
patch which follows the central geodesic γ to obtain the
cylindrical domain of validity of FNC remains.

B. Fermi normal coordinates around a point

For the FNC as discussed above, an interval of the central
geodesic γ is required. Solving the geodesic equation for
arbitrary spacetimes or arbitrary initial conditions can in
general be infeasible, however. In this case and in order to
still take the geodesic into account as a preferred geodesic
of the physical system, we can temporally Taylor expand γ
in τ ¼ ξ0 around p and then employ again the familiar FNC
prescription. We will here assume the order of the ξ0

expansion and the resulting temporal validity, together with
the corresponding error, to be determined independently
and to enter the FNCP construction as external parameters.
The vierbein and Riemann components at γðξ0Þ, which
were before obtained by parallel transport along γ, are now
found by parallel transport along the Taylor expanded γ;
i.e., we Taylor expand them in ξ0 as well. Using (15) and
(16) and denoting the τ differentiation by a dot, we then
obtain the coordinate transformation and metric expansion
of the resulting temporally Taylor expanded FNC

xaðξÞ ¼ pa þ ea0ξ
0 þ _e0aðξ0Þ2 þ ξᾱðeaᾱ þ _eaᾱξ

0Þ þ � � � ; ð17Þ

gαβðξÞ ¼ ηαβ −Gðα; βÞðRαμ̄βν̄

þ _Rαμ̄βν̄ξ
0Þξμ̄ξν̄ þ � � � : ð18Þ

We call this procedure an “FNC expansion around a point.”
In order to determine the domain of validity of these

FNCP around p, we proceed analogously to the usual FNC
along a geodesic. This means that given an expansion up to

FIG. 1. The dark part depicts the FNC construction along the
geodesic γðτÞ with orthogonal RNC expansions at the points p
and γðξ0Þ with vierbein eaαð0Þ and eaαðξ0Þ. An additional RNC
expansion at p0 with vierbein e0aΔðκ0Þ is depicted in lighter gray to
illustrate the alternative patch size calculation for the “FNC
around a point” construction as discussed in Appendix A.
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some order in ξ0 and the corresponding temporal validity,
we can proceed analogously to regular FNC and use the
spatial part of (18) to calculate the spatial extent along the
approximated central geodesic. This will again yield
conditions (10), (12), and (13) depending now on Rᾱ β̄ γ̄ δ̄ þ
_Rᾱ β̄ γ̄ δ̄ξ

0 þ � � � instead of the full Rᾱ β̄ γ̄ δ̄ðξ0Þ. The domain of
validity of FNCP is therefore a temporally restricted part of
the full tubular region covered by FNC along γ. Since
cutting the expansion in ξ0 introduces yet another mismatch
to the full series, this procedure is accompanied by another
error. Thus, fixing the total error, assembled by the
temporal expansion and the RNC expansion in the orthogo-
nal direction, leads to a tubular region which shrinks in
the orthogonal direction for later times to a point at the
maximal possible time. The same behavior occurs for
negative times, and thus the patch validity can be described
by a point in space growing in time to a finite ball shaped
region and eventually shrinking again to a point.
If no a priori knowledge of the temporal validity is

available, the ξ0 expansion has to be treated in the same
way as the orthogonal ξᾱ expansions. Therefore, FNCP
become comparable to RNC in the sense that they are then
simply another way of assigning normal coordinates to a
spacetime patch while using only geometrical information
at a single reference point. The only difference is the
remaining preferred direction along γ of the FNCP. As fits
intuition, we then find the validity of these FNCP to be that
of a corresponding RNC patch around said reference point.
The detailed calculations showing this are quite lengthy,
however, and we therefore postpone this discussion to
Appendix A.
It should be noted that FNC can also be constructed in

the presence of nongravitational forces, as was recently
shown in [20].1 Due to the resulting acceleration, the
observer’s worldline is no longer a geodesic and the parallel
transport of the vierbein along the wordline has to be
substituted by the Fermi-Walker transport. For the sake of
simplicity, however, we avoid nongravitational effects
throughout this article. Furthermore, in [20] one also finds
restricting assumptions on the observer’s eigentime that
essentially correspond to employing FNCP at leading order
of the ξ0 expansion.

VI. PATCH SIZES IN THE GEOMETRY OF A
SCHWARZSCHILD BLACK HOLE

Having extensively discussed our method for determin-
ing the domain of validity of different normal coordinate
systems, we will now exemplarily employ it to determine
RNC patch sizes in the geometry of a Schwarzschild black
hole. We choose this geometry for its prominence and also
because the occurrence of a singularity and of an event

horizon within the geometry allow for the thorough
verification of our calculated patch sizes.
We will describe the geometry of the Schwarzschild black

hole bySchwarzschild and Painlevé-Gullstrand x coordinates
and discuss RNC patches obtained from the metric and the
Riemann tensor. In detail, we will present explicit conditions
and patch size plots for the η patch—obtained by using both
(8) and (9) with k ¼ 3—as well as for the gð2Þ patch—here
found by employing (10).Additionally,wewill give the patch
size conditions for the Riemann tensor derived from (12) and
(13), andwewill see that they are indeedmore restrictive than
the conditions for the metric at order n ¼ 2. Finally, we will
show thegrowth of theRNCpatch by also plotting patch sizes
for the gð3Þ and gð4Þ patches found using (8).

A. Patch size observer dependence

The Schwarzschild geometry can be addressed in various
coordinate systems with different properties. Apart from
minor differences such as between Cartesian and polar
coordinates, each specific choice of the coordinate system
corresponds to a unique observer. Therefore, if we restrict
ourselves to timelike observers, the coordinate time equals
the observer’s eigentime. These different eigentimes result
in crucially different structures of the causal future and past
of the normal coordinate reference point p as seen by
different observers. For instance, the most common
observer corresponding to the Schwarzschild coordinates
can never observe a physical object crossing the event
horizon from the outside, while for other observers this is in
principle possible. Different observers will therefore
describe the same physical objects with essentially different
observations. This is also represented in the size of normal
coordinate patches after they are translated to other
observers.
The common line element for a Schwarzschild black

hole with mass M in spherical Schwarzschild coordinates
fxt ¼ t; xr ¼ r; xθ ¼ θ; xϕ ¼ ϕg reads

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dΩ2; ð19Þ

with fðrÞ ¼ 1–2M=r and dΩ2 ¼ dθ2 þ sin2 θdϕ2. Here
one has a coordinate singularity at the horizon r ¼ 2M.
Due to this coordinate singularity, it is, as mentioned

above, impossible to cross the horizon in these coordinates.
As a probe we choose a radially, freely infalling object
starting at rest at infinity. We can deduce the 4-velocity v of
such an object from the line element

va ¼
�

1

fðrÞ ;−
ffiffiffiffiffiffiffi
2M
r

r
; 0; 0

�
: ð20Þ

Due to vt !r→∞
1 in (20), these coordinates correspond to an

observer who is located at spatial infinity and whose
1We wish to thank the reviewer for pointing out this article and

the connection to our work.
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coordinate eigentime equals the coordinate time tobs ¼ t.
This observer is called the Schwarzschild observer. Since
the coordinate velocity of the probe approaches zero at the

horizon dr=dt ¼ vr=vt ∝ fðrÞ !r→2M
0, the Schwarzschild

observer measuring with their eigentime t does not see
the probe crossing the event horizon in these coordinates.
For reasons of clarity, we restrict ourselves to global

coordinate systems which are related by coordinate trans-
formations solely in time. Therefore, the 4-velocity of the
probe in some new coordinates is changed to have an arbitrary
vt compared to (20). Since at the event horizon vr is finite, vt

has to diverge in order to prevent the probe from falling into
the black hole, which is the case for the Schwarzschild
observer. Thus, changing vt such that it remains finite outside
the black hole (r ≥ 2M) results in a coordinate time forwhich
objects can cross the event horizon.
An interesting example is vtPG ¼ 1 corresponding to the

Painlevé-Gullstrand (PG) observer who follows the same
geodesic as the freely infalling probe [21]. As a conse-
quence, tobs ¼ tPG equals the eigentime of the probe and the
PG observer’s proper time differential is given by
dt2PG ¼ fðrÞdt2 − f−1ðrÞdr2, which equals the negative
line element of the probe’s geodesic −ds2. Dividing by
ds and using va ¼ dxa=ds, the proper time is then given by

dtPG ¼ −vtdt − vrdr ¼ dtþ
ffiffiffiffiffi
2M
r

q
fðrÞ dr: ð21Þ

Inserting this back into (19), the line element in PG
coordinates fxtPG ¼ tPG; xr ¼ r; xθ ¼ θ; xϕ ¼ ϕg is found:

ds2PG ¼ −fðrÞdt2PG þ 2

ffiffiffiffiffiffiffi
2M
r

r
drdtPG þ dr2 þ r2dΩ2: ð22Þ

Due to the mixing between the temporal and the spatial
parts in (21), the resulting line element and metric become
nondiagonal. At the same time, however, the coordinate
singularity of Schwarzschild coordinates is removed in PG
coordinates. The normalized 4-velocity of the freely infal-
ling, timelike probe and the PG observer is now given by

vaPG ¼
�
1;−

ffiffiffiffiffiffiffi
2M
r

r
; 0; 0

�
: ð23Þ

We can now use either (20) or (23) to construct a vierbein
and find the RNC system of the probe. In both cases we will
find the same RNC, because the two initial coordinate
systems describe the same geometry of a Schwarzschild
black hole. Properties of specific coordinate systems such as
coordinate singularities or thedifferent structures of the causal
future and past of p as seen by the corresponding observers
are not carried over to the RNC by construction. An RNC
system depends only on the curvature information at the
reference point and not on the properties of the initial observer
such as the Schwarzschild and PG observer. As described in

the preliminaries, any point within the RNC patch is uniquely
addressed by a geodesic linking this point and the reference
point. The eigentime of this geodesic is then used by the RNC
observer to parametrize the distance between the point and the
origin of theRNC. Thus, the dependence on the eigentimes of
different observers is removed. For example, choosing the
reference point to be outside a black hole and the point we
wish to address to be inside, we can take an infalling geodesic
anduse its eigentime to find thedistance between thesepoints.
This, however, corresponds to the scenario of taking PG
coordinates, and therefore crossing the event horizon is
achievable. The choice of this geodesic is independent of
the observer’s properties.
The very same behavior occurs in the FNC construction

for the part orthogonal to the central geodesic. Since FNC
rely on this geodesic in contrast to a single point, they
depend on the properties of the geodesic and thus on the
observer following it. As a consequence, only FNC of a
geodesic which approaches the event horizon sufficiently
closely or reaches into the black hole can access the interior
of the black hole. We will discuss this and the properties of
translated FNC patch sizes in Sec. VI B.
Finally, since FNCP are a temporally Taylor expanded

version of ordinary FNC, the observer dependence in the
region of temporal validity is exactly the same.
Although the structure of the causal future and past of p as

seen by different observers corresponding to different initial
coordinates is irrelevant as far as the patch size in normal
coordinates is concerned, it is of crucial importance for the
disparity of translated patch sizes in the initial x coordinates as
determined in Step 5. This is due to the fact that, as discussed
above, coordinate transformations which include a change of
observer and therefore also a change of eigentime potentially
also change how this causal future and past are observed.
Implementing the procedure given in Step 5, we will in the
following investigate this for the examples of the
Schwarzschild observer and the PG observer.

B. Painlevé-Gullstrand observer

We begin by considering the PG observer and the
associated PG coordinates. This observer’s 4-velocity
vPG is given by (23). As discussed above, this observer
can see objects crossing the horizon. The coordinate
transformation from ftPG; r; θ;φg to RNC fξ0; ξ1; ξ2; ξ3g
is performed using some vierbein. Its components can, for
example, be obtained by setting ea0 ¼ vaPG and fixing the
other components according to the orthonormality con-
dition gPGab e

a
αebβ ¼ ηαβ. One then finds

ea0 ¼ vaPG; er1 ¼ 1; eθ2 ¼
1

r
; eϕ3 ¼ 1

r sin θ
:

ð24Þ
It is important to note that the RNC observer is

characterized as freely falling, just as the PG observer
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for the black hole. Therefore, RNC are simply another
coordinate system for the PG observer and RNC and PG
coordinates share the same eigentime.
Performing a tensor transformation of the Riemann

curvature tensor from PG coordinates to RNC, one finds
the components Rαβγδ ¼ Rabcdeaαebβe

c
γedδ to be given by

R2020 ¼ R3030 ¼ R1221 ¼ R1331 ¼
M
r30

;

R0110 ¼ R3232 ¼
2M
r30

; ð25Þ

where r0 is the radial value of the reference point p.
With (25) we can already compute restrictions for the η

patch by employing (8) with n ¼ 0 and using termsOgðξ2Þ
to determine the condition. We will therefore denote the

resulting maximal ξ by ξð0ÞnR with the adiabatic order of the

truncated metric series once more given in the superscript
and the terms we use to calculate the condition (i.e., the
terms we drop), denoted by nR [instead of nð2Þ as in
Sec. III] in the subscript. Due to the diagonality of η we see
that maxdiagα;β fjηαβjg ¼ 1, ∀ α; β, and the right-hand side of
(8) is here consequently given by ε.
To determine the patch size, we then proceed iteratively

as described in Sec. IVA: First, we compute the patch size
along the RNC axes. For that purpose, we set all ξ’s to 0
except one ξμ and consider Ogαβðξ2Þ ¼ ε, ∀ α; β
with ξν ¼ 0, ∀ ν ≠ μ which gives the first set of condi-

tions: ξμð0ÞnR ¼ � ffiffiffi
3

p
D

ffiffiffi
ε

p
, ∀ μ, where we defined D ¼

2Mðr0=2MÞ3=2 ¼ r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0=2M

p
.

Second, we consider all possible ξμ − ξν combinations in
Ogαβðξ2Þ with both other ξ’s set to 0. Starting with the ξ0 −
ξ1 combination with ξ2 ¼ ξ3 ¼ 0, we can see in Fig. 2(a)
that the domain of validity is here a square and the
conditions along the ξ0 and ξ1 axes are thus valid for all
combinations of the two coordinates. For the ξ0 − ξ2

validity depicted in Fig. 2(b), however, we see that the
current conditions, which describe a square again, are
insufficient, as for combinations of maximal ξ0 and ξ2

the error is larger than ε. The conditions must therefore be
adjusted. Since, on the one hand, the correct description of
this shape is very complicated, but, on the other hand, this
patch is still squarelike, it is easiest to shrink the patch to a
square with the diagonals. This yields new conditions for ξ0

and ξ2 given by ξ0ð0ÞnR ¼ � ffiffiffi
2

p
D

ffiffiffi
ε

p
and ξ2ð0ÞnR ¼ � ffiffiffi

2
p

D
ffiffiffi
ε

p
.

The combination of ξ0 and ξ3 produces an identical patch as
in Fig. 2(b), and we therefore also amend the ξ3 condition

to ξ3ð0ÞnR ¼ � ffiffiffi
2

p
D

ffiffiffi
ε

p
. The conditions derived from all other

ξμ − ξν combinations in this second step are automatically
satisfied given the adjusted ξ restrictions.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 2. Minkowski patches resulting from neglecting the second
order Riemann term are denoted by η=R and depicted in (a)–(c)
and (f). Minkowski patches which are obtained by discarding the
second and third order terms are denoted with η=dR and given in
(d) and (g). RNC patches of second order with the third order term
discarded are denoted with R=dR and depicted in (e) and (h).
Darker shades of gray correspond to increasing errors with the
maximal error ε reached in the black regions. White areas mark
errors larger than ε outside the domain of validity. The parameters
for the plots (a)–(e) areM ¼ 1, r0 ¼ 24, and ε ¼ 0.1, whereas for
(f)–(h) they differ with ε ¼ 10−3. All directions ξμ not plotted are
set to 0 except in (c), where ξ0 is set to its maximal value of
approximately 37. The dependence of the patch size and shape on ε
and the used expansion terms is illustrated in (a) and (d)–(h) in the
ξ0 − ξ1 plane. These are characteristic patches leading to the patch
size conditions for η=R, η=dR, and R=dR in Eqs. (26), (29), and
(31), respectively.
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Third, we examine the ξμ − ξν combinations again, but
this time with only one other ξ set to 0 and the other
bounded only by its maximal modulus value as determined
above. A convenient patch of interest is shown in Fig. 2(c).
There, we see that the domain of validity for the ξ2 − ξ3

combination with ξ0 ≠ 0 and ξ1 ¼ 0 is a circle with radiusffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6D2ε − 2ðξ0Þ2

p
, and we add this condition to ξ0ð0ÞnR , ξ2ð0ÞnR ,

and ξ3ð0ÞnR . We find that thereby all other conditions are

satisfied as well.
Fourth, the ξμ − ξν combinations are considered for the

last time, now with neither of the other two ξ’s set to 0, and
we find no further adjustments to the conditions to be
required.
In summary, Eq. (8) therefore gives the following

conditions for the η patch:

jξ0ð0ÞnR j ≤ min

� ffiffiffi
2

p
D

ffiffiffi
ε

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3D2ε −

ðξ2Þ2 þ ðξ3Þ2
2

r �
;

jξ1ð0ÞnR j ≤
ffiffiffi
3

p
D

ffiffiffi
ε

p
;

jξ2ð0ÞnR j ≤ min f
ffiffiffi
2

p
D

ffiffiffi
ε

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6D2ε − ðξ3Þ2 − 2ðξ0Þ2

q
g;

jξ3ð0ÞnR j ≤ min f
ffiffiffi
2

p
D

ffiffiffi
ε

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6D2ε − ðξ2Þ2 − 2ðξ0Þ2

q
g: ð26Þ

In the last two conditions we see the polar symmetry of
these RNC which is a consequence of the spherical
symmetry of a Schwarzschild black hole’s geometry.
Note that the square roots in the conditions (26) can never

become complex, because we can only plug in the maximal
values of the other coordinates. Consider, for example, the
RNC patch’s boundary in the ξ2 − ξ3 plane described

ξ2ð0ÞnR ¼ ξ3ð0ÞnR ¼ � ffiffiffi
2

p
D

ffiffiffi
ε

p
. The patch will then be restricted

in the ξ0 direction by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3D2ε − 1=2ððξ2Þ2 þ ðξ3Þ2Þ

p
¼ D

ffiffiffi
ε

p
.

The restriction for the ξ1 direction is unaffected.
In order to translate this patch size given in RNC to PG

coordinates, we need to choose some geodesics along
which wewish to compute the patch size in PG coordinates.
First, we consider the geodesic of the freely infalling

probe and of the PG observer with 4-velocity (23). With our
choice of vierbein (24) we find for this geodesic the
transformed velocity λ0 ¼ 1, λμ ¼ 0, ∀ μ ≠ 0. Using the
conditions (26) we can now compute the maximal eigen-

time τð0ÞPG ¼ maxfjξ0ð0ÞnR jg ¼ ffiffiffi
2

p
D

ffiffiffi
ε

p
. The reparametriza-

tion of the curve with the observer’s eigentime is here
simply tobs ¼ tPG ¼ τ. Therefore, we can integrate (23) and

plug τð0ÞPG directly into rðτÞ. Thus, we find the minimal radial
value of the PG observer’s geodesic for which the η patch as
given by (8) is still valid

rmin ¼ rðτð0ÞPGÞ ¼ r0

�
1 −

3ffiffiffi
2

p ffiffiffi
ε

p �2
3

; ð27Þ

with r0 again the radial value of the reference point. We see
that, for r0 sufficiently close to 2M and sufficiently large ε,
the RNC patch can cross the event horizon and extend into
the black hole. This is due to the aforementioned regularity
of RNC at the horizon. As an example, we take r0 ¼ 2.1M
with ε ¼ 0.01 and find rmin ≈ 1.79M, which is indeed
inside the black hole. Also, in the limit r0 → ∞ the patch
size becomes arbitrarily large which reflects the asymptotic
flatness of the Schwarzschild black hole’s geometry.
As a second example we consider radially ingoing light

rays. Since light travels on null geodesics, we parametrize
the geodesic by the eigentime of the PG observer, i.e., the
observer in question (as stated at the end of Sec. I). The 4-
velocity then reads vtPG ¼ 1 and vr ¼ −1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
2M=r

p
and is

transformed to λ0 ¼ 1 and λ1 ¼ −1 using (24). The period
of eigentime for which the RNC observer can describe
ingoing light rays starting at the reference point r ¼ r0 is

thus given by τð0Þli ¼ maxfjξ0ð0ÞnR jg ¼ ffiffiffi
2

p
D

ffiffiffi
ε

p
.

Since, unfortunately, the relation tliPGðr − r0Þ obtained
from integrating vr is not invertible in this case, we cannot
directly quantify the minimal radius of validity for ingoing
light rays. For a qualitative analysis of the patch size, we use
the fact the time required for the PG observer to see ingoing
light rays starting from the reference point reach the
singularity at r¼0, which is given by Tðr0Þ¼tliPGð−r0Þ¼
r0−2

ffiffiffiffiffiffiffiffiffiffiffi
2Mr0

p þ4Mlnð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0=ð2MÞp Þ, remains finite for all

finite r0. As a consequence, there exist combinations of r0
and the precision ε, for which ingoing light rays cross the

horizon within the finite time τð0Þli provided by the RNC
patch.
From these two examples we see that such RNC patches

exist, that the subset of the causal future of p covered by the
patch after translation to another observer is large enough
for it to describe physical objects crossing the event
horizon. This is only possible for observers who see the
causal future of p reach into the black hole in their global x
coordinates, however. Since such RNC patches exist,
normal coordinates can describe physics across the horizon
and this description is accessible to other observers.
Questions regarding the conservation of the causal structure
at and across the horizon will be discussed in Sec. VI D.
It is important to note. however, that when setting up RNC

patches close to or even within the black hole, we do so in the
presenceof a quickly increasingbackground curvature.Aswe
discussed in Sec. III in our comments on Steps 1 and 2, this
might cause problems if we take too few derivatives of the
metric into account and/or choose the maximally allowed
error ε too large. In case of the η patch as discussed above, we
see this in two ways. First, from (27) we read off that for
ε ¼ 2=9 the minimal radius of validity reaches rmin ¼ 0.

Second, we solve Tðr0 ¼ 2.1MÞ ≤ τð0Þli which gives
ε≳ 0.07. We can therefore deduce that the η patch as given
by (26) has an upper bound on the error of ε < 0.07, as larger
εwould imply that we could, with only a small error, describe

HOEGL, HOFMANN, and KOEGLER PHYS. REV. D 102, 084065 (2020)

084065-12



light rays or even the PG observer falling into the singularity
using a flat Minkowski metric, which is unreasonable.
To set up such RNC patches close to the black hole’s

singularity, we are thus required to take higher orders of the
metric expansion into consideration, either by calculating
some gðnÞ patch instead of the η patch or by calculating the
η-patch size using (9) rather than (8). In the above case of
the Minkowski patch, we will calculate the η-patch size
using (9) with k ¼ 3. For that purpose, we first need to
compute the derivatives of the Riemann tensor in RNC
which occur in Ogðξ3Þ and which we therefore take into
account in determining the η-patch size. Some computa-
tional effort is required to obtain these derivatives which
are, by means of the coordinate transformation (2), given by

Rαβγδ;μ ¼ eaαebβe
c
γedδe

m
μ ðRabcd;m − Γn

maRnbcd

−Γn
mbRancd − Γn

mcRabnd − Γn
mdRabcnÞ: ð28Þ

The explicit terms resulting from this are given in
Appendix B.
We plug (25) and (28) into (9) with k ¼ 3 and obtain

instead of (26) improved η-patch conditions:

jξ0ð0ÞndR j≤
ffiffiffi
2

p
D

ffiffiffi
ε

p
−
5

2
Dε;

jξ1ð0ÞndR j≤
ffiffiffi
3

p
D

ffiffiffi
ε

p
−
9

4

ffiffiffiffiffiffiffi
r0
2M

r
Dε;

jξ2ð0ÞndR j≤min

� ffiffiffi
2

p
D

ffiffiffi
ε

p
−
5

2
Dε;

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12D3ε−ðξ3Þ2ð9ξ0þ2DÞ−2ðξ0Þ2ð3ξ0þ2DÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ξ0þ2D

p �
:

ð29Þ

We label these conditions by ndR, because now the
coefficients of the highest order terms taken into account
for calculating the patch size are given by first derivatives of
the Riemann tensor. Note that since the full condition terms
are very lengthy here, we Taylor expanded all of them in ε,
except for the directional dependence term. Notice, these
conditions are again real, if the smallness of ε is respected.
Furthermore, the ξ3 condition can be obtained by symmetry
from the ξ2 restriction by interchanging ξ2 with ξ3. Finally,
we also have a condition for the directional dependence of
ξ0 which follows from solving the ξ2 or ξ3 condition for ξ0.
For reasons of clarity and comprehensibility, we omitted
this ξ0 condition in the above.
To produce reasonable functional dependences in these

conditions,we again adjusted the patches found in the iteration
procedure in the simplest, yet most sensible, way. As an
example, consider the domain of validity shown in Fig. 2(d),
especially the diagonal “arms” of the patchwhich reach all the
way to infinity. This would correspond to a noncompact, open
domain of validity, which is unreasonable. Thus, we cut off

these “arms” and again fit a square into the central regionof the
patch. Truncating the “arms” is unproblematic, however, aswe
will explain in detail in the discussion of Fig. 3.
Above we have seen that the conditions (26) gave

physically unreasonable results like radially ingoing light
rays reaching the singularity for errors ε≳ 0.07, which
therefore marked the upper bound for the error. The
conditions (29) contain more curvature information and
will therefore both allow for a larger maximal error and
improve the patch size. Employing (29) in analogous
calculations for the freely infalling observer as for (27),
we now obtain a minimal radial value of validity

rmin ¼ r0

�
1 −

3ffiffiffi
2

p ffiffiffi
ε

p þ 15

4
ε

�2
3

: ð30Þ

For r0 ¼ 2.1M and ε ¼ 0.01, this gives an increased
rmin ≈ 1.85M. The reason for rmin determined by (30)
being larger as the result of (27) is that taking higher
orders of the metric series into account improves the
domain of validity regarding the accuracy of describing
the background, but does not necessarily increase it. For the
Schwarzschild metric, the curvature grows quickly close to
the singularity, so taking Riemann tensor derivatives into
account will actually decrease the patch size for small r0
compared to when they are ignored. We also see this
improvement by noting that rmin ¼ 0 is impossible in (30).
Furthermore, rmin given by (30) decreases only until

ε ¼ 0.08, after which it grows. Analogously, τð0Þli increases
only until ε ¼ 0.08 and decreases for larger ε. We have
therefore increased the upper bound on the maximal error
to ε < 0.08, as only after that we see unreasonable

ξ0

0 30

ξ1 0

20

FIG. 3. Depicted are the boundaries of the square shaped
Minkowksi patch in the middle and of the second and third
order RNC patches encircling it with M ¼ 1 and r0 ¼ 24. These
boundaries correspond to an error of ε ∈ ½0.9 × 10−3; 10−3�. The
fourth order patch with maximal error ε ¼ 10−3 is shown
completely. The change in size and shape of the patches with
increasing order is complicated, but a qualitative increase can be
seen.
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behavior. We will provide a detailed comparison of the
different patch sizes produced by our method at the end of
our discussion on the patch size for the PG observer.
We can now also quantitatively compare the η-patch size

(29) resulting from our procedure with the estimate from
the literature (14). Plugging (25) and (28) into (14) we
obtain τ ≪ minfr0=3; r0=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0=ð2MÞp g, which yields a

spherical patch in RNC with radius ≪ r0=3 outside the
black hole and radius ≪ r0=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0=ð2MÞp

inside.
Comparing this with (29), we see that this estimate is
too restricting, since in (29) we have a leading order term
∝

ffiffiffi
ε

p
, and it also lacks the complicated directional depend-

ence. If we consider the above example of r0 ¼ 2.1M, ε ¼
0.01 for the literature estimate by plugging τ ¼ εr0=3 ¼
7 × 10−3M into the PG observer’s geodesic, we find a
minimal radial value of approximately 2.08M. In contrast to
our result rmin ≈ 1.85M, the point of the minimal radial
value for the freely falling observer estimated by the
literature is still outside the black hole. Also, plugging r ¼
2M into tliPGðr − r0Þ, which describes the PG observer’s
eigentime required for radially ingoing light rays to reach
the radius r, we find tliPGð2M − 2.1MÞ ≈ 0.05M > τ. The
literature therefore estimates the RNC patch so small that
the subset of the causal future of p covered by the RNC
patch does not range across the horizon. However, we have
shown that it indeed does.
Instead of calculating the η patch using (9), we can also

take higher orders of the metric expansion into account by
calculating some gðnÞ patch. Therefore, let us also present
the conditions for the patch covered by gð2ÞðξÞ, which are
found by employing our results from Sec. IVA. Plugging
(25) and the results of (28) into (10), which was obtained by
employing (8), we obtain the gð2Þ conditions

jξ0;1ð2ÞndR j ≤
�

2ffiffiffi
d

p þ 1

�1
3

Dε
1
3 þ 8

9

Dffiffiffi
d

p þ 1
ε;

jξ2ð2ÞndR j ≤ min
��

4

3
ffiffiffi
d

p
�1

3

Dε
1
3 −

8

27

Dffiffiffi
d

p ε;

Md
6D2 þ ðξ1Þ2 − 2ðξ3Þ2

3ξ1ξ3
ε

�
; ð31Þ

where we additionally defined d ¼ r0=2M. Note that as
before we Taylor expanded the conditions in ε. The ξ0 and
ξ1 conditions are here equal except for an additional
directional ξ1 dependence which we again find by solving
the ξ2 condition for ξ1. Also, the ξ3 condition is once more
obtained from the ξ2 condition as described above. Since
the general conditions for ξ2 and ξ3 are extremely lengthy
and complicated, we restrict ourselves to the case of ξ0 and
ξ1 with an equal sign which yields the short conditions (31).
For the conditions of the full patch we refer to our
Mathematica code [12].

To observe the growth of the patch size achieved by
including curvature corrections into the metric, we again
plug ξ0ð2Þ into the PG observer’s geodesic for r0 ¼ 2.1M,
ε ¼ 0.01 and find rmin ≈ 1.61M. The patch now reaches
further into the black hole.
After having discussed different patch sizes determined

by different sets of conditions, we want to put them in
relation. For that, compare first Fig. 2(a) with Fig. 2(d) and
note the discrepancies in both shape and size of the η patches
determined first by dropping only Ogðξ2Þ and second by
droppingOgðξ2Þ þOgðξ3Þ. Note especially that the patch in
Fig. 2(d), where higher orders of the metric series are taken
into account, is actually smaller than the one in Fig. 2(a)
except for the pathological arms. This is because, as we
discussed earlier, taking higher orders of the metric series
into account improves the patch size but does not need to
increase it. We can also see this by further comparing these
patch sizeswith the gð2Þ-patch’s ξ0 − ξ1 validity given in (31)
and depicted in Fig. 2(e) which is even smaller. The reason
for this is that, given a reference point at r0 ¼ 24M as in
Fig. 2, an error of ε ¼ 0.1 is too large.
If we reduce the error to ε ¼ 10−3, we find instead of

Fig. 2(a) for the η patch with k ¼ 2 the patch in Fig. 2(f),
instead of Fig. 2(d) for the η patch with k ¼ 3 the domain in
Fig. 2(g), and instead of the gð2Þ patch in Fig. 2(e) the one in
Fig. 2(h). Comparing these patches, we see that Figs. 2(f)
and 2(g) now almost agree, with the patch in Fig. 2(g) being
slightly larger, as expected. We can see this also by noting
that the conditions of (26) and (29) in the ξ0 − ξ1 plane
agree in the limit ε → 0, as the higher order terms in (29)
become strictly irrelevant. Furthermore, the gð2Þ patch in
Fig. 2(h) is now substantially larger than both η patches in
Figs. 2(f) and 2(g). Since this reflects the expected behavior
of a Taylor series, where including higher orders of the
expansion increases the domain of validity, we deduce that
ε ¼ 10−3 is a better choice for the error than ε ¼ 0.1.
Additionally, we want to discuss the case of considering

the metric together with the Riemann tensor. For that
purpose, we use the metric gð2Þ and again our results from
Sec. IVA. Specifically, we insert (25) and (28) into (12) and
(13) and thus find the patch size regulations

jξ0ð2ÞRiemj ≤ min

�
3Dffiffiffi
2

p ffiffiffi
ε

p
;
D
3
ε

�
;

jξ1ð2ÞRiemj ≤ min

�
3Dffiffiffi
2

p ffiffiffi
ε

p
;
r0
3
ε

�
;

jξ2ð2ÞRiemj ≤ min

�
3Dffiffiffi
2

p ffiffiffi
ε

p
;
r0
3
ε;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9r20dε − 2ðξ1Þ2 − 2ðξ3Þ2

q
;

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18r20dε − 4ðξ0Þ2 − 2ðξ1Þ2 − ðξ3Þ2

q �
: ð32Þ

Calculating the minimal radial value of validity for the
PG observer using (32) with r0 ¼ 2.1M and ε ¼ 0.01, we
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find rmin ≈ 2.09M and see that, as discussed in our com-
ments on Step 4 in Secs. III and IVA, the domain of validity
has indeed decreased in size drastically.
Finally, let us observe the further growth of the validity

domain for metric expansions up to higher orders n ¼ 3

and n ¼ 4 compared to the η and gð2Þ patch described by
(26) and (31), respectively. Since the conditions for the gð3Þ

and gð4Þ patches are extremely lengthy, however, we abstain
from writing them down and instead show the growth of
the patch size graphically. For that purpose, we plot in
Fig. 3 the gð4Þ patch in the ξ0 − ξ1 plane for ε ¼ 10−3

obtained using (8). Figure 3 additionally shows the boun-
dary regions of the η patch from Fig. 2(f) and the gð2Þ patch
from Fig. 2(h) as well as of the gð3Þ patch described by the
error interval ε ∈ ½0.9 × 10−3; 10−3�. We also employed (8)
for the gð3Þ patch.
The smallest and the second smallest patches are the two

familiar patches from Figs. 2(f) and 2(h). The patch next in
size corresponds to the metric expansion gð3Þ and the largest
patch describes the domain of validity for gð4Þ. All in all, we
see a continuous growth of the patch sizes with increasing
adiabatic order n. The thickness of the boundary lines for
the patches with n ¼ 0, 2, 3 depicts how fast the error
grows for the respective patches: the thicker the boundary,
the slower the error increases.
It is important to note that while the arms reaching to

infinity in the gð2Þ patch disappear for the gð3Þ patch, they
reoccur for gð4Þ. These arms are formed along lines
describing ξ0 − ξ1 configurations for which both the first
and the third derivatives of the Riemann tensor vanish such
that the coefficients ofOgðξ3Þ andOgðξ5Þ vanish as well. If
we calculate the gð2Þ- and gð4Þ-patch sizes using (8), we
could therefore assume the validity to reach to infinity. It is,
however, safe to ignore such pathological arms, because
taking into consideration higher orders when calculating
the patch sizes, namely by employing (9) with k ≥ 2
instead of (8), erases these arms. This can be seen by
considering the gð3Þ patch. It is calculated using only (8),
but since the coefficient of Ogðξ4Þ also depends on
nonderivative terms of the Riemann tensor, this coefficient
is finite along the lines and thus the arms are cut off.
Analogously, higher order terms of even n do not depend
solely on derivatives of the Riemann tensor and taking them
into account when calculating, for example, the gð4Þ patch,
will cut the arms.

C. Schwarzschild observer

In the case of the PG observer the (full) RNC were
simply another coordinate system associated with this
observer. Let us now derive the patch size for the
Schwarzschild observer as an example of an observer for
whom the inside of the black hole is excluded from
the causal future of the outside. In order to construct a

vierbein corresponding to the coordinate transformation
ft; r; θ;ϕg → fξ0; ξ1; ξ2; ξ3g, one can proceed analogously
to (24), setting ea0 ¼ va with va given in (20) and fixing the
other components by orthonormality gabeaαebβ ¼ ηαβ, which
yields

ea0 ¼ va; et1 ¼ vtvr; er1 ¼ 1;

eθ2 ¼
1

r
; eϕ3 ¼ 1

r sin θ
: ð33Þ

With this vierbein one tensor transforms the Riemann
tensor and finds the same components as given in (25).
Also, calculating Riemann tensor derivatives according to
(28) gives again the same terms as in the PG case (see
Appendix B). As we discussed above, this is because
Schwarzschild and PG coordinates both describe the same
geometry of a Schwarzschild black hole. Note also that the
curvature remains finite at the horizon r ¼ 2M and the
RNC obtained from Schwarzschild coordinates are also
regular, which, as we discussed above, reflects the choice of
the RNC observer to parametrize each geodesic using its
respective eigentime.
Consequently, employing Step 2 with (8) for n ¼ 0 and

n ¼ 2 as well as with (9) for n ¼ 0 and k ¼ 3 and also Step
4 with n ¼ 2 for the Riemann tensor yields the same RNC
conditions as given in (26), (31), (29), and (32).
The translation of these patch sizes to the Schwarzschild

observer is more involved than for the PG observer,
however. The reason for this is that the PG observer uses
a clock which is more adapted to RNC than the
Schwarzschild observer. To see this in detail, we will again
consider the two examples of the freely infalling probe and
of ingoing light rays.
We begin again by considering the freely falling probe

with 4-velocity (20). With our choice of vierbein (33) we
again have for this geodesic λ0 ¼ 1 and λμ ¼ 0, ∀ μ ≠ 0

and thus find the same maximal proper lengths τðnÞpr as given
in Sec. VI B. Furthermore, integrating vr yields the same
rðτÞ and therefore the same minimal radii rmin as in our
calculations for the PG observer.
Now we have to reparametrize the curve by the

Schwarzschild observer’s eigentime tobs ¼ tðτÞ, however.
As was the case for light rays and the PG observer, tðτÞ is
not invertible here, and we cannot directly calculate the
minimal radius of RNC validity for the probe as seen by the

Schwarzschild observer by plugging tð0Þ ¼ tðτðnÞpr Þ into
rðτÞ. Therefore, we again analyze the patch qualitatively.
For this purpose, we can use the fact that the time needed

to reach some r ≥ 2M diverges as the event horizon is
approached: tðrÞ ∝ −2M ln ð1 − ffiffiffiffiffiffiffiffiffiffiffiffi

2M=r
p Þ for r → 2M. In

Sec. VI B we have seen, however, that the RNC observer
can see their patch crossing the horizon, namely that for
reference points sufficiently close to 2M and large enough ε

we can have rmin ¼ rðτðnÞpr Þ ≤ 2M. For rmin > 2M, we
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determine the temporal validity of the RNC patch along this
geodesic as seen by the Schwarzschild observer by plug-
ging rmin into tðrÞ. Consequently, this temporal validity
diverges as soon as the RNC observer sees their geodesic
reaching the horizon, i.e., rmin ¼ 2M, and the horizon is
reached within the RNC patch in the limit of infinite time t.
Any further progress of the freely falling probe inside the
black hole remains hidden from the Schwarzschild
observer, however, as rmin < 2M cannot be plugged into
tðrÞ and the temporal validity has already grown to infinity.
We also need to note that such temporally infinite validities
only hold “in the direction” in which geodesics cross the
horizon. For example, the temporal validity in the past of
the freely falling probe is finite.
It is important to verify that the subset of the causal future

of the RNC reference point covered by the RNC patch does
not cross the black hole horizon for the Schwarzschild
observer. Therefore, we again consider radially ingoing
light rays. As before, we parametrize light by the eigentime
of the observer in question. The patch size along the light
ray geodesic is determined by how long the RNC observer
can describe the light ray using their eigentime. The
observer in question for the parametrization of the light
ray geodesic is therefore the PG observer, who uses the
same clock as the RNC observer, and not the Schwarzschild
observer. Thus, we have to determine the length of
Schwarzschild time t that corresponds to the time tPG for
which the light rays remain in the RNC patch as seen by the
PG observer. For that, we first deduce from (19) the ingoing
light ray’s coordinate velocity dr=dt ¼ −fðrÞ in
Schwarzschild coordinates. Second, we have to reparame-
trize the light’s geodesic by tPG. Using (21) with dr=dt ¼
−fðrÞ we obtain dt=dtPG ¼ f−1ðrÞð1þ ffiffiffiffiffiffiffiffiffiffiffiffi

2M=r
p Þ as well

as dr=dtPG ¼ −1 −
ffiffiffiffiffiffiffiffiffiffiffiffi
2M=r

p
. This velocity can now be

tensor transformed with (33) which finally yields λ0 ¼ 1

and λ1 ¼ −1 as expected for ingoing light rays. The length
of time for which the RNC observer can describe ingoing

light rays is thus given by τðnÞli from Sec. VI B.
Integration of dr=dt shows again the infinite time

required for the Schwarzschild observer to see the light
rays reach the horizon tðrÞ ∝ −2M ln ðfðrÞÞ for r → 2M.
From Sec. VI B we already know, however, that the RNC
observer can see light rays crossing the event horizon; i.e.,

rðτðnÞli Þ ≤ 2M is possible in PG coordinates. By the same
reasoning as for the freely falling probe, we see in such
cases again temporally infinitely valid RNC patches which
allow the Schwarzschild observer to see the light rays reach
the horizon within the patches in the limit of infinite t.
The Schwarzschild coordinates are an example of

coordinate systems that break down at the horizon. As a
consequence, the causal subset of the RNC patch translated
to Schwarzschild coordinates must not cross the horizon.
Transforming the patch size from the RNC observer to the
Schwarzschild observer and taking the latter’s use of their

eigentime as a profoundly different clock into account, we
find this essential demand fulfilled. The structure of the
RNC reference point’s causal future in Schwarzschild
coordinates is preserved.
Schwarzschild coordinates are also an example of coor-

dinate systemswhich show the importance of our discussion
in the comment for Step 5 concerning the relevance of using
the correct parametrizationwhen translating the patch size to
other observers. If we had simply plugged the RNC patch
size conditions into the coordinate transformation (2), we
would erroneously have deduced that for the Schwarzschild
coordinates the causal future of the reference point covered
by theRNCpatch crosses the horizon.Wewould have found
the same result, if we had considered rðτÞ for the freely
falling probe or the ingoing light rays and not reparametrized
these geodesics by t. This is because in both cases wewould
have obtained the patch size as seen by the RNC observer
and not the Schwarzschild observer. Only after this repar-
ametrization didwe find the real translated patch size as seen
by the Schwarzschild observer.
This analysis of the PG and Schwarzschild observer as

examples of observers that do and do not see horizon
crossing of RNC patches, respectively, can also be used to
determine whether FNC or FNCP can cross the event
horizon. Only FNC and FNCP set up around the geodesics
of observers who see horizon crossing themselves, e.g.,
infalling observers, will reach inside the black hole. FNC
and FNCP constructed around other observers, for exam-
ple, orbiting ones, cannot cross the horizon, just as was the
case for the Schwarzschild observer.

D. Causality at the event horizon

Having computed that RNC patches can cross the black
hole horizon, it is crucial that we investigate the causal
structure in such patches. This means we require that in
RNC physical systems can only cross the horizon from the
outside to the inside and that it is impossible for an observer
to interact with systems inside the black hole as long as this
observer is outside the black hole.
The event horizon for an eternal black hole equals its

apparent horizon [22]. The latter allows, in contrast to an
event horizon, for a description in a finite spacetime region
and is thus the preferred object for analyzing the local
causal structure. For spherically symmetric spacetimes,
apparent horizons are characterized as the null hyper-
surfaces across which radially outward directed light rays
change the sign of their coordinate velocity. For a
Schwarzschild spacetime in PG coordinates this velocity
is computed to be ð1; 1 − ffiffiffiffiffiffiffiffiffiffiffiffi

2M=r
p

; 0; 0Þ. Therefore, the
change of sign occurs at r ¼ 2M with velocity (1, 0, 0, 0).
This uniquely determines the location of the apparent
horizon. Having identified the radial location of the
horizon, we can alternatively specify it as the point that
is reached by the PG observer after the eigentime τPGðr0Þ ¼
2=3ðD − 2MÞ measured from the reference point at r ¼ r0.
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Since the apparent horizon equals the event horizon in our
system, we use from now on again the latter term for
convenience.
To investigate causality at the horizon, it is sufficient that

we consider an RNC patch with solely the leading
Minkowski part around a reference point outside of, yet
sufficiently close to, the horizon, such that an infinitesimal
neighborhood of the reference point already covers part of
the horizon. In Sec. VI B we showed that η patches can
indeed cross the horizon.
In order to translate the horizon in PG coordinates as

described above to RNC, we proceed as follows: First, we
transform the velocity (1, 0, 0, 0) with the vierbein (24) at the
reference point, which yields λ0 ¼ 1 and λ1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M=r0
p

.
Second,we shift the resulting line such that it intersects the ξ0

axis at ξ0 ¼ τPG. All in all, in RNC the radial evolution of the
horizon along the PG observer’s geodesic is described by the
straight line Ωðξ0Þ ¼ ðξ0; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M=r0
p ðξ0 − τPGÞ; 0; 0Þ. For

this construction to hold, it is in fact required that the
reference point is infinitesimally close to the horizon, as
we will show shortly. We therefore have r0 → 2M and
ðdξ0ΩÞα → ð1; 1; 0; 0Þ.
If the RNC expansion point is set outside the black hole

r0 ≳ 2M, the horizon is given by the upper dashed line in
the spacetime diagram in Fig. 4, which here is at 45°, but is
to be understood as infinitesimally steeper, since we have
ðdξ0ΩÞ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M=r0

p ≲ 1. Outgoing light rays emitted at the
reference point therefore follow the lower dashed line at 45°
and diverge radially from the horizon to the outside. For
negative ξ0 we encounter a crossing point of the horizon
with the outgoing light rays which is pathological, since it
would correspond to light rays crossing the horizon from
the inside to the outside. This indicates the breakdown of
the parallel shift construction at this crossing point; for
large ξ0, the horizon is no longer represented by the
parallely shifted line which describes it well for small
ξ0. Note, however, that since ðdξ0ΩÞ1 → 1 for r0 → 2M, the
intersection then occurs at ξ0 → −∞. For a reference point
close to the horizon, the breakdown of the parallel shift
therefore occurs far outside any domain of validity.
For an RNC expansion at the event horizon r0 ¼ 2M, the

horizon is given by the lower dashed line at 45° in Fig. 4,
and we find outgoing (or rather outward directed) light rays
emitted at the origin to remain on the horizon. This reflects
the aforementioned characterization of the event horizon as
a null hypersurface for outgoing light rays. Furthermore,
we see that any other lightlike geodesic pointing radially
outward starting with ξ1 < 0 will not cross the event
horizon and thus remains inside the black hole.
Finally, if we chose the reference point inside the black

hole r0 ≲ 2M, the horizon crosses the ξ0 axes at negative ξ0

and infinitesimally less steep than 45° [now we have
ðdξ0ΩÞ1 ≳ 1]. Therefore, all light rays emitted from the
reference point will fall into the black hole, even outward

directed light rays following the line ðξ0; ξ0; 0; 0Þ, which
seem to be outgoing to the RNC observer. For negative ξ0

we once more see such light rays crossing the horizon,
which would correspond to outward directed light rays in
the black hole having crossed the horizon from the outside
at some time in the past. This is again pathological, as these
light rays start infinitesimally close to the horizon from
inside for the infinite past. They do not cross the horizon
from the outside. As before, the parallely shifted line only
describes the horizon for sufficient small ξ0.
Let us also check whether the causal order of future and

past events remains intact in the RNC with the following
example: We consider two additional timelike observers on
radial geodesics starting at the reference point outside the
black hole. The first observer starts with an inwards radial
velocity vr ¼ Vf ∈� −∞;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M=r0

p ½ faster than that of
the freely falling PG observer and the second one with a
slower one vr ¼ Vs ∈� −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M=r0

p
; 0�. Using the vierbein

(24) we transform vr together with the corresponding vtPG
computed with (22) and obtain the velocity in RNC

λ0ðVÞ ¼
ffiffiffiffiffi
2M
r0

q
V þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ fðr0Þ

p
fðr0Þ

;

λ1ðVÞ ¼
V þ

ffiffiffiffiffi
2M
r0

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ fðr0Þ

p
fðr0Þ

; ð34Þ

FIG. 4. Geodesics for radially outward directed light rays in an
RNC patch of a Schwarzschild geometry with some massM. The
dashed lines represent the outgoing null geodesics in Minkowski
spacetime ξ0 ¼ ξ1 þ const. The dotted lines correspond to three
timelike observers following radially infalling geodesics with
different initial velocities solved in PG coordinates. The solid
lines are outward directed null geodesics solved in RNC up to
second adiabatic order.
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forwhichwenote that λ0ðVÞ > 1, ∀V; r aswell as λ1ðVfÞ <
0 and λ1ðVsÞ > 0, ∀ r.We can now check if the anglesαðVsÞ
andαðVfÞ formed by the lines ðξ0; 0; 0; 0Þ of thePGobserver
and ðξ0λ0ðVÞ; ξ0λ1ðVÞ; 0; 0Þ of the other observers are
always smaller than π=4 which corresponds to a connection
between these observers by causal curves. We find these two
angles to be given by αðVsÞ ¼ π=2 − tan−1ðλ0ðVsÞ=λ1ðVsÞÞ
as well as αðVfÞ ¼ π=2þ tan−1ðλ0ðVfÞ=λ1ðVfÞÞ, and we
therefore require λ0ðVsÞ=λ1ðVsÞ > 1 and λ0ðVfÞ=λ1ðVfÞ <
−1, which we find satisfied for all possible Vs and Vf,
respectively. It now remains to verify that the faster observer
reaches the horizon earlier than the PG observer and that the
slower observer takes longer. The PG observer crosses the
horizon after the eigentime τPG. For simplicity, we assume
the horizon to be at 45° and demand τf ≔ τPG þ
λ1ðVfÞτPG < λ0ðVfÞτPG for the faster observer and τs ≔
τPG þ λ1ðVsÞτPG > λ0ðVsÞτPG for the slower one. Again, we
find these inequalities fulfilled by all possible Vf and Vs as
given above, and since the horizon is actually infinitesimally
steeper, the effect is only increased.
Performing the same analysis for the three observers

inside the black hole, with the event horizon substituted by
the geodesic of outward directed light rays and also
Vs ∈� −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M=r0

p
;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðr0Þ

p �, we find all of the demands
to be satisfied again.
Above, we computed the geodesics going through the

expansion point in the global PG coordinates and trans-
formed them to RNC. There is no causality violation in PG
coordinates and we found this to be translated to RNC.
Now we want to investigate whether causality violation
occurs in RNC when only a truncated metric is used for
solving the geodesic equation directly in RNC.
For that purpose, we consider the previously discussed

infinitesimal neighborhood of the reference point which
crosses the event horizon, but now take the first curvature
correction into account. Setting ξ1 ¼ 0 and computing the
coordinate velocity of radially outward directed light rays,
we find

v1ðξ0Þjξ1¼0 ¼
dξ1

dξ0

����
ξ1¼0

¼
�
1 −

ðξ0Þ2
12M2

�−1
2

: ð35Þ

Making use of (31), we can show that the argument on the
right-hand side of (35) will always remain positive. The

condition on ξ0ð2ÞndR gives, in the limit r0 → 2M, D → 2M,

d → 1, the restriction jξ0j ≤ 2Mðε1=3 þ 4ε=9Þ. For the
square of this maximal value to be larger than 12M2, we
would require ε≳ 1.39 which is an invalid value for ε.
Relation (35) has the geodesics starting steeper the later

they start from ξ1 ¼ 0 and thus already suggests that a
horizon which is located at τPG will not be crossed by a
geodesic starting at ξ0 > τPG. Furthermore, we findwith (35)
that v1ðτPGÞ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M=r0

p
is only satisfied for 0 < r0 ≤ 2r0.

Therefore, the lines corresponding to outward directed light
rays inside the black hole are always steeper than the line
corresponding to the horizon.
We refrained from giving the full expressions for this

coordinate velocity and the corresponding geodesics, since
they become very lengthy. Without the restriction ξ1 ¼ 0
we could find the above behavior to change, however. Also,
the geodesics are in fact curved lines. In order to show
causality for ξ1 ≠ 0, we therefore plot two sample geo-
desics in Fig. 4 with solid lines. We see that the steeper a
line starts at ξ1 ¼ 0, the steeper it will continuously grow.
As a consequence, lines which start later and steeper at
ξ1 ¼ 0 compared to others will only become even steeper in
comparison and outward directed light rays can indeed not
leave the black hole.
If the reference point is on the event horizon r0 ¼ 2M

and the horizon is consequently described by the lower
solid line, we see that outward directed light rays origi-
nating inside the horizon, which are given by the upper
solid line and seem to be outgoing for the RNC observer,
cannot escape the black hole. In fact, their distance to the
horizon increases; i.e., they falls inward. Furthermore, any
object outside the black hole may only interact with such
light rays after it as well has crossed the horizon to the
inside of the black hole.
If the expansion point is set at r0 > 2M, however, and

the horizon is therefore described by the upper solid line,
light rays emitted at the reference point follow the lower
solid line and diverge radially from the horizon to the
outside. Both these effects can be seen in PG coordinates,
too, but are not reflected in the Minkowski patch of RNC,
as can be read off the dashed lines. Using solely the
Minkowski metric, the distance between infalling or out-
ward directed light rays and the horizon is constant.
The analysis in this section shows that whatever RNC

patches one constructs, even those that cross an event
horizon, causality is respected within the patches. This
underlines the statement of normal coordinates being valid
in some finite spacetime region if they are used to a finite
adiabatic order.

E. Outlook on other horizons

As mentioned above, we chose the example of the eternal
Schwarzschild black hole because it allowed us to analyze
the behavior of normal coordinate patch sizes and of the
causality within these patches in the presence of the event
horizon and singularity concomitant with this geometry.
Since the normal coordinate construction works for any

smooth and connected background geometry, it is reasonable
to assume that our results on normal coordinate patches are
generalizable to any geometry containing horizons [23] and
singularities. This includes RNC patches crossing horizons
and avoiding singularities as well as the conservation of the
causal structure within such patches. In detail, cosmological
horizons of expanding universes surrounded by a Hubble
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sphere or of contracting universes (big crunch) as well as
white holes would be prominent examples of such space-
times with horizons and singularities.

VII. CONCLUSION AND SUMMARY

In this article, we developed a procedure to determine the
domain of validity of normal coordinate systems. Given
some precision ε and some set of tensors one wants to work
with, we showed how to evaluate the restriction on the
spacetime region. For this procedure to work and for a point
to be includable in a normal coordinate neighborhood, all
we required was a metric that is analytic (regular) in a
region containing both the reference point (or geodesic of
reference points in the case of FNC) and the point in
question.
For the developed method we considered both RNC and

FNCP, i.e., normal coordinates using curvature information
at a point, as well as the usual FNC, i.e., normal coordinates
using geometrical information along a geodesic.
The complete exponential map recapitulated in Sec. II is

a bijective map on the full spacetime manifold. In this
article, we considered truncated versions of the exponential
map, however, which cannot be bijective on the complete
manifold anymore. By calculating the domain of validity
for truncated normal coordinate expansions, we therefore
determined the subset of the spacetime manifold on which
the truncation of the exponential map is again sufficiently
bijective (up to a precision requirement) to describe
physical systems. This also manifests itself in the fact that
fundamental properties of the spacetime manifold, such as
causality at an event horizon, as correctly described by
normal coordinates in their domain of validity.
As an example, we examined the spacetime geometry of

a Schwarzschild black hole and showed in Fig. 2 the RNC
domain of validity for several different orders of the normal
coordinate expansion and different precision requirements.
We found that the subset of the normal coordinate reference
point covered by the normal coordinates’ domain of
validity can in general cross the black hole’s horizon,
but can never include the physical singularity at its center.
When translating the patch size from normal coordinates to
some other, possibly global, coordinate system, the ability
for this subset of the causal future to cross the horizon can
only be achieved, however, in such coordinates which are
regular at the horizon, such as PG coordinates. In contrast, a
normal coordinate patch in Schwarzschild coordinates only
reaches the horizon. Furthermore, in Fig. 3 we also showed
in detail how an RNC patch increases in size with
increasing order of the normal coordinate expansion.
The importance of normal coordinates in physical appli-

cations is due to the solutions of geodesic equations or
equations of motion for arbitrary (quantum) fields possibly
being unobtainable for the exact metric. Whenever this is the
case, one can approximate these differential equations by
using the polynomial normal coordinates and thus bring them

in a systematically solvable form. This way, all possible local
applications in curved spacetime can be treated perturba-
tively as long as one works within the domain of validity.
With our findings one can now calculate this domain of
validity as well as the error that stems from using a normal
coordinate neighborhood compared to an exact treatment.
Consequently, one can do computations which produce
results one wants to compare with experimental or observa-
tional data.
For example, the normal coordinates used in [1] to

describe tidal disruption events of stars close to black holes
have an external precision requirement of 10−4. Employing
our procedure, we see that the calculated validity domain of
the normal coordinates for this precision is large enough to
accommodate the whole star. In contrast, the literature
estimates the patch size as much too small. We therefore see
the importance of properly calculating normal coordinate
patch sizes.
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APPENDIX A: FNCP WITHOUT EXTERNAL
INFORMATION ON TEMPORAL VALIDITY

As mentioned in Sec. V B, if we have no external
information on the temporal validity of the central geo-
desics Taylor expansion, the domain of validity of this
coordinate system equals that of an RNC patch. The
adiabatic order corresponding to this RNC patch is then
given by the adiabatic order of the FNCP’s orthogonal
expansions.
To show this in more detail, we cannot employ the patch

size computation method presented in the section on FNCP,
as it allows for no restriction on ξ0. Instead,we address points
in the FNCP patch differently by performing two FNC
expansions around the reference point as illustrated in Fig. 1.
First, we perform the spatial RNC expansion around p,
which is represented by the spatial geodesic ω0ðκÞ that
reaches p0 after some length κ0. Second, we implement
another RNC expansion, this time around p0 and orthogonal
to ω0, i.e., using only geodesicsΩðρÞ that satisfyΩð0Þ ¼ p0
and dρΩj0⊥dκω0jκ0 . We can now again determine the patch
size by employing the familiar method developed for RNC.
Wewrite the RNC of the first expansion aroundp as usual

by ξᾱ. The secondRNCof the expansion aroundp0wedenote
as χΘ̄. Notice that the vierbein e0aΔðξÞ corresponding to the
second expansion atp0, given in terms of the first expansion’s
RNC, is obtained by parallel transport along ω0. This means
that, in general, we have e0aΔðξÞ ¼ e0aΔ þ e0aΔ;μ̄ξ

μ̄ þ � � �,
where the coefficients are evaluated at ξ ¼ 0, i.e., at p.
This primed vierbein at p e0aΔ is obtained from the first
expansion’s vierbein eaα by
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e0a1 ¼ ea0; e0a2;¼ ea2; e0a3 ¼ ea3; e0a0 ¼ λᾱeaᾱ;

ðA1Þ

with a residual freedom of rotating e0a1 , e
0a
2 , and e0a3 .

For the determination of the patch size we again choose
the metric and Riemann tensor as the tensors of interest and
consider the metric (18) with ξ0 ¼ 0 up to adiabatic order 2
in the ξᾱ. Recalling that the conditions derived from the
Riemann tensor will always be more restrictive than those
from the metric, we omit considering the metric in the
following calculations. Similar to before, we will now
employ the method for RNC patch sizes.
To shorten the expressions, we will denote the additional

ORiemðξ2Þ terms that appear in (11) when computing the
Riemann tensor using the truncated metric by writing
½R2�αβγδμν. For the same reason, we will omit denoting
terms of higher order than 2 in ξ and χ.
Using (11), the Riemann tensor at Q is given by

RΔΛΠΣðχ; ξÞ ¼ RΔΛΠΣðξÞ þ ½R2�ΔΛΠΣΘ̄ Φ̄ðξÞχΘ̄χΦ̄: ðA2Þ

The ξ dependence results from the χ expansion being
around p0. We employ (11) once more and find for the first
term on the right-hand side

RΔΛΠΣðξÞ ¼ ðe0aΔe0bΛe0cΠe0dΣÞðξÞRabcdðp0Þ
¼ ðe0aΔe0bΛe0cΠe0dΣÞðξÞeαaeβbeγceδd
× ðRαβγδ þ ½R2�αβγδμ̄ ν̄ξμ̄ξν̄Þ

¼ ðe0aΔe0bΛe0cΠe0dΣÞðξÞ
× ðRabcd þ ½R2�abcdmne

m
μ̄ e

n
ν̄ ξ

μ̄ξν̄Þ: ðA3Þ

We obtain the second term on the right-hand side by simple
tensor transformation

½R2�ΔΛΠΣΘ̄ Φ̄ðξÞχΘ̄χΦ̄
¼ ðe0aΔe0bΛe0cΠe0dΣÞðξÞ½R2�abcdmne

0m
Θ̄e

0n
Φ̄χ

Θ̄χΦ̄; ðA4Þ

where we dropped the ξ dependence of e0mΘ̄e
0n
Φ̄ as we wish

to only consider terms up to order 2 in ξ and χ. In contrast,
we kept the ξ dependence of the vierbein factor in front
because we want to be able to compare to (A3).
Plugging (A3) and (A4) back into (A2), we find

RΔΛΠΣðχ;ξÞ¼ðe0aΔe0bΛe0cΠe0dΣÞðξÞðRabcd

þ½R2�abcdμ̄ ν̄ξμ̄ξν̄þ½R2�abcdΘ̄Φ̄χ
Θ̄χΦ̄Þ: ðA5Þ

Here we must notice that ðe0aΔe0bΛe0cΠe0dΣÞðξÞRabcd is the
correct term in adiabatic order 0 since it contains no
geometrical information at p0, but only at p, and is tensor
transformed using the correct vierbein e0aΔðξÞ at p0. The
second and third terms are mismatch terms of very much

the same structure as the one in (11). We denoted the
combination of vierbein and Riemann tensors as
½R2�abcdmne

0m
μ̄ e

0n
ν̄ ¼ ½R2�abcdμ̄ ν̄. For the same reason of

neglecting terms of higher order in any of the two RNC
as below (A4), any tensor transformation to or from the χ
applied here can only use the primed vierbein e0aΔ at p.
In order for the mismatch term in (A5) to be negligibly

small compared to the correct term, we require that

j½R2�abcdμ̄ ν̄ξμ̄ξν̄ þ ½R2�abcdΘ̄ Φ̄χ
Θ̄χΦ̄j ¼ εjRabcdj: ðA6Þ

This can then be tensor transformed to the ξ or χ using
either eaα or e0aΔ (the latter only at p) to give a condition that
is related to (12). This relation is the same as that between
the condition for points ðx; yÞ within a circle of radius L
around the origin (x2 þ y2 ≤ L2) and the condition for
points x on a line segment of length 2L symmetric around
the origin (jxj ≤ L).
The usual Taylor expansion of the Riemann tensor in this

setup of RNC can be obtained as follows (we will again not
denote higher order terms). In the χ, the Taylor series of
the Riemann tensor around p0 reads RΔΛΠΣðχ; ξÞ ¼
RΔΛΠΣðξÞ þ RΔΛΠΣ;Θ̄ðξÞχΘ̄. Plugging into this expression
the Taylor expansion of the Riemann tensor around p in
ξRαβγδðξÞ ¼ Rαβγδ þ Rαβγδ;μ⃗ξ

μ⃗ and ignoring all terms of
higher adiabatic order than 1, we find the series expansion

RΔΛΠΣðχ; ξÞ ¼ ðe0aΔe0bΛe0cΠe0dΣÞðξÞðRabcd

þ Rabcd;Θ̄ðξÞχΘ̄ þ Rabcd;μ̄ξ
μ̄Þ: ðA7Þ

We demand agreement between (A5) and (A7), thus
requiring the first order term in the latter to be negligible,
and obtain the condition

jRabcd;Θ̄ðξÞχΘ̄ þ Rabcd;μ̄ξ
μ̄j ¼ εjRabcdj: ðA8Þ

We can again tensor transform this condition to the ξ or χ,
using the respective vierbein only at p, and obtain con-
ditions which are analogous to (13) in the same way (A6)
was to (12).
Alternatively, when calculating the patch size deter-

mined by (12) and (13) in any other x-coordinate system
according to Step 5 of the general method, we will have to
transform the Riemann components to those coordinates
and find patch size restrictions on the RNC in terms of these
components. These conditions will then have the same
structure as the two terms in (A6) and (A8), respectively.
The close relation between conditions (12) and (13) with

(A6) and (A8) shows that the patch sizes of RNC and
FNCP determined using the Riemann tensor are in fact the
same. In particular, in the limit of ξᾱ → 0 the geodesicΩðρÞ
follows γðξ0Þ arbitrarily closely, such that the domain of
validity of the χ-RNC patch describes the ξ0 restrictions
arbitrarily well. If we did not set ξ0 ¼ 0 above, we would
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find the additional restriction _Rαμ̄βν̄ξ
0 ≪ Rαμ̄βν̄, which is

just the analogue to (13).
This procedure is readily generalized to higher orders

and in these cases also yields the expected ξ0-restrictions
R̈αμ̄βν̄ðξ0Þ2 ≪ Rαμ̄βν̄ and so on.
As we discussed above, this result exactly coincides with

our geometrical intuition, and we therefore expect the patch
size equality to be generalizable for all tensors and to not be
a unique feature of the conditions derived from the
Riemann tensor.

APPENDIX B: FIRST DERIVATIVES OF THE
RIEMANN TENSOR IN RNC

The explicit expressions for the derivatives of the
Riemann tensor in RNC are obtained from (28) and read
as follows:

R0110;0 ¼ R2323;0 ¼
6M
r04

ffiffiffiffiffiffiffi
2M
r0

s
;

R2020;0 ¼ R1221;0 ¼ R1021;2 ¼ R3032;2 ¼
3M
r04

ffiffiffiffiffiffiffi
2M
r0

s
;

R1010;1 ¼ R2332;1 ¼
6M
r04

;

R0220;1 ¼ R1212;1 ¼ R0120;2 ¼ R2331;2 ¼
3M
r04

; ðB1Þ

where r0 is the radial value of the RNC reference point.
Components with an index interchange 2 ↔ 3 remain
unchanged due to the symmetry between the ξ2 and ξ3

directions.

[1] R. M. Cheng and C. R. Evans, Phys. Rev. D 87, 104010
(2013).

[2] M. Kesden, Phys. Rev. D 85, 024037 (2012).
[3] M. Kesden, Phys. Rev. D 86, 064026 (2012).
[4] F. K. Manasse and C.W. Misner, J. Math. Phys. (N.Y.) 4,

735 (1963).
[5] W. Li and W. Ni, J. Math. Phys. (N.Y.) 20, 1925 (1979).
[6] A. I. Nesterov, Classical Quantum Gravity 16, 465

(1999).
[7] C. Chicone and B. Mashhoon, Phys. Rev. D 74, 064019

(2006).
[8] T. S. Bunch and L. Parker, Phys. Rev. D 20, 2499 (1979).
[9] L. Parker, Phys. Rev. D 22, 1922 (1980).

[10] D. Bettoni, J. M. Ezquiaga, K. Hinterbichler, and M.
Zumalacárregui, Phys. Rev. D 95, 084029 (2017).

[11] P. Bueno, V. S. Min, A. J. Speranza, and M. R. Visser, Phys.
Rev. D 95, 046003 (2017).

[12] B. Hoegl, S. Hofmann, and M. Koegler (2020).
[13] D. Bini, C. Chicone, and B. Mashhoon, Phys. Rev. D 95,

104029 (2017).
[14] P. Castro-Villarreal, J. Stat. Mech. (2010) P08006.
[15] U. Muller, C. Schubert, and A.M. E. van de Ven, Gen.

Relativ. Gravit. 31, 1759 (1999).
[16] A. Einstein, Ann. Phys. (Berlin) 322, 891 (1905).
[17] A. Einstein, Jahrb. Radioakt. Elektron. 5, 98 (1907).
[18] A. Z. Petrov, Einstein Spaces (1969).
[19] S. Kobayashi and K. Nomizu, Foundations of Differential

Geometry, Volume 1, A Wiley Publication in Applied
Statistics (Wiley, New York, 1996).

[20] J. Frauendiener, Gen. Relativ. Gravit. 50, 147 (2018).
[21] K. Martel and E. Poisson, Am. J. Phys. 69, 476 (2001).
[22] V. Faraoni, Cosmological and Black Hole Apparent Hori-

zons (2015), Vol. 907.
[23] S. Hayward, Phys. Rev. D 49, 6467 (1994).

PHYSICS IN PRECISION-DEPENDENT NORMAL … PHYS. REV. D 102, 084065 (2020)

084065-21

https://doi.org/10.1103/PhysRevD.87.104010
https://doi.org/10.1103/PhysRevD.87.104010
https://doi.org/10.1103/PhysRevD.85.024037
https://doi.org/10.1103/PhysRevD.86.064026
https://doi.org/10.1063/1.1724316
https://doi.org/10.1063/1.1724316
https://doi.org/10.1063/1.524292
https://doi.org/10.1088/0264-9381/16/2/011
https://doi.org/10.1088/0264-9381/16/2/011
https://doi.org/10.1103/PhysRevD.74.064019
https://doi.org/10.1103/PhysRevD.74.064019
https://doi.org/10.1103/PhysRevD.20.2499
https://doi.org/10.1103/PhysRevD.22.1922
https://doi.org/10.1103/PhysRevD.95.084029
https://doi.org/10.1103/PhysRevD.95.046003
https://doi.org/10.1103/PhysRevD.95.046003
https://doi.org/10.1103/PhysRevD.95.104029
https://doi.org/10.1103/PhysRevD.95.104029
https://doi.org/10.1023/A:1026718301634
https://doi.org/10.1023/A:1026718301634
https://doi.org/10.1002/andp.19053221004
https://doi.org/10.1007/s10714-018-2470-5
https://doi.org/10.1119/1.1336836
https://doi.org/10.1103/PhysRevD.49.6467

