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Gravitationally bound structures composed by fermions and scalar particles known as fermion-boson
stars are regular and static configurations obtained by solving the coupled Einstein-Klein-Gordon-Euler
system. In this work, we discuss one possible scenario through which these fermion-boson stars may form
by solving numerically the Einstein-Klein-Gordon-Euler system under the simplifying assumption of
spherical symmetry. Our initial configurations assume an already existing neutron star surrounded by an
accreting cloud of a massive and complex scalar field. The results of our simulations show that once part of
the initial scalar field is expelled via gravitational cooling the system gradually oscillates around an
equilibrium configuration that is asymptotically consistent with a static solution of the system. The
formation of fermion-boson stars for large positive values of the coupling constant in the self-interaction
term of the scalar-field potential reveal the presence of a node in the scalar field. This suggests that a
fermionic core may help stabilize configurations with nodes in the bosonic sector, as happens for purely
boson stars in which the ground state and the first excited state coexist.
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I. INTRODUCTION

Identifying the relevance scalar fields may have for
astrophysics and cosmology, in particular as potential
components of the dark-matter content of the Universe,
has long received considerable attention [1–4]. Different
scalar fields have been considered, namely, the dilaton in
string theories [5,6], the Higgs boson in the standard model
of particle physics [7,8], the inflaton in studies of the early
Universe [9,10], or the axion as a possible component of
cold dark matter [11–14].
It has been argued that ultralight bosons form localized

and coherently oscillating configurations very similar to
Bose-Einstein condensates [15,16]. When the mass of the
bosonic particle is around 10−22 eV [17,18], these con-
densates provide an alternative to the standard approach to
explain large-scale structure formation through dark-matter
seeds. For heavier bosons, the bound configurations are
smaller and may have the typical size and mass of a sellar
compact object such as a neutron star. These objects are
generically known as boson stars [19].
Boson stars are gravitationally bound configurations of

scalar particles. Since the seminal works of Kaup [20] and
Ruffini and Bonnazola [21], their description has been

generalized in several ways including self-interaction [22],
charge [23], rotation [24,25], oscillating soliton stars [26],
stars with more than a single scalar field [27,28], and even
vector fields (in which case the bosonic star is known as a
Proca star [29]). Reviews on the subject can be found in
Refs. [30,31].
If such bosonic configurations could form from some

primordial gas, it is natural to assume that other particles, such
as fermions, could also be present during the condensation.
Therefore, it would seem theoretically possible that objects
made out of a mixture of both bosons and fermions might
also form. Even if the original configurations were mainly
composed by either bosons or fermions, they could be
susceptible to further capture fermions and bosons through
accretion giving rise to mixed configurations. It is thus a
theoretically interesting question to investigate the properties
of these macroscopic composites of fermions and bosons,
referred in the literature as fermion-boson stars [32–36] and to
discuss possible means bywhich they might form. This is the
focus of this paper. Here we propose a dynamical scenario in
which a fermionic star (FS) (modeled as a polytropic star for
simplicity) accretes part of the scalar field, while part of it is
radiated to infinity, and a mixed fermion-boson star forms.
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The gravitational condensation of a primordial gas and
the subsequent radiation of part of the bosonic field has
been dubbed gravitational cooling and has been addressed
in [37] for purely scalar fields and in [38] for vector fields.
Using numerical-relativity simulations, those studies have
shown the dynamical formation of boson stars and Proca
stars, respectively, under the assumption of spherical
symmetry. In order to be astrophysically relevant, a
gravitationally bound system that forms dynamically must
be stable for times much longer than its characteristic
dynamical time scale. The stability properties of boson stars
have been considered in [39–46]. In Ref. [47], Seidel and
Suen discussed the dynamical evolution of perturbed boson
stars finding, in particular, that unstable stars migrate to the
stability region of static configurations which suggests the
formation of boson stars under generic initial conditions.
Further studies on the formation of boson stars were
performed in [37] in general relativity and in [48,49] in
the Newtonian regime. These studies concluded that self-
gravitating, scalar-field stellar systems settle down into
equilibrium configurations. We note that this conclusion
does not only apply to the scalar case, but it is also valid for
the vector counterparts of boson stars, i.e., Proca stars, as
has recently been reported in [38].
The purpose of this work is twofold: on the one hand, we

aim to describe the dynamical formation of fermion-boson
stars; on the other hand, we will analyze the stability
properties of those configurations considering a strong self-
interaction term in the Klein-Gordon potential of the
bosonic part. For this study, and for the sake of simplicity,
we shall focus on fermion-boson stars assuming spherical
symmetry. The starting point of our analysis assumes a
preexisting neutron star (described with a polytropic
equation of state) surrounded by a cloud of scalar field.
Different initial configurations have evolved in time using
numerical-relativity simulations. We find that the fermionic
star is able to capture part of the scalar field and the new
system evolves toward an almost static configuration giving
rise to a stable fermion-boson star. In addition to show that
the dynamical formation of mixed stars is possible, we also
obtain the corresponding equilibrium configurations for
fermion-boson stars with different values of the self-
interaction potential and we study their stability properties
under spherical perturbations.
This paper is organized as follows: in Sec. II, we

introduce the matter model we employ to describe fer-
mion-boson stars and set up the basic equations. Section III
addresses the initial data for the dynamical formation of the
mixed stars and the initial static configurations considering
a self-interaction term in the bosonic sector. The numerical
framework for our simulations is described in Sec. IV,
while in Sec. V the results of the evolutions are presented.
Finally, our conclusions and final remarks are reported in
Sec. VI. Our units are such that the relevant fundamental
constants are equal to one ðG ¼ c ¼ ℏ ¼ 1Þ.

II. SETUP

In this study, we consider that bosonic and fermionic
matter only interact through gravity. Therefore, our model
is described by a total stress-energy tensor which is the sum
of two contributions, one from a perfect fluid and one from
a complex scalar field,

Tμν ¼ Tfluid
μν þ Tϕ

μν; ð1Þ

where

Tfluid
μν ¼ ½ρð1þ ϵÞ þ P�uμuν þ Pgμν; ð2Þ

Tϕ
μν ¼ −

1

2
gμν∂αϕ̄∂αϕ − VðϕÞ þ 1

2
ð∂μϕ̄∂νϕþ ∂μϕ∂νϕ̄Þ:

ð3Þ

The perfect fluid is described by its pressure P, its rest-
mass density ρ, and its internal energy ϵ, while uμ is the
fluid four-velocity. We consider a quartic self-interaction
potential for the scalar field ϕ,

VðϕÞ ¼ 1

2
μ2ϕ̄ϕþ 1

4
λðϕ̄ϕÞ2; ð4Þ

where μ is the mass of the bosonic particle and λ is the
self-interaction parameter; the bar symbol in the last two
equations denotes complex conjugation. The equations of
motion are given by the conservation laws of the stress-
energy tensor and the baryonic particles

∇μT
μν
fluid ¼ 0; ð5Þ

∇μðρuμÞ ¼ 0 ð6Þ

for the fermionic matter, and by the Klein-Gordon equation

∇μ∇μϕ ¼ μ2ϕþ λjϕj2ϕ ð7Þ

for the complex scalar field, together with the Einstein
equation Gμν ¼ 8πTμν governing the spacetime dynamics.
Differential operator ∇μ is the covariant derivative with
respect to the four-metric gμν. The set of equations (5)
and (6) is closed by an equation of state (EOS) for the fluid.
We consider both the polytropic EOS and the ideal-gas
EOS,

P ¼ KρΓ ¼ ðΓ − 1Þρϵ: ð8Þ

The polytropic EOS is employed to build the equilibrium
initial data while the Γ-law is used for the evolutions as it
would allow to take into account eventual shock-heating
(thermal) effects. All equilibrium models we consider are
constructed using K ¼ 100 and Γ ¼ 2. In the next sub-
sections, we specify our choice for the metric and the
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relevant equations for both the construction of the static
models and the evolution.

A. Basic equations for the equilibrium configurations

Our formalism for the construction of equilibrium
configurations of fermion-boson stars relies on the choice
of a spherically symmetric metric in Schwarzschild
coordinates,

ds2 ¼ −αðrÞ2dt2 þ ãðrÞ2dr2 þ r2ðdθ2 þ sin θ2dφ2Þ; ð9Þ

written in terms of two geometrical functions ãðrÞ and
αðrÞ. We set a harmonic time dependence ansatz for the
complex scalar field ϕðt; rÞ ¼ ϕðrÞe−iωt where ω is its
eigenfrequency, and we consider the quartic self-interaction
potential for the field given by Eq. (4). We replace the self-
interaction parameter λ by the dimensionless variable Λ,
defined as

Λ ¼ M2
Plλ

4πμ2
; ð10Þ

in which MPl ¼
ffiffiffiffi
ℏc
G

q
indicates the Planck mass (which is

one in our units). In the following, we consider a scaled
radial coordinate r → rμ (together with M → Mμ, t → tμ,
ω → ω=μ). Some comments about this scaling are in order.
It is well known (see, e.g., [31]) that the maximum mass of
the system for an isolated boson star in general relativity
depends solely on the mass of the boson particle,

Mmax¼0.633
M2

Planck

μ
∼0.633M⊙

1.34×10−10 eV
μ½eV� : ð11Þ

Therefore, depending on the value of μ, this maximum
mass can range (in solar mass units) from very small
masses to masses comparable to that of dark matter halos in
galaxies. In order to have objects with astrophysical
relevance (from stars to dark matter halos), ultralight fields
must be considered, with a boson mass in the range
μ ¼ f10−10; 10−24g eV [24]. In this work, we also consider
fermionic stars without restricting to neutron stars, but our
analysis can nonetheless be applied directly to them. In the
neutron star case, there is another mass involved (the
neutron star mass) that determines the mass of the boson
particle μ. If one assumes that the maximum mass of a
neutron star is around 2M⊙, the boson star will have a
maximum mass of order 1 M⊙ and, therefore, μ would be
of the order of 10−10 eV.
It is also worth commenting on the relationship between

the units used in our numerical code and physical units. From
the previous discussion, it follows that if the mass of the
particle is given in eV, all masses reported in this paper are
expressed in M⊙. To obtain the distances in meters and the
time in seconds, the following conversion must be applied:

rðmÞ ¼ G
c2

MADMr ðc:u:Þ; ð12Þ

tðsÞ ¼ G
c3

MADMt ðc:u:Þ; ð13Þ

where c:u: stands for code units and MADM is the so-called
Anowitt-Desser-Misner (ADM) mass [see Eq. (42) below]
expressed in kg. For example, if μ ¼ 1.34 × 10−10 eV,
model MS9 in Table III below has MADM ¼ 1.202 M⊙,
its total radius is RT ¼ 12.56 × 103 m, and the frequency of
the scalar field is ω ¼ 1.79 × 105 Hz.
Assuming a static fluid, uμ ¼ ð−1=α; 0; 0; 0Þ, Einstein’s

equations lead to the following ordinary differential equa-
tions (ODEs):

dã
dr

¼ ã
2

�
1 − ã2

r
þ 4πr

��
ω2

α2
þ μ2 þ λ

2
ϕ2

�
ã2ϕ2

þ Ψ2 þ 2ã2ρð1þ ϵÞ
��

; ð14Þ

dα
dr

¼ α

2

�
ã2 − 1

r
þ 4πr

��
ω2

α2
− μ2 −

λ

2
ϕ2

�
ã2ϕ2

þ Ψ2 þ 2ã2P

��
; ð15Þ

dϕ
dr

¼ Ψ; ð16Þ

dΨ
dr

¼ −
�
1þ ã2 − 4πr2ã2ðμ2ϕ2 þ λ

2
ϕ4

þ ρð1þ ϵÞ − PÞ
�
Ψ
r
−
�
ω2

α2
− μ2 − λϕ2

�
ã2ϕ2;

ð17Þ

dP
dr

¼ −½ρð1þ ϵÞ þ P� α
0

α
; ð18Þ

where the prime indicates the derivative with respect to r.
The system is closed by the EOS (8). To solve these
equations, it is necessary to apply certain initial and
boundary conditions that are consistent with the geometry
and physical behavior of the mixed stars. In Sec. III B, we
will introduce these conditions.

B. Basic equations for the evolution

For the numerical evolutions, we consider a spherically
symmetric metric in isotropic coordinates,

ds2 ¼ −αðr̂Þ2dt2 þ ψðr̂Þ4γijðdxi þ βidtÞðdxj þ βjdtÞ;
ð19Þ
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where α is the lapse function and βi is the shift vector. The
spatial three-dimensional metric components are

γijdxidxj ¼ aðr̂Þdr̂2 þ bðr̂Þr̂2ðdθ2 þ sin θ2dφ2Þ: ð20Þ

We note that a and ã should not be confused as they are
different functions; aðr̂Þ and bðr̂Þ are the metric functions
for the isotropic metric, r̂ denotes the isotropic radial
coordinate (see Sec. V B for details), and ψ4 ≡ e4χ is the
conformal factor. To simplify the notation, we will sub-
stitute r̂ → r in the following, keeping in mind that all
equations and definitions refer nonetheless to the isotropic
radial coordinate.
Our choice of evolution equations for the spacetime

variables follows Brown’s covariant form [50,51] of the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formu-
lation of Einstein’s equations [52–54]. The evolved quan-
tities used in this work are the spatial metric γij, the
conformal factor χ, the trace of the extrinsic curvature K,
its traceless part Aa ¼ Ar

r, Ab ¼ Aθ
θ ¼ Aφ

φ, and the radial
component of the so-called conformal connection functions
Δr (see [53,54] for definitions).
We will not report here explicitly the full system of

evolution equations as it can be found, e.g., in Ref. [55].
We remind the reader that the equations involve matter
source terms arising from suitable projections of the total
stress-energy tensor Tμν, namely, the energy density E, the
momentum density ji measured by a normal observer nμ,
and the spatial projection of the energy-momentum tensor
Sij. These quantities read as

E ¼ nμnνTμν; ð21Þ

ji ¼ −γμi nνTμν; ð22Þ

Sij ¼ γμi γ
ν
jTμν: ð23Þ

In our setup, these quantities are obtained by adding up
the contributions of both the fluid and the scalar field.
The explicit expressions we use are listed at the end of
this section.
The gauge conditions we employ in our simulations are

the so-called “nonadvective 1þ log” gauge condition for
the lapse function α and a variation of the gamma-driver
condition for the shift vector βr. Further details regarding
the BSSN evolution equations, gauge conditions, and the
formalism for the hydrodynamic equations can be found
in [55].
Following our previous work [56], we use two auxiliary

variables

Π ¼ 1

α
ð∂t − βr∂rÞϕ; ð24Þ

Ψ ¼ ∂rϕ ð25Þ

to cast the Klein-Gordon equation (7) as a first-order
system of evolution equations,

∂tϕ ¼ βr∂rϕþ αΠ; ð26Þ

∂tΠ ¼ βr∂rΠþ α

ae4χ

�
∂rΨþΨ

�
2

r
−
∂ra
2a

þ ∂rb
b

þ 2∂rχ

��

þ Ψ
ae4χ

þ αKΠ − αðμ2 þ λϕϕ̄Þϕ; ð27Þ

∂tΨ ¼ βr∂rΨþΨ∂rβ
r þ ∂rðαΠÞ: ð28Þ

Finally, the system of equations is closed by two
constraint equations, namely, the Hamiltonian constraint
and the momentum constraint, which read as

H ¼ R − ðA2
a þ 2A2

bÞ þ
2

3
K2 − 16πE ¼ 0; ð29Þ

Mr ¼ ∂rAa −
2

3
∂rK þ 6Aa∂rχ þ ðAa − AbÞ

�
2

r
þ ∂rb

b

�
− 8πjr ¼ 0; ð30Þ

where R is the Ricci scalar.
The bosonic contribution to the matter source terms is

Eϕ ¼ 1

2

�
Π̄Πþ Ψ̄Ψ

e4χa

�
þ 1

2
μ2ϕ̄ϕþ 1

4
λðϕ̄ϕÞ2; ð31Þ

jϕr ¼ −
1

2
ðΠ̄Ψþ Ψ̄ΠÞ; ð32Þ

Sϕa ¼ 1

2

�
Π̄Πþ Ψ̄Ψ

e4χa

�
−
1

2
μ2ϕ̄ϕ −

1

4
λðϕ̄ϕÞ2; ð33Þ

Sϕb ¼ 1

2

�
Π̄Π −

Ψ̄Ψ
e4χa

�
−
1

2
μ2ϕ̄ϕ −

1

4
λðϕ̄ϕÞ2; ð34Þ

where Sa ¼ Srr and Sb ¼ Sθθ ¼ Sφφ. Correspondingly, the
fermionic contribution to those source terms read

Efluid ¼ ½ρð1þ ϵÞ þ P�W2 − P; ð35Þ

jfluidr ¼ e4χa½ρð1þ ϵÞ þ P�W2vr; ð36Þ

Sfluida ¼ e4χa½ρð1þ ϵÞ þ P�W2vr þ P; ð37Þ

Sfluidb ¼ P; ð38Þ

where W ¼ αut is the Lorentz factor and vr is the radial
component of the fluid three-velocity.
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III. INITIAL DATA

As mentioned in the Introduction, we consider two
different physical situations in this paper, namely, the
dynamical formation of a fermion-boson star and the
stability properties of different equilibrium models of such
stars. In the following, we discuss the corresponding initial
data for either situation.

A. Dynamical formation

To study the dynamical formation of a mixed star, we
begin with a stable FS model surrounded by a dilute cloud of
bosonic particles. This cloud accretes on to the FS under the
gravitational pull of the latter. Suitable initial data describing
this system are secured after solving the Hamiltonian
constraint (29) and the momentum constraint (30). To do
so, we assume a harmonic time dependence for the scalar
field and choose a Gaussian radial distribution for the cloud,
yielding

ϕðr; tÞ ¼ A0e
−r2

σ2e−iωt; ð39Þ

where parameters A0 and σ are the amplitude and the width
of the Gaussian profile, respectively, and ω is the initial
frequency of the field.
To solve the constraints, we initially consider the space-

time of an isolated spherically symmetric FS by solving the
Tolman-Oppenheimer-Volkoff equation. Next, we add to this
solution the dilute cloud of bosonic matter described by (39).
The time symmetry condition, Kij ¼ 0, and the conformally
flat condition, a ¼ b ¼ 1, yield the following initial values
for a set of spacetime variables:

βr ¼ 0;

K ¼ 0;

Aa ¼ Ab ¼ 0;

Δr ¼ 0; ð40Þ

while the values of the conformal factor ψ and of the lapse
function α are inferred directly from the FS spacetime.
Starting with these initial conditions, we solve numerically
the Hamiltonian constraint (29) using the procedure
described in [56]. This yields an updated value of the
conformal factor ψ and of the γrr metric component.
Due to the harmonic time dependence of the scalar field,

it follows that jϕr defined by (32) is zero. This means that
the scalar field does not contribute to the momentum
constraint equation (30). Therefore, considering (40), the
momentum constraint is analytically solved.

B. Equilibrium configurations

In Sec. II A, we introduced the basic equations to
construct the static models of mixed stars. To solve the

set of equations, namely, Eqs. (14)–(18) and the EOS (8),
we need to construct suitable initial data which are
compatible with the physical and geometrical conditions
of the stellar configurations. The system of ODEs becomes
an eigenvalue problem for the frequency ω, which is a
function of two parameters, the central value of the scalar
field, ϕc, and of the fermionic density, ρc. We make use of
the two-parameter shooting method to find the solution
for ω. Once this is found and the central values of all
variables are available, we use a fourth-order Runge-
Kutta method to solve the ODEs and reconstruct the
radial profiles of the solution.
We require the condition of regularity at the origin to be

satisfied for the metric functions. At the outer boundary, we
employ the values provided by the Schwarzschild solution
at the outer radius, which do not depart much from the
values of a flat metric, together with a vanishing scalar-field
value. Hence, the boundary conditions for solving the set of
ODEs can be defined as follows:

ãð0Þ ¼ 1; ϕð0Þ ¼ ϕc;

αð0Þ ¼ 1; lim
r→∞

αðrÞ ¼ lim
r→∞

1

ãðrÞ ;

Ψð0Þ ¼ 0; lim
r→∞

ϕðrÞ ¼ 0;

ρð0Þ ¼ ρc; Pð0Þ ¼ KρΓc ; lim
r→∞

PðrÞ ¼ 0: ð41Þ

Once the solution is found, one can define the total
gravitational mass based on the value of the metric
coefficients at infinity,

MT ¼ lim
r→∞

r
2

�
1 −

1

ã2

�
; ð42Þ

which coincides with the ADM mass at infinity. As the
Klein-Gordon Lagrangian for a complex scalar field
exhibits invariance under global U(1) transformations
ϕ → ϕeiδ, Noether’s theorem predicts the existence of a
conserved charge which can be associated with the number
of bosonic particles NB; moreover, the conservation of the
baryonic number provides a definition of the number of
fermionic particles NF. These two quantities can be
evaluated by integrating their volume density as follows:

NB ¼ 4π

Z
ãωϕ2r2

α
dr; NF ¼ 4π

Z
ãρr2dr: ð43Þ

These quantities will be used to determine the conservation
of the number of particles, both bosons and fermions during
the numerical evolutions. Finally, we evaluate the radius of
the bosonic (fermionic) contribution to the mixed star,
RBðRFÞ, as the radius of the sphere containing 99% of the
corresponding particles.
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As mentioned before, the construction of the static
solutions for the fermion-boson stars depends on two
parameters, namely, the central fluid density ρc and the
central value of the scalar field ϕc. We can therefore express
the mass of the system (42) as a function of these two
parameters MTðρc;ϕcÞ as we depict in Fig. 1 for three
different values of Λ. In the case of nonrotating boson
stars, the parameter space is one-dimensional and stability
theorems [57] indicate that for each value of Λ, there exists
a critical mass such that dMT=dϕc ¼ 0. These critical
points indicate the transitions between the stability and the
instability regions of the parameter space. Analogous
transitions in stability occur in fermionic stars (see, e.g.,
[58,59]). In the case of fermion-boson stars, as the
parameter space is two-dimensional, the analysis is more
involved. Following [32], we define the critical points as
the values of the pair ðρc;ϕcÞ such that the conditions

∂NB

∂ρc
����
M¼constant

¼ ∂NF

∂ρc
����
M¼constant

¼ 0;

∂NB

∂ϕc

����
M¼constant

¼ ∂NF

∂ϕc

����
M¼constant

¼ 0 ð44Þ

are satisfied. In Fig. 1, we show several curves of constant
mass in the parameter space (dashed colored lines). For
each point of the curves, we evaluate the number of bosons
NB and fermions NF. If we start from a purely FS
configuration (a point on the horizontal axis in Fig. 1)
and we move along a curve of fixed mass changing the
values of ϕc and ρc, the number of bosons increases and the
number of fermions decreases up to a critical point in the
parameter space where a maximum is found for NB and a
minimum for NF. If we start from a pure boson star (a point
on the vertical axis), the behavior is the opposite, with NB
decreasing up to a minimum and NF increasing up to a
maximum. For each value of the mass, these critical points
signal the boundary between the stability and instability
regions. The black solid line in Fig. 1 represents these
boundaries in the parameter space for the values of
Λ ¼ f−30; 0; 30g. This construction follows the same
approach laid out in [33,36].
As FS does not depend on Λ, their threshold mass is

constant for all values of Λ and equal to Mc ¼ 1.637. On
the contrary, for boson stars, the threshold mass changes
with Λ. In particular, the threshold masses for our pure
boson star models are Mc ¼ 0.248, 0.633, and 1.336, for
Λ ¼ −30, 0, and 30, respectively. For fermion-boson stars,
one can observe that for the same point in the parameter
space with fixed values of ϕc and ρc, the total mass
decreases (increases) for positive (negative) values of Λ,
with respect to the Λ ¼ 0 case.
We point out that considering negative values of λ raises

the issue that the scalar potential VðjϕjÞ ¼ 1
2
μ2jϕj2 þ

1
4
λðjϕj2Þ2 is not bounded from below and can become

negative, breaking the weak-energy condition (see, e.g., the
discussion in [60]). For Λ ¼ −30, we evaluate the maxi-
mum central value of ϕ that ensures the non-negativity of
the scalar-field potential, yielding ϕc ¼ 0.0728. We depict
in the top plot of Fig. 1 a horizontal yellow line at this
value. We disregard all stellar models above this line as they
may give rise to naked singularities.

FIG. 1. Equilibrium configurations of fermion-boson stars for
Λ ¼ −30 (top), Λ ¼ 0 (middle), and Λ ¼ 30 (bottom). Dashed
lines correspond to models with the same total mass MT . The
black solid line depicts the boundary between stable and unstable
models, and the solid yellow line for the case Λ ¼ −30 indicates
the maximum value of ϕc that assures the non-negativity of the
scalar-field potential VðϕÞ in the entire spatial domain.
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IV. NUMERICAL FRAMEWORK

The numerical evolutions of the Einstein-Klein-Gordon-
Euler system are performed with the numerical-relativity
code originally developed by [55] and upgraded to take into
account the complex scalar-field equations in [61]. This
computational infrastructure has been extensively used by
our group in studies of fundamental bosonic fields in
strong-gravity spacetimes (see, e.g., [38,45,56,62,63]).
The time update of the evolution equations is evaluated

using a partially implicit Runge-Kutta method developed
by [64,65]. In this scheme, the operators on the right-hand
side of the BSSN evolution equations are divided into
operators which are evaluated explicitly and operators
carrying geometrical singularities which are evolved
implicitly using the updated values of the first ones.
This allows to handle potential numerical instabilities
arising from 1=r terms in the equations. While the con-
struction of the equilibrium configurations employs
Schwarzschild coordinates and an equally spaced linear
grid, the dynamical evolutions make use of isotropic
coordinates and a logarithmic grid. More precisely, the
computational domain of the simulations is covered with an
isotropic grid which is composed by two different patches,
a geometrical progression up to a certain radius and an
hyperbolic cosine in the exterior part. This allows to place
the outer boundary sufficiently far from the origin and
prevent the effects of reflections. Further details about the
computational grid can be found in [62]. The minimum
resolution we employ in our simulations is Δr ¼ 0.0125.
The inner boundary is then set at rmin ¼ Δr=2 and the outer
boundary is at rmax ¼ 6000. The time step is given by
Δt ¼ 0.3Δr in order to obtain long-term stable simulations.
We add fourth-order Kreiss-Oliger numerical dissipation
terms to the evolution equations to damp out spurious,
high-frequency numerical noise. All advection terms (such
as βr∂rf) are treated with an upwind scheme. At the outer
boundary, we impose radiative boundary conditions.

V. RESULTS

A. Dynamical formation of fermion-boson stars

As described in Sec. III A, we start with an initial
configuration describing a bosonic cloud of matter sur-
rounding an already formed FS, and we study the accretion
of the bosonic matter on to the FS. The bosonic cloud loses
part of its energy through gravitational cooling and plunges
toward the center of the FS. Intuitively, this process can
lead to two possible outcomes: either to the formation of a
fermion-boson star or, if the mass of the entire system is
above a certain threshold, to the formation of a
Schwarzschild black hole.
During the evolutions, we compute useful physical

quantities in order to keep track of the formation process
and to evaluate the features of the final object. Those will
be used below to compare with some of our static models.

We define the bosonic and fermionic energy contained in
spheres of different radii r� as

Efluid
r� ¼ 4π

Z
r�

0

Efluid ffiffiffi
γ

p
dr; ð45Þ

Eϕ
r� ¼ 4π

Z
r�

0

Eϕ ffiffiffi
γ

p
dr; ð46Þ

where
ffiffiffi
γ

p ¼ ψ6
ffiffiffi
a

p
br2 is the spatial volume element for the

metric (19). Note that we will refer to Efluid=ϕ
rmax when

referring to the total energy in the computational grid.
Other useful quantities we evaluate along the numerical
evolution are the number of bosonic and fermionic particles
within spheres of radii r�, computed by means of the
following integrals:

NB
r� ¼ 4π

Z
r�

0

g0νJνα
ffiffiffi
γ

p
dr; ð47Þ

NF
r� ¼ 4π

Z
r�

0

ρ
ffiffiffi
γ

p
dr; ð48Þ

where Jν ¼ i
2
ðϕ̄∂νϕ − ϕ∂νϕ̄Þ is the conserved current

associated with the transformation of the U(1) group.
We also extract the scalar-field frequency ω by performing
a fast Fourier transform (FFT) of the real/imaginary part of
the scalar field ϕ. The time window for the FFT is chosen at
a sufficiently late time of the evolutions, once the bosonic
cloud has already accreted on to the FS and the final object
oscillates around an equilibrium configuration.
For our study, we use two different FS models, both

described by the polytropic EoS, P ¼ KρΓ, with different
central value of the rest-mass density ρc. We consider the
same scalar-field mass parameter, μ ¼ 1, frequency,
ω ¼ 0.8, and three different values for the self-interaction
parameter Λ ¼ f−30; 0;þ30g. Our model for the bosonic
cloud, Eq. (39), has a couple of free parameters we can
vary, namely, the amplitude A0 and the width of the
Gaussian profile σ. For all our models, we consider
σ ¼ 90 which corresponds to a bosonic cloud much larger
than the FS radii. We summarize some of the properties of
our initial models in Tables I and II.
In Fig. 2, we show the evolution of the scalar-field

energy contained in spheres of different radii r� calculated
with Eq. (46), for models MS3, MS4, and MS5 described
in Table I. The growth of the lines Eϕ

50, E
ϕ
30, E

ϕ
20, and Eϕ

10

shows that during the evolution the energy of the scalar
cloud, which at the initial time is spread over a large spatial
volume, gradually concentrates in a smaller volume, as it is
being accreted by the FS. Part of the cloud energy does not
fall on to the FS but it is radiated away through the
gravitational cooling mechanism. For all three models,
from time t ≃ 750 the curves start to converge slowly to
each other, indicating that the scalar field is contained
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within small radii, radiating the excess energy to infinity.
The remnant energy is confined into a volume delimited by
r ≃ 6 and is, hence, entirely contained inside the FS. The
total scalar-field energy of the three models is Eϕ ≃ 0.065
for MS3, Eϕ ≃ 0.09 for MS4, and Eϕ ≃ 0.11 for MS5.
Figure 2 shows some differences between models with

and without self-interaction, and also depending on the sign
of the self-interaction term. In the case with Λ ¼ −30 (top
panel), the lines Eϕ

50, E
ϕ
30, E

ϕ
20, and Eϕ

10 slowly converge to
each other and, at around t ≃ 4700, the energy within larger
volumes radiates away and all the lines converge to the red
one (Eϕ

10) with a final energy around Eϕ ≃ 0.065. For the
case with positive Λ (bottom panel), again there is an initial
phase during which the lines slowly converge to each other,
but then the red line, corresponding to Eϕ

10, grows reaching
the green one, Eϕ

50. This indicates that all the scalar matter
around the forming compact object is accreting onto it. The
case with Λ ¼ 0 (central panel) is an intermediate case,
with the lines slowly converging to each other for the entire
evolution. This result can be understood as follows: a
Λ > 0 term in the Lagrangian is an attractive term, helping
gravity letting the cloud collapse on to the FS and acting
against the gravitational cooling mechanism that radiates
away scalar particles. This means that the formation
process is accelerated and the final object will also have
higher number of bosonic particles and mass. On the other

hand, Λ < 0 is a repulsive term, which increases the
amount of bosonic particles expelled to infinity.
Nonetheless, the formation process seems to be accelerated
but it is due to the fact that the scalar particles around the
formed compact object escape faster to infinity. We point
out that, as jϕj < 1, the self-interaction term, which is
proportional to λjϕj4, gives a lower order contribution than
the mass term μ2jϕj2. They are only comparable when the
object is compact enough to reach high values of ϕ. This is
the reason why the first part of the evolution before the
object forms is basically the same for the three models.
In Fig. 3, we depict the late-time radial profiles of the

scalar-field module jϕj for models MS3 (top panel) and
MS5 (bottom panel). For model MS3, we compare three
different snapshots during the evolution with an equilib-
rium configuration of a mixed star with comparable mass
and number of bosons and fermions. The comparison
shows that the radial profile of jϕj obtained through the
dynamical formation process resembles that of the static
solution.
The bottom panel of Fig. 3 shows that for model MS5

there are two maxima of the scalar field and there is a node
at around r ≃ 3 which oscillates radially with the rest of the
profile. At first sight, this result seems surprising because,
at least for boson stars, all models with nodes are in excited
states, which are intrinsically unstable and collapse to a
black hole or decay to the nodeless fundamental configu-
ration [43,57]. We note that in [66] configurations of two
coexisting states of the scalar field, the ground state and one
excited state, were investigated. Their results showed that it
is possible to combine an intrinsically unstable first excited
state (with a node) and the ground nodeless configuration,
and obtain a stable configuration. In the fermion-boson
case analyzed here, our results seem to indicate that an
excited state of the scalar field in the presence of fermionic
matter may form a stable configuration as well.
To provide further grounds for this result, Fig. 4 depicts a

three-dimensional plot of the late-time evolution of the
scalar field for models MS3 and MS5. The presence of the

TABLE II. Initial models leading to Schwarzschild black hole
formation. As no fermion-boson star forms for these models, we
only report the initial parameters of the bosonic cloud. Columns
indicate the central rest-mass density ρc, the self-interaction
parameter Λ, and the amplitude of the scalar-field profile A0.

Model ρc=μ2 Λ A0

MS6 3.15 × 10−3 −30 3.5 × 10−4

MS7 3.15 × 10−3 0 3.5 × 10−4

MS8 3.15 × 10−3 30 3.5 × 10−4

TABLE I. Initial models leading to stable fermion-boson stars. The vertical lines divide the initial parameters (left), from the physical
quantities evaluated at the end of the time evolution (center) and from the physical quantities of the corresponding equilibrium
configuration (right). Note that as model MS5 forms an excited state, we cannot compare it with a nodeless static solution. Columns on
the left indicate the central rest-mass density ρc, the self-interaction parameter Λ, and the amplitude of the scalar-field profile A0.
Columns at the center indicate the scalar-field frequencies ωn, the fermionic energy Efluid

30 contained in a sphere of radius r ¼ 30, the
bosonic energy Eϕ

30, and the ratio between number of bosons and fermions NB
30=N

F
30. Columns on the right side indicate the frequency ω,

the fermionic energy Efluid, the bosonic energy Eϕ, and the ratio between number of bosons and fermions NB=NF of the corresponding
equilibrium configuration.

Model ρc=μ2 Λ A0 ω1=μ ω2=μ Efluid
30 μ Eϕ

30μ NB
30μ=N

F
30 ω=μ Efluidμ Eϕμ NBμ=NF

MS1 1.28 × 10−3 0 4.5 × 10−4 0.705 0.725 1.5330 0.1305 0.0775 0.695 1.5166 0.1223 0.0805
MS2 1.28 × 10−3 30 4.5 × 10−4 0.696 0.720 1.5380 0.1290 0.0813 0.715 1.531 0.1289 0.0839
MS3 1.28 × 10−3 −30 4.0 × 10−4 0.703 0.729 1.5751 0.0719 0.0423 0.696 1.569 0.0696 0.0444
MS4 1.28 × 10−3 0 4.0 × 10−4 0.720 0.745 1.5548 0.0956 0.0496 0.715 1.556 0.0795 0.0511
MS5 1.28 × 10−3 30 4.0 × 10−4 0.731 0.752 1.5679 0.1053 0.0568 � � � � � � � � � � � �
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node for model MS5 (bottom plot) is clearly visible.
This figure shows that this is not just a transient state
as the evolution is characterized by radial oscillations
around an equilibrium configuration. This is in contrast
with model MS3 where we can only see transient nodes in
the scalar profile which are due to the bosonic particles
radiated away through gravitational cooling. This and
previous results [66] would indicate that mixed states that

only interact through gravity and in which one of the
components is intrinsically unstable can cooperate so they
become globally stable.

B. Evolutions of the equilibrium configurations

In Sec. II A, we discussed how we identify the region of
the parameter space where stable configurations are found.
In this section, we intend to verify the results obtained by
performing numerical evolutions of stable and unstable
models. We expect stable mixed stars to show a combina-
tion of the typical behavior of isolated stable boson stars
and fermion stars. This means that we expect the scalar
field to oscillate with its characteristic eigenfrequency ω
while the fermionic density ρ is expected to oscillate
slightly around its initial state due to the numerical

FIG. 3. Late-time radial profiles of the scalar-field module jϕj
for model MS3 with Λ ¼ −30 (upper panel) and model MS5 with
Λ ¼ 30 (bottom panel). The three snapshots of model MS3 are
compared with the radial profile of a static mixed star model of
similar ρc, ϕc, and bosonic and fermionic energy and number
(dashed black line in the plot). Model MS5 presents a node at
r ≃ 3 that radially oscillates together with the rest of the profile.

FIG. 2. Scalar-field energy in spheres of different radii, for
model MS3 (top), MS4 (center), and MS5 (bottom). The red,
blue, gold, and green lines correspond to r� ¼ 10, 20, 30, 50,
respectively. The black line represents the total energy.
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truncation errors introduced by the discretization of the
differential equations of the continuum model. All physical
quantities of the stable models such as mass, boson number
density, or fermion number density are expected to be
constant in time. Even under the introduction of a small
perturbation, stable models are expected to oscillate around
their static solutions.
For a model in the unstable region, however, we expect

the small-amplitude perturbations induced by the numerical
errors to grow due to the nonlinearity of the system. The
growth of the perturbations can lead to three different
outcomes: the migration to the stable region, the gravita-
tional collapse, and formation a Schwarzschild black hole,
or the dispersion of the bosonic particles.
As our evolution code is based on isotropic coordinates

(19) and the mixed-star models are constructed using
Schwarzschild coordinates (9), we must apply a coordinate
transformation to be able to evolve the initial configura-
tions. We follow the procedure proposed in [67] which can
be divided in two steps. First, we perform the change of

coordinates noting that from the comparison between the
two metrics we have that

dr̂
dr

¼ ãðrÞ r̂
r
: ð49Þ

To obtain the coordinate transformation, we introduce the
function β,

β ¼ r̂
r
: ð50Þ

Rewriting Eq. (49) in terms of ln β, we obtain

d ln β
dr

¼ 1

r
ðãðrÞ − 1Þ; ð51Þ

which leads to

βðrÞ ¼ exp

�
−
Z

rmax

r

1

r0
ðãðr0Þ − 1Þdr0

�
: ð52Þ

As initial condition to solve this integral, we impose that at
the outer boundary the spacetime resembles the
Schwarzschild solution which yields

r̂max ¼
�
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ãðrmaxÞ
p
2

�2 rmax

ãðrmaxÞ
: ð53Þ

Once we obtain β, we can finally obtain the conformal
factor which is defined as

ψ ¼
ffiffiffi
r
r̂

r
¼

ffiffiffi
1

β

s
: ð54Þ

We point out that the introduction of the new variable β is
necessary to make the integral (52) behavewell at the origin
and to be able to reconstruct the solution in the entire radial
domain. The interested reader is addressed to [67] for
further details.
We perform evolutions of several models for values of

the self-interaction parameterΛ ¼ f−30; 0; 30g, both in the
stable and unstable regions of the existence surface. These
numerical evolutions confirm our analysis about the sta-
bility of the models. We summarize their relevant physical
properties in Table III.
Figure 5 shows the time evolution of the results obtained

for the case Λ ¼ 30, in particular models MS11 and MS12
of Table III. In the left panels, we display the evolution of
the central value of the fluid density ρc and of the scalar
field ϕc (top row) and the evolution of the number of
fermions and bosons (bottom row) for the stable model
MS11. As expected, all these physical quantities remain
constant in time confirming that the model is stable. The
middle panels show the time evolution of the same physical

FIG. 4. Evolution of the radial profile of the scalar-field module
jϕj for model MS3 with Λ ¼ −30 (upper panel) and model MS5
with Λ ¼ 30 (bottom panel) in the time window t ∈ ½3000; 6000�.
The difference between configuration MS3, which does not show
a node in the last part of the evolution, and the excited state MS5
is apparent.
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quantities for model MS12, which is in the unstable region.
We can observe that the central values of the scalar field and
the fluid density very rapidly depart from their initial
values, with a large variation which is damped in a few
cycles. The system settles on a new configuration in the
stable branch, oscillating around the new central values
ρc ≃ 0.0007 and ϕc ≃ 0.038. The number of bosons and
fermions oscillate around a value very close to the initial
one. These results indicate that this unstable model is
migrating to a new configuration in the stable branch.
Finally, in the right panels of Fig. 5, we show the

evolution of the same model MS12 under the effects of a

perturbation. To do so, we replace the initial profile of the
scalar field with

ϕðrÞ → ϕðrÞ
�
1þ A1

100

�
; ð55Þ

where A1 ¼ 2, which corresponds to a 2% level perturba-
tion. Despite fairly small, this artificial perturbation is
stronger than that introduced by the discretization errors
alone which triggered the evolution shown in the middle
panels of Fig. 5. We now observe that due to the stronger
perturbation the model does not migrate to the stable region

FIG. 5. Time evolution of static models with self-interaction parameter Λ ¼ 30. Left panels depict the central value of the fluid density
ρc and of the scalar field ϕc (top row) and number of bosons NB and fermions NF (bottom row) for the stable model MS11. Middle
panels show the same physical quantities for the unstable model MS12 without the addition of an artificial perturbation. The right panels
show the collapse to a Schwarzschild black hole of model MS12 when a 2% perturbation is induced in the scalar field. The right bottom
plot displays the apparent horizon mass in units of the ADM mass (red solid line) and the time evolution of the ADM mass normalized
by its initial value (black dashed line).

TABLE III. Static fermion-boson star models. From left to right the columns indicate the model name, its stability, the value of the self-
interaction parameter Λ, the central value of the fluid density ρc and of the scalar field ϕc, the field frequency obtained with the shooting
method ωshoot, the normalized frequency ω, the total mass MT , the number of bosons to fermions ratio NBμ=NF, the number of bosons
NB, the radius containing 99% of bosons, fermions, and total particles, RB, RF, RT , respectively. All radii are evaluated using
Schwarzschild coordinates.

Model Branch Λ ρc=μ2 ϕc ωshoot=μ ω=μ MTμ NBμ=NF NBμ
2 RBμ RFμ RTμ

MS9 Stable 0 1.88 × 10−3 4.04 × 10−2 1.199 0.732 1.202 0.191 0.208 5.51 7.22 7.08
MS10 Unstable 0 4.55 × 10−3 8.03 × 10−2 1.436 0.602 1.200 0.251 0.261 3.66 5.81 5.63
MS11 Stable 30 1.50 × 10−3 3.00 × 10−2 1.238 0.807 1.126 0.344 0.308 7.06 7.08 7.04
MS12 Unstable 30 1.50 × 10−3 6.00 × 10−2 1.629 0.815 1.135 13.03 1.134 6.93 3.06 6.81
MS13 Stable −30 1.83 × 10−3 3.02 × 10−2 1.129 0.681 1.401 0.055 0.079 5.18 7.73 7.64
MS14 Unstable −30 2.41 × 10−3 6.06 × 10−2 1.099 0.604 1.401 0.068 0.097 3.99 7.34 7.24
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but rather collapses to a Schwarzschild black hole, as
signaled by the formation of an apparent horizon (AH). In
the top row, we show the time evolution of the central
values of the fluid density and of the scalar field, while in
the bottom row, we show the time evolution of the mass
of the black hole evaluated on the AH in units of the
ADM mass of the system (which we depict with a dashed
black curve). We could not find any model for which the
bosonic part dispersed, leaving behind a purely FS. The
binding energy of the whole configuration is never positive
and therefore, unstable models can only either migrate
or collapse.

VI. CONCLUSIONS

Fermion-boson stars are gravitationally bound structures
composed by fermions and scalar particles. They are
regular and static macroscopic configurations obtained
by solving the coupled Einstein-Klein-Gordon-Euler sys-
tem. In this paper, we have discussed a possible scenario
through which fermion-boson stars may form assuming an
initial configuration in which an already existing FS (i.e., a
neutron star) is surrounded by an accreting dilute cloud
(a Gaussian pulse) of a massive, complex scalar field. Our
setup has considered positive and negative values of a
quartic self-interaction term in the Klein-Gordon potential.
We have built constraint-satisfying initial data, and we have
modeled the astrophysical situation by considering differ-
ent bosonic cloud amplitudes and widths and two different
fermion star models. The results of our spherically sym-
metric, numerical-relativity simulations have shown that
once part of the initial scalar field is expelled via gravi-
tational cooling the system oscillates around an equilibrium
configuration that is asymptotically consistent with the
static solutions of the system.
Existence diagrams of such equilibrium solutions in the

central-field-amplitude versus central-fermionic-density
plane have been constructed to draw such comparisons.
Our results are in agreement, in the corresponding limits,
with the work of [33,36]. The nonlinear stability of static
models residing in both the stable and unstable regions of
the existence diagrams has been assessed through simu-
lations with a quartic self-interaction potential in the
bosonic sector, not attempted in previous works. Those

have shown that, for stable configurations, all physical
quantities describing the star, such as energy and number
of particles, remain constant during the evolution, while
unstable models either migrate to the stable region or
collapse to a Schwarzschild black hole.
The dynamical formation of fermion-boson stars for

large positive values of the coupling constant in the quartic
self-interaction term (namely, Λ ¼ 30) has revealed the
presence of a node in the scalar field. This is an intriguing
result as purely boson stars with nodes correspond to
excited states and are known to be intrinsically unsta-
ble [43,57]. However, fermion-boson stars with nodes in
the bosonic sector can dynamically form and appear long-
term stable. This indicates that an excited state of the scalar
field in the presence of fermionic matter may form a stable
configuration. This result is akin to the findings of [66]
who found that boson star configurations in which the
ground state and the first excited state of the scalar field
coexist are stable. In upcoming investigations, we plan to
build equilibrium fermion-boson configurations with an
excited state of the scalar field and study their stability
properties to confirm the result reported here. Likewise, we
will analyze the dynamical formation of rotating mixed
stars as it might as well be possible that the presence of
fermionic matter stabilized otherwise unstable spinning
boson stars [46].
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