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Null geodesics, quasinormal modes of a massless scalar field perturbation, and the correspondence with
shadow radii are investigated in the background spacetime of high-dimensional Einstein-Yang-Mills black
holes. Based on the properties of null geodesics, we obtain the connection between the radius of a photon
sphere and the radius of a horizon in the five- and six-dimensional Einstein-Yang-Mills spacetimes.
Especially in the five-dimensional case, there exist two branches for the radius of a photon sphere, but only
the branch outside the event horizon satisfies the condition of circular null geodesics. Moreover, we find no
reflecting points of shadow radii and no spiral-like shapes on the complex plane of quasinormal frequencies
and verify the correspondence between the quasinormal modes in the eikonal limit and shadow radii in
high-dimensional Einstein-Yang-Mills spacetimes.
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I. INTRODUCTION

Quasinormal modes (QNMs) are usually used to depict
the stability of black holes that are perturbed by an external
field or by the metric of black hole spacetimes, and they
also contain the information of gravitational waves. The
successful detection of gravitational waves by the LIGO
Scientific and Virgo collaborations [1] opens a new
window for the future astronomy, the so-called gravita-
tional wave astronomy. In addition, the images of M87
observed by the Event Horizon Telescope Collaboration [2]
show the shadow of the supermassive black hole. The two
remarkable achievements mark the beginning of the new
era of gravitational wave astronomy, which in turn greatly
facilitates the studies of QNMs and shadow radii and their
correspondence.
Based on the general relativity and alternative theories

of gravity, QNMs have been studied in a wide range of
issues [3–8]. Most of the research of QNMs rely on
numerical computations, but only a few on analytical
computations. For the latter, the lowest QNM frequencies
of a vector-type field perturbation have been computed [9]
analytically for a generic black hole with a translationally
invariant horizon, where the QNM frequencies approach

[10] a large imaginary number plus ln 3=ð8πGNMÞ.
Moreover, an analytic computation of highly damped
QNMs has been made [11] in terms of a monodromy
technique.
Now we make a brief review on the correspondence

between QNMs and other important issues, such as space-
like geodesics, phase transitions, and null geodesics, which
naturally gives our motivation and aim of the present paper.
It has been proposed [12,13] that the QNM frequencies
in the large black hole mass limit are determined by the
spacelike geodesics with the boundary of the Penrose
diagram, based on which the quantum aspect of gravity
behind horizons can be probed in the context of the
gauge/gravity duality. For the four-dimensional Reissner-
Nordström (RN) black hole, a spiral-like shape has been
shown [14] on the complex plane of QNM frequencies
when the black hole evolves to its second order phase
transition point. This relation between QNMs and phase
transitions gives an opportunity to probe [15] the thermo-
dynamics and dynamics of black holes. Moreover, it has
been proposed [16] that the real and imaginary parts of
QNMs in the eikonal limit have a compact connection to the
angular velocity and Lyapunov exponent of unstable circular
null geodesics. Such a correspondence was later extended
[17] to investigate the connection between QNMs and the
gravitational lensing. However, it has been pointed out [18]
for the Einstein-Lovelock theory that the QNM frequencies
determined by the angular velocity and Lyapunov exponent
deviate from those by the WKB method, which implies that
the correspondence between QNMs and null geodesics is
violated in the Einstein-Lovelock theory.
Recently, the correspondence between the real part of

QNMs in the eikonal limit and shadow radii of black holes
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has been suggested [19,20] and applied to a black hole
spacetime surrounded by the perfect fluid dark matter,
where an interesting discovery is the existence of a reflect-
ing point of shadow radii that corresponds to the maximal
value of the real part of QNM frequencies. The connection
between QNMs and shadow radii may, alternatively, pro-
vide a physical picture at the semiclassical level that the
gravitational waves can be understood as such a phenome-
non that a massless particle propagates along an outmost
and unstable orbit of null geodesics and spreads transversely
out to infinity. Based on the correspondence of Refs. [19,20]
plus a subleading contribution derived from the WKB
method [21], a modified correspondence between QNMs
and shadow radii has been proposed [22] and verified to be
in good agreement with the WKB method in the eikonal
limit for aD-dimensional Tangherlini black hole and a four-
dimensional spherically symmetric black hole surrounded
by anisotropic fluids. As stated in our previous work [23],
the Einstein-Yang-Mills (EYM) theory [24] is more chal-
lenging in finding analytic solutions than the Einstein-
Maxwell theory due to the former’s intrinsic properties
related to QNMs and phase transitions. Therefore, we are
interested in whether the modified correspondence between
QNMs in the eikonal limit and shadow radii works well or
not and also eager for probing the related issues, such as
whether a reflecting point of shadow radii and a spiral-like
shape on the complex plane of QNM frequencies exist or
not in the context of the EYM theory, which aims at our
main purpose in this paper. That is, we shall investigate such
a correspondence between QNMs in the eikonal limit and
shadow radii by dealing with the circular null geodesics of a
massless particle around the EYM black holes with the
SOðD − 1Þ gauge group. The significance of our issue lies
in enriching the relationship between gravitational waves
and shadows of black holes, the two amazing achievements
in the new century.
The outline of the present paper is as follows. In Sec. II

we investigate the circular null geodesics of the EYM
spacetimes in D ¼ 5 and D ¼ 6 as an example of D > 5 to
find the connection between photon sphere radii and
horizon radii. In order for this paper to be self-contained,
we review shortly in Sec. III the derivation of the
perturbation equations of a massless scalar field and the
calculation of the corresponding QNMs for different
values of multiple numbers and overtone numbers by the
improved WKB method in a static spherically symmetric
EYM spacetime. In Sec. IV we focus on the correspon-
dence between the QNMs in the eikonal limit and shadow
radii and the related issues. Finally, we give our conclusions
in Sec. V. We adopt the geometric unit throughout this
paper as usual.

II. NULL GEODESICS

For a D-dimensional static and spherically symmetric
spacetime, the metric can be described by

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
D−2; ð1Þ

where dΩ2
D−2 is the line element of the unit sphere SD−2

with the usual angular coordinates θi ∈ ½0; π�, i ¼ 1; 2;…;
D − 3, and φ ∈ ½0; 2π�. A freely falling massless particle
moving along a null geodesic satisfies the equation,

gμν
dxμ

dλ
dxν

dλ
¼ 0; ð2Þ

where the greek indices, μ; ν ¼ 0; 1;…; D − 1, describe the
D-dimensional spacetime, and λ is an affine parameter of
the null geodesic. In order to give the condition satisfied by
circular null geodesics in the above static and spherically
symmetric spacetime, Eq. (1), we shall consider a free
massless particle orbiting in the equatorial hyperplane
(θi ¼ π=2). Without loss of generality, one has the
Lagrangian of a massless particle,

L ¼ 1

2

�
−fðrÞ_t2 þ _r2

fðrÞ þ r2 _φ2

�
; ð3Þ

where the dot stands for the differentiation with respect to
an affine parameter, and there exist two Killing vector fields
∂=∂t and ∂=∂φ in this spacetime. Correspondingly, one
obtains the energy and the angular momentum of the
massless particle,

E ¼ fðrÞ_t; L ¼ r2 _φ: ð4Þ

Given these two conserved quantities, one can rewrite the
null geodesic equation as follows,

_r2 ¼ VðrÞ; ð5Þ

with the effective potential

VðrÞ ¼ E2 −
L2

r2
fðrÞ: ð6Þ

For a circular null geodesic, the effective potential satisfies
[25] the following conditions,

VðrÞ ¼ 0;
dVðrÞ
dr

¼ 0;
d2VðrÞ
dr2

> 0; ð7Þ

which can be used to determine the radius of a photon
sphere and the instability of the bound circular orbits.
For the five-dimensional Einstein-Yang-Mills black

hole [24], its metric takes the form

fðrÞ ¼ 1 −
M
r2

−
2Q2

r2
lnðrÞ; ð8Þ
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where M denotes the black hole mass and Q the only
nonzero gauge charge, and its horizon has two branches as
follows:

r− ¼ exp

�
−

1

2Q2

�
M þQ2W0

�
−

1

Q2
exp

�
−
M
Q2

����
;

ð9Þ

rþ ¼ exp

�
−

1

2Q2

�
M þQ2W−1

�
−

1

Q2
exp

�
−
M
Q2

����
;

ð10Þ
where r− means the Cauchy horizon radius and rþ the
event horizon radius. Here WkðxÞ, k ¼ 0;�1;�2;…, are
called Lambert’sW functions [26], whereW0ðxÞ is referred
to as the principal branch. By using Eq. (7), we derive the
two branches of the radius of a photon sphere,1

r−ps¼ exp

�
−

1

4Q2

�
2M

þ2Q2W0

�
−

1

2Q2
exp

�
Q2−2M
2Q2

��
−Q2

��
; ð11Þ

rþps¼ exp

�
−

1

4Q2

�
2M

þ2Q2W−1

�
−

1

2Q2
exp

�
Q2−2M
2Q2

��
−Q2

��
:

ð12Þ

For the six-dimensional EYM black hole [24], its metric
has the form

fðrÞ ¼ 1 −
M
r3

−
3Q2

r2
; ð13Þ

and its horizon has only one branch, i.e., the event horizon,

rþ ¼ 1

2

�
4M þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − 4Q6

p 

1=3

þ 2Q2�
4M þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − 4Q6

p 

1=3 : ð14Þ

Similarly, we derive only one radius of a photon sphere by
using Eq. (7),

rþps ¼
1

2

�
10M þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25M2 − 128Q6

p 

1=3

þ 4Q2�
10M þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25M2 − 128Q6

p 

1=3 : ð15Þ

For the sake of intuition, we plot the radii of photon
spheres and horizons with respect to the gauge charge Q in
Figs. 1 and 2, in which we can see the connection between
the radii of photon spheres and the radii of horizons.
For the five-dimensional EYM black hole, we can see

from Fig. 1 that the position of one branch (blue line for r−ps)
of photon sphere radii is located between the Cauchy
horizon (purple line for r−) and the event horizon (orange
line for rþ), while the position of the other (red line for rþps)
is outside the event horizon. In addition, we find that the
branch of photon sphere radii (r−ps) does not satisfy the

FIG. 1. The radii of photon spheres and radii of horizons on theQ − r plane for four different values of black hole masses,M ¼ 0, 0.5,
1, 2, in the five-dimensional EYM spacetime.

1At first, we obtain the two solutions from dVðrÞ
dr jr¼rps

¼ 0, and

then verify whether they satisfy VðrpsÞ ¼ 0 and d2VðrÞ
dr2 j

r¼rps
> 0.
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first and third conditions of Eq. (7). Such properties of
photon sphere radii are consistent with the assumption [27]
that there exists one photon sphere whose radius satisfies
the range of values, rþps ∈ ðrþ;∞Þ, which supports the
existence of unstable circular null geodesics in the five-
dimensional EYM spacetime.
For the six-dimensional EYM black hole, we can see

from Fig. 2 that there is only one photon sphere whose
radius (red line for rþps) is located outside the event horizon
(blue line for rþ).
As a common property of the five- and six-dimensional

EYM spacetimes, it is clear from the two figures that both
the radius of a photon sphere and the radius of a horizon are
mass independent for a large value of the charge.

III. QUASINORMAL MODES OF A MASSLESS
SCALAR FIELD PERTURBATION

The massless scalar field Φ propagating in a curved
spacetime is described by the following equation,

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ ¼ 0; ð16Þ

where gμν denotes the inverse of gμν and g the determinant
of gμν. Substituting the following decomposition of
variables,

Φðt; r;Θ;φÞ ¼
X
l;m

e−iωt
ψðrÞ

rðD−2Þ=2 YlmðΘ;φÞ; ð17Þ

into Eq. (16), where Θ stands for θ1; θ2;…; θD−3 and
YlmðΘ;φÞ the spherical harmonics of D − 2 degrees, and

defining the “tortoise” coordinate by the relation,
dr� ¼ dr=fðrÞ, we get the following radial equation in
its standard form,

½∂2
r� þ ω2 − VðrÞ�ψðrÞ ¼ 0: ð18Þ

The QNMs as the solution of the differential equation
satisfy the following boundary conditions,

ψ ∼ e−iωðt∓r�Þ; r� → �∞; ð19Þ

and oscillate and decay at a complex frequency,

ω ¼ ωR − iωI: ð20Þ

In the EYM spacetimes, the effective potentials of the
perturbation field2 take [23] the forms

VðrÞ ¼
�
1 −

M
r2

−
2Q2 lnðrÞ

r2

��
4lðlþ 2Þ þ 3

4r2

þ 9M − 12Q2

4r4
þ 3Q2 lnðrÞ

2r4

�
; D ¼ 5; ð21Þ

FIG. 2. The radii of photon spheres and radii of horizons on theQ − r plane for four different values of black hole masses,M ¼ 0, 0.5,
1, 2, in the six-dimensional EYM spacetime.

2The two effective potentials are defined at the semiclassical
level, while the effective potential of Eq. (6) has its meaning at the
classical level, and the former turns back [28] to the latter in the
eikonal limit.
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VðrÞ ¼
�
1 −

M
rD−3 −

ðD − 3ÞQ2

ðD − 5Þr2
�

×

�
4lðlþD − 3Þ þ ðD − 2ÞðD − 4Þ

4r2
þ ðD − 2Þ2M

4rD−1

−
ðD − 2ÞðD − 3ÞðD − 8ÞQ2

4ðD − 5Þr4
�
; D > 5: ð22Þ

Now we analyze the behavior of the effective potentials
for a changing multiple number l (also called the angular
quantum number). We fix the gauge charge Q and the
black hole mass M, and then plot Fig. 3 for the effective
potentials with respect to the radial coordinate. We find that
the effective potentials become large for a big multiple
number in both the five- and six-dimensional cases.
Moreover, we have calculated the expected QNM frequen-
cies in our previous work [23] by using the improvedWKB
approximation [29,30]. As we shall see in the next section,
the behaviors of the effective potentials and QNM frequen-
cies for a changing multiple number l will influence the

correspondence between QNMs and shadow radii in high-
dimensional EYM black holes.

IV. CORRESPONDENCE BETWEEN QNMs
AND SHADOW RADII

In general, the shadow shape of a black hole depends on
whether the black hole rotates or not. For a static and
spherically symmetric black hole,3 such as the EYM black
holes we are dealing with, the shadow has the spherical
symmetry and is described by a photon sphere. From the
definition of a shadow radius, or directly deriving from
Eq. (7), one can write [32] the shadow radius in terms of the
radius of a photon sphere,

Rsh ¼
rffiffiffiffiffiffiffiffiffi
fðrÞp

����
r¼rþps

: ð23Þ

As a result, we compute the shadow radii in the five- and
six-dimensional EYM black holes, respectively, by sub-
stituting Eqs. (8), (12), (13), and (15) into Eq. (23),

Rsh ¼
exp ½− 1

2Q2 ðM þQ2ΞÞ −Q2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðM þ 2Q2Þ½− 1

2Q2 ðM þQ2ΞÞ −Q2� exp ½ 1Q2 ðM þQ2ΞÞ þ 2Q2�
q ; D ¼ 5; ð24Þ

Rsh ¼
1
2
ℜ1=3 þ 4Q2

ℜ1=3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − M

ð1
2
ℜ1=3þ 4Q2

ℜ1=3Þ
3 − 3Q2

ð1
2
ℜ1=3þ 4Q2

ℜ1=3Þ
2

r ; D ¼ 6; ð25Þ

where

Ξ≡W−1

�
−

1

2Q2
exp

�
Q2 − 2M

2Q2

��
; ð26Þ

ℜ≡ 10M þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25M2 − 128Q6

p
: ð27Þ

For a spherically symmetric spacetime, the shadows can
be plotted [33] intuitively via the celestial coordinates
ðα; βÞ defined [20] by

α≡ −ξ csc θ0; ð28Þ

FIG. 3. The effective potential with respect to the radial coordinate in the five-dimensional EYM black hole (left panel) and in the six-
dimensional EYM black hole (right panel) for the fixed charge and mass,Q ¼ 0.1 andM ¼ 1, but different values of multiple numbers.

3For the evolution of photon spheres in dynamical black hole
spacetimes and the connection to shadows, please refer to
Ref. [31].
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β≡�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηþ a2cos2θ0 − ξ2cot2θ0

q
; ð29Þ

where θ0 denotes the inclination angle of the observer, a
denotes the black hole spin, ξ≡ L=E, η≡ K=E2, and K is
the Carter constant. It is easy to verify that the celestial
coordinates have a close connection with the shadow
radius,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2

q
¼ Rsh: ð30Þ

Thus the shadows cast by the five- and six-dimensional
EYM black holes can be shown in terms of the celestial
coordinates in Fig. 4, where the mass parameter is set to be
unit, M ¼ 1.
It is clear from Fig. 4 that the shadow radii increase in

the two black holes when the gauge charge increases
and that the increments of the shadow radii also increase
for an increasing charge but with the same interval,
e.g., ΔQ ¼ 0.1. Moreover, the shadow span in the six-
dimensional EYM black hole is larger than that in the five-
dimensional EYM black hole when the gauge charge is
increasing from 0.1 to 0.6. The other property that is worth
noting is that there are no reflecting points4 at which the

shadow radius will shrink with the increasing of the
gauge charge.
As revealed by the correspondence between QNMs and

null geodesics, the real and imaginary parts of QNM
frequencies in the eikonal limit can be determined [16]
by the angular velocity Ω and Lyapunov exponent λ,

ω ¼ Ωl − iλ

�
nþ 1

2

�
; ð31Þ

where n is called the overtone number, and the angular
velocity and Lyapunov exponent can be derived from
Eqs. (4)–(7), or directly be written [19] as the following
forms at a photon sphere radius,

Ω ¼ _φ
_t
¼

ffiffiffiffiffiffiffiffiffi
fðrÞp
r

����
r¼rþps

; ð32Þ

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
V 00ðrÞ
2_t2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ½2fðrÞ − r2f00ðrÞ�

2r2

r ����
r¼rþps

: ð33Þ

As a result, we can calculate the angular velocity and
Lyapunov exponent by substituting Eqs. (8), (12), (13),
and (15) into Eqs. (32) and (33) for the five- and six-
dimensional EYM black holes, and then plot the Ω − λ
graph in Fig. 5 by choosing a very wide range of values of
the gauge charge from 0.0 to 5.0 in order not to miss a
reflecting point and a spiral-like shape, where the mass is
set to be unit, M ¼ 1.
It is quite obvious that the angular velocity and

Lyapunov exponent of the null geodesics are decreasing
monotonically with the increasing of the gauge charge from

FIG. 4. The profile of shadows cast by the five-dimensional EYM black hole (left panel) and the six-dimensional EYM black hole
(right panel) for six different values of the gauge charge, Q ¼ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6.

4The reflecting point exists [19] in the spacetime of black holes
surrounded by the perfect fluid dark matter, where the metric
function contains a logarithmic term. Here we emphasize that no
such reflecting point exists in the five-dimensional EYM black
hole although a logarithmic term appears in its metric function,
see Eq. (8). This is not strange because the two models have
obvious differences from each other. For the former, the reflecting
point appears when the dark matter parameter increases, while for
the latter, it does not appear when the gauge charge increases.
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0.0 to 5.0. Considering the correspondence between QNMs
and shadow radii given in Refs. [19,20], the shadow radius
is inversely proportional to the angular velocity in the
eikonal limit, Rsh ∝ 1

Ω; we can deduce that the shadow
radius does not shrink with the increasing of the gauge
charge, that is, no reflecting points appear, which is clear
from the monotonic behavior of the angular velocity in
Fig. 5. In addition, the monotonic behavior of the Lyapunov
exponent indicates that there are no spiral-like shapes5 in
high-dimensional EYM black holes, which implies that the
high-dimensional EYM black holes have different phase
transition behaviors from those of the four-dimensional RN
black hole because the spiral-like shape on the Ω − λ plane
influences [14] thermodynamic phase transitions.
Given the radii of photon spheres, we can determine the

QNM frequencies via the angular velocity and Lyapunov
exponent by using Eqs. (31)–(33) together with Eqs. (8),
(12), (13), and (15). However, we find for the EYM black
holes that the real components of frequencies determined
by the angular velocity are less than those by the improved
WKB approximation for a small multiple number. The
reason relies on the fact that the relation between QNMs
and null geodesics, Eqs. (31)–(33), is valid only at a big
multiple number, i.e., in the eikonal limit.
In order to reduce the deviation of real parts of QNMs,

we appeal to a modified correspondence [22] between
QNMs in the eikonal limit and shadow radii of black holes,

ωR ¼ R−1
sh

�
lþD − 3

2

�
; ð34Þ

where the terms of equal and higher orders of l−1 have
been omitted due to the limit l ≫ 1. In fact, this modified
relation was derived [22] with the help of the WKB method
by the addition of the subleading term R−1

sh ðD − 3Þ=2 to the

leading one R−1
sh l, and verified to coincide with the WKB

method at a big multiple number, say, for instance, from 10
to 105, for a D-dimensional Tangherlini black hole and a
four-dimensional spherically symmetric black hole sur-
rounded by anisotropic fluids. We want to see if such a
relation has good agreement with the improved WKB
method at a small multiple number for the EYM
black holes.
Now we turn to investigate the modified relation for

high-dimensional EYM black holes, in particular, to the
case of a small multiple number. We compute the QNM
frequencies by using Eq. (34) and the imaginary part of
Eq. (31), and simultaneously by using the improved WKB
approximation. For the five- and six-dimensional EYM
black holes, we plot the real part versus the imaginary part
of QNM frequencies for different values of the multiple
number and the overtone number in Fig. 6, from which we
find that this relation, Eq. (34), is precise enough even if the
multiple number is small.6 Here we present two examples,
one is the case of n ¼ 0, l ¼ 2, Q ¼ 0.5, M ¼ 1 for the
five-dimensional EYM black hole, and the other example
just takes a bigger overtone number, n ¼ 1, but keeps the
other parameters unchanged. We list the QNM frequencies
obtained by the modified correspondence and the 13th
order WKB method, respectively, and the relative deviation
caused by the two different methods. For the first example,
the real parts are 1.366248 and 1.363856, respectively, and
the relative deviation is 0.175%; the imaginary parts are
−0.281655 and −0.282719, respectively, and the relative
deviation is 0.376%. Moreover, for the second example,
the real parts are 1.366248 and 1.293261, respectively, and
the relative deviation is 5.644%; the imaginary parts are
−0.844966 and −0.866700, respectively, and the relative
deviation is 2.508%. We can see that the relative deviations

FIG. 5. The angular velocity versus the Lyapunov exponent in the five-dimensional EYM black hole (left panel) and the six-
dimensional EYM black hole (right panel), where the black arrow denotes the direction of the increasing charge.

5A recent work has shown [28] that the spiral-like shape exists
only in the four-dimensional RN black hole, but does not in high-
dimensional RN black holes.

6Note that the multiple number was taken to be much bigger
than ours in Ref. [22] in order to keep good agreement with the
WKB method for the two models there.
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of both real and imaginary parts will be increasing when the
overtone number is bigger than zero, as shown in Fig. 6.
In order to provide sufficient support to the validity of

Eq. (34), we compute more QNM frequencies and their
relative deviations and list the data in six tables by taking
Q ¼ 0.1; 0.2;…; 0.6, l ¼ 0; 1;…; 10; 50, and M ¼ 1 for
the fundamental modes (n ¼ 0). The reason to take such a
range of Q lies in the consideration that we chose the
same range when we investigated the shadows of high-
dimensional EYM black holes, see Fig. 4, that is, we
maintain the coincidence of the range of Q. Incidentally,
the data shown in Fig. 6 mainly focus on the comparisons
of QNM frequencies and their deviations to different
overtone numbers.

Now we list the QNM frequencies and their relative
deviations caused by the modified correspondence
[Eq. (34) and the imaginary part of Eq. (31)] and the
improved WKB approximation for the fundamental modes
in Tables I–VI. We make a note that the QNM frequencies
for the case of l ¼ 0 and D ¼ 6 cannot be determined in
terms of the WKB method, see Tables I and II. The reason
is that the calculations fail to converge to the requested
accuracy for a small multiple number and a high dimension,
for our case l ¼ 0 and D ¼ 6 in Tables I and II, see
Refs. [23,34] for detailed discussions. We can see from the
tables that the QNM frequencies computed by the former
method are very close to those computed by the latter one.
Especially for a small multiple number, see, 1 ≤ l < 10, the

FIG. 6. The QNM frequencies of EYM black holes with M ¼ 1 on the ωR − ωI plane for different values of the multiple number and
the overtone number. The red dots are given by Eq. (34) and the imaginary part of Eq. (31), and the blue dots by the improved WKB
method. The left diagram is devoted to the five-dimensional EYM black hole and the right to the six-dimensional one.

TABLE I. Quasinormal mode frequencies of EYM black holes and the relative deviations caused by the modified
correspondence and the improved WKB approximation, where Q ¼ 0.1 and M ¼ 1.

QNM frequencies ω Relative deviations

D ¼ 5 Modified correspondence 13th WKB Reω Imω

l ¼ 0 0.498265 − 0.350564i 0.530591 − 0.381297i 6.092% 8.060%
l ¼ 1 0.996530 − 0.350564i 1.011766 − 0.359184i 1.506% 2.400%
l ¼ 2 1.494795 − 0.350564i 1.504823 − 0.354418i 0.666% 1.087%
l ¼ 3 1.993060 − 0.350564i 2.000538 − 0.352738i 0.374% 0.616%
l ¼ 4 2.491325 − 0.350564i 2.497287 − 0.351955i 0.239% 0.395%
l ¼ 5 2.989590 − 0.350564i 2.994549 − 0.351529i 0.166% 0.275%
l ¼ 10 5.480916 − 0.350564i 5.483610 − 0.350850i 0.049% 0.082%
l ¼ 50 25.411518 − 0.350564i 25.412098 − 0.350577i 0.002% 0.004%

D ¼ 6 Modified correspondence 13th WKB Reω Imω

l ¼ 0 0.844644 − 0.485058i � � � � � � � � �
l ¼ 1 1.407740 − 0.485058i 1.426609 − 0.499470i 1.323% 2.885%
l ¼ 2 1.970836 − 0.485058i 1.984219 − 0.492423i 0.674% 1.496%
l ¼ 3 2.533932 − 0.485058i 2.544279 − 0.489478i 0.407% 0.903%
l ¼ 4 3.097028 − 0.485058i 3.105451 − 0.487993i 0.271% 0.601%
l ¼ 5 3.660123 − 0.485058i 3.667223 − 0.487148i 0.194% 0.429%
l ¼ 10 6.475603 − 0.485058i 6.479581 − 0.485717i 0.061% 0.136%
l ¼ 50 28.999440 − 0.485058i 29.000324 − 0.485090i 0.003% 0.007%
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TABLE III. Quasinormal mode frequencies of EYM black holes and the relative deviations caused by the
modified correspondence and the improved WKB approximation, where Q ¼ 0.3 and M ¼ 1.

QNM frequencies ω Relative deviations

D ¼ 5 Modified correspondence 13th WKB Reω Imω

l ¼ 0 0.484237 − 0.326938i 0.504477 − 0.351362i 4.012% 6.951%
l ¼ 1 0.968474 − 0.326938i 0.977465 − 0.333452i 0.920% 1.954%
l ¼ 2 1.452711 − 0.326938i 1.458492 − 0.329802i 0.396% 0.868%
l ¼ 3 1.936949 − 0.326938i 1.941209 − 0.328530i 0.219% 0.485%
l ¼ 4 2.421186 − 0.326938i 2.424561 − 0.327949i 0.139% 0.308%
l ¼ 5 2.905423 − 0.326938i 2.908218 − 0.327636i 0.096% 0.213%
l ¼ 10 5.326608 − 0.326938i 5.328116 − 0.327144i 0.028% 0.063%
l ¼ 50 24.696094 − 0.326938i 24.696417 − 0.326948i 0.001% 0.003%

D ¼ 6 Modified correspondence 13th WKB Reω Imω

l ¼ 0 0.764095 − 0.422875i 0.787939 − 0.451020i 3.026% 6.240%
l ¼ 1 1.273491 − 0.422875i 1.287106 − 0.433584i 1.058% 2.470%
l ¼ 2 1.782888 − 0.422875i 1.792500 − 0.428329i 0.536% 1.273%
l ¼ 3 2.292284 − 0.422875i 2.299709 − 0.426152i 0.323% 0.769%
l ¼ 4 2.801681 − 0.422875i 2.807721 − 0.425052i 0.215% 0.512%
l ¼ 5 3.311077 − 0.422875i 3.316166 − 0.424426i 0.153% 0.365%
l ¼ 10 5.858059 − 0.422875i 5.860910 − 0.423365i 0.049% 0.116%
l ¼ 50 26.233918 − 0.422875i 26.234551 − 0.422899i 0.002% 0.006%

TABLE II. Quasinormal mode frequencies of EYM black holes and the relative deviations caused by the modified
correspondence and the improved WKB approximation, where Q ¼ 0.2 and M ¼ 1.

QNM frequencies ω Relative deviations

D ¼ 5 Modified correspondence 13th WKB Reω Imω

l ¼ 0 0.493035 − 0.341642i 0.520853 − 0.370485i 5.341% 7.785%
l ¼ 1 0.986071 − 0.341642i 0.998915 − 0.349397i 1.286% 2.220%
l ¼ 2 1.479106 − 0.341642i 1.487527 − 0.345118i 0.566% 1.007%
l ¼ 3 1.972142 − 0.341642i 1.978402 − 0.343594i 0.316% 0.568%
l ¼ 4 2.465177 − 0.341642i 2.470160 − 0.342887i 0.202% 0.363%
l ¼ 5 2.958213 − 0.341642i 2.962352 − 0.342504i 0.140% 0.252%
l ¼ 10 5.423390 − 0.341642i 5.425635 − 0.341897i 0.041% 0.075%
l ¼ 50 25.144808 − 0.341642i 25.145291 − 0.341654i 0.002% 0.004%

D ¼ 6 Modified correspondence 13th WKB Reω Imω

l ¼ 0 0.812255 − 0.459507i � � � � � � � � �
l ¼ 1 1.353758 − 0.459507i 1.370386 − 0.472319i 1.213% 2.713%
l ¼ 2 1.895262 − 0.459507i 1.907037 − 0.466049i 0.617% 1.404%
l ¼ 3 2.436765 − 0.459507i 2.445863 − 0.463432i 0.372% 0.847%
l ¼ 4 2.978269 − 0.459507i 2.985673 − 0.462115i 0.248% 0.564%
l ¼ 5 3.519772 − 0.459507i 3.526012 − 0.461364i 0.177% 0.403%
l ¼ 10 6.227289 − 0.459507i 6.230785 − 0.460092i 0.056% 0.127%
l ¼ 50 27.887424 − 0.459507i 27.888201 − 0.459536i 0.003% 0.006%
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TABLE V. Quasinormal mode frequencies of EYM black holes and the relative deviations caused by the modified
correspondence and the improved WKB approximation, where Q ¼ 0.5 and M ¼ 1.

QNM frequencies ω Relative deviations

D ¼ 5 Modified correspondence 13th WKB Reω Imω

l ¼ 0 0.455416 − 0.281655i 0.452094 − 0.295107i 0.735% 4.558%
l ¼ 1 0.910832 − 0.281655i 0.907866 − 0.284435i 0.327% 0.944%
l ¼ 2 1.366248 − 0.281655i 1.363856 − 0.282719i 0.175% 0.376%
l ¼ 3 1.821665 − 0.281655i 1.819739 − 0.282202i 0.106% 0.194%
l ¼ 4 2.277081 − 0.281655i 2.275482 − 0.281986i 0.070% 0.117%
l ¼ 5 2.732497 − 0.281655i 2.731136 − 0.281878i 0.050% 0.079%
l ¼ 10 5.009578 − 0.281655i 5.008809 − 0.281718i 0.015% 0.022%
l ¼ 50 23.226224 − 0.281655i 23.226056 − 0.281658i 0.001% 0.001%

D ¼ 6 Modified correspondence 13th WKB Reω Imω

l ¼ 0 0.646739 − 0.340336i 0.660448 − 0.358480i 2.076% 5.061%
l ¼ 1 1.077899 − 0.340336i 1.085679 − 0.347140i 0.717% 1.960%
l ¼ 2 1.509058 − 0.340336i 1.514521 − 0.343802i 0.361% 1.008%
l ¼ 3 1.940218 − 0.340336i 1.944424 − 0.342417i 0.216% 0.608%
l ¼ 4 2.371377 − 0.340336i 2.374795 − 0.341722i 0.144% 0.406%
l ¼ 5 2.802537 − 0.340336i 2.805415 − 0.341324i 0.103% 0.289%
l ¼ 10 4.958334 − 0.340336i 4.959945 − 0.340649i 0.032% 0.092%
l ¼ 50 22.204713 − 0.340336i 22.205071 − 0.340351i 0.002% 0.004%

TABLE IV. Quasinormal mode frequencies of EYM black holes and the relative deviations caused by the modified
correspondence and the improved WKB approximation, where Q ¼ 0.4 and M ¼ 1.

QNM frequencies ω Relative deviations

D ¼ 5 Modified correspondence 13th WKB Reω Imω

l ¼ 0 0.471750 − 0.306757i 0.482955 − 0.330156i 2.320% 7.087%
l ¼ 1 0.943499 − 0.306757i 0.947146 − 0.311584i 0.390% 1.549%
l ¼ 2 1.415249 − 0.306757i 1.417409 − 0.308803i 0.152% 0.663%
l ¼ 3 1.886998 − 0.306757i 1.888518 − 0.307872i 0.080% 0.362%
l ¼ 4 2.358748 − 0.306757i 2.359919 − 0.307457i 0.050% 0.228%
l ¼ 5 2.830497 − 0.306757i 2.831450 − 0.307237i 0.034% 0.156%
l ¼ 10 5.189245 − 0.306757i 5.189743 − 0.306896i 0.010% 0.045%
l ¼ 50 24.059228 − 0.306757i 24.059334 − 0.306763i 0.000% 0.002%

D ¼ 6 Modified correspondence 13th WKB Reω Imω

l ¼ 0 0.706829 − 0.381442i 0.725290 − 0.404194i 2.545% 5.629%
l ¼ 1 1.178049 − 0.381442i 1.188558 − 0.390026i 0.884% 2.201%
l ¼ 2 1.649268 − 0.381442i 1.656669 − 0.385809i 0.447% 1.132%
l ¼ 3 2.120488 − 0.381442i 2.126203 − 0.384051i 0.269% 0.679%
l ¼ 4 2.591707 − 0.381442i 2.596348 − 0.383172i 0.179% 0.451%
l ¼ 5 3.062927 − 0.381442i 3.066837 − 0.382670i 0.127% 0.321%
l ¼ 10 5.419024 − 0.381442i 5.421214 − 0.381817i 0.040% 0.098%
l ¼ 50 24.267804 − 0.381442i 24.268290 − 0.381442i 0.002% 0.000%
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relative deviations of the real parts are less than 1.510%. As
a consequence, the data calculated by the two methods have
very good agreement even if the multiple number is small
except for the cases of l ¼ 0, D ¼ 6, Q ¼ 0.1 and l ¼ 0,
D ¼ 6, Q ¼ 0.2.

V. CONCLUSIONS

We have studied the null geodesics and the correspon-
dence between QNMs in the eikonal limit and shadow radii
for high-dimensional EYM black holes. For the five-
dimensional case, two branches of the radius of a photon
sphere exist, but only the one outside the event horizon
satisfies the conditions of circular null geodesics. In
general, the radii of photon spheres are mass independent
when the gauge charge is large, which is same as the
behavior of the horizon radii. In addition, the reflecting
point of shadow radii and the spiral-like shape on the Ω − λ
plane do not appear in high-dimensional EYM spacetimes.
In particular, for the modified correspondence between the
real part of QNMs in the eikonal limit and the shadow
radius, Eq. (34), we have verified its validity and have
found that it has better agreement with the WKB method
for a larger multiple number but a smaller overtone number
in high-dimensional EYM black holes.

Finally, we emphasize that the modified correspondence,
Eq. (34), has good enough agreement with the WKB
method for the fundamental modes with a vanishing
overtone number in high-dimensional Einstein-Yang-
Mills spacetimes even if the multiple number is small.
The significance of such a consequence is that we establish
a deep connection between gravitational waves and shad-
ows of black holes. As is known, the fundamental modes
always dominate the waveform of gravitational waves
because of their least damped feature in a detected ring-
down signal. Although we have only discussed the QNMs
of a scalar field perturbation in this paper, the QNMs
embody the intrinsic property of black holes and they are
determined by the parameters of black holes, such as mass
and charge, and independent of the type of perturbation
field. Our finding might be understood as an exploration of
the underlying feature of the correspondence between
gravitational waves and shadows of black holes.
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TABLE VI. Quasinormal mode frequencies of EYM black holes and the relative deviations caused by the
modified correspondence and the improved WKB approximation, where Q ¼ 0.6 and M ¼ 1.

QNM frequencies ω Relative deviations

D ¼ 5 Modified correspondence 13th WKB Reω Imω

l ¼ 0 0.435077 − 0.252648i 0.416501 − 0.258893i 4.460% 2.412%
l ¼ 1 0.870155 − 0.252648i 0.859046 − 0.253097i 1.293% 0.177%
l ¼ 2 1.305232 − 0.252648i 1.297374 − 0.252624i 0.606% 0.010%
l ¼ 3 1.740310 − 0.252648i 1.734254 − 0.252572i 0.349% 0.030%
l ¼ 4 2.175387 − 0.252648i 2.170474 − 0.252579i 0.226% 0.024%
l ¼ 5 2.610465 − 0.252648i 2.606337 − 0.252591i 0.158% 0.023%
l ¼ 10 4.785852 − 0.252648i 4.783569 − 0.252627i 0.048% 0.007%
l ¼ 50 22.188951 − 0.252648i 22.188455 − 0.252647i 0.002% 0.000%

D ¼ 6 Modified correspondence 13th WKB Reω Imω

l ¼ 0 0.588483 − 0.302769i 0.598358 − 0.317238i 1.650% 4.561%
l ¼ 1 0.980805 − 0.302769i 0.986426 − 0.308174i 0.570% 1.754%
l ¼ 2 1.373128 − 0.302769i 1.377058 − 0.305522i 0.285% 0.901%
l ¼ 3 1.765450 − 0.302769i 1.768471 − 0.304425i 0.171% 0.544%
l ¼ 4 2.157772 − 0.302769i 2.160225 − 0.303873i 0.114% 0.363%
l ¼ 5 2.550094 − 0.302769i 2.552159 − 0.303557i 0.081% 0.260%
l ¼ 10 4.511705 − 0.302769i 4.512860 − 0.303019i 0.026% 0.083%
l ¼ 50 20.204590 − 0.302769i 20.204847 − 0.302782i 0.001% 0.004%
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