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In this paper we approach to Horndeski and beyond Horndeski theories from the effective fluid
perspective. We make explicit the formal equivalence between these theories and general relativity with an
effective imperfect fluid. It is shown that, for the viable Horndeski theories, in the general case (arbitrary
geometry) the nonvanishing contribution from the higher-order derivative terms to the imperfect fluidlike
behavior affects only the heat flux vector but not the anisotropic stresses. The only contribution to the
anisotropic stress tensor is due to the nonminimal coupling of the scalar field to the curvature as it is in
standard scalar-tensor theories. For the viable beyond Horndeski theories the higher-order derivatives
contribute both to the heat flux and to the anisotropic stresses. The effective fluid description is applied to
several particular cases of interest. It is corroborated that, in Friedmann-Robertson-Walker background
space, due to the underlying symmetries, the effective stress-energy tensor of viable Horndeski and beyond
Horndeski theories is formally equivalent to that of a perfect fluid. This result might not be true for other
less symmetric backgrounds such as the anisotropic Bianchi I space.

DOI: 10.1103/PhysRevD.102.084054

I. INTRODUCTION

Scalar fields have played a very important role in the
study of gravitational theories beyond Einstein’s general
relativity (GR). Among these we may mention the Brans-
Dicke (BD) theory [1–4], the scalar-tensor theories (STTs)
[5–16], the fðRÞ theory [17–34], extended theories of
gravity (ETGs) [35–42], Horndeski [43–55], and beyond
Horndeski theories [55–66]. For purpose of comparison
with well-understood GR results it is customary to write the
field equations of the above mentioned theories in the form
of Einstein’s GR equations (here we use the units system
where 8πGN ¼ 1, with GN as Newton’s constant):

Geff
N Gμν þ F μνðR;RστRστ; RστλκRστλκ;∇2R;…;

∇2lR;ϕ;∇μϕ;∇2ϕ;…;∇2mϕÞ ¼ Tmat
μν ;

where the additional scalar field related and curvature terms
are appropriately grouped and organized in the form of an
effective stress-energy tensor (SET):

Gμν ¼
1

Geff
N

ðTmat
μν þ Teff

μν Þ;

Teff
μν ¼ −F μνðR;RστRστ; RστλκRστλκ;

∇2R;…;∇2lR;ϕ;∇μϕ;∇2ϕ;…;∇2mϕÞ: ð1Þ

In the above equations the generic tensor F μν contains the
contributions coming from higher-order curvature invari-
ants and/or higher-order derivatives of the curvature scalar
R and/or from the scalar field ϕ and its higher-order
derivatives, while Tmat

μν accounts for the SET of the matter
degrees of freedom: photons, baryons, dark matter, etc.
Besides, Rμν is the Ricci tensor, Rλ

μκν is the Riemann-
Christoffel curvature tensor, ∇2 ≡ gμν∇μ∇ν and l, m are
nonvanishing integers. The effective gravitational coupling
Geff

N in the above equations can be, in principle, a function
of the curvature invariants and their higher-order deriva-
tives and of the scalar field and its higher-order derivatives,
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as well. The question is how to interpret the effective SET
Teff
μν and whether it could be formally regarded as the SET

of a fluid? It happens that the usefulness of Eq. (1) relies,
precisely, on the existing formal equivalence existing
between Teff

μν and the SET of perfect and imperfect fluids.
The equivalence has been established for scalar-tensor
theories [67–75] as well as for other modifications of
gravity containing higher order derivatives such as the k
essence [76–78] and its further generalization known as
kinetic gravity braiding [79,80], the fðRÞ theory [81], the
fðR;GÞ theories (G is the Gauss-Bonnet term) [82] and the
ETGs [83]. The effective fluid picture has been proved to
be useful also within the context of the so-called quantum
modification of general relativity [84].
We want to point out that any symmetric rank 2 tensor,

such as the stress-energy tensor Tμν, can be decomposed
relative to a fixed timelike vector uμ, into two scalars, a
transverse vector and a transverse, trace-free tensor, i.e.,
into the general form of an imperfect fluid:

Tμν ¼ ðρþ pÞuμuν þ pgμν þ 2qðμuνÞ þ πμν;

where ρ is the energy density and p is the pressure, qμ is the
heat flux vector and πμν is the anisotropic pressure tensor.
Hence, the possibility to decompose the mentioned con-
tribution is a consequence of making a specific choice of
the timelike vector uμ.1 Yet establishing the precise form in
which the equivalence with perfect/imperfect fluids is
realized is not a trivial task since, besides of the math-
ematical complexity, the fact that one deals with an
effective stress-energy tensor is to be taken with care.
The non-negativity of the effective energy density, for
instance, entails nontrivial mathematical conditions on the
derivatives of the fields, etc. In addition, finding the explicit
form of the equivalence between the fields and their
derivatives and the effective fluid variables, ρ, p, qμ, and
πμν, is of interest for the applications since the fluid
variables have a more immediate and clear physical mean-
ing. As a matter of fact, despite that the effective fluid
equivalence is purely mathematical and not physical, the
effective fluid picture is very useful when one compares
different cosmological models. One may compare func-
tions describing the effective fluid such as, for instance, the
equation of state peff=ρeff , the anisotropic stresses πeffμν , the
sound speed c2s , etc. The fluid variables not only have a
clear physical meaning but also greatly simplify the
analysis of the system [79].
It is a well-known fact that when we deal with GR with a

minimally coupled self-interacting scalar field φ, obeying
the Einstein’s equations of motion (here we omit other
matter sources):

Gμν ¼ TðφÞ
μν ¼ ∇μφ∇νφ −

1

2
gμνð∇φÞ2 − Vgμν; ð2Þ

where ð∇φÞ2 ≡ gμν∇μϕ∇νϕ and V ¼ VðϕÞ is the self-

interacting potential, the scalar field’s SET TðφÞ
μν can be

written in the equivalent form of a relativistic perfect fluid
[67,68,71,72,75,85,86] after identifying a timelike four-
velocity vector [68,71,72,85]:

uμ ¼
∇μϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð∇ϕÞ2p ;−ð∇ϕÞ2 ≥ 0: ð3Þ

This timelike vector determines the 3þ 1 splitting of the
spacetime into a three-space seen by comoving observers
and the time direction [85]. The metric is written accord-
ingly:

gμν ¼ hμν − uμuν ¼ hμν þ
∇μϕ∇νϕ

ð∇ϕÞ2 ; ð4Þ

where hμν is the metric of the three space (hμν is the projector
onto the three space orthogonal to the time direction of
comoving observers):

hμλh
λ
ν ¼ hμν ; gμλhλν ¼ hμλhλν ¼ hμν;

hμνuν ¼ 0; hμμ ¼ 3: ð5Þ

Besides, for a given vector vμ:

hλν∇λvμ ¼ ∇νvμ þ uνuλ∇λvμ:

After the choice (3) as the four velocity of observers
comoving with the scalar field fluid we can rewrite the SET
of the scalar field in the form of a perfect fluid SET
[67,68,71,72,75,86]:

TðφÞ
μν ¼ −ð∇φÞ2uμuν þ

�
−
1

2
ð∇φÞ2 − V

�
gμν

¼ ðρφ þ pφÞuμuν þ pφgμν; ð6Þ

where we identify:

ρφ þ pφ ¼ −ð∇φÞ2; pφ ¼ −
1

2
ð∇φÞ2 − V ⇒ ρφ

¼ −
1

2
ð∇φÞ2 þ V: ð7Þ

In this effective (perfect fluid) picture ρφ and pφ represent
the energy density and pressure of the fluid. But, in general,
when nonminimal coupling of the scalar field with the
curvature is considered, the SET of the scalar field is
equivalent to the one of an imperfect fluid as shown in
Refs. [69,70,74] (see the next section).1This argument has been suggested to us by one referee.
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In this paper we wonder what the above mentioned
formal equivalence with an effective perfect/imperfect fluid
would look like for other more general STTs. Given that
both Horndeski [43–55] and beyond Horndeski [55–66]
theories represent further generalization of scalar-tensor
theories, here we shall look for the mentioned kind of
equivalence within the framework of these generalized
STTs. We are going to consider a viable Horndeski subclass
that is described by the Lagrangian [55]:

Lvhorn ¼ G2ðϕ; XÞ −G3ðϕ; XÞ∇2ϕþ G4ðϕÞR; ð8Þ

where X ≡ −ð∇ϕÞ2=2, as well as a viable subclass of
beyond Horndeski theories depicted by the Lagrangian:

Lvbhorn ¼ fðϕ; XÞRþ Aðϕ; XÞð∇XÞ2; ð9Þ

where

ð∇XÞ2 ≡∇X ·∇X ¼ ∇λϕ∇μ∇λϕ∇μ∇κϕ∇κϕ:

These subclasses are the only ones that survive the cosmo-
logical observational tests, in particular the one related with
the nearly simultaneous detection of gravitational waves
GW170817 and the γ-ray burst GRB 170817A [87,88] (see
the related discussion in Subsection (4.2) of reference [55],
specifically the Eqs. (118)–(121) for the Horndeski theories
and (123)–(127) for beyond Horndeski theories).2 Given
that the Horndeski and beyond Horndeski theories admit
higher-order derivatives of the scalar field as well as self-
couplings, here we shall address the question of how these
higher derivative contributions affect the effective fluid
picture.
It has to be mentioned that for a particular subclass in the

Horndeski theories known as kinetic gravity braiding [79]
the equivalence with general relativity with an effective
imperfect fluid has been established in Ref. [80]. This
subclass is given by the following Lagrangian:

Lkgb ¼ R=2þ Kðϕ; XÞ þ Gðϕ; XÞ∇2ϕ: ð10Þ

Notice that the choice G2 ¼ K, G3 ¼ −G, G4 ¼ 1=2 in (8)
leads to (10). The effective fluid approach to Horndeski
theories within the cosmological setup has been investigated

also in Ref. [90] bymeans of the cosmological perturbations
approach. In the present paper wewant to approach the issue
from the point of view of relativistic dynamics and, in
addition, we are going to go further to include the beyond
Horndeski theories also. Our results will generalize those of
previous works in [69,70,74,80,90].
We have organized the paper in the following way. In the

next section we shall apply the procedure we shall use in
the paper in order to make explicit the formal equivalence
with general relativity with an imperfect fluid to the very
well-known example of Brans-Dicke theory. In Sec. III, for
completeness, the basic elements of Horndeski theories are
exposed. The formal equivalence between viable Horndeski
theories and GR with an imperfect fluid is settled in Sec. IV,
while in Sec. V the mentioned formal equivalence is made
explicit for the viable beyond Horndeski theories. The
effective “imperfect fluid” picture is explored in the
cosmological setting in Sec. VI. Several important aspects
of the explored picture are discussed in Sec. VII where brief
conclusions are also given. Finally, for completeness we
added an Appendix where the motion equation for the
scalar field (the generalized Klein-Gordon equation) is
derived, both for the Horndeski and for the beyond
Hordeski theories, by taking the divergence of the effective
stress-energy tensor.

II. THE SCALAR FIELD AS AN
IMPERFECT FLUID

As already mentioned, the equations of motion of the
scalar-tensor theories,where the scalar field is nonminimally
coupled to the curvature, can be written as those of GR with
an effective imperfect fluid. Here we explain the basis of the
formalism in the particular case of the BD theory.
The effective imperfect fluid picture for the BD theory

has been developed in Refs. [70,74]. In this case the
effective stress-energy tensor is given by:

TðϕÞ
μν ¼ ω

ϕ2

�
∇μϕ∇νϕ −

1

2
gμνð∇ϕÞ2

�
−

V
2ϕ

gμν

þ 1

ϕ
ð∇μ∇νϕ − gμν∇2ϕÞ; ð11Þ

where ω is the BD coupling parameter and V is the self-
interacting potential for the scalar field. The above effective
SET can be written in the form of the stress-energy tensor
of an imperfect fluid:

TðifÞ
μν ¼ ðρþ pÞuμuν þ pgμν þ 2qðμuνÞ þ πμν; ð12Þ

where ρ, p are the energy density and pressure of the fluid,
qμ is the heat flux vector which is, by definition, transversal
to the timelike four velocity ðqμuν ¼ 0Þ and πμν is the
anisotropic SET:

2It should be noted that the bounds on the speed of the
gravitational waves obtained in the event GW170817 are valid in
the frequency range spanning from 24 Hz to a few hundred Hz.
For this reason, it has been pointed out in reference [89] that there
is a set of Horndeski theories which can evade this bound because
its prediction on the speed of gravitational waves depends
on the frequency k and an energy cutoff M ≲ ΛHorndeski∼ðMPLH2

0Þ1=3 ∼ 260 Hz, where ΛHorndeski is the strong coupling
scale associated with many Horndeski dark energy models, H0 is
the Hubble parameter today, and MPL is the Planck mass. The
bound is evaded for frequencies k ≪ M where the speed can be
subluminal and luminality is recovered for k≳M.
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πμν ¼ Πμν −
1

3
Πhμν; π ¼ πμμ ¼ 0; πμνuν ¼ 0;

ð13Þ

with

Πμν ¼ Tλκhλμhκν ¼ phμν þ πμν; Π ¼ Πμ
μ ¼ 3p;

Πμνuν ¼ 0: ð14Þ

By comparing Eqs. (11) and (12) one gets that

ðρþ pÞuμuν ¼
ω

ϕ2
∇μϕ∇νϕ ⇒ uμuν ¼ −

∇μϕ∇νϕ

ð∇ϕÞ2 ;

from where the timelike four-velocity vector of the fluid uμ

is defined as in (3). Following the approach explained in the
introduction, the energy density and pressure of the fluid as
well as the heat flux vector qμ, are defined as it follows:

ρ ¼ Tμνuμuν; p ¼ 1

3
Π; qμ ¼ −Tλκuλhκμ: ð15Þ

Other kinematic quantities of the fluid are the following:

_uμ ¼ uν∇νuμ;

θ ¼ ∇μuμ;

σμν ¼ ∇ðμuνÞ þ _uðμuνÞ −
1

3
θhμν;

ωμν ¼ ∇½μuν� þ _u½μuν�; ð16Þ

where _uμ is the acceleration of the fluid, θ is the expansion,
σμν is the shear tensor of the fluid, while ωμν accounts for
the vorticity tensor. Under the choice (3), since the four-
velocity is the gradient of a scalar, the vorticity tensor ωμν

vanishes identically. This is true for any scalar-tensor
theories and their higher-derivative modifications:
Horndeski and beyond Horndeski theories.
When we take into account the definition of the stress-

energy tensor of the BD scalar field (11), the tensor (14) is
given by this [74]:

ΠðϕÞ
μν ¼ −

�
ω

2ϕ2
ð∇ϕÞ2 þ V

2ϕ
þ 2

3

∇2ϕ

ϕ
þ∇κϕ∇λϕ∇λ∇κϕ

3ϕð∇ϕÞ2
�
hμν þ

1

ϕ

�
∇μ∇ν −

1

3
hμν∇2

�
ϕ

−
∇λϕ

ϕð∇ϕÞ2
�
∇λ∇μϕ∇νϕþ∇λ∇νϕ∇μϕ −

1

3
hμν∇κϕ∇λ∇κϕ −

∇μϕ∇νϕ∇κϕ∇λ∇κϕ

ð∇ϕÞ2
�
: ð17Þ

If we compare this latter equation with (14), for the anisotropic SET we obtain:

πðϕÞμν ¼ −
∇λϕ

ϕð∇ϕÞ2
�
∇λ∇μϕ∇νϕþ∇λ∇νϕ∇μϕ −

1

3
hμν∇κϕ∇λ∇κϕ −

∇μϕ∇νϕ∇κϕ∇λ∇κϕ

ð∇ϕÞ2
�
þ 1

ϕ

�
∇μ∇ν −

1

3
hμν∇2

�
ϕ; ð18Þ

while for the pressure of the fluid:

pϕ ¼ −
�
ω

2ϕ2
ð∇ϕÞ2 þ V

2ϕ
þ 2

3

∇2ϕ

ϕ
þ∇κϕ∇λϕ∇λ∇κϕ

3ϕð∇ϕÞ2
�
: ð19Þ

For other relevant quantities appearing in (12) we get:

ρϕ ¼ −
�
ω

2ϕ2
ð∇ϕÞ2 − V

2ϕ
−
∇2ϕ

ϕ
þ∇κϕ∇λϕ∇λ∇κϕ

ϕð∇ϕÞ2
�
; ð20Þ

for the energy density of the BD field, while for the heat flux vector [74]:

qðϕÞμ ¼ −
∇λϕ

ϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð∇ϕÞ2p

�
∇λ∇μϕ −

∇μϕ∇κϕ∇κ∇λϕ

ð∇ϕÞ2
�
¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð∇ϕÞ2

p
ϕ

_uμ; ð21Þ

where we have taken into account that for the choice (3) the acceleration of the fluid is given by:

_uμ ¼ uλ∇λuμ ¼ −
∇λϕ

ð∇ϕÞ2
�
∇λ∇μϕ −

∇μϕ∇κϕ∇κ∇λϕ

ð∇ϕÞ2
�
: ð22Þ

Below we shall apply this formalism to the Horndeski and beyond Horndeski theories in order to extend the effective
imperfect fluid picture to these generalizations of scalar-tensor theories.
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III. HORNDESKI THEORIES

According to [48], further generalization of four-dimen-
sional scalar-tensor theories having second-order motion
equations is achieved if considering the linear combinations
of the following Lagrangians:

L2 ¼ K; L3 ¼ −G3ð∇2ϕÞ;
L4 ¼ G4RþG4;X½ð∇2ϕÞ2 − ð∇μ∇νϕÞ2�;

L5 ¼ G5Gμν∇μ∇νϕ −
1

6
G5;X½ð∇2ϕÞ3

− 3∇2ϕð∇μ∇νϕÞ2 þ 2ð∇μ∇νϕÞ3�; ð23Þ

where K ¼ Kðϕ; XÞ and Gi ¼ Giðϕ; XÞ (i ¼ 3, 4, 5), are
functions of the scalar field ϕ and of its kinetic energy
density X, while Gi;ϕ and Gi;X represent the derivatives of
the functions Gi with respect to ϕ and X, respectively. In
the Lagrangian L5 above, for compactness of writing, we
have adopted the same definitions used in Ref. [55]:

ð∇μ∇νϕÞ2 ≔ ∇μ∇νϕ∇μ∇νϕ;

ð∇μ∇νϕÞ3 ≔ ∇μ∇αϕ∇α∇βϕ∇β∇μϕ: ð24Þ

Note that in (23) we have slightly modified the notation
with respect to (8), since we have replaced K → G2. We
have done this in order to meet the notation most frequently
found in the bibliography.
The general action for the Horndeski theories can be

written as follows:

SHorn ¼
Z

d4x
ffiffiffiffiffi
jgj

p
ðL2 þ L3 þ L4 þ L5 þ LmatÞ; ð25Þ

where the Li (i ¼ 2, 3, 4, 5) are given by (23) and Lm
stands for the Lagrangian of the matter degrees of freedom.
The motion equations that can be derived from the above
action read:

Gμν ¼
1

2G4

Tmat
μν þ

X
i

TðiÞ
μν ; i ¼ 2; 3; 4; ð26Þ

where

δð ffiffiffiffiffijgjp
LmatÞffiffiffiffiffijgjp
δgμν

¼ −
1

2
Tmat
μν ;

and we have considered the following definitions of the
effective stress-energy tensors related with the Lis in (23):

Tð2Þ
μν ¼ 1

2G4

ðK;X∇μϕ∇νϕþ KgμνÞ;

Tð3Þ
μν ¼ 1

2G4

f−ð2G3;ϕ þ G3;X∇2ϕÞ∇μϕ∇νϕ

− 2G3;X∇ðμϕ∇νÞX þ gμν½G3;ϕð∇ϕÞ2
þ G3;Xð∇ϕ · ∇XÞ�g;

Tð4Þ
μν ¼ G4;ϕ

G4

ð∇μ∇νϕ − gμν∇2ϕÞ

þ G4;ϕϕ

G4

½∇μϕ∇νϕ − gμνð∇ϕÞ2�; ð27Þ

where ð∇ϕ ·∇XÞ≡ gμν∇μϕ∇νX, with ∇μX≡
−∇λϕð∇μ∇λϕÞ. Notice that, in the definition of the

SETs TðiÞ
μν above, we have already included the contribution

coming from the effective gravitational coupling G4.
Besides, since the latter is a function of the scalar field
only: G4 ¼ G4ðϕÞ, the resulting theory is in the viable
subclass of Horndeski theories (8) mentioned in the
introduction. For the same reason we have not considered
the contribution coming from the Lagrangian L5 in (25).
As an aside let us to mention that taking the divergence

of (26) multiplied by 2G4, up to a vector field ∂μϕ, leads to
the modified Klein-Gordon equation for the galileon (see
the Appendix):

Gμν∇μG4 ¼
X
i

∇μ½G4T
ðiÞ
μν �; ð28Þ

i.e., the same that can be obtained through variation of the
action (25) with respect to the scalar field ϕ. This is true
also for the beyond Horndeski theories. In the Appendix,
the detailed computation of the divergence of the effective
stress-energy tensor, both for the Horndeski and the beyond
Horndeski theories, is performed.

IV. EQUIVALENCE BETWEEN VIABLE
HORNDESKI THEORIES AND IMPERFECT

FLUIDS

Here, as before, we consider the timelike four-velocity
vector defined as in Eq. (3): uμ ¼ ∇μϕ=

ffiffiffiffiffiffi
2X

p
, with non-

negative X ≥ 0, in order to determine the 3þ 1 splitting of
the spacetime [recall that X ≡ −ð∇ϕÞ2=2 is the kinetic
energy of the scalar field]. Given the adopted definition of
the timelike four velocity (3), we can rewrite the kinematic
quantities in (16) in terms of our notation as it follows. For
the expansion we have this:

θ ¼ 1ffiffiffiffiffiffi
2X

p
�
∇2ϕ −

ð∇ϕ · ∇XÞ
2X

�
; ð29Þ

while, for the components of the shear and vorticity tensors,
we have
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σμν ¼
1ffiffiffiffiffiffi
2X

p
�
∇μ∇νϕ −

ð∇ϕ ·∇XÞ
4X2

∇μϕ∇νϕ

−
∇ðνϕ∇μÞX

X
−
θ

3
hμν

�
;

ωμν ¼
2

ð2XÞ3=2∇½μϕ∇ν�X; ð30Þ

respectively. Above we have taken into account that

∇μuν ¼
1ffiffiffiffiffiffi
2X

p
�
∇μ∇νϕ −

∇νϕ∇μX

2X

�
: ð31Þ

so that the acceleration can be written as

_uμ ¼ uλ∇λuμ ¼ −
1

2X

�
∇μX þ ð∇ϕ ·∇XÞ

2X
∇μϕ

�
: ð32Þ

In order to show the equivalence between the viable
Horndeski theories (26), (27) and imperfect fluids we shall
consider each of the effective SETs in (27) separately. Let

us start with Tð2Þ
μν . This effective tensor corresponds to the

so-called k-essence models. Although the equivalence
between these models and a perfect fluid has been already
demonstrated [76,78], here we write the basic equations in

terms of our notation. Following the procedure exposed in
Sec. II we obtain the following results:

Πð2Þ
μν ¼ Tð2Þ

λκ h
λ
μhκν ¼

K
2G4

hμν; πð2Þμν ¼ 0;

qð2Þμ ¼ −Tð2Þ
λκ u

λhκμ ¼ 0; pð2Þ ¼
1

3
Πð2Þ ¼ K

2G4

;

ρð2Þ ¼ Tð2Þ
λκ u

λuκ ¼ 1

2G4

ð2XK;X − KÞ: ð33Þ

In what regards to the piece Tð3Þ
μν , the calculations are a bit

more complicated. Let us start by computing the tensor:

Πð3Þ
μν ¼ Tð3Þ

λκ h
λ
μhκν ¼ −

1

G4

�
G3;ϕX −

G3;X

2
ð∇ϕ · ∇XÞ

�
hμν;

ð34Þ

so that the effective pressure pð3Þ is given by the following:

pð3Þ ¼
1

3
Πð3Þ ¼ −

1

G4

�
G3;ϕX −

G3;X

2
ð∇ϕ ·∇XÞ

�
; ð35Þ

meanwhile the calculation of effective energy density ρð3Þ
gives this:

ρð3Þ ¼ Tð3Þ
λκ u

λuκ ¼ −
1

G4

�
G3;ϕX −

G3;X

2
ð∇ϕ ·∇XÞ þ G3;XXð∇2ϕÞ

�
: ð36Þ

It can be shown that πð3Þμν ¼ 0, so that the effective fluid does not have anisotropic stresses. However, there is a nonvanishing
heat flux given by

qð3Þμ ¼ −
G3;X

2
ffiffiffiffiffiffi
2X

p
G4

½2X∇μX þ∇μϕð∇ϕ ·∇XÞ�: ð37Þ

The effective SET tensor Tð4Þ
μν in Eq. (27) can be written in the alternative way:

Tð4Þ
μν ¼ G4;ϕ

G4

ð∇μ∇νϕ − gμν∇2ϕÞ þG4;ϕϕ

G4

2Xhμν: ð38Þ

Hence

Πð4Þ
μν ¼ Tð4Þ

λκ h
λ
μhκν ¼

�
G4;ϕϕ

G4

2X −
G4;ϕ

G4

∇2ϕ

�
hμν þ

G4;ϕ

G4

�
∇μ∇νϕ −

1

X
∇ðμϕ∇νÞX −

ð∇ϕ ·∇XÞ
4X2

∇μϕ∇νϕ

�
: ð39Þ

Since the resulting effective pressure pð4Þ ¼ Πð4Þ=3, we get the following:

pð4Þ ¼ −
G4;ϕ

G4

�ð∇ϕ ·∇XÞ
6X

þ 2

3
∇2ϕ

�
þ G4;ϕϕ

G4

2X: ð40Þ

This entails that, since πð4Þμν ¼ Πð4Þ
μν − pð4Þhμν, for the tensor of anisotropic stresses we obtain the following expression:

πð4Þμν ¼ G4;ϕ

G4

��ð∇ϕ ·∇XÞ
6X

−
1

3
∇2ϕ

�
hμν þ∇μ∇νϕ −

1

X
∇ðμϕ∇νÞX −

ð∇ϕ · ∇XÞ
4X2

∇μϕ∇νϕ

�
: ð41Þ
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The effective energy density is given by

ρð4Þ ¼ Tð4Þ
λκ u

λuκ ¼ −
G4;ϕ

G4

�ð∇ϕ ·∇XÞ
2X

−∇2ϕ

�
; ð42Þ

while the heat flux vector is given by

qð4Þμ ¼ −Tð4Þ
λκ u

λhκμ ¼
G4;ϕffiffiffiffiffiffi
2X

p
G4

�
∇μX þ ð∇ϕ ·∇XÞ

2X
∇μϕ

�
:

ð43Þ

In consequence the viable Horndeski theory (26) is
equivalent to GR with the effective stress-energy tensor
of an imperfect fluid:

Teff
μν ¼ ðρeff þ peffÞuμuν þ peffgμν þ 2qeffðμ uνÞ þ πeffμν ; ð44Þ

where

ρeff ¼
X
i

ρðiÞ; peff ¼
X
i

pðiÞ;

qeffμ ¼
X
i

qðiÞμ ; πeffμν ¼
X
i

πðiÞμν ; i ¼ 2; 3; 4: ð45Þ

We have, in particular, that for the effective heat flux
vector [for the effective pressure and energy density see
Eqs. (76) and (77) in Sec. VII]:

qeffμ ¼ G4;ϕ − XG3;Xffiffiffiffiffiffi
2X

p
G4

�
∇μX þ ð∇ϕ ·∇XÞ

2X
∇μϕ

�
; ð46Þ

while the effective anisotropic stress coincides with πð4Þμν in
(41):

πeffμν ¼ G4;ϕ

G4

��ð∇ϕ ·∇XÞ
6X

−
1

3
∇2ϕ

�
hμν þ∇μ∇νϕ

−
1

X
∇ðμϕ∇νÞX −

ð∇ϕ · ∇XÞ
4X2

∇μϕ∇νϕ

�
: ð47Þ

Nonvanishing of any of the quantities qeffμ and πeffμν is
what distinguishes an imperfect effective fluid from a
perfect one. This means that, in the present case, while

the heat flux gets contributions from both the nonminimal
coupling G4 ¼ G4ðϕÞ and the higher-derivative coupling
G3 ¼ G3ðϕ; XÞ, the anisotropic stresses are the conse-
quence of the non-minimal coupling only, as it is in
standard scalar-tensor theories. In particular, for constant
G4 ¼ 1=2 (minimal coupling), the anisotropic stresses
vanish. In summary, for the viable Horndeski theories,
the higher-order derivative contributions affect only the
heat flux.

A. Particular cases

Let us check several particular cases in the Horndeski
class of theories [52,54]:
(1) General relativity with a minimally coupled scalar

field: this is given by the following choice of the
relevant functions in (23): G4 ¼ 1=2, G3 ¼ G5 ¼ 0,

S ¼
Z

d4x
ffiffiffiffiffi
jgj

p �
1

2
Rþ Kðϕ; XÞ þ Lm

�
:

This choice comprises quintessence, Kðϕ; XÞ ¼
X − V, and k essence, for instance, Kðϕ; XÞ ¼
fðϕÞgðXÞ, where f and g are arbitrary functions
of their arguments. The most important kinematic
quantities for this case are given in Eq. (33):

Πeff
μν ¼ Khμν; πeffμν ¼ 0; qeffμ ¼ 0;

peff ¼ K; ρeff ¼ 2XK;X − K:

(2) Brans-Dicke theory: the following choice corre-
sponds to the BD theory [2] (here ω is the BD
coupling parameter): Kðϕ; XÞ ¼ 2ωX=ϕ − VðϕÞ,
G3 ¼ G5 ¼ 0, G4 ¼ ϕ,

S ¼
Z

d4x
ffiffiffiffiffi
jgj

p
½ϕRþ 2ωX=ϕ − V�: ð48Þ

Although the kinematic quantities for this case have
been already computed in Sec. II, here we rewrite
them in terms of the present notation. In this case,
the quantities (45) in the effective stress energy
tensor (44) read as follows:

ρeff ¼
ωX
ϕ2

þ V
2ϕ

þ∇2ϕ

ϕ
−
ð∇ϕ ·∇XÞ

2ϕX
; peff ¼

ωX
ϕ2

−
V
2ϕ

−
2∇2ϕ

3ϕ
−
ð∇ϕ · ∇XÞ

6ϕX
;

πeffμν ¼
�ð∇ϕ ·∇XÞ

6ϕX
−
∇2ϕ

3ϕ

�
hμν þ

∇μ∇νϕ

ϕ
−
∇ðμϕ∇νÞX

ϕX
−
ð∇ϕ ·∇XÞ

4ϕX2
∇μϕ∇νϕ;

qeffμ ¼ 1

ϕ
ffiffiffiffiffiffi
2X

p
�
∇μX þ ð∇ϕ · ∇XÞ

2X
∇μϕ

�
: ð49Þ

Notice that the above expressions coincide with the corresponding ones in (18)–(21).
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(3) Nonminimal coupling theory: this is described by the functions: K ¼ ωðϕÞX − VðϕÞ, G4 ¼ ð1 − ξϕ2Þ=2,
G3 ¼ G5 ¼ 0,

S ¼
Z

dx4
ffiffiffiffiffi
jgj

p �
1 − ξϕ2

2
Rþ ωðϕÞX − VðϕÞ

�
:

The main kinematic quantities in (44) are as follows:

ρeff ¼
1

1 − ξϕ2

�
ωX þ V − 2ξϕ∇2ϕþ 2ξϕ

ð∇ϕ ·∇XÞ
2X

�
;

peff ¼
1

1 − ξϕ2

�
ωX − V þ 4ξϕ

3
∇2ϕþ 2

3
ξϕ

ð∇ϕ · ∇XÞ
2X

− 4ξX

�
;

πeffμν ¼ −
2ξϕ

1 − ξϕ2

��ð∇ϕ ·∇XÞ
6X

−
1

3
∇2ϕ

�
hμν þ

∇μ∇νϕ

ϕ
−
∇ðμϕ∇νÞX

ϕX
−
ð∇ϕ ·∇XÞ

4ϕX2
∇μϕ∇νϕ

�
;

qeffμ ¼ −
2ξϕ

ð1 − ξϕ2Þ ffiffiffiffiffiffi
2X

p
�
∇μX þ ð∇ϕ ·∇XÞ

2X
∇μϕ

�
: ð50Þ

(4) Cubic galileon: for this particular case in the functions in (23) one sets: K ¼ 2ωX=ϕ − 2Λϕ, G3 ¼ −2fðϕÞX,
G4 ¼ ϕ, G5 ¼ 0, and the resulting Jordan frame action reads as follows [47]:

S ¼
Z

d4x
ffiffiffiffiffi
jgj

p
½ϕRþ 2ωX=ϕ − 2Λϕ − 2XfðϕÞ∇2ϕ�:

We obtain the following expressions for the fundamental kinematic quantities in (44), (45):

ρeff ¼
ωX
ϕ2

þ Λþ 2
f;ϕ
ϕ

X2 þ ½1þ 2fðϕÞX�
�∇2ϕ

ϕ
−
ð∇ϕ ·∇XÞ

2ϕX

�
;

peff ¼
ωX
ϕ2

− Λþ 2
f;ϕ
ϕ

X2 −
2∇2ϕ

3ϕ
−
�
1

3
þ 2fðϕÞX

� ð∇ϕ ·∇XÞ
2ϕX

;

πeffμν ¼
�ð∇ϕ · ∇XÞ

6ϕX
−
∇2ϕ

3ϕ

�
hμν þ

∇μ∇νϕ

ϕ
−
∇ðμϕ∇νÞX

ϕX
−
ð∇ϕ · ∇XÞ

4ϕX2
∇μϕ∇νϕ;

qeffμ ¼ 1þ 2fðϕÞX
ϕ

ffiffiffiffiffiffi
2X

p
�
∇μX þ ð∇ϕ · ∇XÞ

2X
∇μϕ

�
: ð51Þ

The above examples belong in the viable Horndeski
theories (8), where by viable we mean that the speed of
propagation of the tensor perturbations coincides with the
speed of light: c2gw ¼ 1. However, there are a few interest-
ing cases that do not belong in (8) but that can evade the
bound on the speed of gravitational waves (see footnote 2).
One interesting example is given by the choice:
K ¼ X − V, G3 ¼ 0, G4 ¼ 1=2, G5 ¼ −αϕ=2. The corre-
sponding theory is known as kinetic coupling to the
Einstein’s tensor and is given by the following action:

S ¼ 1

2

Z
d4x

ffiffiffiffiffi
jgj

p
½Rþ 2ðX − VÞ þ αGμν∂μϕ∂νϕ�: ð52Þ

As it is discussed in [89] in detail, this theory—formulated
as a effective field theory—has a region of its parameter
space where the bound on the speed of gravitational waves
is evaded.

V. VIABLE BEYOND HORNDESKI THEORIES AS
IMPERFECT FLUIDS

Here we consider the viable beyond Horndeski theories
[60–63,66,91] (also known as degenerate higher-order
scalar-tensor theories) with Lagrangian (9). The following
effective Einstein’s equation can be derived from the latter
Lagrangian: Gμν ¼ Tvbhorn

μν , where the effective SET for the
viable beyond Horndeski fluid is given by the following
expression:
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Tvbhorn
μν ¼ 1

2f
½f;XR − A;Xð∇XÞ2 − 2A;ϕð∇ϕ ·∇XÞ − 2A∇2X�∇μϕ∇νϕ

þ f;ϕϕ
f

½∇μϕ∇νϕþ 2Xgμν� þ
f;ϕ
f

ð∇μ∇νϕ − gμν∇2ϕÞ

þ 2
f;ϕX
f

½∇ðμϕ∇νÞX − gμνð∇ϕ · ∇XÞ� þ ðf;XX − AÞ
f

∇μX∇νX

−
ð2f;XX − AÞ

2f
gμνð∇XÞ2 þ f;X

f
ð∇μ∇νX − gμν∇2XÞ; ð53Þ

where

A ¼ 3f2;X
2f

; A;X ¼ 3

�
f;X
f

�
f;XX −

3

2

�
f;X
f

�
2

f;X:

The above stress-energy tensor (53) can be written in the form of an effective SET for an imperfect fluid (44) with effective
energy density:

ρeff ¼
f;X
f

XRþ f;ϕ
f

∇2ϕþ 2f;XX − A − 2XA;X

2f
ð∇XÞ2 þ f;X − 2XA

f
∇2X

−
f;ϕ þ 4X2A;ϕ

2Xf
ð∇ϕ · ∇XÞ þ f;XX − A

2Xf
ð∇ϕ · ∇XÞ2 þ f;X

2Xf
∇μϕ∇νϕ∇μ∇νX; ð54Þ

effective pressure:

peff ¼
f;ϕϕ
f

2X −
2f;ϕ
3f

∇2ϕþ 1

6f
ðA − 4f;XXÞð∇XÞ2 − 2f;X

3f
∇2X −

1

6Xf
ðf;ϕ þ 12Xf;ϕXÞð∇ϕ · ∇XÞ

þ 1

6Xf
ðf;XX − AÞð∇ϕ ·∇XÞ2 þ f;X

6Xf
∇μϕ∇νϕ∇μ∇νX; ð55Þ

effective heat flux vector:

qeffμ ¼ 1ffiffiffiffiffiffi
2X

p
f
f½f;ϕ þ 2Xf;ϕX − ðf;XX − AÞð∇ϕ · ∇XÞ�∇μ − f;X∇λϕ∇λ∇μgX

þ 1

ð2XÞ3=2f fðf;ϕ þ 2Xf;ϕXÞð∇ϕ ·∇XÞ − ðf;XX − AÞð∇ϕ · ∇XÞ2 − f;X∇λϕ∇κϕ∇λ∇κXg∇μϕ; ð56Þ

and effective anisotropic stress tensor:

πeffμν ¼ Πeff
μν − peffhμν; ð57Þ

where peff is given by (55) and

Πeff
μν ¼

�
2f;ϕϕ
f

X −
f;ϕ
f

∇2ϕ −
2f;ϕX
f

ð∇ϕ · ∇XÞ − 2f;XX − A
2f

ð∇XÞ2 − f;X
f

∇2X

�
hμν

þ f;ϕ
f

�
∇μ∇νϕ −

∇ðμϕ∇νÞX
X

−
ð∇ϕ ·∇XÞ

4X2
∇μϕ∇νϕ

�
þ f;XX − A

f

�
∇μX∇νX þ ð∇ϕ ·∇XÞ

X
∇ðμϕ∇νÞX

þð∇ϕ ·∇XÞ2
4X2

∇μϕ∇νϕ

�
þ f;X

f

�
∇μ∇νX þ∇λϕ∇ðμϕ∇νÞ∇λX

X
þ∇λϕ∇κϕ∇λ∇κX

4X2
∇μϕ∇νϕ

�
: ð58Þ

It is evident from the above equations that, unlike as it was for the viable Horndeski theories, in the present case, the
higher-order derivatives contribute both to the heat flux and to the anisotropic stresses.
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VI. HORNDESKI AND BEYOND HORNDESKI
COSMOLOGICAL PERFECT FLUIDS

In Secs. IV and V we have shown that, in the general
case, both the viable Horndeski and beyond Horndeski
theories admit an imperfect fluid representation. However,
this is a correct statement only if we consider a scalar field
with nonvanishing spatial gradient. This means that the
four-velocity uμ ¼ ∇μϕ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð∇ϕÞ2

p
cannot be that of free-

falling observers. In a Friedmann-Robertson-Walker
(FRW) cosmological framework where the background
metric is ds2 ¼ −dt2 þ a2ðtÞδijdxidxj (i, j ¼ 1, 2, 3 and,
as usual, t is the cosmic time, a ¼ aðtÞ is the scale factor,
andH ≡ _a=a is the Hubble parameter), on the contrary, the
timelike four-velocity uμ ¼ ∇μϕ= _ϕ ¼ δ0μ, is that of a free-

falling observer (the overdot accounts for derivative in
respect to the cosmic time). Hence, the acceleration of the
comoving observers vanishes since along geodesics, nec-
essarily: _uμ ¼ 0. This is also true for the Horndeski and
beyond Horndeski theories since the four-velocity vector is
the same: uμ ¼ δ0μ.
In general, the symmetry of FRW spacetime implies that

the heat flux vector qμ, which is transversal to the four-
velocity uμ (uμqμ ¼ 0), must always vanish since, other-
wise, it would yield a preferred direction and thus break the
isotropy.3 This means, in turn, that the effective energy-
momentum tensor always has the perfect fluid form with
only the effective pressure p and the effective energy
density ρ nonvanishing. Accordingly, in a FRW back-
ground the heat-flux vectors for the BD theory (21):

qBDμ ¼ 1

ϕ
ffiffiffiffiffiffi
2X

p
�
∇μX þ ð∇ϕ ·∇XÞ

2X
∇μϕ

�
¼ −

1

ϕ

ffiffiffiffiffiffi
2X

p
_uμ; ð59Þ

as well as for the viable Horndeski theories:

qvhornμ ¼ G4;ϕ − XG3;Xffiffiffiffiffiffi
2X

p
G4

�
∇μX þ ð∇ϕ ·∇XÞ

2X
∇μϕ

�
¼ −

G4;ϕ − XG3;X

G4

ffiffiffiffiffiffi
2X

p
_uμ; ð60Þ

both vanish: qBDμ ¼ qvhornμ ¼ 0, where we have taken into account the expression (32) for the acceleration:

_uμ ¼ uλ∇λuμ ¼ −
1

2X

�
∇μX þ ð∇ϕ ·∇XÞ

2X
∇μϕ

�
:

For the beyond Horndeski theories we have that the heat flux vector (56) can be written as follows:

qvbhornμ ¼ f;ϕ þ 4Xf;ϕX − ðf;XX − AÞð∇ϕ · ∇XÞffiffiffiffiffiffi
2X

p
f

�
∇μX þ ð∇ϕ ·∇XÞ

2X
∇μϕ

�
−

f;Xffiffiffiffiffiffi
2X

p
f
∇λϕ

�
∇λ∇μX þ∇κϕ∇λ∇κX

2X
∇μϕ

�
:

However, since uμ ¼ ∇μϕ=
ffiffiffiffiffiffi
2X

p ¼ g0μ, then the second term in the rhs of the above equation exactly vanishes:

−
f;X
f

g0λ½∇λ∇μX þ g0κδ0μ∇λ∇κX� ¼ −
f;X
f

½∇0 _X þ Ẍ�δ0μ ¼ −
f;X
f

½−Ẍ þ Ẍ�δ0μ ¼ 0;

so that

qvbhornμ ¼ −
f;ϕ þ 4Xf;ϕX − ðf;XX − AÞð∇ϕ · ∇XÞ

f

ffiffiffiffiffiffi
2X

p
_uμ ¼ 0; ð61Þ

as it was for the BD and the viable Horndeski theories.
Let us obtain the expressions of the remaining effective kinematic quantities for the viable Horndeski and beyond

Horndeski theories in the FRW background. The timelike FRW four-velocity is given by uμ ¼ ∇μϕ= _ϕ ¼ δ0μ, so that for the
components of the three-metric hμν we obtain h00 ¼ 0, hij ¼ a2ðtÞδij. We also have

X ¼ _ϕ2=2; ∇2ϕ ¼ −ðϕ̈þ 3H _ϕÞ; ð∇ϕ ·∇XÞ ¼ − _ϕ2ϕ̈; ∇μ∇νϕ ¼ ϕ̈δ0μδ
0
ν −H _ϕhμν; ð62Þ

3This argument has been suggested by one referee.
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so that, by making the appropriate substitutions, we get the
following expressions for the effective kinematic quantities
of viable Horndeski theories (8) in FRW spacetimes (recall
that qeffμ ¼ 0):

ρeff ¼
1

2G4

½ðK;X −G3;ϕ þ 3G3;XH _ϕÞ _ϕ2 − K − 6G4;ϕH _ϕ�;

ð63Þ

peff ¼
1

2G4

½ð2G4;ϕϕ − G3;ϕ −G3;Xϕ̈Þ _ϕ2 þ K

þ 2G4;ϕðϕ̈þ 2H _ϕÞ�; ð64Þ
πeffμν ¼ 0: ð65Þ

In what regards to the viable beyond Horndeski effective
cosmological fluid we have that, for the effective energy
density,

ρeff ¼
3f;X
f

ð _H þ 2H2Þ _ϕ2 −
3f;ϕ
f

H _ϕ −
3

f
ðf;X − A _ϕ2ÞH _ϕ ϕ̈

þ 1

f
ð2f;ϕX þ A;ϕ

_ϕ2Þ _ϕ2ϕ̈

þ 1

2f
ðAþ A;X

_ϕ2Þ _ϕ2ϕ̈2 þ A
f
_ϕ3ϕ

…
; ð66Þ

while for the effective pressure:

peff ¼
2f;ϕ
f

H _ϕþ 2f;X
f

H _ϕ ϕ̈þ f;ϕϕ
f

_ϕ2

þ 1

f
ðf;ϕ þ 2 _ϕ2f;ϕXÞϕ̈þ 1

2f
ð2f;XX − AÞ _ϕ2ϕ̈2

þ f;X
f

½ϕ̈2 þ _ϕðϕ
…
Þ�; ð67Þ

where we have taken into account that for the FRW metric
the curvature scalar R ¼ 6ð _H þ 2H2Þ, while

ð∇XÞ2 ¼ − _X2 ¼ −ð _ϕϕ̈Þ2; ∇μ∇νX ¼ Ẍδ0μδ0ν −H _Xhμν;

∇2X ¼ −Ẍ − 3H _X ¼ −ϕ̈ðϕ̈þ 3H _ϕÞ− _ϕðϕ
…
Þ:

For the flux vector, as already mentioned, we get qeffμ ¼ 0,
while since

Πeff
μν ¼

�
2f;ϕ
f

H _ϕþ 2f;X
f

H _ϕ ϕ̈þ f;ϕϕ
f

_ϕ2

þ 1

f
ðf;ϕ þ 2 _ϕ2f;ϕXÞϕ̈

þ 1

2f
ð2f;XX − AÞ _ϕ2ϕ̈2 þ f;X

f
½ϕ̈2 þ _ϕðϕ

…
Þ�
�

× hμν ¼ peffhμν; ð68Þ

the anisotropic stresses vanish as well: πeffμν ¼ 0. This means
that, in a FRW spacetime, the viable beyond Horndeski
theories are formally equivalent to GR with an effective
perfect fluid.
As we have discussed here, in the FRW cosmological

setup, due to the symmetries, both the effective heat flux
vector and the anisotropic stresses vanish, so that the
resulting effective picture is that of a perfect fluid.4 In a
general cosmological setup the higher-derivative terms that
arise in the Horndeski and beyond Horndeski theories do
not contribute to the effective imperfect fluid behavior
unless the spatial gradient of the scalar field cannot be
ignored, as in situations of astrophysical interest. Otherwise
these will contribute only to the effective energy density
and the effective pressure of the perfect fluid, respectively.

VII. DISCUSSION AND CONCLUSION

In this paper we have approached to the viable Horndeski
and beyond Horndeski theories from the perspective of the
effective (imperfect) fluid approach. In this regard, as it
happens in the framework of the STTs, the divergence of
the effective stress-energy tensor leads to the equation of
motion of the scalar field:

∇μTeff
μν −2G4;ϕ∂μϕGμν¼0; Teff

μν ¼2G4

X4
i¼2

TðiÞ
μν ;

∇μTeff
μν −ðf;ϕ∂μϕþf;X∂μXÞGμν¼0; Teff

μν ¼f
X2
i¼1

TðiÞ
μν ;

ð69Þ

where the first line above is for Horndeski theories with the

contributions to the TðiÞ
μν s given by (27), while the second

line is for beyond Horndeski theories with the respective

contributions TðiÞ
μν given by (A14) and (A15) in the

Appendix. As a matter of fact, up to a vector field ∂μϕ,
(69) coincides with the motion equation that is derived from
either of the following actions by varying with respect to
the scalar field ϕ:

Svhorn¼
Z

d4x
ffiffiffiffiffi
jgj

p
Lvhorn; Svbhorn¼

Z
d4x

ffiffiffiffiffi
jgj

p
Lvbhorn;

ð70Þ

where Lvhorn is given by (8) while Lvbhorn is given by (9).
Our results represent further generalization of previously
published works on the effective fluid equivalences
[70,74,76–83].

4It should be expected that, if considering other less symmetric
geometric backgrounds such as, for instance, the Bianchi I
anisotropic space, the anisotropic stress tensor would has non-
vanishing contribution to the effective imperfect fluid.
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Although the effective perfect/imperfect fluid descrip-
tion is always possible, making an appropriate choice of the
timelike vector uμ is central to the explicit form of the
equivalence. In [81], for instance, it is shown that an n-
dimensional generalized Robertson-Walker (GRW) space-
time with divergence-free conformal curvature tensor
exhibits a perfect fluid stress-energy tensor for any fðRÞ
gravity model. The demonstration relies on the notion of
GRW spacetime and on the condition that a timelike unit
vector uμ (uμuμ ¼ −1) exists such that ∇μuν ¼ φðgμνþ
uμuνÞ, where the scalar field φ is called as “perfect scalar”
since it obeys [81–83]:

∇μφ ¼ −uμðuλ∇λφÞ: ð71Þ

In [74], on the other hand, it has been shown that, if
introduce a timelike unit vector field,

uμ ¼
∇μRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð∇RÞ2p ; ð∇RÞ2 ≡∇μR∇μR < 0; ð72Þ

where R is the Ricci scalar, the fðRÞ theory can be written
in the form of general relativity with an effective imperfect
fluid. These examples show that fulfillment of certain
conditions is required in order to obtain the explicit form
in which the effective fluid equivalence is realized and that,
depending on these requirements, the same theory might
admit different explicit forms of the equivalence. We want
to mention that whenever the effective fluid is generated by
a purely scalar degree of freedom, it is irrotational [74], so
that not any kind of fluid with physical sense can be
reproduced with scalars.
In this regard we point out that the effective fluid

equivalence is purely mathematical and not physical
because imperfect and perfect fluids obey thermodynamic
laws that, in general, have no equivalent in the framework
of the STTs. As an illustration, the particle number density
cannot be defined for a real scalar field. Another illustration
can be based on the energy density of the effective fluid. Let
us rewrite the gravitational equations of Horndeski theory
(26) in the following form:

Tmat
μν ¼ 2G4Gμν − Teff

μν ; Teff
μν ¼ 2G4

X
i

TðiÞ
μν ; ð73Þ

where the effective stress-energy tensor Teff
μν is contributed

by curvature quantities. For the energy density measured by
observers with four-velocity uμ one gets

ρmat ¼ uμuνTmat
μν ¼ 2G4Gμνuμuν − ρeff : ð74Þ

The requirement that for a standard matter fluid ρmat ≥ 0,
translates into the following requirement: 2G4Gμνuμuν ≥
ρeff . Apart from this the energy density of the effective fluid
measured by the observers ρeff can be a negative quantity

without violating any known physical laws. Hence, the
energy density of the effective fluid might not have the
usual physical sense assigned to it in fluid dynamics.
Despite of this the effective fluid picture is very useful
when one compares different cosmological models. One
may compare functions describing the effective fluid such
as, for instance, the equation of state, the anisotropic
stresses, the sound speed, etc. The fluid variables have a
more immediate and clear physical meaning and also
simplify the analysis of the system [80]. Besides, the
effective fluid description of Horndeski and beyond
Horndeski theories represents an alternative opportunity
to deal with cosmological perturbations within the higher-
derivative generalizations of scalar-tensor theories among
others because in this framework it is relatively easy to
identify the contribution of each term in the stress energy
tensor of the imperfect fluid to the scalar, vectorial, and
tensorial cosmological perturbations. For example, a heat
flux contributes to the vectorial cosmological perturbations
while the anisotropic stresses contribute to both scalar and
tensorial perturbations.
Although we have been able to settle the explicit form of

the imperfect/perfect fluid equivalence specifically for the
viable Horndeski and beyond Horndeski theories, the present
results could be applied to othermodifications of gravity such
as the extended theories of gravity that are based in the
Lagrangian L ∝ FðR;∇2R;∇4R;…;∇2kRÞ. The ETGs are
equivalent tomulti-STTs [37]. One example is the sixth-order
gravity given by the choice: F ¼ Rþ αR∇2R, which is
equivalent to Brans-Dicke theory with vanishing coupling
parameter ω ¼ 0, with a BD scalar field ϕ and an additional
canonical scalar fieldφ asmatter source.Hence, in principle it
could be put into the formofGRwith amixture of an effective
imperfect and a perfect fluids. Another example is given by
the fðRÞ theory. Under the replacement ϕ → f;R,
VðϕÞ → f;R − f, the fðRÞ theory can be written in the
equivalent form of BD theory with vanishing coupling
parameter (ω ¼ 0). Hence, the above mentioned modifica-
tions of general relativity could be given the form of GRwith
an effective perfect/imperfect fluid. In particular, for the fðRÞ
theory, the kinematic quantities that appear in the effective
SET (12) are those given by Eqs. (18)–(21) with the
substitutions ω ¼ 0 and ϕ ¼ f;R. If we take into account
that ∇μϕ ¼ f;RR∇μR → ð∇ϕÞ2 ¼ f2;RRð∇RÞ2, etc., we get
the same expressions of Ref. [74]. Notice, in particular, that if
make these substitutions in (3), we obtain the definition of the
four velocity in [74]: uμ ¼ ∇μR=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð∇RÞ2

p
. The effective

fluid approach of fðRÞ theories has been investigated also in
Ref. [92] from the perspective of the cosmological
perturbations.
An important aspect of the higher-derivative theories is

related with the speed of propagation of scalar and tensor
cosmological perturbations. For the Horndeski theories the
speed of propagation of the gravitational waves is given by
[55,93]:
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c2gw ¼ G4 − Xðϕ̈G5;X þ G5;ϕÞ
G4 − 2XG4;X − Xð _ϕHG5;X − G5;ϕÞ

: ð75Þ

Hence, after the simultaneous detection of gravitational
waves GW170817 and the γ-ray burst GRB 170817A
[87,88], leading to inferring that the speed of propagation
of the tensor perturbations coincides with the speed of light
in vacuum c2gw ¼ 1 (recall that in this paper we work in the
units system where the speed of light in vacuum c ¼ 1),
only the theories with G5 ¼ 0, G4 ¼ G4ðϕÞ survive the
observational checks. These are known as viable Horndeski
theories [55]. In a similar fashion the only beyond

Horndeski theories that survive the observational checks
related to the GW170817 event are the viable beyond
Horndeski theories given by the Lagrangian (9). Yet, the
surviving higher-derivative generalizations of STTs have to
be consistent with the limits 0 ≤ c2s ≤ 1 on the squared
sound speed (also the squared speed of propagation of the
scalar perturbations), c2s ¼ p;X=ρ;X, in order to avoid
gradient instability and to obey causality [54,94]. These
additional bounds establish conditions on the derivatives.
For the viable Horndeski theories (8) we have, the

effective pressure (peff ¼ pð2Þ þ pð3Þ þ pð4Þ) is given by
the following expression:

peff ¼ 1

G4

�
K
2
þ ð2G4;ϕϕ −G3;ϕÞX þ

�
G3;XX −

1

3
G4;ϕ

� ð∇ϕ ·∇XÞ
2X

−
2

3
G4;ϕ∇2ϕ

�
; ð76Þ

while for the effective energy density (ρeff ¼ ρð2Þ þ ρð3Þ þ ρð4Þ), we have

ρeff ¼ 1

G4

�
XK;X −

K
2
−G3;ϕX þ ðG3;XX − G4;ϕÞ

ð∇ϕ ·∇XÞ
2X

þ ðG4;ϕ −G3;XXÞ∇2ϕ

�
: ð77Þ

Hence, the speed of propagation of the scalar perturbations in the viable Horndeski theories reads

c2s ¼
peff
;X

ρeff;X
¼

K;X

2
−G3;ϕXX −G3;ϕ þ ðG3;XXX2 þ 1

3
G4;ϕÞ ð∇ϕ·∇XÞ2X2 þ 2G4;ϕϕ

K;X

2
−G3;ϕXX −G3;ϕ þ ðG3;XXX2 þ G4;ϕÞ ð∇ϕ·∇XÞ2X2 þ K;XXX − ðG3;X þG3;XXXÞ∇2ϕ

: ð78Þ

Causality (c2s ≤ 1) leads to the following condition on the derivatives of the scalar field:

∇2ϕ ≤
G4;ϕð∇ϕ · ∇XÞ þ 3X2ðXK;XX − 2G4;ϕϕÞ

3X2ðXG3;XX þG3;XÞ
; ð79Þ

while the absence of gradient instability (c2s ≥ 0) requires that

ð∇ϕ ·∇XÞ ≥ ½2XG3;ϕX þ 2G3;ϕ − K;X − 4G4;ϕϕ�X2

X2G3;XX þ 1
3
G4;ϕ

; ð80Þ

and that (79) is satisfied.
Similar conditions on the derivatives can be found for the

viable beyond Horndeski theories. This means that these
“viable” theories as a matter of fact can be nonviable if the
above conditions on the squared sound speed are not satisfied.
In other words: the bounds (79) and (80) amount to further
constraints on the physical viability of Horndeski and beyond
Horndeski theories, that already satisfy c2gw ¼ 1.

ACKNOWLEDGMENTS

The authors thank SNI-CONACyT for continuous sup-
port of their research activity. U. N. acknowledges
Programa para el Desarrollo Profesional Docente -
Secretaría de Educación Pública (PRODEP-SEP) and

Coordinación de la Investigación Científica -
Universidad Michoacana de San Nicolás de Hidalgo
(CIC-UMSNH) for financial support of his contribution
to the present research. R. D. A. also acknowledges
CONACyT for the postdoc Grant No. 350411 under which
part of this work was performed.

APPENDIX: DERIVATION OF THE MOTION
EQUATION OF THE GALILEON IN HORNDESKI

AND BEYOND HORNDESKI THEORIES

1. Horndeski theory

We rewrite the equations of motion (26) and (27) derived
from the Horndeski Lagrangian as
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2G4Gμν ¼ Tmat
μν þ 2G4

X4
i¼2

TðiÞ
μν : ðA1Þ

Then we take the divergence of (A1),

2∇νðG4GμνÞ ¼ 2G4;ϕRμν∇νϕ −G4;ϕR∇μϕ ¼ 2
X4
i¼2

∇ν½G4T
μν
ðiÞ�; ðA2Þ

where we have taken into account the Bianchi identity and the continuity equation for the matter degrees of freedom, so that
∇νGμν ¼ 0 and∇νT

μν
mat ¼ 0. In order to compute the divergence in (A2) we shall treat each term in the sum separately. From

(27), by means of a straightforward calculation for i ¼ 2, we obtain

2∇ν½G4T
μν
ð2Þ�≡∇ν½K;Xð∇μϕÞ∇νϕþ gμνK� ¼ ½K;ϕ þ K;Xð∇2ϕÞ þ K;ϕXð∇ϕÞ2 þ K;XXð∇ϕ · ∇XÞ�ð∇μϕÞ: ðA3Þ

Meanwhile, if we take into account (27), for i ¼ 3 we have

∇ν½2G4T
μν
ð3Þ� ¼ −ð∇μϕÞf2G3;ϕð∇2ϕÞ þ G3;X½ð∇2ϕÞ2 − Rνβð∇νϕÞ∇βϕ − ð∇ν∇βϕÞ2� þ G3;ϕϕð∇ϕÞ2

þG3;ϕX½2ð∇ϕÞ · ð∇XÞ þ ð∇ϕÞ2ð∇2ϕÞ� þ G3;XX½ð∇ϕÞ · ð∇XÞð∇2ϕÞ þ ð∇XÞ · ð∇XÞ�g; ðA4Þ

where we have used the following identities,

ð∇2XÞ ¼ −ð∇β∇β∇αϕÞ∇αϕ − ð∇β∇αϕÞ2; ∇μð∇2ϕÞ ¼ ð∇β∇β∇μϕÞ − Rβ
μ∇βϕ: ðA5Þ

Finally, for i ¼ 4 we obtain

∇ν½G4T
μν
ð4Þ�≡∇νfG4;ϕð∇μ∇νϕ − gμν∇2ϕÞ þG4;ϕϕ½∇μϕ∇νϕ − gμνð∇ϕÞ2�g;

¼ G4;ϕ∇νð∇μ∇νϕ − gμν∇2ϕÞ ¼ G4;ϕRμν∇νϕ; ðA6Þ

where we have applied the identities,

ð∇νG4;ϕÞð∇μ∇νϕ − gμν∇2ϕÞ þ G4;ϕϕ∇ν½∇μϕ∇νϕ − gμνð∇ϕÞ2� ¼ 0;

ð∇νG4;ϕϕÞ½∇μϕ∇νϕ − gμνð∇ϕÞ2� ¼ 0: ðA7Þ

Using (A6) we eliminate the term proportional to the Ricci tensor in (A2), then we have

2
X3
i¼2

∇ν½G4T
μν
ðiÞ� þ G4;ϕR∇μϕ ¼ 0: ðA8Þ

If we substitute (A3) and (A4) in (A8) we get,

ð∂μϕÞΦ ¼ 0; ðA9Þ

where the function Φ is defined as

Φ≡ K;ϕ þ ½K;X − 2G3;ϕ�ð∇2ϕÞ þ ½K;ϕX −G3;ϕϕ�ð∇ϕÞ2 þ K;XXð∇ϕ ·∇XÞ
− G3;X½ð∇2ϕÞ2 − Rμνð∇μϕÞð∇νϕÞ − ð∇μ∇νϕÞ2� − G3;XX½ð∇ϕ ·∇XÞð∇2ϕÞ þ∇X ·∇X�
− G3;ϕX½ð∇ϕÞ2ð∇2ϕÞ þ 2ð∇ϕ · ∇XÞ� þG4;ϕR: ðA10Þ

Since, in general, the vector field is ∂μϕ ≠ 0, the motion equation of the galileon in Horndeski theory is written as

Φ ¼ 0: ðA11Þ
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This coincides with the modified Klein-Gordon equation that is obtained by taking variations of the action (25) with respect
to the galileon ϕ.

2. Beyond Horndeski theories

Following the procedure applied above we can rewrite the equations of motion derived from the beyond Horndeski
Lagrangian (9) as

fGμν ¼ Tmat
μν þ f

X2
i¼1

TvbhornðiÞ
μν : ðA12Þ

Then we compute the divergence of (A12)—recall that ∇νGμν ¼ 0 and ∇νT
μν
mat ¼ 0—to obtain

∇νðfGμνÞ ¼ Rμν∇νf −
1

2
R∇μf ¼

X2
i¼1

∇ν½fTμν
vbhornðiÞ�; ðA13Þ

where we have defined

fTvbhornð1Þ
μν ≡ 1

2
fXRð∇μϕÞð∇νϕÞ þ∇μ∇νf − gμνð∇2fÞ; ðA14Þ

fTvbhornð2Þ
μν ≡ −

1

2
½A;Xð∇XÞ2 þ 2A;ϕð∇ϕ ·∇XÞ þ 2A∇2X�∇μϕ∇νϕ − A

�
∇μX∇νX −

1

2
gμνð∇XÞ2

�
; ðA15Þ

and the following expression,

∇μ∇νf − gμνð∇2fÞ ¼ f;ϕϕ½ð∇μϕÞ∇νϕþ 2Xgμν� þ f;ϕð∇μ∇νϕ − gμν∇2ϕÞ þ f;Xð∇μ∇νX − gμν∇2XÞ
þ 2f;ϕX½∇ðμϕ∇νÞX − gμνð∇ϕ ·∇XÞ� þ f;XX½ð∇μXÞ∇νX − gμνð∇XÞ2�; ðA16Þ

has been taken into account. Note that the divergence of (A16) can be written as the compact expression:

∇ν½∇μ∇νf − gμνð∇2fÞ�≡ Rμν∇νf: ðA17Þ

As before we calculate separately each term in the sum in (A13). From (A14), and using (A17), a straightforward
calculation for i ¼ 1 leads to

∇ν½fTμν
vbhornð1Þ� ¼

1

2
ð∇μϕÞ½ff;X∇2ϕþ∇ϕ ·∇ðf;XÞgRþ f;X∇ϕ ·∇R� − 1

2
f;XR∇μX þ Rμν∇νf; ðA18Þ

meanwhile, starting from (A15) a lengthy calculation for i ¼ 2 yields

∇ν½fTμν
vbhornð2Þ� ¼ −∇μϕ

�
1

2
ð∇XÞ2fA;X∇2ϕþ∇ϕ ·∇ðA;XÞ − A;ϕg þ

1

2
A;X∇ϕ ·∇fð∇XÞ2g

þAfð∇2XÞ∇2ϕþ∇ϕ ·∇ð∇2XÞg þ A;ϕf∇ϕ · ∇X∇2ϕþ ð∇ϕÞ · ∇ð∇ϕ ·∇XÞg

þ∇ϕ ·∇Að∇2XÞ þ f∇ϕ · ∇ðA;ϕÞgð∇ϕ ·∇XÞ
�
: ðA19Þ

Now we substitute (A18) and (A19) in (A13) to obtain

ð∂μϕÞΨ ¼ 0; ðA20Þ

where the function Ψ is defined as follows:
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Ψ≡ ff;ϕ þ f;X∇2ϕþ∇ϕ ·∇ðf;XÞgRþ f;X∇ϕ · ∇R
− 2

�
1

2
ð∇XÞ2fA;X∇2ϕþ∇ϕ ·∇ðA;XÞ − A;ϕg þ

1

2
A;X∇ϕ ·∇fð∇XÞ2g

þAfð∇2XÞ∇2ϕþ∇ϕ · ∇ð∇2XÞg þ ð∇ϕÞ · ð∇AÞð∇2XÞ
þ A;ϕfð∇ϕÞ · ð∇XÞ∇2ϕþ ð∇ϕÞ · ∇ð∇ϕ ·∇XÞg

þf∇ϕ ·∇ðA;ϕÞgð∇ϕ · ∇XÞ
�
: ðA21Þ

Because, in general, ∂μϕ ≠ 0, the motion equation of the scalar field in beyond Horndeski theories is written as

Ψ ¼ 0: ðA22Þ
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