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We derive the Boltzmann equation in the context of a gravity theory with nonminimal coupling between
matter and curvature. We show that as the energy-momentum tensor is not conserved in these theories, it
follows a condition on the normalization of a homogeneous distribution function. The Boltzmann
H-theorem is preserved such that the entropy vector flux is still a nondecreasing function in these theories.
The case of a homogeneous and isotropic universe is analyzed.
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I. INTRODUCTION

The Boltzmann equation is a microscopic statistical tool
that describes the evolution of the distribution function in
phase space undergoing collisions. Mathematically, it cor-
responds to a partial integro-differential equation, whose
exact solution is hard to find. Therefore, several approx-
imations are commonly used to approach meaningful
problems, for instance, the relaxation time approximation
and the Chapman-Enskog method. Despite its mathematical
difficulties, the Boltzmann equation allows for the derivation
of fundamental macroscopic equations, such as the Navier-
Stokes equation for fluids and the Jeans and virial equations
for self-gravitating systems [1], the Maxwell-Vlasov equa-
tions for plasmas [2], the Bloch-Boltzmann equations for
electronic transport [3], and the relevant thermodynamic
equation in an expanding universe [4].
Notwithstanding, the Boltzmann equation has different

formulations; the classical, the quantum, the relativistic, and
the general relativistic versions. One of its solutions is the
Maxwell distribution, whose relativistic version has been
derived in Ref. [5]. The relativistic Boltzmann equation may
need to be extended in order to account for degenerate gases,
having as solutions relativistic versions of the Bose-Einstein
and the Fermi-Dirac distributions [6].
Furthermore, its version for spacetime dynamics relies

on general relativity (GR), and allows for the description of,
for instance, self-gravitating systems, primordial abundan-
ces and their evolution [7]. In fact, it is well known that GR
is a well-established gravity theory, in impressive agree-
ment with the Solar System and weak-field experiments
[8,9]. Nevertheless, it arises questions both on theoretically
and observationally: it lacks a consistent quantum version,

and at astrophysical and cosmological scales, it requires
the existence of two dark components to match obser-
vations [10,11]. These two dark components together
constitute around 95% of the energy content of the
Universe, and so far, neither of these components has
been directly observed. As a consequence, several alter-
native theories of gravity have been put forward in the
literature. The simplest generalization of the Einstein’s
theory are the so-called f(R) theories [12–14].
But further generalizations are also admissible as is the
case of a nonminimal matter-curvature coupling (NMC)
[15]. This model provides new insights on gravity and has
a rich lore of implications for cosmology and astrophys-
ics, as it mimics dark matter profiles at galaxies [16] and
clusters of galaxies [17], it accounts for the late time
acceleration [18], and is in agreement with data from
inflation [19], gravitational waves [20], and the Abell 586
cluster virialization [21]. Since this model fits the
available observational data providing explanations for
the above mentioned problems, it is important to tackle
other physical questions, such as the ones arisen from the
Boltzmann equation.
Therefore, the aim of the present work is to generalize

the Boltzmann equation in order to account for the non-
minimal matter-curvature coupling model and explore its
main physical consequences. In this work, we shall use the
(−þþþ) signature for the metric and work in units such
that c ¼ 1 throughout the paper. Furthermore, we shall
denote by fðRÞ the general functions of the scalar curva-
ture, while f ≔ fðr⃗; v⃗; tÞ will represent the one-particle
distribution function.
This work is organized as follows: in Sec. II, one briefly

introduces the nonminimal mater-curvature coupling model
and its main features; in Sec. III, we derive the Boltzmann
equation in the context of this alternative gravity theory,
in order to explore the conservation laws in Sec. IV.
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We analyze the case of a homogeneous and isotropic
universe in Sec. V. We present our conclusions in Sec. VII.

II. THE NONMINIMAL MATTER-CURVATURE
COUPLING MODEL

In the extended fðRÞ theories with a nonminimal
coupling between curvature and matter, the action func-
tional reads [15]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½κf1ðRÞ þ f2ðRÞL�; ð1Þ

where f1ðRÞ; f2ðRÞ are arbitrary functions of the Ricci
scalar R, κ ¼ c4=ð16πGÞ, and L is the matter Lagrangian
density.
Varying the action with respect to the metric, gμν, leads to

the following field equations:

�
F1ðRÞ þ

F2ðRÞL
κ

�
Gμν

¼ 1

2κ
f2ðRÞTμν þ Δμν

�
F1ðRÞ þ

F2ðRÞL
κ

�

þ 1

2
gμν

�
f1ðRÞ − F1ðRÞR −

F2ðRÞRL
κ

�
; ð2Þ

where Gμν ≔ Rμν − ð1=2ÞgμνR is the Einstein tensor,
FiðRÞ≡ dfiðRÞ=dR, and Δμν ≡∇μ∇ν − gμν□. It is
straightforward to see that choosing f1ðRÞ ¼ R and
f2ðRÞ ¼ 1, one recovers general relativity.
Taking the trace of the previous equations, one gets

�
F1ðRÞ þ

F2ðRÞL
κ

�
R − 2f1ðRÞ

¼ −3□
�
F1ðRÞ þ

F2ðRÞL
κ

�
þ 1

2κ
f2ðRÞT: ð3Þ

Using the Bianchi identities in the field equations,
Eq. (2), one finds that the energy-momentum tensor is
no longer (covariantly) conserved in this model,

∇μTμν ¼ F2ðRÞ
f2ðRÞ

ðgμνL − TμνÞ∇μR: ð4Þ

This feature implies that for a perfect fluid, test particles
do not follow geodesics. In fact, the geodesics equation in
these theories read [15]

duα

ds
þ Γα

μνuμuν ¼ fα; ð5Þ

where the extra force, per unit mass, for a perfect fluid is
given by

fα ¼ 1

ρþ p

�
F2ðRÞ
f2ðRÞ

ðLm − pÞ∇νR −∇νp

�
hαν; ð6Þ

where hαν ¼ gαν þ uαuν is the projection operator and uμ

denotes the particle’s four-velocity. In these theories, the
degeneracy between the Lagrangian choices L ¼ −ρ or
L ¼ p for perfect fluids is lifted, in opposition to what
happens in GR [22], since it yields different behaviors for
the extra force term (see Ref. [23] for a thorough
discussion).
For a matter Lagrangian of the form L ¼ −ρ and

∇νp ¼ 0, the extra force reads

fα ¼ −∂νΦchαν; ð7Þ

where one has defined the nonminimal coupling potential
as Φc ≔ lnðf2ðRÞÞ [24].

III. THE BOLTZMANN EQUATION
IN THE NMC MODEL

In statistical physics, the Liouville theorem which states
that the phase-space distribution function, f, is constant
along the trajectories of the system when no collisions
occur, implies that the distribution function behaves as an
incompressible fluid. However, when particles collide, we
have that the rate of change in phase-space is given by

df
dt

¼
�
df
dt

�
coll:

: ð8Þ

From this equation, one can derive the so-called
Boltzmann equation, which in its general relativistic
version reads [25]

pμ ∂f
∂xμ þ

dpμ

dτ�
∂f
∂pμ ¼

�∂f
∂τ�

�
coll:

; ð9Þ

where f ¼ fðxμ; pμÞ is the distribution function which
depends in the spacetime coordinates, xμ, and in the
4-momentum, pμ, and τ� ≔ t=m is the affine parameter.
Given the extra force in the NMC theories, the

Boltzmann equation is modified to

pμ ∂f
∂xμ − ðΓσ

μνpμpν −m2fσÞ ∂f
∂pσ ¼

�∂f
∂τ�

�
coll:

: ð10Þ

In fact, the nonminimal coupling model introduces a
term related to the extra force in the Boltzmann equation,
which depends on the matter Lagrangian density. We
can further consider the mass-shell conditions p0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00m2 þ ðg0ig0j − g00Þgijpipj

q
, p0 ¼ ðp0 − g0ipiÞg00,

i.e., pμpμ ¼ −m2. Taking into consideration the previous
relation, one gets
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pμ ∂f
∂xμ − ðΓi

μνpμpν −m2fiÞ ∂f∂pi ¼
�∂f
∂τ�

�
coll:

: ð11Þ

In fact, we call the Liouville operator to the operator
acting on distribution function on the left-hand side of the
previous equation, i.e., L½f�≔df=dt¼½pμ ∂

∂xμ−ðΓi
μνpμpν−

m2fiÞ ∂
∂pi�f. The right-hand side (rhs) of the previous

equation may, in general, be very hard to compute. We
shall, for simplicity, consider only binary collisions. This is
a well-motivated approximation since we are studying
collisions in very short periods of time, during which
one-to-one collisions are the dominant type. Furthermore,
these are usually accompanied by the following
assumptions:

(i) The fluid under considerations is diluted enough.
(ii) The particles (molecules) have no internal structure,

ensuring the elasticity of the collisions.
(iii) The external forces do not affect the collisions; thus,

collisions are local and instantaneous.
(iv) Any previous correlations between velocities of

the particles prior to the collision are neglected,
an assumption known as the molecular chaos hy-
pothesis (Stosszahlansatz), which ensures the irre-
versibility of the kinetic equation.

Bearing this in mind, the collisional term of the rhs of the
Boltzmann equation can be written, in general, as [26]

�∂f
∂t

�
coll:

¼
Z

Wðp0 þ p0
2 → pþ p2Þðf0f02 − ff2Þ

× πðp0Þπðp0
2Þπðp2Þ; ð12Þ

where πðp�Þ is the invariant volume in the momentum
space, and Wðp0 þ p0

2 → pþ p2Þ is the transition proba-
bility, which obeys the following relations:

Wðp0 þ p0
2 → pþ p2Þ ¼ Wðp0

2 þ p0 → p2 þ pÞ
Wðp0 þ p0

2 → pþ p2Þ ¼ Wðp2 þ p → p0
2 þ p0Þ: ð13Þ

The first symmetry is trivial, while the second exhibits
the principle of detailed balance, i.e., the microscopic
reversibility [27].
In particular, we can introduce the differential cross

section, σ, and the invariant flux, F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððpμ

2pμÞ2 −m4Þ
q

,

of the collisions in such a way that the collision integral can
be rewritten as

�∂f
∂t

�
coll:

¼
Z

ðf02f0 − f2fÞFσdΩ
ffiffiffiffiffiffi
−g

p d3p2

ðp2Þ0
; ð14Þ

where dΩ the infinitesimal solid angle for the binary
collisions.

IV. CONSERVATION LAWS

Let Ψðx; pÞ be a smooth function defined on the phase
space for each particle such that for binary collisions,

Ψðx; p0
2Þ þ Ψðx; p0Þ −Ψðx; pÞ − Ψðx; p2Þ ¼ 0: ð15Þ

Such a function is called a collisional invariant. It can be
shown that the most general collisional invariant is of the
form [26,28,29]

Ψðx; pÞ ¼ βμðxÞpμ þ α; ð16Þ

where α is a linear combination of scalar quantities
conserved in the collisions.
Taking this into consideration, let us multiply both sides

of the Boltzmann equation by Ψ and integrate over the
volume element πðpÞ. We are left with

Z
Ψðx; pÞL½f�πðpÞ

¼ −
1

4

Z
Wðp0 þ p0

2 → pþ p2Þ½Ψðx; p0Þ

þ Ψðx; p0
2Þ − Ψðx; pÞ −Ψðx; p2Þ�

× ½f0f02 − ff2�πðp0
2Þπðp0Þπðp2ÞπðpÞ; ð17Þ

where we have used the symmetries of the transition
probability scalar, Eq. (13).
It is straightforward to check that collisional invariants

leave the rhs of the Boltzmann equation identically null.
Some important physical quantities can be written as

moments of the distribution function. In particular, we refer

A ≔
Z

fπ; ð18Þ

Nμ ≔
Z

pμfπ; ð19Þ

Tμν ≔
Z

pμpνfπ; ð20Þ

where the first quantity is a real valued function of the
position which is equal to 1 if we require a normalized
homogeneous distribution function, the second corre-
sponds to the flux density of particles which crosses a
given three-surface element, and the last one matches the
definition of the energy-momentum tensor.
In fact, one can take the covariant derivative of the

previous quantities, finding that the first trivially vanishes.
For the second and third quantities, it can be shown that
they lead to (likewise to the cases of Refs. [25,26])

∇μNμ ¼
Z

L½f�π; ð21Þ
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∇μTμν ¼
Z

L½f�pνπ þm2fνA: ð22Þ

Since the first equality above corresponds to the colli-
sional invariant scalar Ψ ¼ 1; hence, the rhs of Eq. (17)
vanishes. It follows that ∇μNμ ¼ 0 and the flux density of
particles is covariantly conserved. As for the divergence of
the energy-momentum tensor, and from the identification
Ψ → Ψμ ¼ pμ into Eq. (17), we get

∇μTμν ¼ m2fνA: ð23Þ

Expanding the previous equation, and noting that
∇νTμν ¼ ðρþ pÞfμ þ∇νphμν, we obtain

A ¼ ρþ p
m2

ðL − pÞ∇ν ln f2ðRÞ
ðL − pÞ∇ν ln f2ðRÞ −∇νp

; ð24Þ

which in the nonrelativistic limit gives A ∼ ρ=m2. We
should note that A is not just a normalization function
as it is defined as the integral of the distribution function
over the momentum space and not over the whole
phase space.
A physical quantity of great importance in kinetic theory

is the entropy flux vector field [26],

Sμ ≔ −
Z

f logðξfÞpμπ; ð25Þ

where ξ ¼ h3=r, with h being the Planck constant and r
the spin degeneracy of each particle [25]. By taking the
divergence of the entropy flux vector and by the same token
as in Eq. (21), we get

∇μSμ ¼ −
Z

L½f logðξfÞ�pμπ; ð26Þ

which can be rewritten as

∇μSμ ¼ −
Z

ð1þ logðξfÞÞL½f�pμπ; ð27Þ

which in its turn can be compared with Eq. (17), resulting in
the identification Ψ ¼ 1þ logðξfÞ. It is then straightfor-
ward to get

∇μSμ ¼
1

4

Z
Wðpþ p2 → p0 þ p0

2Þ½logðff2Þ − logðf0f02Þ�

× ½ff2 − f0f02�πðpÞπðp2Þπðp0Þπðp0
2Þ: ð28Þ

Since Wðpþ p2 → p0 þ p0
2Þ is positive, the distribution

functions are assumed to be strictly positive, together with
the inequality

ðlog y − log xÞðy − xÞ ≥ 0; ð29Þ

which holds for ∀ x; y > 0, we get that

∇μSμ ≥ 0: ð30Þ

This is a quite relevant result as it expresses that entropy
of a system in the presence of a nonminimal coupling is a
nondecreasing vector function, since in these theories the
Liouville operator has only an extra force term that does not
change through collisional processes. In other words, the
Boltzmann H-theorem is preserved in these theories as in
general relativity.
We should however note that there is also the Gibbs H-

theorem which relies on the full distribution function in
contrast with the one-particle distribution function of the
Boltzmann H-theorem [30]. They differ by very small
corrections unless mixtures of different particle species are
present, which is not the present case of this work.
Therefore, we expect they both hold for this alternative
gravity model.
Furthermore, throughout this work, we have been

computing quantities in a frame which resembles the
Jordan frame. In fact, it is well known that the Einstein
and Jordan frames are not equivalent (see, e.g., [31,32]). It
is suggested that a more natural frame is the Einstein frame,
where the weak energy condition is not violated and there is
no IR catastrophe for gravitational waves. Moreover,
differences in the Boltzmann equation may appear when
resorting to scalar-tensor gravity theories in the Einstein
frame [33], and this approach leads to a modification on the
virial theorem in fðRÞ theories given the identification of
the mathematical scalar field with a matter scalar field [34].
In the case of the nonminimal matter-curvature coupling
model, it was found an equivalence with a scalar-tensor
theory with two scalars, being one of them dynamic and the
other nondynamic [35]. However, as shown in Ref. [36],
that it is possible to implement the energy conditions as
well as to ensure the Dolgov-Kawasaki stability condition
in the Jordan frame. Working on the Jordan frame is also
advantageous as, in the Einstein frame, the scalar fields
arising from the conformal transformation can be mis-
identified with matter fields which are crucial to properly
build the collisional operator in the Boltzmann equation.
For sure, we cannot exclude the possibility of pursuing

our approach in another frame which might have other
theoretical advantages; however, we think that this is
beyond the scope of our paper as our approach has
already all elements for a suitable identification of the
relevant degrees of freedom of the problem and for a
consistent approach for the Boltzmann’s equation and for
the H-theorem.
Given these results for the nonminimally coupled

Boltzmann equation, it is now relevant to study some
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cosmological implications, such as for a homogeneous and
isotropic universe.

V. HOMOGENEOUS AND ISOTROPIC UNIVERSE

In an isotropic and homogeneous universe, the metric is
the Robertson-Walker one,

ds2 ¼ −dt2 þ a2ðtÞdx⃗2; ð31Þ

where aðtÞ is the scale factor.
Therefore, the time-time component of the field equa-

tions, Eq. (2), for a perfect fluid, gives a modified
Friedmann equation [37],

6H2 ¼ 1

Θ

�
f2ðRÞρ

κ
− 6H∂tΘþ ΘR − f1ðRÞ

�
; ð32Þ

where Θ ≔ F1ðRÞ þ 1
κF2ðRÞL, H ¼ _a=a is the Hubble

parameter, and the space-space components lead to a
Raychaudhury equation [37],

−Θð2 _H þ 3H2Þ ¼ f2ðRÞpþ 1

2
ðf1ðRÞ − ΘRÞ: ð33Þ

As for the Boltzmann equation, we note that the extra
force term vanishes fi ∼ −∂νΦchiν ¼ −a2∂iΦc ∼ ∂iR ¼ 0
in the comoving frame, uμ ¼ ð1; 0; 0; 0Þ. Thus, and taking
into account the on-shell mass condition, pμpμ ¼ −m2, the
Boltzmann equation reads

p0
∂f
∂x0 − 2Hp0pi ∂f

∂pi ¼
Z

ðf02f0 − f2fÞFσdΩ
ffiffiffiffiffiffi
−g

p d3p2

ðp2Þ0
:

ð34Þ

This is formally identical to the Boltzmann equation for a
homogeneous and isotropic universe in general relativity,
except by the fact that the scale factor evolution is now
given by the modified Friedmann equation, Eq. (32).
In order to solve the previous equation for the distri-

bution function, we need to simplify its right-hand side.
One way to do that is to assume the Anderson and
Witting model together with the relaxation time expansion

]28,38 ],

C½f�≡
�∂f
∂t

�
coll:

¼ −
1

τ
ðf − fð0ÞÞ; ð35Þ

where τ is the characteristic time which is of order of the
mean free time and fð0Þ is the equilibrium Maxwell-Jüttner
distribution function,

fð0Þ ≔
n

4πm2kBTK2ðm=kBTÞ
exp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ a2jp⃗j

p
kBT

�
; ð36Þ

given in terms of the temperature T, particle number
density n, Boltzmann constant kB, and the modified
Bessel function of the second kind KnðxÞ ¼Rþ∞
0 e−x cosh y coshðnyÞdy.
This Anderson-Witting model is a generalization of the

relativistic Marle [39–41] and the nonrelativistic BGK
(Bhatnagar, Gross, and Krook) [42] models.
Using the Chapman-Enskog method, we search for a

solution of this Boltzmann equation of the form

f ¼ fð0Þð1þ ϕÞ; ð37Þ

where ϕmeasures the deviation from equilibrium. Thus, we
obtain [28]

f ¼
Xþ∞

l¼0

�
−τ

� ∂
∂x0 − 2Hpi ∂

∂pi

��
l
fð0Þ: ð38Þ

However, this series does not converge in general, unless
the indexed expression has a norm less than unity.
Considering the asymptotic τ → 0, we can find [28]

f≈fð0Þ
�
1−τ

�
_n
n
þ
�
1−ζ

K3

K2

þ 1

kBT
p0

�
_T
T
þ 1

kBT
H
jp⃗j2
p0

��
;

ð39Þ

where ζ ≔ m=kBT. Although this solution could be seen as
formally equivalent to general relativity, this is not com-
pletely true. In fact, as in GR, the particle number density is
conserved; hence, _nþ 3Hn ¼ 0. However, the time evo-
lution of the temperature is not trivial as it relies on the
nonconservation of the energy-momentum tensor and
explicitly depends on the matter Lagrangian choice and
on the form of the nonminimal coupling function, f2ðRÞ.
In fact, from the fundamental thermodynamic relation, we
obtain T ¼ ð∂U∂SÞV;N , i.e., temperature is expressed as the
rate of change of internal energy with respect to entropy,
provided that both volume, V, and number of particles, N,
are held constant. Hence, we need to carefully study the
thermodynamic processes which a perfect fluid could
undergo. We point out, for instance, that it was shown
that, in the context of gravitational baryogenesis and
resorting to the first law of thermodynamics together with
the modified field equations, the relative time change of
entropy can be written as _S=S∼ðF2ðRÞ=f2ðRÞÞ _R≪H [43].
Furthermore, we need to express the equation of state
parameter, w ¼ p=ρ, which renders different solutions. In
fact, in an expanding universe, relativistic matter does not
feel the nonminimal coupling effect, hence ρrel ∼ a−4; how-
ever, radiation has the behavior ρr∼a−4f2ðRÞ−4=3 [44].
Also, nonrelativistic matter fields evolve differently than
their counterpart in GR [44]. Therefore, we can have very
different solutions for the distribution function in theories
with a nonminimal matter-curvature coupling.
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VI. GRAVOTHERMAL CATASTROPHE

From the moments of the distribution function, we can
derive some macroscopic equations, such as the Navier-
Stokes one for fluids, and the virial equation [1] and its
cosmic version—the Layzer-Irvine equation. In fact, the
latter was derived for the modified gravity model of Eq. (1)
in Ref. [21] from the metric field equations. This process is
preferred since it begins with the full nonlinear behavior of
the theory, in comparison with the usual one from the weak
field regime to find the virial theorem. It was found that
there is a deviation from the usual virial theorem given the
presence of an extra potential energy term, UNMC, in the
equation which could explain the dark matter behavior on
clusters of galaxies [21].
In fact, heat and matter can be transferred out of a

virialized and gravitationally bound system leading to a
gravothermal collapse. Therefore, in the presence of
a nonminimal coupling between matter and curvature,
the virial equation reads UΦ þ UNMC ¼ −2K, where UΦ
is the Newtonian potential energy and K is the kinetic
energy. Therefore, the total energy of the system is
E ¼ K þ UΦ þUNMC ¼ −K < 0, and hence the specific
heat of the system is negative, cV ¼ 1

m dE=dT. This implies
that the more energy is added to the system, the lesser the
kinetic energy, and consequently, the temperature, i.e.,
the system becomes less strongly gravitationally bound.
A relevant situation arises when heat and mass both flow
radially outward in a halo with negative radial temperature
gradient, and the outer halo region has a specific heat
higher than the inner region which keeps on contracting and
increasing the temperature [45,46]. This process is known
as gravothermal catastrophe and its characteristic time is of
the order of the relaxation time of the Boltzmann equation.
In what concerns the nonminimal matter-curvature

coupling model, this process is not avoidable since the
specific heat for a gravitationally bound system is always

negative, which stems from a modification on the potential
energy of the system in the virial theorem. However, this
might not be the case for other modified gravity models,
where different modifications on the virial theorem equa-
tion may lead to a positive specific heat.

VII. CONCLUSIONS

In this work, we have derived the Boltzmann equation in
the context of a nonminimal matter-curvature alternative
gravity model. We have shown that there is an extra term
which arises from geodesic deviation force. As far as the
conservation laws built from the distribution function in
these theories, we find that the flux density of particles is
covariantly conserved, and, in opposition, the energy-
momentum tensor is not. This yields a condition on the
normalization of a homogeneous distribution function. In
addition, the entropy vector flux is a nondecreasing
function of the spacetime coordinates as in general rela-
tivity, which implies that the Boltzmann H-theorem is still
preserved.
When considering a homogeneous and isotropic uni-

verse, we find that the distribution function is, at least
formally, equivalent to the GR counterpart, except from the
fact that some quantities do not follow the GR’s behavior,
as the effects of the nonminimal coupling appear on the
radiation density evolution and on the matter Lagrangian
choice, for instance. This implies that different cases, which
were degenerated in GR, no longer yield the same solution
for the distribution function.
Furthermore, in what concerns the negative specific heat

in gravitationally bound systems, we find that the non-
minimal coupling model does not alleviate the problem,
since these theories affect the virial equation by introducing
a potential energy term. However, this may not be case for
other modified gravity theories.

[1] J. Binney and S. Tremaine, Galactic Dynamics (Princeton
University Press, Oxford, 1987).

[2] D. R. Nicholson, Introduction to Plasma Theory (John
Wiley & Sons, New York, 1983).

[3] N. Pottier, Nonequilibrium Statistical Physics (Oxford
University Press Inc., New York, 2010).

[4] E. W. Kolb and M. S. Turner, The Early Universe (Addison-
Wesley, Reading, MA, 1990).

[5] F. Jüttner, Das Maxwellsche Gesetz der Geschwindigkeits-
verteilung in der Relativtheorie, Ann. Phys. (Berlin) 339,
856 (1911).

[6] F. Jüttner, Die relativistische Quantentheorie des idealen
Gases, Z. Phys. 47, 542 (1928).

[7] S. Weinberg, Cosmology (Oxford University Press,
New York, 2008), ISBN13:978-0-19-852682-7.

[8] C. M.Will, The confrontation between general relativity and
experiment, Living Rev. Relativity 17, 4 (2014).

[9] O. Bertolami and J. Páramos, The experimental status of
special and general relativity, in Springer Handbook of
Spacetime, edited by A. Ashtekar and V. Petkov, Springer
Handbooks (Springer, Berlin, Heidelberg, 2014), https://doi
.org/10.1007/978-3-642-41992-8_22.

[10] O. Bertolami, The cosmological constant problem: A user’s
guide, Int. J. Mod. Phys. D 18, 2303 (2009).

[11] O. Bertolami, What if … general relativity is not
the theory?, Mem. Soc. Astron. Ital. 83, 1081 (2012),

ORFEU BERTOLAMI and CLÁUDIO GOMES PHYS. REV. D 102, 084051 (2020)

084051-6

https://doi.org/10.1002/andp.19113390503
https://doi.org/10.1002/andp.19113390503
https://doi.org/10.1007/BF01340339
https://doi.org/10.12942/lrr-2014-4
https://doi.org/10.1007/978-3-642-41992-8_22
https://doi.org/10.1007/978-3-642-41992-8_22
https://doi.org/10.1007/978-3-642-41992-8_22
https://doi.org/10.1142/S0218271809015862


http://sait.oat.ts.astro.it/MSAIt830312/PDF/2012MmSAI.
.83.1081B.pdf.

[12] S. Capozziello, V. F. Cardone, and A. Troisi, Dark energy
and dark matter as curvature effects, J. Cosmol. Astropart.
Phys. 08 (2006) 001.

[13] T. P. Sotiriou and V. Faraoni, f(R) theories of gravity, Rev.
Mod. Phys. 82, 451 (2010).

[14] A. De Felice and S. Tsujikawa, f(R) theories, Living Rev.
Relativity 13, 3 (2010).

[15] O. Bertolami, C. G. Böhmer, T. Harko, and F. S. N. Lobo,
Extra force in f(R) modified theories of gravity, Phys. Rev.
D 75, 104016 (2007).

[16] O. Bertolami and J. Páramos, Mimicking dark matter
through a non-minimal gravitational coupling with matter,
J. Cosmol. Astropart. Phys. 03 (2010) 009.

[17] O. Bertolami, P. Frazão, and J. Páramos, Mimicking dark
matter in galaxy clusters through a non-minimal gravitational
coupling with matter, Phys. Rev. D 86, 044034 (2012).

[18] O. Bertolami, P. Frazão, and J. Páramos, Accelerated
expansion from a non-minimal gravitational coupling to
matter, Phys. Rev. D 81, 104046 (2010).

[19] C. Gomes, J. G. Rosa, and O. Bertolami, Inflation in non-
minimal matter-curvature coupling theories, J. Cosmol.
Astropart. Phys. 06 (2017) 021.

[20] O. Bertolami, C. Gomes, and F. S. N. Lobo, Gravitational
waves in theories with a non-minimal curvature-matter
coupling, Eur. Phys. J. C 78, 303 (2018).

[21] O. Bertolami and C. Gomes, The Layzer-Irvine equation in
theories with non-minimal coupling between matter and
curvature, J. Cosmol. Astropart. Phys. 09 (2014) 010.

[22] J. D. Brown, Action functionals for relativistic perfect
fluids, Classical Quantum Gravity 10, 1579 (1993).

[23] O. Bertolami, F. S. N. Lobo, and J. Páramos, Nonminimal
coupling of perfect fluids to curvature, Phys. Rev. D 78,
064036 (2008).

[24] O. Bertolami and A. Martins, On the dynamics of perfect
fluids in non-minimally coupled gravity, Phys. Rev. D 85,
024012 (2012).

[25] J. M. Stewart, Non-equilibrium Relativistic Kinetic Theory
(Springer, Berlin, Heidelberg, Springer-Verlag, 1971).

[26] O. Sarbach and T. Zannias, Relativistic kinetic theory: An
introduction, AIP Conf. Proc. 1548, 134 (2013).

[27] W. Israel, Relativistic kinetic theory of a simple gas, J. Math.
Phys. (N.Y.) 4, 1163 (1963).

[28] G. M. Kremer, The Boltzmann equation in special and
general relativity, AIP Conf. Proc. 1501, 160 (2012).

[29] C. Cercignani and G.M. Kremer, The Relativistic Boltz-
mann Equation: Theory and Applications (Birkhäusser
Verlag, Basel-Boston-Berlin, 2002).

[30] E. T. Jaynes, Gibbs vs Boltzmann entropies, Am. J. Phys.
33, 391 (1965).

[31] V Faraoni and S Nadeau, (Pseudo)issue of the conformal
frame revisited, Phys. Rev. D 75, 023501 (2007).

[32] V. Faraoni and E. Gunzig, Einstein frame or Jordan frame?,
Int. J. Theor. Phys. 38, 217 (1999).

[33] R. Catena, M. Pietroni, and L. Scarabello, Einstein and
Jordan frames reconciled: A frame-invariant approach
to scalar-tensor cosmology, Phys. Rev. D 76, 084039
(2007).

[34] C. G. Boehmer, T. Harko, and F. S. N. Lobo, Generalized
virial theorem in f(R) gravity, J. Cosmol. Astropart. Phys. 03
(2008) 024.

[35] O. Bertolami and J. Páramos, Viability of nonminimally
coupled f(R) gravity, Gen. Relativ. Gravit. 48, 34 (2016).

[36] O. Bertolami and A. Sequeira, Energy conditions and
stability in f(R) theories of gravity with nonminimal
coupling to matter, Phys. Rev. D 79, 104010 (2009).

[37] O. Bertolami and J. Páramos, Modified Friedmann equation
from nonminimally coupled theories of gravity, Phys. Rev.
D 89, 044012 (2014).

[38] J. L. Anderson and H. R. Witting, A relativistic relaxation-
timemodel for the Boltzmann equation, Physica (Amsterdam)
74, 466 (1974).
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[42] P. L. Bhatnagar, E. P. Gross, and M. Krook, A model for
collision processes in gases. I. Small amplitude processes in
charged and neutral one-component systems, Phys. Rev. 94,
511 (1954).

[43] M. P. L. P. Ramos and J. Páramos, Baryogenesis in non-
minimally coupled f(R) theories, Phys. Rev. D 96, 104024
(2017).

[44] O. Bertolami, P. Frazáo, and J. Páramos, Reheating via a
generalized nonminimal coupling of curvature to matter,
Phys. Rev. D 83, 044010 (2011).

[45] D. Lynden-Bell and R. Wood, The gravo-thermal catastro-
phe in isothermal spheres and the onset of red-giant
structure for stellar systems, Mon. Not. R. Astron. Soc.
138, 495 (1968).

[46] J. Choquette, J. M. Cline, and J.M. Cornell, Early formation
of supermassive black holes via dark matter self-interactions,
J. Cosmol. Astropart. Phys. 07 (2019) 036.

NONMINIMALLY COUPLED BOLTZMANN EQUATION: … PHYS. REV. D 102, 084051 (2020)

084051-7

http://sait.oat.ts.astro.it/MSAIt830312/PDF/2012MmSAI..83.1081B.pdf
http://sait.oat.ts.astro.it/MSAIt830312/PDF/2012MmSAI..83.1081B.pdf
http://sait.oat.ts.astro.it/MSAIt830312/PDF/2012MmSAI..83.1081B.pdf
http://sait.oat.ts.astro.it/MSAIt830312/PDF/2012MmSAI..83.1081B.pdf
http://sait.oat.ts.astro.it/MSAIt830312/PDF/2012MmSAI..83.1081B.pdf
http://sait.oat.ts.astro.it/MSAIt830312/PDF/2012MmSAI..83.1081B.pdf
http://sait.oat.ts.astro.it/MSAIt830312/PDF/2012MmSAI..83.1081B.pdf
http://sait.oat.ts.astro.it/MSAIt830312/PDF/2012MmSAI..83.1081B.pdf
http://sait.oat.ts.astro.it/MSAIt830312/PDF/2012MmSAI..83.1081B.pdf
https://doi.org/10.1088/1475-7516/2006/08/001
https://doi.org/10.1088/1475-7516/2006/08/001
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.12942/lrr-2010-3
https://doi.org/10.12942/lrr-2010-3
https://doi.org/10.1103/PhysRevD.75.104016
https://doi.org/10.1103/PhysRevD.75.104016
https://doi.org/10.1088/1475-7516/2010/03/009
https://doi.org/10.1103/PhysRevD.86.044034
https://doi.org/10.1103/PhysRevD.81.104046
https://doi.org/10.1088/1475-7516/2017/06/021
https://doi.org/10.1088/1475-7516/2017/06/021
https://doi.org/10.1140/epjc/s10052-018-5781-5
https://doi.org/10.1088/1475-7516/2014/09/010
https://doi.org/10.1088/0264-9381/10/8/017
https://doi.org/10.1103/PhysRevD.78.064036
https://doi.org/10.1103/PhysRevD.78.064036
https://doi.org/10.1103/PhysRevD.85.024012
https://doi.org/10.1103/PhysRevD.85.024012
https://doi.org/10.1063/1.4817035
https://doi.org/10.1063/1.1704047
https://doi.org/10.1063/1.1704047
https://doi.org/10.1063/1.4769495
https://doi.org/10.1119/1.1971557
https://doi.org/10.1119/1.1971557
https://doi.org/10.1103/PhysRevD.75.023501
https://doi.org/10.1023/A:1026645510351
https://doi.org/10.1103/PhysRevD.76.084039
https://doi.org/10.1103/PhysRevD.76.084039
https://doi.org/10.1088/1475-7516/2008/03/024
https://doi.org/10.1088/1475-7516/2008/03/024
https://doi.org/10.1007/s10714-015-2002-5
https://doi.org/10.1103/PhysRevD.79.104010
https://doi.org/10.1103/PhysRevD.89.044012
https://doi.org/10.1103/PhysRevD.89.044012
https://doi.org/10.1016/0031-8914(74)90355-3
https://doi.org/10.1016/0031-8914(74)90355-3
https://doi.org/10.1103/PhysRev.94.511
https://doi.org/10.1103/PhysRev.94.511
https://doi.org/10.1103/PhysRevD.96.104024
https://doi.org/10.1103/PhysRevD.96.104024
https://doi.org/10.1103/PhysRevD.83.044010
https://doi.org/10.1093/mnras/138.4.495
https://doi.org/10.1093/mnras/138.4.495
https://doi.org/10.1088/1475-7516/2019/07/036

