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The critical formation of low-mass black holes is a historical cornerstone of numerical general relativity,
with important implications in cosmology for censorship conjectures and the production of primordial
black holes (PBHs). Concurrent with the surge in black hole observational physics in recent years has been
an increased interest in these subjects. Critical formation is often suggested as a mechanism for PBH
production, but it is possible that the existence of different types of critical processes potentially
accompanying more realistic scenarios may affect this conclusion more than has been considered thus far.
This paper numerically investigates, as a toy model, the interplay of multiple near-critical fields in the
collapse of spherically symmetric scalar fields. It is found that a combination of type I and type II near-
critical fields results in a kind of competition between their respective critical evolutions. A heuristic
explanation for this phenomenon is proposed employing ideas from the theory of dynamical systems.
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I. INTRODUCTION

Critical phenomena in black hole formation is one of the
classic numerical results of general relativity in the strongly
interacting regime, dating back to Choptuik’s [1] seminal
paper on self-gravitating massless scalar fields. Similar
critical phenomena without a mass gap have been discov-
ered for a variety of different matter configurations, such as
axially symmetric gravitational waves [2] and Yang-Mills
fields [3]. Critical phenomena with a mass gap have also
been discovered, for example in the study of massive scalar
fields [4], and other “hair,” such as charge and angular
momentum, exhibit critical behavior as well [5–8]. A larger
collection of results may be found gathered in a review by
Gundlach [9]. Generally speaking, critical phenomena is a
fine way of illustrating the richness of behavior accom-
panying the nonlinear nature of Einstein’s equations.
Most studies of black hole critical phenomena, with

recent exceptions [10,11], have considered a single type of
constituent matter, and focus on initial data of that specific
type belonging to various single-parameter families. This
works well enough for illustrating criticality and quasiu-
niversality, as the mass (or whatever quantity is of interest)
depends on a difference of the parameter, while universality
is suggested by the similarity of behavior for a variety of
parametrized initial data. Conclusions from such inves-
tigations have been considered sufficient for most appli-
cations of the theory: cosmic censorship conjectures are
adequately probed by what are essentially toy models
[12,13], whereas mechanisms for producing primordial

black holes are modeled upon the density fluctuations of
dominating matter sources [14–16].
What has been given less consideration is the implica-

tions that more realistic mixed matter configurations could
have for criticality. Loosely speaking, critical phenomena
in general relativity are the manifestation of the existence of
different basins of attraction in the phase space of solutions
to Einstein’s equations, all associated with critical solutions
of varying codimension [17]. Different types of criticality,
however, may be affiliated with different critical solutions:
the evolution of massless scalar fields is influenced by the
existence a self-similar spacetime [18,19], whereas massive
scalar fields exhibiting a critical mass gap are associated
with metastable soliton stars [4]. From previous numerical
studies [4] there would seem to exist interactions between
the effects of different critical spacetimes: for critical
massive scalar fields, a mass gap emerges and criticality
shifts from type II to type I when the characteristic length
scale of the initial field becomes sufficiently large. It is
conceivable that the time evolution of more general
composite configurations may be significantly affected by
several critical solutions.
We test this idea in this paper. Considering spherically

symmetric matter configurations that feature both a mass-
less and a massive scalar field, we show using a two-
parameter sample of initial conditions not only that three
different phases of evolution behavior (corresponding to
two collapse timescales and asymptotic dispersal) are
displayed for this multifield content, but that competition
between the influence of the critical solutions associated to
the two individual fields affects the critical evolution of
these spacetimes. Our results are similar in nature to recent,
earlier work by Gundlach, Baumgarte, and Hilditch [10],
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resembling an alternative scenario they advance. An
intriguing particularity highlighted by our results concern-
ing the inhibiting effect of multicritical configurations,
however, suggests that a more nuanced approach may be
necessary when considering the application of critical
phenomena to more realistic scenarios.

II. METHODS

Throughout we use Einstein summation convention and
set c and 8πG to unity for convenience.
We employ the polar-areal gauge for our metric. The toy

model we use for illustrating our conceptual idea consists
of a pair of spherically symmetric scalar fields minimally
coupled to gravity. One field is massless, exhibiting type II
critical collapse when taken alone, as in Choptuik’s original
paper [1]. The other field is massive, with the mass,
characteristic length scale, and initial conditions taken
such that type I critical collapse would be exhibited if it
were evolved on its own [4].

A. Matter evolution

At the most general level, the Lagrangian for a collection
of minimally coupled scalar fields is

L ¼ 1

2
▽μΦi▽

μΦi − VðΦiÞ: ð1Þ

With two fields, one massless, the other massive, and no
other potential,

L ¼ 1

2
▽μΦ1▽

μΦ1 þ
1

2
▽μΦ2▽

μΦ2 −
1

2
m2

1Φ2
1: ð2Þ

A quick application of Euler-Lagrange yields the naive
equations of motion:

▽μ▽
μΦ1 þm2

1Φ1 ¼ 0;

▽μ▽
μΦ2 ¼ 0: ð3Þ

With our choice of metric,

gμν ¼ diagð−α2; a2; r2; r2 sin2ðθÞÞ; ð4Þ

the Laplacian may be readily expanded:

▽μ▽
μΦj ¼

1

αa
∂t

�
a
α
∂tΦj

�
−

1

αar2
∂r

�
αr2

a
∂rΦj

�
: ð5Þ

Defining the following auxiliary quantities,

Πi ≡ a
α
∂tΦi; Ψi ≡ ∂rΦi; ð6Þ

the equations (3) split into three pairs:

∂tΦi ¼
α

a
Πi i ¼ 1; 2;

∂tΨi ¼ ∂r

�
α

a
Πi

�
i ¼ 1; 2;

∂tΠi ¼
1

r2
∂r

�
αr2

a
Ψi

�
− αam2

iΦi i ¼ 1; 2;

m2 ¼ 0; ð7Þ

On the numerical level, the usual accommodations (see
e.g., [20]) are made for the third equation above so as to
facilitate better behavior at the origin:

∂tΠi ¼ 3 ∂
∂r3

�
αr2
a Ψi

�
− αam2

iΦi i ¼ 1; 2;

m2 ¼ 0:
ð8Þ

Simple radiating (Sommerfeld) boundary conditions are
taken for the Ψis and Πis, while the Φis are evolved using
the same equation as above at the outer boundary.
Specifically, we use, as a fair approximation,

∂tΠi ¼ −Πi=r − ∂rΠi;

Ψi ¼ −Πi −Φi=r:

This is sufficient, but imperfect: for large t, apparent
convergence may eventually degrade, even for dispersing
initial conditions.

B. Metric evolution

In the polar areal gauge the surface area of a sphere is
held constant. This implies that the coefficient of the
spherical area element dΩ is unity and that all components
of intrinsic curvature Kij are zero except for the radial-
radial component [20]. With the shift β also chosen to be
trivial, the ADM evolution equations simplify greatly.

FIG. 1. Approximate order of convergence given as a ratio of
rms momentum constraint violation for 4000 and 8000 coarse
gridpoints over time for disperse scenario. Initial conditions are
somewhat close to criticality. Numerical boundary is at r ¼ 300.
The jump in convergence order at t ≈ 40 is a consequence of a
secondary grid activating.
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These choices mean that the only dynamical components of
the metric are the lapse α and the radial-radial component a,
which can be shown to satisfy the following equations:

∂ra ¼ a
2

�
1 − a2

r
þ r
2

X2
i¼1

ðΠ2
i þΨ2

i þm2
i a

2Φ2
i Þ
�
; ð9Þ

∂rα ¼ α

�∂ra
a

þ a2 − 1

r
−
m2

1r
2

a2Φ2
1

�
: ð10Þ

FIG. 2. Approximate order of convergence given as a ratio of
rms momentum constraint violation for 4000 and 8000 coarse
gridpoints over time for disperse scenario. Initial conditions are
somewhat close to criticality. Numerical boundary is at r ¼ 400.
The jump in convergence order at t ≈ 60 is a consequence of a
secondary grid activating.

FIG. 3. Approximate order of convergence given as a ratio of
rms momentum constraint violation for 4000 and 8000 coarse
gridpoints over time for collapse scenario. Numerical boundary is
at r ≈ 40. The apparent dip at t ≈ 3 is due to a secondary grid
appearing surrounding the origin. The black hole begins to form
around t ≈ 6. Initial conditions are somewhat close to criticality.

(a) (b)

(c) (d)

FIG. 4. Graphs ofΦ (top) and α (bottom) at the origin for Type I
and type II critical fields. The massive field, in the left column, is
supercritical, while the massless field on the right is subcritical.

(a)

(b)

(c)

FIG. 5. Graphs of the Φs and α at the origin for mixed field
content. The inset for (a), depicting the massive field, illustrates
how rapidly the field varies. No collapse occurs despite the initial
field content being a combination of the two fields whose time
evolutions are depicted individually in Fig. 4 supra.
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The first equation above arises from our demands upon
the intrinsic curvature, while the second ultimately derives
from the Hamiltonian constraint. The momentum con-
straint, meanwhile, yields the expression

0 ¼ M ≡ α
r
2
ðΠ1Ψ1 þ Π2Ψ2Þ − ∂ta; ð11Þ

whose numerical deviation from exact satisfaction we use
to monitor convergence. The time derivative in the last term
of the above expression is evaluated using sixth-order
centered finite difference, since fourth-order is expected.

C. Numerical technique

The basic underlying techniques we employ are standard,
and may be found in most textbooks on numerical relativity,
e.g., [20,21]. Starting from an initial configuration for the
scalar fields belonging to a two-parameter space, we
integrate equations (9) and (10) above using fourth-order
Runge-Kutta to obtain α and a, demanding that a ¼ 1 at the
origin. At the outer boundary we take α ¼ 1=a, after
obtaining a via a basic fourth-order extrapolation. Having
calculated these metric components, we evolve the field
components in time (also with fourth-order Runge-Kutta),
allowing the reintegration a and α at the next time step and
subsequent repetition. Sixth-order dissipation is employed
[22], without which spurious oscillations develop coincident
with the origin and the apparent horizon.
Our numerical grid extends radially to r ¼ 400. This

limit was chosen for the reason that it is considerably larger
than any (unit-equivalent) collapse time observed at the
parameter resolutions probed, without being ungainly. To
give an idea, the longest time to collapse in the jobs shown
in Fig. 8 is ≈150. It is by the apparent failure to collapse,
the decline in field amplitude, and the recovery of the lapse

to ≈1.0 at such large times that a given configuration may
be safely deduced to tend toward asymptotic flatness.
We use standard adaptive step size with Richardson

extrapolation and multigrid techniques [23] to greatly
reduce computation time near criticality, without which a
computationally prohibitive number of gridpoints would be
required for accurate evolution.

III. RESULTS

A. Convergence

We first provide evidence of the expected fourth-
order convergence, illustrated by the following figures.
Taking a field configuration asymptotically dispersing with

(a) (b)

(c) (d)

FIG. 6. Φ (top) and α (bottom) at the origin with hyperbolic
tangent initial data for the massless field. The massive field, in the
left column, is supercritical, while the massless field on the right
is subcritical.

(a)

(b)

(c)

FIG. 7. Graphs of Φ and α at the origin with hyperbolic tangent
initial data for the massless field. No collapse occurs despite the
initial field content being a combination of the two fields whose
time evolutions are depicted individually in Fig. 6 supra.
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numerical boundary at r ¼ 300, we plot in Fig. 1 the
behavior of the apparent order of convergence as measured
by momentum constraint violation using

error ratio ¼ ln

�
rmsðM4000Þ
rmsðM8000Þ

�
= lnð2Þ: ð12Þ

The behavior of the same setup, except with the numerical
boundary stretched to r ¼ 400, is plotted in Fig. 2. In this
second graph the apparent order of convergence does not
exhibit significant oscillations until the elapsed asymptotic
time matches the extended radial boundary—this is typical
behavior. Finally, the logarithmic error ratio for a configu-
ration whose initial conditions are such that collapse occurs
(with numerical boundary at the much smaller limit of
r ¼ 40) is shown in Fig. 3. The early decline in order in this
last case may be attributed to two causes: the simulta-
neously numerically and physically significant fact that the
polar areal gauge is not able to effectively evolve space-
times for long after black hole formation, and the purely
numerical fact that the differential equations for the metric
become increasingly stiff as the lapse collapses.

In all graphs the ordinate value, being a measure of the
apparent order observed, should be ≈4 or 5 (courtesy of
Richardson extrapolation and multigridding), provided the
scheme is stable and converging. The apparent satisfaction
illustrated for most of the time evolution suggests that our
algorithm exhibits convergence, and hence that the results
obtained are not numerical artifacts.

B. Scale interaction

The presence of two near-critical fields associated with
different critical spacetimes results in competition between
their respective evolution tendencies. We first consider
individually, as a concrete example, a massless field
configured to disperse and a massive field configured to
collapse, both with Gaussian-like initial data. We plot the
resulting behavior for the fields and lapse at the origin in
Fig. 4. Figure 5, meanwhile, shows depicts the behavior
of the two fields when they are simultaneously present,
coupled only by their mutual minimal coupling to gravity.
The apparent space-filling in many of these graphs, both for
the fields and the lapse, arises not from numerical error,
but rather is the result of rapid oscillations: this is shown by
the inset in the first image of Fig. 5. This is an expected

FIG. 8. Phase diagram of time evolution behavior for the multicritical field configuration considered in this paper. The axis variables
correspond to the parameters tuning the initial data for the scalar fields that ultimately determine whether collapse or dispersal occurs.
The circles indicate dispersal, the triangles denote type I collapse, and the diamonds are type II—this is determined by collapse times (or
the lack thereof). The scale is a measure of the mass of the black hole formed. If the initial data evolves to be asymptotically dispersing,
this is set to zero mass. The approximate critical quantities for the individual fields are 0.04347 and 0.0011116. The above picture
suggests that the competition between the two associated critical spacetimes considered here has an inhibiting effect on criticality.
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consequence of the extra timescale introduced by the mass
—the massless case notably does not feature such rapid
variation.
It is notable that no collapse occurs in Fig. 5, despite the

initial data having greater mass-energy content than either
near-critical constituting field taken alone. This surprising
result suggests that the two fields frustrate, rather than
enhance, their respective critical evolutions. In this strongly-
coupled system we are seeing nonlinear phenomena over-
ruling common intuition.
Nor is this oddity dependent upon any quirk of the initial

data, as should be expected given the underlying quasi-
universality. Taking the massless field to be a shifted
hyperbolic tangent function as its initial data yields similar
results. Figure 6 illustrates the behavior of each field alone,
while Fig. 7 shows the evolution of the two taken at once.
On a more comprehensive level, Fig. 8, depicts a kind of

phase diagram we have obtained for the asymptotic behav-
iors of our composite mulitcritical configurations. Each
individual point represents an independent simulation, with
the abscissa and ordinate values specifying the amplitudes
for the massive and massless initial fields respectively. The
marker shapes classify the spacetimes by apparent end
behavior, distinguishing dispersal (circles), type I collapse
(triangles), and type II collapse (diamonds). The method
utilized for this classification is crude, but sufficient:
collapses occurring < 40 time units are classified as type
II, collapses occurring thereafter up to t ¼ 400 time units are
classified as type I, and spacetimes showing no signs of
collapse up to t ¼ 400 are deemed asymptotically dispers-
ing. This cutoff time is well more than necessary, since the
greatest collapse times occur at ≈160 time units at the
parameter resolution probed. Meanwhile, the scale applied to
the points reflects the black hole mass at the time of collapse,
set to zero for dispersing spacetimes. Three distinct domains
emerge in both classification schemes, which are found to be
in complete agreement with each other.
The solid black horizontal and vertical lines in the same

figure denote the approximate critical parameter for two
fields if they were taken alone. Figure 8 shows, however,
that the three domains are not circumscribed by these lines
as might be predicted by intuition. The asymptotically
dispersing domain is raised slightly into the would-be type
II critical region, and also bent rather noticeably into what
might naively be taken to be the type I supercritical region.
Our specific scenario hence shows that multicritical con-
figurations can actually have an inhibiting influence on
black hole formation.

IV. DISCUSSION

In a sense, there are really only two domains in Fig. 8 if
the configurations are considered in the asymptotic time
limit: either a single black hole forms, or the fields disperse
and spacetime tends toward flatness asymptotically. The
spacetimes exhibiting early collapse feature black holes

that grow as time progresses, courtesy of the second still-
ingoing field. This would be seen if more delicate evolution
techniques were employed, albeit at far greater computa-
tional cost. Nevertheless, the vastly differing collapse
timescales seen, in conjunction with the encroachment of
the asymptotically dispersing region, suggest that different
dynamics—that is, different relevant modes—are respon-
sible for steering time evolution within these three domains.
The sharp boundaries between the apparent regions seen in
Fig. 8 are manifestations of the structure of the relevant
system of attractors at play in our scenario.
We suggest a simple dynamical systems picture for

understanding this effect. As is well known [17] for a
single field—and simply sketched in Fig. 9—critical
collapse in general relativity is the consequence of the
existence of an attractor of some codimension in the phase
space of solutions to Einstein's equations. A generic one-
parameter curve of initial data intersects the surface of
attraction at a single point corresponding to the critical
value. Initial data given by configurations with parameter
slightly greater or less than criticality will, after possibly
lengthy critical evolution, be repelled in opposite directions
from the surface of attraction toward different asymptotic
limits—either black hole formation, or dispersal to flat
space.
When two or more near-critical fields are in play at once,

however, and the two fields are configured individually to
have their evolutions determined by two different critical
surfaces, then a more complex picture could emerge in
which the two attracting surfaces are in a sense in
competition. As a consequence, the stronger attractors
(heuristically corresponding to the critical surface with
larger inverse timescale, corresponding to the smaller mass
solution—the massless type II critical solution in our case)
will “pull” initial data away from other attractors, possibly
resulting in dispersal to flat space for some configurations
despite being supercritical with respect to one of the
parameters. This effect is observed in our phase space
picture in Fig. 8 cohabitant with significant curvature of the
domain separation, which supports this interpretation.
What is surprising here is the dispersal of spacetimes
where a black hole would form but for the presence of a
competing field.
Our results should be compared with a recent, earlier

paper by Gundlach, Baumgarte, and Hilditch [10]. In their
paper, they consider the interaction of an SU(2) Yang-Mills
field with a massless scalar field, with the intent of
investigating what effects gravitational waves might have
on critical collapse. They find that the scalar field (acting as
a toy model of gravitational waves) in fact dominates on
smaller scales, and postulate the existence of a family of
“quasi-discretely self-similar” spacetimes with one unsta-
ble mode that controls the evolution of their mixed field
configuration. These postulated families interpolate
between the critical spacetimes of the individual field
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constituents, moving from pure Yang-Mills in the distant
past to pure scalar in the distant future.
Gundlach et al. explain this scenario from a dynamical

systems perspective, with one of the Yang-Mills critical
solution’s unstable modes directed toward the critical scalar
solution, which has but a single unstable mode. This
picture, illustrated in Fig. 12 of their paper, loosely
resembles the scenario we conjecture in Fig. 10 of ours.
However, they also briefly suggest the existence of an

alternative scenario for other mixed field configurations
(they give the example of two massless scalar fields) with
three critical spacetimes: one for each of the two constitu-
ent fields, each with a single unstable mode, and a third
with a pair directed toward the other critical solutions. Our
case more closely exhibits this latter scenario, with the third
hypothetical critical solution positioned along the frustrated
axis containing the type I and type II critical points in
Fig. 10. if such a spacetime exists, then our conjectured
scenario very much resembles Fig. 13 of their paper.
Precisely this is suggested by Fig. 8. Each boundary is
indicative of an unstable mode directed away from a
particular attractor of some codimension. There appears
to exist a kind of triple point, deviation from which along
two of the boundaries leads to what would appear to be the
type I and type II critical solutions. Movement along the
third boundary between the type I and type II regions,
meanwhile, is in fact only movement toward the generic
asymptotic black hole, as explained at the beginning of this
section. This last boundary is hence symptomatic not of
another family of critical solutions in addition to the triple
point, but rather the different modes dominating time
evolution on either side.
It is interesting, nevertheless, how different the time

scales of the “critical” evolution on either side are—we
interpret this to be a consequence of the vastly differing
criticality types investigated. It is possible that the alternate
scenario alluded to in Gundlach et al.’s paper containing
two massless scalar fields might show a similarly exag-
gerated difference in timescale if, for example, both fields
were taken to be initially thin shells, with one field
localized at a significantly greater radius. Such a configu-
ration, however, would likely not exhibit the same mass
behavior at the time of collapse which so readily illustrates
which modes dominate time evolution for a given initial
datum. Moreover, it seems likely that a configuration with
two massless scalar fields, or more generally two fields
associated to the same type of criticality, would rather
enhance criticality, decreasing the critical value along either
axis of the two parameter space (assuming both parameters
to be positively correlated with energy density). This, if
true, would contrast with our results, which exhibits instead
the inhibiting influence of multi-criticality.

V. CONCLUSION

We have found that the evolution of initial data con-
taining multiple fields tuned near-criticality with respect to
distinct critical surfaces exhibits a kind of competition
between the critical surfaces. On a higher level, this is
consistent with the results of a recent paper by Gundlach
et al. [10], though we employ different methods and
analyze a different scenario. This behavior is expected of
the Einstein equations if they are approached with the
philosophy of dynamical systems. Though this paper only
made use of two scalar fields, it is likely that this

FIG. 9. Simplified picture of the dynamics of critical phenom-
ena for a single field. The dashed trajectories denote the time
evolution of spacetimes with initial conditions on the para-
metrized curve. The arrows suggest the direction of the locally
dominant time evolution mode: a single attracting surface, here
represented as a point, is attractive (has arrows pointing to it) on a
submanifold of some codimension. In directions normal to this
submanifold it is repulsive (has arrows pointing away from it), so
a one-parameter line of initial data not lying exactly in this
submanifold may have points close to intersection with vastly
differing asymptotic behaviors.

FIG. 10. Simplified picture of the possible dynamics for
competitive critical phenomena. The dashed trajectories denote
the time evolution of spacetimes with initial conditions on the
parametrized surface, while the arrows suggest the direction of
locally dominant time evolution modes. Because the influence of
two different attractors is relevant, there is a kind of competition
between their effects as initial data is “pulled” toward both
surfaces, in a sense inhibiting the criticality of both. The pair of
dashed trajectories denote the time evolution of initial fields
having equal massless field parameters, but different massive
field parameters. This shows how attraction to a secondary
critical point may nontrivially inhibit a configuration’s tendency
to collapse.
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phenomenon generalizes for the case of more fields and
more varied matter content. Moreover, we have no reason
not to expect other dynamical systems phenomena, such as
bifurcation, to manifest in other regions of the parameter
space of initial conditions away from multipoints. Outside
the well-behaved region containing the triple point seen in
Fig. 8, we have found more complex behavior near the
boundary between type I collapse and dispersal—this is the
subject of ongoing study.
This interaction may have implications for cosmology in

the production of PBHs. The effect observed would seem to
indicate that combined matter configurations may in fact at

times inhibit critical formation, which necessitates a more
delicate treatment of fluctuations when applying critical
black hole phenomena to PBHs.
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