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Sixth post-Newtonian nonlocal-in-time dynamics of binary systems
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We complete our previous derivation, at the sixth post-Newtonian (6PN) accuracy, of the local-in-time
dynamics of a gravitationally interacting two-body system by giving two gauge-invariant characterizations
of its complementary nonlocal-in-time dynamics. On the one hand, we compute the nonlocal part of the
scattering angle for hyberboliclike motions; and, on the other hand, we compute the nonlocal part of the
averaged (Delaunay) Hamiltonian for ellipticlike motions. The former is computed as a large-angular-
momentum expansion (given here to next-to-next-to-leading order), while the latter is given as a small-
eccentricity expansion (given here to the tenth order). We note the appearance of (3) in the nonlocal part of
the scattering angle. The averaged Hamiltonian for ellipticlike motions then yields two more gauge-
invariant observables: the energy and the periastron precession as functions of orbital frequencies. We point
out the existence of a hidden simplicity in the mass-ratio dependence of the gravitational-wave energy loss
of a two-body system. We include a Supplemental Material that gives the explicit analytic form of a
scattering integral which we could only evaluate numerically.
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I. INTRODUCTION

A new strategy for deriving to higher post-Newtonian
(PN) accuracy the conservative dynamics of gravitationally
interacting two-body systems has been recently intro-
duced [1]. This strategy combines, in a new way, vari-
ous analytical approximation methods: post-Newtonian,
post-Minkowskian (PM), multipolar-post-Minkowskian,
effective-field-theory (EFT), gravitational self-force, effec-
tive one-body (EOB), and Delaunay averaging. In Ref. [2],
we have shown how to use this new methodology to
derive the two-body dynamics at the fifth post-Newtonian
(5PN), and fifth-and-a-half post-Newtonian (5.5PN) levels.
The latter results were then extended to the sixth post-
Newtonian (6PN) level in Ref. [3].

A basic aspect of our new method is to split the
Hamiltonian describing the dynamics of binary systems
into two separate parts: a local-in-time Hamiltonian, H ¢
(which starts at the Newtonian level), and a nonlocal-
in-time one, Hgocr (Which starts at the fourth post-
Newtonian, 4PN, level [4]). The total Hamiltonian,

tot _ gyloc.f loc,f
Htot — pyloc.f 4 pynonloc ,

(1.1)
is independent of the choice of the flexibility factor f(7).
The latter enters the nonlocal Hamiltonian via a multipli-
cative renormalization of the time scale A = f(t)Ar"

used as ultraviolet cutoff in the (external) nonlocal tail
action, so that one has
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Hnonloc.f(t) _ HﬂOnl(’C*h(z‘) + Af_hH(t), (1 '2)

where H™¢h(r) s (uniquely') defined by choosing
the harmonic-coordinate cutoff A" = 2r%, /¢ (where 1,
denotes the two-body radial separation in harmonic coor-
dinates), while

AV (1) = +2Gc—f;rGW(z) n(f()  (1.3)

is an additional contribution which involves the
gravitational-wave (GW) energy flux FSW(¢), and which
vanishes when f(7) = 1. An element of our new method is
to choose a flexibility factor f(¢) such that decomposition
(1.1) of the total Hamiltonian H™" into local and nonlocal
parts implies that the two corresponding parts of the total
scattering angle, say,

)(tot(E’ J) — )(loc.f (E, J) +Zn0nloc.f (E, J), (14)
separately satisfy the simple mass-ratio dependence proven
in Ref. [7] for . [Here, y is considered as a function of

the center-of-mass (c.m.) energy, E, and c.m. angular
momentum, J, of the binary system.]

'We work here at the second-post-Newtonian (2PN) fractional
accuracy, where harmonic coordinates are uniquely defined and
lead to a finite higher-order action [5,6].
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In our previous work [3] we computed the local-in-time
part of the Hamiltonian, H'**, at the 6PN accuracy. We
gave two gauge-invariant characterizations of H'°“. First,
we explicitly derived the 6PN-accurate contribution to the
scattering angle, say yist(E,J), coming from H'of,
Second, we computed the 6PN-accurate radial action,

1
INE, J) = 2—74 dRPg, (1.5)

T

along ellipticlike motions (with energy E and angular
momentum J) described by H°°',

The aim of the present work is to complete the results of
Ref. [3] by deriving the explicit 6PN-accurate values of the
complementary contributions, both to y and to I, coming
from the nonlocal-in-time dynamics, H™"°%f More pre-
cisely, we shall compute here both ypon*“!(E,J) and

Irem! (E, J), such that the quantities

KSN(ET) = e (B ) + 2™ (E.J) (1.6
and
I (EJ) = Igean (ELJ) + Tt ' (ELJ) - (1.7)

give the scattering angle (for hyperboliclike motions), and
the radial action (for ellipticlike motions) described by the
total Hamiltonian (1.1), considered at the 6PN accuracy.
Because of the nonlocal-in-time nature of H™"°f it seems
impossible to derive (for general motions) closed-form
expressions for yion®(E,J) and Iepe'(E, J). We will
compute them in the form of expansions in a relevant small
parameter. For hyperboliclike motions, the expansion
parameter is the inverse eccentricity i, or equivalently

the inverse impact parameter %, or the inverse angular
momentum } For ellipticlike motions, the expansion
parameter is the (unperturbed) squared eccentricity
elzoc(E, J), or, equivalently, the (unperturbed) radial action
I%¢(E, J). We will also give the 6PN-accurate value of the
energy, and of the periastron advance, along circular orbits.

Let us stress that both quantities Egs. (1.6) and (1.7) are
gauge-invariant characteristics of the (6PN-accurate) two-
body dynamics. In addition, the left-hand sides of
Egs. (1.6) and (1.7) are completely independent of the
choice of the flexibility factor f. It is only the decom-
position into the two parts (! versus " and I3y

versus Ihenoc’) which depends on the choice of f(z).
Finally, we will derive below the explicit form of the
constraints that must be satisfied by f(¢), so that the specific
separability condition (between local and nonocal) that we
assumed in our previous work [3] is satisfied. The gauge-
invariant content of the corresponding Hamiltonian con-
tribution Af"H will be explicitly displayed.

The possibility of characterizing (in a gauge-invariant
manner) the conservative dynamics of binary systems by
means of the functional relation between the radial action,
Iz, and the energy and angular momentum, E, J [or,
equivalently, the functional relation E(Ig.1,), with
I, = ﬁ f P4d¢ = J] is well known in classical mechanics
(particularly since the work of Delaunay on the averaging
of action-angle Hamiltonians), and was emphasized many
years ago in the general-relativistic context [8]. By contrast,
the possibility of fully characterizing (in a gauge-invariant
manner) the conservative dynamics of binary systems by
means of the functional relation between the (c.m.) scatter-
ing angle y and E and J has only been recently emphasized
[9,10]. Many different aspects of the physics of classical
and quantum scattering (and of the relation between the
two) have been recently explored [7,11-52].

Let us summarize the current state of the art in the
theoretical knowledge of the conservative dynamics of
gravitationally interacting two-body systems. The PN-
expanded dynamics is fully known at the 4PN level
(corresponding to 1/c® fractional corrections to the
Newtonian description) [4,53-59]. At the SPN level, our
new method [1] has allowed us to derive, in a gauge-
invariant way, the full dynamics modulo two undetermined

numerical parameters, denoted c_igz and a’gz. These co-
efficients parametrize terms of the (sketchy) form

503 m3 63 m3
2Gmimy > GOmims(my +-my)

pita
cl0Rs Frmt c10R6

AHS~ .18
in the (c.m. frame) local SPN Hamiltonian. Here m; and m,
denote the two masses, R = |X; — X,| their radial distance,
while p, = Pgp/pu denotes the radial momentum
Pr=mn,-P; = —n, - P,, rescaled by the reduced mass
of the system y = m;m,/(m; + m,). (Note that p, has the
dimension of a velocity, and, actually, is equal, in lowest
approximation, to the relative radial velocity dR/dt.)
Recent progress in the (EFT-based) computer-aided evalu-
ation of the PN-expanded interaction potential of binary
systems [59-62] gives hope that the two missing coeffi-
cients ZZ‘S’Z and agz might be soon derived. This would lead to
a complete knowledge of the SPN dynamics.

The 5.5PN Hamiltonian is entirely nonlocal, and it is
fully known [2]. At the 6PN level, our method has allowed
us to derive [3], in a gauge-invariant way, the full 6PN
dynamics modulo four undetermined numerical para-
meters, denoted qfé, c_z'gz, a%z, and a%S. These coefficients
parametrize terms of the (sketchy) form

5.3 3 6,33
2 GCmimy ‘ysz1m2<m1+m2) 2

loc
AHgN~ G5 2RS Pr 6 c12R6 r
2GTmimi(my+my)? G mim] Lo
+az 2R ta; 2R (1.9)

in the (c.m. frame) local 6PN Hamiltonian.
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Besides this knowledge of the PN-expanded dynamics
(i.e., its expansion in powers of %), one has also recently
acquired the knowledge of the first three terms in the
(conservative) PM-expanded dynamics, i.e., its expansion
in powers of the gravitational coupling constant G (keeping
the velocity dependence exact). Hamiltonian formulations
of the first post-Minkowskian [1PM, i.e., O(G)] dynamics
have been derived in various gauges [9,63]. The second post-
Minkowskian [2PM, i.e., O(G?)] dynamics, whose equa-
tions of motion had been known for many years [64-66],
was expressed only recently in Hamiltonian form [10,18].
The third post-Minkowskian [3PM, i.e., O(G?*)] dynamics
has been derived in Refs. [23,32] (see also Refs. [7,51]
for its simpler EOB formulation). Confirmations of the 3PM
dynamics of Refs. [23,32] have been obtained in Refs. [1]
(5PN level), [2,45,60] (6PN level), and [50] (3PM level).

Equations (1.8) and (1.9) clearly display the fact that the
parts of the SPN and 6PN dynamics left undetermined by
our new method belong to the fifth, sixth, and seventh post-
Minkowskian (SPM, 6PM, 7PM) approximations. This
shows, in particular, that our current work leads to a
complete knowledge of the fourth post-Minkowskian
[4PM; O(G*)] dynamics up to the 6PN level included.
However, in order to explicate this knowledge (in a gauge-
invariant way) from our current results [2,3], one needs to

explicitly derive the (f-route) nonlocal contribution,
tot

yhomecl(E,J), to the total scattering angle, xS (E,J),
Eq. (1.4), so as to complete the explicit expression for
the (f-route) local contribution ;(Igifl;f (E,J) given in Ref. [3].

Our basic tool for deriving the nonlocal contribution to
the scattering angle will be the general, simple formula,
derived in Ref. [52], that computes the additional contri-
bution §y(E,J) to y(E,J) = yo(E,J) + 8y (E,J) induced
by an additional contribution 6H to the Hamiltonian
[H(L], P) = H0<q’ P) + 5H(qv p)]’ namely

0
Sy(E,J) = EWhyp(E, J)+ O[(6H)?], (1.10)
where
+oo
Whyp(E,J)E/ dt SH (1.11)

is integrated along the unperturbed hyperboliclike motion
(with energy E and angular momentum J) defined by the
unperturbed Hamiltonian H,. Note the important point that
Refs. [4,52,67] have shown that the relation (1.10), which is
easily derived for usual /ocal Hamiltonians, holds also in
the present case of a nonlocal Hamiltonian.

Similarly, it is easy to relate the elliptic-motion analog of
(1.11), say

Wmanzfmm; (1.12)

where, now, the integral is taken over one radial period of
an ellipticlike motion, to the (first-order) perturbation
6Ix(E,J) of the radial action,

Ix(E,J) = I%(E,J) + SIx(E, J), (1.13)
corresponding to a general perturbation H = Hy(q, p) +
8H(q, p) of the Hamiltonian. Indeed, the fundamental
property of Delaunay averaging (for ellipticlike motions)
is that the perturbation 6H(Ig,1,) of the angle-averaged
Delaunay Hamiltonian,

_ 1 _ _
H(IR,I¢) :Wfdtl‘[ - HO(IR’I¢) +(SH(IR,I¢),

(1.14)

is simply given by averaging the perturbation of the
Hamiltonian,2 so that

_ 1 Q
SH(Ig.1y) = WfdtéH(q,p) = 2—;7{ dtéH(q, p)

Q
= 2_71; [Well(E’ J)}E»—)I:IO(IR,I(I,)‘ (1-15)

Here, Qp = %—Z = OH(Ig.1,)/0Ig denotes the radial angu-
lar frequency (T = § dr denoting the radial period). Note
that in the last equation (1.15) one can use the leading-order
replacement E — H(Ig, 1,) to express 5H as a function of
I, and 1, instead of the natural variables E, J entering the
integrated action Wy (E, J), (1.12). Writing that I (E, J) is
the inverse function of H(Ig.l,), and using Qg =
OH(Ig.1,)/0l, also leads to the result that the perturba-
tion 6Ix(E,J) of the radial action Ix(E,J) = I%(E,J) +
SIx(E,J) is simply given by

MMEH:—%WMEH+OWM% (1.16)

where W (E,J) is again the integrated elliptic-motion

action defined in Eq. (1.12). Note in passing that by

combining the result (1.16) with the standard general result
for the periastron advance @ (see, e.g., [8])

®(E,J) OIx(E,J)

2r o]

(1.17)

one finds that the perturbation 6®(E, J) of the periastron
advance ®(E,J) = ®y(E,J) + SO(E,J) is given by

This fundamental result of classical mechanics played an
important role in the development of quantum mechanics, where
it got transmuted into the well-known Hellman-Feynman theorem.
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oW (E,J
+ ell( )

SD(E, J) = o

(1.18)

In the present paper we shall apply the general results of
Egs. (1.10)—=(1.12), and (1.15), to the perturbed dynamics
H = Hy + 6H with

loc,f
H():HOC’,

SH = Hnonloc,f — Hnonloc.h + Af_hH. (119)

As we have derived in Refs. [2,3] the contributions of
Hy = H" both to the scattering angle, yis: (E,J) (see
Sec. VIII in [3]), and to the Delaunay averaged Hamiltonian
Hg (Ig, 1), or equivalently Iieay(E,J) (see Tables X
and XI in [2] and Sec. IX in [3]), we only need now to
compute the complementary contributions

non a non
Sy(E.J) = yhomoel (g ) = N Wit *“t(E, 7). (1.20)
and
SH(Ig,1,) = Hon " (Ig, 1)
QR nonloc,f
= B [Weu (E J)]E»—)I:IO(IR,I¢)‘ (1-21)

From the latter result, we shall then be able to deduce the
nonlocal contribution to the periastron advance

N awgﬁnloc,f(E’ ])

5n0nloc,f¢) E,J —
(E.J) 57

(1.22)

Our first task will then be to compute the f-route, nonlocal
perturbed action along hyperbolic motions, i.e.,

nonloc,f _ oo nonloc,f
Whyp (E,J) = dtH (1). (1.23)
In view of the linear decomposition (1.2) of the f-route
nonlocal Hamiltonian, H™"°*f  we have a corresponding

linear decomposition of Wﬁggk’c’f(E, J), namely

WIS (£, 1) = W h(E.9) + AIW(ED). - (1.24)
where

Wit (E.0) = [ s, 0.25)
and

AIMW(E ) = / A, (1.26)

hyp

both integrals being evaluated along an hyperbolic motion
of Hy = HL‘}?I;I with energy E and angular momentum J.

Actually, as nonlocal effects start at the 4PN level, it is
enough to use as H, in this calculation the 2PN-accurate
Hamiltonian (whose Delaunay form was given in [8]; see
Appendix A).

While A{70W(E,J) can be (and will be) computed in
closed form, it does not seem possible to compute
Wﬁ‘y);k’c’h(E, J) in closed form. But, it will be enough for
our purposes to compute the first three terms in the large-J
(or large eccentricity) expansion of the function,
wrenleeh (g 1), namely

hyp

nonloc Gmym,)* Gmym,)?

Wi (. 7) = W) Sy ) ()
(Gmymy)°

7
 We(E) = o@). (1.27)

As displayed here, this expansion in powers of % is also a
PM expansion in powers of G. In view of Eq. (1.10), the
corresponding expansion for the (h-route) nonlocal con-
tribution to the scattering angle reads

4 5

ronloeh (7 ) — _3W4(E)%_4W5(E)(ij%m2)
Gmymy)® | (G

_SWG(E)%—F 0(7)' (:28)

While we will be able to analytically compute closed-form
expressions for the first two expansion coefficients W4 (E)
and W5(E), we will only be able to write down integral
expressions for the third expansion coefficient W¢(E). We
did not succeed in analytically computing the latter integral
expressions, but we could estimate then numerically.

Our next task will be to use the mass-ratio dependence of
the coefficients W, (E), Ws(E), and W¢(E) to constrain the
choice of the flexibility factor f(z). Indeed, as recalled
above, the choice of f(#) is constrained, within our
method, by requiring that the two parts, y'°>f and y"onloe.f —
gromeeh 1 f=h of the total scattering angle y'°!, Eq. (1.4),
separately satisfy the simple mass-ratio dependence proven
in Ref. [7] for y*.

Finally, we will complete our 6PN-accurate description
of the dynamics of ellipticlike motions by computing the
elliptic analog of Eq. (1.24), namely

wohoneel (g gy = whoreeh (g gy 1 ARPW(E, J),  (1.29)
with

W:ﬁnloc.h (E, J) — % dt [_Inonloc,h(l‘)7 (] 30)
and
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AW (E, J) = f dAH(,  (131)
both integrals being now evaluated along one radial period
of an elliptic motion, with given energy E and angular
momentum J of Hy = H g’;l;f . As before, it is enough to use
Hy =~ H,py in this calculation.

A. Notation

We use a mostly plus signature. We define the symmetric
mass ratio v as the ratio of the reduced mass y=
mymy/(m; + m,) to the total mass M = m; + my:

ﬁ_ mymy

14 = .
M (my +my)?

(1.32)

We use several different measures of the total energy E,, =
Mc? + - - of the binary system (considered in the c.m.
frame). Of particular importance is the EOB effective
energy, Ee, Which is defined by

E2, — m%c4 — m%c4

5eff =

2(my + my)c? (1.33)

Equivalently, we have

E = Mc2\/1 + 2y<5i§— 1)
uc
=Mc2\/1 4 20(E — 1),

(1.34)

where

P _ geff
ff = .
e /lCz

(1.35)

We also use the dimensionless specific binding energy

E — Mc?

pc?

E= (1.36)

The total c.m. angular momentum J will often be measured
by its dimensionless rescaled version

j=o (1.37)
Gmim, GMuy
(The definitions used in the present work for E and j differ
by respective factors C% and ¢ from those used in our last
work [3].) The latter equation shows that one can formally
consider that j = O(§), so that a term or order ,i is of
order %
In the following, we shall often use the shorthand
notations

A

¥ = Eeits (1.38)

Po=1\/r’—1, sothaty=/1+pi, (139
and

h(y,v) =+/1+2u(y —1). (1.40)

We shall often find it convenient to work with dimensionless
rescaled orbital parameters, such as ri, = 2?2 /(GM), or
a=c?aP/(GM). The context should make it clear
whether we use physical or rescaled quantities.

Most of our final results will be expressed in terms of
dimensionless quantities, such as E, j, p., and a=
c2a?s/(GM). In other words, we essentially use units
where ¢ and G (and sometimes also GM) are set to unity.
However, in some formulas we indicate the powers of G (or
GM) that they originally contain. Concerning the powers of
¢, and the corresponding absolute PN order, we will not
explicitly keep track of them. However, we will keep track
of the fractional PN order of various contributions to PN-
expanded quantities by using 7 N% (to be set to one at the
end) as a bookkeeping device for PN orders beyond the
leading-order term in a quantity. For example, we will write
Q=0 +n*q, +n*qs) for a quantity Q which is
expanded to fractional 2PN accuracy beyond its leading
order PN contribution. To help the reader keep track of the
absolute PN order of the quantities we shall compute, let us
note that (i) nonlocal effects in the dynamics start at the
absolute 4PN order, and (ii) one can use the formal scalings
1=0(9), E=0(3) =y~1, and py, = O(}) to recover
the powers of G and c.

II. BRIEF REMINDER ABOUT THE NONLOCAL
PART OF THE ACTION

Let us consider in more detail the structure of the
nonlocal part of the action, S, onocs- As discussed in
Ref. [2], at the 6PN accuracy the nonlocal action can be
linearly decomposed into its 4 + 5 4+ 6PN piece, and its
5.5PN piece,

<6PN __ 4+5+6PN 5.5PN
Snonloc,f_ nonloc,f +Sn0n]0c’

(2.1)

where each piece is a time-nonlocal functional of the two
worldlines (considered in the center-of-mass frame)

SHSN[L (1), xy(s)] = — / A HESING). (2.2)
and
SSIN [, (s1). x2(s2)] = — / dTHSSN (). (23)
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Teoni 445+6PN 5.5PN
The two nonlocal Hamiltonians H, j 3. (1) and Hy 0 (1)

are given by integrals over a shifted time ¥ =t + 7. The 7
integral entering Hy. >N (1) is logarithmically divergent

when 7 — 0, and is defined by introducing a specific
(Hadamard Partie finie, Pf) timescale At, = 27, (1) /c.
By contrast, the 7 integral entering H3FN (7) is convergent
when 7 — 0, and therefore involves no regularization scale.

More precisely, the 4 + 5 + 6PN piece reads

GM dr i
4+5+6PN lit
Hionlocs (t)_?Per{z(t)/c/mf;%N(t’t/)'

(2.4)

Here, M denotes the total Arnowitt-Deser-Misner con-
served mass energy of the binary system;
(1) = ()b (1), (2.5)
is a flexed version of the radial distance between the two
bodies (r,(t) denoting the harmonic-coordinate distance
and f(7) being a function of the instantaneous state of the
system), while 32 (z,7') is the time-split version of the
fractionally 2PN-accurate gravitational-wave energy flux
(absorbed and) emitted by the (conservative) system.
On the other hand, the 5.5 PN Hamiltonian is given by
the following nonlocal (second-order tail) expression

2 [ ,
o =3 (47) [T Fiemr o

c’ o T

_ gl 1 — 7)), (2.6)
with B = -1 Similarly to the first-order tail effect
entering Hy! 5N (), this action involves a time-split

bilinear function of the multipole moments that is closely
linked to the gravitational-wave flux, namely

spli G 3 4
GP(1, ) = S S () + ..

(2.7)
At the present 6PN accuracy, it is enough to use the
leading-order version of the time-split function G*!i(z,¢'),
obtained by keeping only the quadrupolar contribution
(neglecting higher multipole terms), and by evaluating
1;;(¢) at the Newtonian level.

Up to the 7PN-accuracy included, each piece of the
nonlocal action can be treated as a first-order perturbation
of the (local) 3PN dynamics, and their contributions to the
scattering angle can be treated separately, and then linearly
added together.

The 4 + 5 4 6PN nonlocal Hamiltonian can be further
decomposed into its purely harmonic, unflexed contribu-

tion H* 3PN [defined by using At, = 2r/,(t)/c as Pf

nonloc,h
scale], and a contribution A™"H(¢) proportional to In f(¢):

Hygaioer (1) = Hgiioeh™ + ATlpnH (7). (2.8)
Replacing M = % = Cﬂz where H is the (2PN-accurate, as

needed for the present computation) Hamiltonian, and
introducing an intermediate length scale s, we have

HiaN 0) = =Py [ R+
+ 2(%{?;1;};(;, f)1n (r?zs(t)> , (2.9)
and
At H(0) = 2L FRRE O ((0). (210

A. Scattering angle

As already mentioned the “f-route” local Hamiltonian
Hjy. ¢ is defined so that

Htot = Hloc,f =+ Hnonloc,f7 (211)

where  H,,o.¢ 1is defined by Egs. (2.8)-(2.10).
References [2,3] have determined H,,, at the 6PN accu-
racy. In order to complete the derivation of the f-route 6PN
dynamics we need to compute the h-route nonlocal part of
the scattering angle, say y"°"°“h, at the 6PN accuracy, i.e.,
at order CS%, and at the 6PM accuracy, i.e., at order G=°.
Indeed, it is the v dependence of y"°"°“! which constrains
the additional, f-dependent contribution ™" needed to
render ynonioet — jmonloch 4 o f=h compatible with the par-
ticular v dependence of »'*°' pointed out in Ref. [7].

The leading-order (LO) contribution to y"°™°f is at the
4PN and 4PM levels (i.e., of order f—;). In view of the PN

and PM scalings of p., and % recalled above, this means that

nonloc,f

the LO contribution to y starts by a contribution
of order ”).—4?. Beyond this order, we can [see Eq. (1.28),

which concerned y"°"°“"] write an expansion for y"°"oct of
the type

1 . pe ( A (PooiV)
nonloc,f . o . 0
X P> JsV) =V A PV + "
S (s jiv) = 02 (Aolpasie) + 5L
Ay(PooiV
_,_2(1772)4_) (2.12)
(Peod)

where Ag(Poos?)s A1(Poos V), Ar(Poosv), etc., are further
PN-expanded in powers of p.. Namely,
Ao(Pooit) = AT+ AN+ AT 4

A (Pasit) = AN+ P AIPN 4P ALSPN 4 AN
Aolpuit) = AN P A P AL L ARN L (2.13)
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Here the label N (standing for Newtonian) denotes a term of
order pgo, modulo a In p, correction, while the label 1PN
(respectively, 1.5PN or 2PN) denotes a term of order p2
(respectively, p3, or p%), modulo In p,, corrections. [As
explained in the Introduction, (= 1) is used as a book-
keeping parameter for counting the fractional PN orders.]
As we shall see the 1.5PN fractional corrections come from
the 5.5PN nonlocal action, and only contribute at orders ]%

(i.e., G=). We recall that the powers of % count the powers

of G, i.e., the PM order. It should also be noted that the
product p,j in the denominators entering Eq. (2.12) scales
like c°, i.e., is of Newtonian order. Actually, at the
Newtonian level, the quantity

ex=\/1+p%j’

measures the eccentricity of the hyperbolic trajectory of a
scattering motion. The PM expansion in powers of % ~G

(2.14)

used in Eq. (2.12) is also a large-eccentricity expansion.

As already explained in the Introduction, the combined
PN and PM expansion of y"omeef Eq. (2.12), will be
obtained by computing the various contributions to the
integrated nonlocal action,

wienoes (i) = / diH o), (2.15)

[Se]

and then by differentiating it with respect to j. We can
rewrite Eq. (1.10) (setting ¢ = 1) as

1 OWpn (pes. i)

T GM% dj

nonloc,f (

X Poos J3V) (2.16)

In the following, we shall use the shorthand notation’

<Hnonloc.X> 0 = / dt Hnonloc,X ( t)

(o8]

(2.17)

for the various time-integrated contributions to the nonlocal
Hamiltonian (where X is a label for these contributions).

The total nonlocal potential Wﬁ;;l"c'f( Poos J3V) =
(O x Huonloe X) o 1S then decomposed as

nonloc,f __ ail,h tail,f—h 5.5PN
Whontoel — yyilh . yyuil=h p yySSPN

pon (2.18)

where

*Beware of distinguishing the use of the notation (- - ), for a
hyperbolic-motion infegral from the use of (- - -) for denoting an
elliptic motion average.

tailLh — 4+5+6PN
14 - <Hnonloc,h >oo’

wraili-h = (AT-hg(g))

WSSPN = (35N

nonloc

(2.19)

For brevity, we used the label “tail” to denote the
(4 + 5+ 6PN) first-order tail contribution of Eq. (2.4),
which is proportional to GL—/Y’ The second-order tail con-
tribution of Eq. (2.6) [which is proportional to (GC—/3‘4)2] is
simply denoted by the label 5.5PN because it will be
evaluated at this accuracy.

In the following sections, we shall successively compute
wailh pyaili=h “and W3-SPN_Of particular importance will
be to control the v dependence of these quantities. As the
split fluxes F*Plit(z,¢) and G*Pt(z,7') contain an overall
factor 1* (coming from I;; = ux'x/) + .-, etc.), each
contribution to W""°¢f will contain an overall factor 1.
(This applies also to W@=" whose role is to compensate
some terms in W% ) We then see from Eq. (2.16) that
yoocf contains an overall factor v!, which has been
factored out in Eq. (2.12). The v dependence of the
coefficients A,(ps;v) entering the large-eccentricity
expansion (2.13) will then be generated by the v depend-
ence of the solution of the hyperbolic motion x’(¢) inserted
in the computation of the (v-dependent) multipole moments
1;;(1), etc.

IIL. COMPUTATION OF Wtailh = (F4+5+6PNy

nonloc.h

Let us start with the computation of the time integral of
Hy 539N (1) along a 2PN-accurate hyperboliclike motion
in harmonic coordinates. The time-split version of the

fractionally 2PN-accurate gravitational-wave energy flux
FP¥(1,7') emitted by the system can be written as

. G . .
Fon(t.t) == [FPN e 0) + P FPY (1.7)

P
li
-+t F (6, 1), (3.1)
where
li l 3 3
RN ) = 510 (015 (7),
; 1 16
split _ 4) 4) (3) (3)
F13,Jz(t’ tl) - @Iabc(t)labc(ﬂ) + E‘]ab (t)‘]ab (t/)’
spli I s 5
FIE,JZ([’ t/) = 9072 Iitb)cd(t)liljcd(t,)
1 @ 4
+gq e (D (7). (3.2)

Here n=1/c and the superscript in parenthesis denotes
repeated time derivatives. The multipole moments 1;, J;
denote here the values of the canonical moments M;, S,
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entering the PN-matched [68-72] multipolar-post-
Minkowskian formalism [73], when they are reexpressed
as explicit functionals of the instantaneous state of the
binary system. These multipole moments parametrize (in a
minimal, gauge-fixed way) the exterior gravitational field
(and therefore the relevant coupling between the system
and a long-wavelength external radiation field).

A. The 2PN-accurate n-polar moments

At the 2PN accuracy, we need the 2PN-accurate value of
the quadrupole moment expressed in terms of the material
source [74,75]. The other moments (the electric octupole
moment [, electric hexadecapole moment, I;;, the
magnetic quadrupole moment, J;;, and the magnetic octu-
pole moment, J;;) need only to be known at the 1PN
fractional accuracy [69,70,76]. They have the following
explicit expressions (in the c.m. harmonic coordinate
frame) [77]:

lij = Cixgj) + Gy + Caxvy,
Lije = BiX(ijy + Box(ijvgy + Baxivjy,
Liju = vM(1 - 3U)x<ijk1>,

Jij = DiLxj) + DaLv),

Jijk = l/M(l - 31/)L<,-xjk>, (33)

where the various coefficients (as well as the notation) have
been summarized in Table I. [See also Refs. [2,3]. A

misprint (v instead of v*) in the third line of C, in Table I
of Ref. [3] is corrected here.]

B. The harmonic-coordinate quasi-Keplerian
parametrization of the hyperbolic motion

We need also to use the 2PN-accurate dynamics of a
binary system in harmonic coordinates [5,6], and the
corresponding quasi-Keplerian parametrization [78] of

TABLE 1.

the hyperbolic motion [79] (which we checked against
the 2PN equations of motion given in Ref. [80]):

r=a,(e,coshv—1),
£=n(t—tp) =esinh v—v+ f,V+gsinV,

i
- _9—9p
K

=V + f,sin2V + g, sin3V. (3.4)

Here, we use adimensionalized variables (and ¢ = 1),
notably r=rP¥s/(GM), t=r""s/(GM), while V = V(v)
is given by

V = 2 arctan {Q% tanh%] , (3.5)
with the notation
ey, + 1
Q, =2 3.6
W\ (3.

The 2PN-accurate expressions of the orbital parameters 7,
a, K, e;, e,, €ps f,,g,,f,/,,g,/, are given in Appendix A as
functions of the specific binding energy E=
(Eiot — Mc?)/(uc?), Eq. (1.36), and of the dimensionless
angular momentum j = ¢J/(GMpu), Eq. (1.37), of the
system, and in harmonic coordinates (modified harmonic
coordinates, according to the notation of Ref. [77]). Note
that, as discussed in Ref. [79], the analytic continuation
from the ellipticlike to the hyperboliclike case (namely
from E < 0 to £ > 0) cannot be performed in as simple a
way at 2PN than at 1PN [81]. As a consequence, the orbital
parameters entering the hyperbolic-motion representation
(3.4) (notably 1, e,, f;, and g,) are not directly related to the
analytic continuation in E of the orbital parameters,
denoted in a similar way (namely n, ¢,, f; and g,), entering
the elliptic-motion quasi-Keplerian representation.

Coefficients entering the multipolar moments (3.3) used in the 2PN flux. Here, x’ and v’ = % denote

dt

the harmonic-coordinate relative center-of-mass position and velocity of a two-body system, whereas L; = ¢; jkxj vk,

We assume m; < m,.

C, 1+ 72 (1 -3v)0? - 1(5—8v) 2]

4[GM 2 (2021 _ 5947
+n* 55 v (355 — Fse

756

T3 185,

504 504

7
4833 .2 G>M? (355 _ 953 3372
756 V) + 5 (55 — eV T v)

3545 2\ . GM :2(_ 131 , 907, _ 12732
07 V%) + P (=5t 7se v — a5 V)l

G 27’]27”r{—7+71/+7’][02(—6—3+6—3U—6—3D)+TM(—m+ﬁ1/+mU )]}
B, VI—du{-1+ P G - Bu) + (-2 + 20)]}

By V1 =4u(1 = 2u)n*ri

B; —/1 =4u(1 = 2v)np*r?

b, VI— =14+ [ (33— 70) + (-5 + 7))

D, V1= 4uri(= 35— v
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C. Wtailh along hyperbolic orbits:
Computational details

Consider the h-route nonlocal Hamiltonian in units
G=1=c¢

o df li
Hﬁ(J)rlfl(J)rfll:N( ) = _HtotPfZS/c/ ‘l‘ |‘7:;[1)311\§( />

rio (¢
+ 2H o FRE(1,1) In < i2( )>,

. (3.7)

where F ;‘]’,lﬁ(t t') was defined above. We need to compute

4+5+6PN
H nonloc,h

the integral of (1) along a 2PN-accurate hyper-

bolic motion:

Wtail.h(E’ ]) — / H4+5+6PN(I)dt.
—00

nonloc,h (3 : 8)
Following the decomposition, displayed in Eq. (3.7), of

Hy 51 8N(1) in two terms, we correspondingly decompose

WaiLh(E | 7) in two integrals, namely

Wailh(E, j) = WSlh(E, ) + WSlb(E, j), (3.9)

where

thai].h(E’ J) = _Htot ® dtPst/c
o df

X/ T |.7-'§}’,]I‘\§(t 7). (3.10)

while

tail,h . split 1112(t)

WU (E, ) = 2H o, dt]-"ZPN(t t)In ) (3.11)

Let us consider first the term thaﬂ’h. A crucial role is played
by the measure

drdr
dM ) = 7 (3.12)
In order to compute the double integral

Pf [ dM o F ;‘f,lf\t,(t t'), it is useful to replace the integral
over ¢t and ¢ by an integral over the variables

/

thanhg; T/Etanh%, (3.13)

where v is the hyperbolic eccentric anomaly entering the
quasi-Keplerian parametrization of the 2PN hyperbolic
motion given above. This change of variables maps the

original integration domain (z,7) € R x R onto the com-
pact domain (7,7") € [—1,1] x [=1,1]. It also transforms

the singular line # = 7 into T = T, together with a trans-
formation of the constant cutoff |/ — 7| = 2s/c implied by
the Pf operation into a corresponding 7-dependent cutoff
(see below).

We succeeded in computing, with 2PN accuracy, the first
three terms in the large-eccentricity expansion of W@l ie.,

wilh _ il hLO tail ANLO
Wit =W, + W,

+ W]tail.hNNLO + 0(6,_6), (314)

where we used the fact that the leading order (LO) term
W, @lhLO starts at order O(e;?) (see below). At the LO, and
the next-to-leading order (NLO) in e% (and t), both
integrals in 7" (with Pf) and in T can be analytically
performed. At the next-to-next-to-leading order (NNLO) in

ei, we could explicitly write down the integrand to be

integrated, but we could only analytically compute part of
the integral, and we had to resort to numerical integration to
evaluate the rest. During the various computational steps
we keep as fundamental eccentricity e,, but, at the end, we
express the final result in terms of an expansion in powers
of 1 [as in Eq. (2.13)]. Some details follow.

The 2PN-exact relation ¢ vs T is given by

fohys 2 T
=t=_|e,——5 — arctanh(7)
M nl(1-7%)
¢p
+ft arctan <Q6¢T)+gt1+T§¢T2 s (315)

with a corresponding expression for 7 vs T’. One then

forms ’|, whose eccentricity expansion reads
1+ 7T
=t = [T =T g a3,
(1-TH(1-T" )
2 4
7 8P —8u—1y
2-(1+20) — 4+ ——F=
e 1
1 1 1
er er er
with P; and P, of the form
e i
Py =Po(T.T') + Pia(T, T) + P1(T.T') 2
i
P = Pou(T, T’)?- (3.17)

The coefficients P, (T, T’) entering P, and P, read
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(1-T%)(1-1?)

T.T) = — K(T,T
Pro(T.T') (TT +1)(T =T (.7,
1(1-T72)(1-T2) (120 — 32)
T.T) = —- K(T.T
Pu(l.T) = -3 (TT + 1) (T -T") (.7,
1 (1-12)(1-1?) 1(=15+ 0)u(TT' = 1)(1 = T?)(1 = T?)
PuT, T — 302 = 290)K(T,T') + - ,
Wl 1) =g na-—r) & ~ 2K s a s e+ 0
3(1=T2)(1=T2)(=5+2)
T,T T,T'
7)24( ) ) 2 (TT/+ 1)(T—T/) K( ’ )
1
- 16 — 202T% + V2T* — 22T + T — 1720 TT7
8(1+T’2)2(1—|—T2)2( T+ v v +v v
—26UT2T™ = 26UT*T'? — A3uT*T"* — 43uT* — 42TT — 26LT"
—43uT* = 260T? + 60uTT' + 4°T3T' + 4°TT? — 4°T3T" + 1% — 430 + 64T>T"

4 32727 4 327472 + 16T*T™* + 3272 + 16T* + 32T + 16T + 42T 7>
— 60uT3 T + 60uT3T").

— 20 T4T"? + L2TAT — 60T TR

Here, we used the notation

k(T,T) =
K(T,T') =

arctan(7') — arctan(7"),

arctanh(7') — arctanh(7").  (3.19)

These relations imply for the reexpression of the measure,
Eq. (3.12), in the T — T’ plane,’

1 dt dr
AdM gy = === dTdT, 3.20
(1.7 |I(T) (T/)l dT dT/ ( )
the following (schematic) expression
1+2v 1+ 8v— 82
d B} —3/2 1 - 2 4
M(TT) e,ar 2ar n 8(_1%
(14 17)(1 + T?)dTdT’
(=T -T>(1 +TT)|T-T|
1
x<1+M‘+A/§2+0< >> (3.21)
er r

where we have explicitly shown only the LO contribution
in the large-eccentricity expansion. The NLO and NNLO
contributions [described by the coefficients M (T, T';v, 1)
and M,(T,T';v,n)] have large expressions that we
do not explicitly display here. Let us simply note that
M(T,T';v,n) involves the function K(7,7’) linearly,
while M,(T,T';v,n) involves K(T,T’), K*(T,T') and
k(T,T') [defined in Eq. (3.19)].

Similarly to the measure d./\/l(T,m, we expand, in the
following, many quantities in inverse powers of the

*Note that the measure dM (r,r) 18 a symmetric function of 7'
and 7.

_ 2U2T2T/4
(3.18)

eccentricity e,. For instance, the first three terms of the
large-eccentricity expansion of the 2PN-accurate split-flux
integrand 30 (T, T') will be denoted as
spli

Foen(T.T') = Fin + FRK + Foon© + (3:22)
In the following, we reserve the notation LO, NLO, NNLO
to the first three terms in expansion in e;'. Note that each
term in this expansion is itself PN-expanded in powers of
n= % up to the 2PN fractional accuracy, so that we have
(forn=20,1, 2)
Fhol = FYO 4 2 YO 4t FNLO 1 0 (%), (3.23)
The LO term in the eccentricity expansion of F. ;‘f,lli\tl(T, T')is
of order e;*. Therefore, the full structure of the double
expansion in 7 =1 and in e;! of the split-flux reads

2 6
FAN(TT) =3 > ke Foxom:  (3:24)

k=0 m=4

where k = 0, 1, 2 counts the (fractional) PN order, while
m =4, 5, 6 indicates the eccentricity order. Let us note in
passing that the 1PN terms F , _,,) are linear in v, while the
2PN ones F (4 _,, are quadratic in v.

The structure of the expansion coefficients F'(y ) =
Fok—m)(T.T') is described in Table II. The explicit

expressions of the polynomials P(" m)(T, T'), appearing
as coefficients in Table II, are given in Table III for the
Newtonian-level case (n = 0). All these polynomials are
either symmetric in 7, T, or antisymmetric when they
appear multiplied by (7, T").
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TABLE II

Structure of the terms F, _,,) = F () entering the large-eccentricity expansion of the 2PN-

accurate harmonic coordinate flux, Eq. (3.24). Here, P\ (T, T") denotes an N-degree polynomial in T and T’

entering F (, _)-

F(0.-4)
Fo.-s)
F0.-6)

F(2.-4)
F-s)
F2-6)
F4-a)
Fa-s)
F(4-6) 2

2835V

4

T

32 o (1=T%)*(1-T?)2 ,,(0,~4)
sy b (0T
1-72 1 T!ZZ 0.-5
"%VZWKTT’) — 1P, T)

1-T2)2(1-T" 0.6

20 oy Py (1.T)
(1-T*)(1-T7)> p(2.-4)

~ s sy P (T2 T)

16 2 (1-T*)2(1-T?)? ,(2.-5)

sV mmerary be (0T)

2 _(1=T?)*(1-T?)
a(14+77)° (1417)°

4 2 (I=T?)(1-T2)* p(4.-4)
sV i fe  (LT)
8 T ) 10Pg§_5)(T. T,)

Tl
)? 6) / / (4,—
(T, Tk(T,T') + Py

[Py~ (T T)(T.T') + P~ (T.T")]

2 (1-T27(1

—77 (4
al (1+1>)" [P35

6)
R (T.77)]

TABLE III.  Explicit expressions of the various polynomials P%"_m)(T, T') parametrizing the structure displayed in Table II in the
Newtonian limit n = 0. We have checked the symmetry property of these polynomials when exchanging 7" and 7".

P(O 4>(T T/) sym

(=521

0,-5
Sy wm

+(-907

P(O.—6) Sym

/10
@ (20T

(7.7

(=3 — 157" + 37" + 15T")T® + (377" + 37T
— 5275 +76T"3)T? +

(=10 = 227" + 37" + 25T")T6 + (=90T" + 517" + 69T')T° + (—122T"
- 907" + 1207°)T3 +

—24+26T7 -

157" + 15 + 757*)T*
- 52T3)T

= 52T")T5 + (=757 -
—TI5T* — 15+ 15T T? + (377" + 37T’
1577 + 15T — 37"

(757"
+3 -
— 2276 4+ 25+ 131T7"*)T*
(131772 — 1227 — 22 + 25T"%)T? + -90T*)T
+3 =227 + 257" — 107"

1827 + 2907"6 — 2007"%)T"°

(69T + 51T

+(=128T7 + 21T — 1024T"7 + 904T" + 4437°)T°

+(=9107" 4 2627" +
+(=1024T" —
—9107"® + 23887 —
+(904T" + 11207"7 —
+(—1827"10 4 23887 —

+(~134T"

142077 — 2007"'° + 26 — 1347*)T
12877 + 112077 — 170077 + 2287717
174077 — 182 + 2907"'0)T°
17287 4 112077 + 904T")T?

134778 — 17407 - 9107T"% + 290)T*
+(=1024T" + 11207 — 1287" + 2287 — 1700T"7)T3
+(=200 — 13477 + 2627"8 + 14207" — 910T"* + 26T"'°)T?

+(904T" + 2177 — 102477 —
+20 + 2907 —

12877 4 443T")T

182776 — 2007 + 2678 — 2710

Multiplying dM 7 and F?N(T,T’) yields an inte-
grand that we denote as

drdr’

li
AM 77 F5on(T. T') =7

= G(T.T') . (3.25)

where the (2PN-accurate) function G(7,T’) is expanded

only up to the (fractional) second order in e;!, say
g(T, T’) _ QLO(T, T’) + gNLO(T’ T’)
+ GNNO(T T + - (3.26)

As before, the notation LO, NLO, NNLO refers to the
expansion in powers of e;! (starting at order e;> and
extending up to order ;).

The function G(7T', T") [which should not be confused with
the time-split function entering Eq. (2.6)] is symmetric in T
and 7". In addition, we recall that each term in Eq. (3.26) is
itself PN-expanded with fractional 2PN accuracy, SO
that GN'LO = GN'LO 4 ;2GN"LO | p4GN"LO L (y6),

The original integral was singular at ¢ = 7, i.e., along the
bisecting line of the ¢t — ¢ plane. This singular line becomes
the bisecting line in the plane 7' — 77, but endowed with a
T-dependent slit, which is identified from the relation
dT = f(T)dt. Here, the Jacobian f(T) = dT/dt admits
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also an expansion in powers of ey!, say f(T)=

FEOT) + fNO(T) + fNNLO(T) + O(ey*),  where,  for
example, the LO term in the expansion in e;! reads
= 212
0 n (1-1%)
T)=———7—%. 3.27
D) = 5 (327)

Note that, because of our use of the quasi-Keplerian
representation, this Newtonian-looking O(e;!) expression
is PN exact. The fractional PN corrections only enter the
higher-order corrections in e;'.

As explained in Ref. [2], When considering the partie-
finie integral giving the first part W& of W@ilh Eq. (3.9),
the width of the slit around the bisecting line 7 =T’
defined by the partie-finie procedure is dT = f(T)e where
€ is initially considered as being infinitesimal, before
replacing it by the finite value 2s/¢ at the end. This leads
to the following partie-finie integral

G(T,7")
Z(T) =Pty dT’' ——"——
( ) Zsf(T)/ / |—T/+T|
1 AP
[ ST
- |-T'+T)|
T—ef(T) dT’ 1 dT’
+GT.T) { / +f ]
-1 r-1 T+ef(T )T -T €|—>2&/L
(3.28)
Defining
q(T.T") =G(1,T") - G(T,T), (3.29)
the above expression can be rewritten as
1 7,7
7(T) = / ar 4.1
-1 |-T +T|
+Q(TT)1(1_T2) (3.30)
,T)1n , .
EF2(T)

where ¢ = 2s/c. Note that ¢(7,T’) is not [contrary to
G(T,T")] a symmetric function of 7 and T'. As we are
going to integrate Z(7') over a (T, T")-symmetric domain,
one could replace ¢(7,7") by its symmetric part.

Further integration in 7 gives

JE/IITdT
/dT/ dT’ﬂ?T/ |—21n(%>/_idTg(T,T)
/_1 dTG(T.T) ln<;2_( T;)

(3.31)

So far, we only discussed the first term W™ in Wil
The second term is easier to evaluate because it is given by
a simple integral, namely (using as above G = 1 = ¢)

. h t
waith —op [ @ FR (1)1 < il )>. (3.32)

— s

Again, we use the quasi-Keplerian representation of the
hyperbolic motion, and therefore replace the integration
with respect to ¢ by an integration with respect to 7, using
the explicit functional link # = F(T) given in Eq. (3.15).

Because of the presence of the logarithm of r%,(7), the
integral W‘za“'h, Eq. (3.32), cannot be computed as an exact
function of the energy and angular momentum. However,
like Wtf‘“'h, one can compute the first three terms in its
expansion in powers of ¢;!, i.e.,

tail,h i i
W2a1 — Wztall,hLO + Wztall‘h NLO

+ W,@hNNLO | (o6 (3.33)

The LO term W,%LO gtarts at order O(e;?).
In the next subsection we illustrate the results of the
computation of W&ilh,

D. Value of W'ilh yp to the NNLO in ¢, !
and at the fractional 2PN accuracy

Let us recap the methodology used in the present section.
We have been considering the time integral of the first-
order-tail harmonic, nonlocal Hamiltonian,

+
wailh — /
—0o0

tail,h tail,h
=W+ Wy,

dtH4+5+6PN (t)

nonloc,h

(3.34)

where the decomposition in the two contributions, tha“'h

and ngﬂ'h was defined in Egs. (3.9)—(3.11).

Using the quasi-Keplerian representation of the hyper-
bolic motion, we could compute the first three terms in the
large-e, expansion of W@l say

Wtall hLO + Wtall hNLO

+ WtalthNNLO + 0(6; )’

Wtall h _

(3.35)
where each contribution, W@ N"LO ig jtself computed as a
fractionally 2PN-accurate expression:

taiLhN" LO __ yystaiLhN" LO 2yx/tallhN" LO
W at W W p

+n

+ Wj;‘;"hN‘LO +0(n°). (3.36)

The 2PN-accurate values of the two contributions to
Wailh at the LO in e;! are easily computed. They read,
respectively,
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2 JTMI/ s 685 1017 3429 37 s >
talthO
W st 0 (o)« [P (50 -3 () I

3656939_18181 235453 (14101 7055 1115\ s o (3.37
8064 72 YT 4032 ¢ 672 112" 7 8" 4e.a?) | @ '
and
2 My 85 s 9679 981 3429 37 s\
taiLhLO __
O Heod -2 - 371 S ) T
R T { P n(ze a ) * [ 224 56 +< 56 2 ) n(ze,a)] a,
1830565 54899 29969 114101 7055 111 , s \1#*
[_ 16128 11527 40327 <_ 612 © 112”_T”>ln<2e,a,>]a_3 ' (3:38)

It is easily seen that the intermediate scale s cancels between the two contributions. The same will hold at the NLO and
NNLO levels.

The extension of these results to the NLO level is significantly more involved (especially for the 1PN and 2PN
corrections). In fact, though the first integration over 7” in the split-flux integrals is found to be relatively straightforward [in
spite of the presence of the transcendental functions K (7', T") and (7, T"), Eq. (3.19)], the subsequent integration over 7' is
significantly more difficult because of the presence of polylogarithmic functions. However, we have been able to
analytically compute the 2PN-accurate NLO value of thaﬂ’h. The 2PN-accurate NLO values of thaﬂ’h and Wtz‘a‘ﬂ’h read,
respectively,

y 2 M2 2224 1 4 28072 72 44 11 4 2
o _ 2 Mo Htm{ . 568ln< s )+{— 8072 388 y+(9__ 36y)ln< s )]Z_

15 o272 9 3 e 25 63 105 3 e
67480874 3115726 165086 , (419036 3244 764 4s \]7*

_ _ 2, D e 33

[ 77175 3675 © 315 < 735 7 Y73 ”) n<€ 53/2)]41 (3:39)
and

2 M2 2768 1568 [ 2s 64904 5992 o 1136 P
WtalthLO H _ 1 _ _ - a

152212 9 3 Mea) T T s T s P s T i

3
2025494 542014 145498 419036 | 3244 764
771175 2205 735 ¢ 735 7

05

By contrast, at the NNLO level, we encountered integrals of the type

/ dT/ |TdT’ [f5(T, T/)K2(T T+ fI(T.TK(T,T') + fo(T.T")), (3.41)

where K(T,T') is defined in Eq. (3.19), and where the f;(T,7") are rather complicated rational functions of 7" and 7".
For instance, even at the Newtonian level (i.e., the lowest order in 77) we had to deal with the integrand qN(T, T =
AT, TYKX(T, T') + fN(T, T)K(T, T") + f(T, T') with rational coefficients fN(7, "), fN(T, T') and 5 (T, T") given by

64 (1=T772)3(1-17)?°

AN f2 /
fZN(T’T)_ 15(] +T2)4(] +T/2)4(T_TI)Z(TT/+])SPIO(T’T)’
N 128 (1=T>)*(1-1?)*TT -1) ‘ ,
ST =75 (L4 T2 (1 + TH(T = T')(TT' + 1)P12(T’T)’
) =% a-7 Py(T.T) (5.42)

15 (1+T2)5(1 + T2)(TT' + 1)
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where the polynomials PJ3(T,T"), P{}(T,T'), and P(T.,T') are displayed in Table IV. We had to resort to numerical
integration to evaluate some terms. A A
Our final results for the 2PN-accurate NNLO values of W' and W& read, respectively,

4 2 aMy (5997 2529 15 843 s
tailhNNLO __ < _ > o
Wi 15 egaz/z tot{ 3 =+ 4 In(2) 5 €00 + 5 In (46,6_13/2)
400845 200997 15 51711 5481 15
- - In(2) - — 2 ) -2
+[ s~ 224 M3 62°+< 2 s 23 CZ‘)”
(L6699 1821 \ (s \]rP
2~ 4 ") "4 )] a,
_losudsy 4y 0 15 (2110289 86205 15
96768 896 )T 16128 64 Ty )

321757 13491 15 442237 28735 4497 s '
- S n(2) - e |2+ (- 2 n(— )| L 4
(T = Fea)e o (S () ) e

and

Wtzail.hNNLO_zﬂMl/z {_3419_%111( s )

2" g 27

155572 8 2 \2e,a,
| 103645 56559 (66999 1827 \ | (5 \]
448 112 P\t T s Y) ™ 2ea,) | a,

2467109 3706175 1577635 , (442237 28735 4497 ,\ (s \]#* 344
13824 5376 © 8064 1344~ 32 " 16 ¢ ' '

2e,a,) | @

The coefficients ¢y, 29, €215 C40> €41, and ¢4, entering thail’hNNLo have been numerically computed. Our estimates of
their values are listed in Table V. From some numerical studies (increasing the working precision used in the computation),
and by comparing with the exact values of ¢y, and c,; given below, we estimate that the latter values have an absolute
numerical error of order 1 x 1078, We accordingly cite eight digits after the decimal point.

TABLE IV. Polynomial expressions entering the Newtonian level integral of Eq. (3.42).

P(T.T') 3= 157% 4+ IST* = 3T° — 15T + 157" = 37" + 37TT' + IST*T™ — 15T°T" — 75T*T2 + 15T"°T?
—TI5TAT? +75T2T? — 15T*T"0 + 3TOT"0 + 76137 — 52731’ — 52T + 15T°T"? + 377T°T' + 37T°T"
—-52T°T — 52T3T" + 37T"T)]
PIy(T.T) 6 = 51T% + 60T* — 27T — 5177 4 607" — 277" 4 116TT’ 4 318T*T" — 51T°T"* — 291 71>
+60T7°T% — 291T*T"? + 318T2T? — 51T*T" + 6TOT'® + 284T3T" — 218T3T' — 218T°T" + 60T°T"?
+170T5T + 116T5T"5 — 218TT — 2187375 4+ 170T°T

PY(T.T)) 15— 41777 + 4117573 = 2077°T'5 + 4277 - 2077°7T'3 — 427" 7" + 1177°
+1807* — 579T° + 55878 + 6307"2 — 3037 + 1836T"° + 15378 — 712TT' + 12636T*T"* — 9357T°T"*
+651T*T? — 4836T°T% + 1716T*T"? — 4050T7*T% — 192074770 — 82207°T" — 4365T27"®
+10356T"8T* — 2973T8T° — 1086T"* T + 14280T"°T® + 4327">T8 — 3366T3T"®
+60T"12T* + 43878712 4- 2772712 — 102710 4 372 4 318710 + 39712 — 147T2T"12 — 2437127
—366T"12T10 1 630T'07"* + 1067 T + 4788T°T" — 68T\ T’ + 513T°T' + 2727°T — 61577 T"
—1229277T"7 — 876T*T10 — 144T'°T10 4 2556710710 — 46507"107° — 61871072 + 30567 T + 32677 T"
—1963T7T' — 66T'2T"2 + 477T2T"* — 4911T°T" — 2846T" 75 — 318177 T" — 4386T'0T"8 4 199278710
+2895T°T" + 9804T°T"7 + 933T127"8 — 34287177 4+ 30887177 — 99612770 — 2626T7 TN — 48T°T'!!
—378T127"10 1 50271 T 2787 T 4+ 8212T3T"7 + 3876T3T"7 + 3276T*T"10 4 33737° 77
—6651T3T" + 401873 Tt — 15487371 — 1032737 + 1083731 — 518T°T"* — 282772 + 571T5T'
+1023773T" + 30507 T — 8769T3T" — 32987 T
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TABLE V. Detailed results from numerical integration. See,
however, below for the exact values of ¢y and ¢, .

Coefficient Numerical value
Coo —49.20484109

Co0 +115.95128578
co +161.90919858
C40 +22.31105671

C4 —116.85535736
Car —209.81006553

E. Computation of Wil (E ;) in the
frequency domain

So far, we have discussed the direct time-domain
approach to the computation of the integrated tail action
WHRLhNNLO Tt wwag shown in Ref. [52] that W®ilh has a
simple expression in the frequency-domain. Let us now
briefly discuss the method we used to tackle, in parallel, the
computation of W@N(E, ) in the frequency domain. The
use of this method allowed us to go beyond the results
obtained by the direct time-domain approach presented in
the previous subsection. In particular, we succeeded in
analytically computing two of the NNLO integrals entering
WHLRRNLO ™ (hamely cqo and ¢,;) by working in the
frequency domain, while we could not compute them in
the time domain. There remain four other integrals (one at
the 1PN level, and three at the 2PN level) in Wtf‘ﬂ’h NNLO hat
we were still unable to compute analytically.

Let us start by presenting the analytical values we
obtained for the two parameters cq, and c,;, which could
only be numerically estimated in the time domain, but
which could be obtained in the frequency domain. Namely,

~ 1039 843 2079

€00 = gy~ + Wln(2) - WC(?’)
= —49.2048410955697697167634473834...  (3.45)
and
1827 21867 612
= M gy s 0)
= 161.909198574011907946235225245.... (3.46)

Note the remarkable presence of {(3) in these expressions.
These analytical results are in agreement (within
+1 x 107®) with the numerical ones listed in Table V.
Let us now sketch our frequency-domain approach,
relegating most details to Appendixes B and C. We recall
that the tail potential W (E, ), Eq. (3.8), computed along
hyperbolic motion, can be split into two terms, Eq. (3.9),
namely W9 (E, j), Eq. (3.10), and W™ (E, j), Eq. (3.11).
Both W (E, j) and W™ (E, j) can be evaluated in the
frequency domain, after Fourier-transforming the various

multipolar moments. This frequency-domain approach turns
out to be more convenient in the case of tha'l'h (E. j) because

the logarithmic term in W¥(E, j) complicates matters.
The first step is to Fourier transform’ the multipolar
moments. For example,

do . .
L) = [ Srelat). (47

where
7 dt iwt(v)
ab = = ab t=t(v ’ .
1(o) 2, Lap (1) |1—i(1y AV (3.48)
with the associated PN expansion

Lp(@) =I5, (@) +17° Iy (@) +1* T3 (@) + O (1°). - (3.49)

The PN expansion® of the exponential term ¢/(*) gives

eiwt(v) — e4sinh 1;—pv(1 + b2;12 + b4’74)’ (350)
where
- _3/2. e _4_
u=we,a; ", q = 1u; p=—=i—, (351
e, r

and
by = — zw;/a_r[(le_ l)e, sinh v + (v —9)v],
by — io

82— 1)va,

-1
X {b40+b41arctan< Z:+1tanh§>], (3.52)
with
b40=(ez—1)[—4i—va’b§+v(u2+11u—15)
®
(v=15)e,—2MV | opa—7)
m ere,coshv—l v v
1 9 15
T O DI B ARl
+8€,[<1/ v 8)6, 1/—1—21/ 8]smhv,
N 5
b41:—48 e,—l I/—E . (353)

Moreover,

In the following, we use GM =1, ie., we work with
GM-rescaled time and frequency variables.

*We take e, and a,, defined in Table II, as fundamental
variables.
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dt
i (e, coshv — 1)@ + con® + ca, (3.54)
v
with
|y
cH) = —Ex/a,[(ZV + 1)e,coshv +v—9],
1
cy = 8\/C_l_r{l/2 + 11y — 15— e, coshv(1 + 8v — 812)
4-17 2 -39 60
-4 U(e,coshv—3)+i

e,coshv —1

+2 ]5_”)(63_1)}. (3.55)

(
(e,coshv — 1)?

The computation is done by using the integral representa-
tion of the Hankel functions of the first kind of order p and
argument ¢ [with Egs. (3.51)]

|
HY (q) = — / eqsinh v=Pv gy, (3.56)
iT ) o

As the argument g = iu of the Hankel function is purely
imaginary, the Hankel function becomes converted into a
Bessel K function, according to the relation

2
HY (iu) = ;e"i(”H)Kp(u).

(3.57)
Note that the order p = iu/e, of the Bessel functions is
purely imaginary, and proportional to the (frequency-
dependent) argument u = a)eraf/ 2. However, the order
p tends to zero when e, — oo, which allows some integrals
to be explicitly computed when performing a large-
eccentricity expansion.

Actually, the computation gives rise to several Bessel
functions having the same argument u but various orders
differing by integers. However, standard identities valid for
Bessel functions allows one to reduce the orders to either p
or p+ 1. When taking the large-eccentricity expansion,
one then expands with respect to the order of the Bessel
functions. This gives rise, at LO, to K(u), and K (u), and
at NLO and NNLO to derivatives of K(u), and K (u) with
respect to their orders. Such an expansion is explicitly
shown below in Eqgs. (B12), while studying the Newtonian
limit, and several useful relations are listed in Appendix B.

Using (y = 0.577215...)

Pf; /°° e — _n(lw|Ter),  (3.58)
0 T

we find (see Sec. V of Ref. [52] for details)

; G’H o 2
WU ) = —SMZUZ/ doK(w)In (a)—sey>,
ic 0 C
(3.59)

where

1 s
(o) = co (@)

o® . 16 -
12 | e )P + o0 ()P

[ @ 2, @ 2

— |1 —|J . (3.60
1 oo o) + g Dacl)P| - (360
Here, the frequency-domain multipole moments are also
given in a PN-expanded form, e.g.,

Lp(@) = I3y (@) + P15 () + n* I3 (@)

+0(n°). (3.61)
The expression, Eq. (3.59), for W‘f‘ﬂ’h(E ,J) is closely
related to the total energy flux emitted during the scattering
process

. (3.62)

G*H o
AEGW = ﬂ'cthz/) da)/C(a))

However, it crucially differs from it by the presence of the
logarithmic term In (w2 ¢7), which is characteristic of the
tail in the frequency domain [82].

It is convenient to replace the integration over the
frequency @ by an integration over the variable u, using

u

0 =—7. (3.63)
e.ay
The result is the following
; ~ G’Hy 22 [
whith (g ) _75“__3/24 dulC(u) In (ua), (3.64)
with
K(u) = K(w)|w:u/(6ra3/z), (3.65)
and
2
a=—"r el (3.66)
ce,ay

The integral in Eq. (3.64) requires special care to
be performed, even in the Newtonian limit’ where

"At the Newtonian level, n — 0, all eccentricities agree:
e, = e, = ey = e. However, we will continue to denote the
eccentricity as e, to avoid confusion with the exponentials.
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K@) = L[, (@) .

: (3.67)

In the Newtonian limit, # — 0, we have (in units
of G =c =1, but putting back the appropriate power
of M)

2M? L2

Wtail.h,N E.j)=-"
1 ( J) 5 ﬂeZafl/z

A " duTy(u)In(ua)  (3.68)
with

In(u) = w®| T3 (@) Pl e a2 (3.69)

At this Newtonian level, Zy(u) can be given a very
compact form in terms of Bessel K, () functions

6412 .
In(u) = —4aZu26_’1’”[AK§+1 (u)

+ BK ,(u)K 1 (u) + CK3(u)], (3.70)

where p = iu/e, and

A—%z(p2+u2)(p2+u2+1>,
B =—u(p® +u’) Kp —%):ﬂ +plp - 1)2},

ut 3 1 5 7
C:— 22_7 — 4 _ 2_7 1 2.2
2+<p 2p+6)u +<2p 2p+ )pu

F oI (371)

Indeed, Eq. (3.70) implies that Zy(u) is quadratic in K , (u),
and K, (u). Furthermore, p is purely imaginary and
enters both the coefficients A, B, C and the order of the
Bessel K functions.

However, even at this Newtonian order, the integration
variable (u) appears both in the argument (u#) and in
the order (p = iu/e,) of the Bessel functions. The com-
putation proceeds then by expanding the integrand in the
large eccentricity limit, with the useful consequence of
removing, at leading order in ei the u dependence from the

orders of the Bessel functions, reducing them either to O or
to 1. At the NLO in el,’ there appears the first derivative of
K, (u) with respect to the order v, around the two values
v =0 and v = 1. Luckily, these first derivatives can be
explicitly computed, namely [see Egs. (9.1.66)—(9.1.68) of

Ref. [83]]

0K, (u) 1

:;Ko(u).

o |, v

(3.72)

v=1

However, at the NNLO in the el expansion, there appears
the second derivative of K, (u) with respect to the order v.
Though there exist explicit representations for the latter
(see Appendix B), they introduce a level of complexity
which did not allow us to fully compute the NNLO
expansion of W'™™N(E_ ) even at the presently discussed
Newtonian level, n — 0.
When going beyond the Newtonian level, the Fourier
transforms
g4sinh v=(p+k)v _ 26—i§(p+k)Kp+k(u) (373)
become replaced by Fourier transforms of ¢ 45 v=(p+k)v
and e9s"h v=(P+h)ry (1) The Fourier transforms of

" e85 v=(r+K)v ead to integrands involving

an

Uneqsinh v—(p+k)v N 2(_1)’1
op"

e 5P, 4 (u)]. (3.74)

while the Fourier transforms of the terms 45"t =(P+K)v /()

would require one to work with the large-e,. expansion of the
V term [see Eq. (3.5)], i.e.,

V(v) = 2arctan (tanh g)

1 sinh v
—tanh ———— 4 0(e?). 3.75
+er an v+e%coshzv+ (e;?) (3.75)

Unfortunately, we did not find a way to replace the
first, arctan (tanh %), term by some uniform expansion in v
that could be integrated term-by-term. Keeping it as is
complicates matters. In some cases, we could overcome this
new difficulty by exchanging the order of the » and u
integrations, i.e., by integrating with respect to u first. This
has allowed us to analytically compute some of the remaining
integrals.

More details on our computations are given in
Appendixes B and C. From the practical point of view,
the main outcome of the frequency-domain approach has
been the analytical results (3.45) and (3.46). In addition,
this allowed us to analytically compute the first two terms
in the large-eccentricity expansion of the 5.5PN integrated
action Wsspy, as discussed below.

IV. FINAL RESULTS FOR THE H-ROUTE
TAIL CONTRIBUTION TO THE
SCATTERING ANGLE

The results discussed in the previous section are
intermediate results towards our real aim which is to
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compute the nonlocal scattering angle as a function of
energy and angular momentum: y"°"°¢f(p i v). In view
of Bq. (2.16), the knowledge of y""cf(p_ . jiv) is
equivalent to the knowledge of the integrated nonlocal

Hamiltonian, Wﬁggk’c'f as a function of energy and angular

momentum. The total nonlocal potential Wﬁ‘y’;k’c( Poos J3V)
was decomposed in Eq. (2.18) into three terms,

Wﬁ;)glOC(pm’j;y) — Wtail,h + Wtail,f—h + WS.SPN’ (41)

which were defined in Eq. (2.19). In the present section we
finish the discussion of the first contribution, W@ilh =
thall,h + Wtzall’h.

The expression of W@t as a function of energy and
angular momentum is obtained (besides adding together
W and W) from the results described above (which
were expressed in terms of the quasi-Keplerian elements a,
and e,) by reexpressing a, and e, in terms of p., and j,
using the links given in Appendix A. Introducing [see

2

I p% . .
er=enxt5 = [(p%J* + Vv —4p3j* — 6]
eN

Pa
8%ex
+ (po)® + D OP&%i* = 91pj* = 112)v
—32p8,j° = 36p%* + 64psj* + 64]n’,

1 Tv—4

[Poi*(Pol® + 1)

The use of the new variables p, and j (instead of @, and e,)
leads to a reshuffling of the large-eccentricity expansion.
Indeed, we are actually interested in expanding W&t (p ., 7)
in powers of % This changes the meaning of the decom-
position in LO, NLO, and NNLO terms. To clarify this
change of meaning we write the expansion in powers of % as

Wtail,h(p ]) — Wtail,hLOj (p ]) + Wtail,hNLOj (P ])

) 1
S+ WRILANNLO, (), iy 4 0 <._6>, (4.4)
J

Eq. (2.14)] ) )
where we have added a subscript j to the superscripts
N"LO, because we are now referring to an expansion of
en = ex(Poos J) =1/ 1+ LA (4.2)  wwithLOi(p ) in powers of %
For instance, at the leading order in 1 the combination,
we have and reexpression, of Egs. (3.37) and (3.§8) yields the result
. 2 MV pr [315 p 2753 1071 1357 111 p
Wailh LO; L) = — o7 |22 4 37In( £ — —— ) In( &= 2 2
(Peosd) =575 g M) T e T v e T2 ) M ) e
155473 109559 186317 , 27953 2517 555 , )4
- — v+ — In{ —2 antl. 4.5
{1792 8064 ~ 1008”+<672 112”+8”>n<2 Peot (45)
|
As we see, the LO; term is o L. Correspondingly, | R, 10
. —X 4 f— — ’
the NLOj one will be « j%, and the NNLOJ- one & ]ls As 2 My 0j
per Eq (2.16), the correspond.ing contributions to the B Xf“,h(},, v) )(tsaﬂvh(y’ v) )(gn]'h(y,v)
scattering angle will be, respectively, j%, ocjl5 and ]i(, = 7 + F + g
Remembering that % = O(G) this will give us the value of 1
the scattering angle up to the sixth order in G. We display +0 <J_6> ’ (4.7)
below the explicit results for the 2PN-accurate scattering
angles associated with the LO;, NLO;, and NNLO; values .
of Wilh with
Inserting Eq. (4.4) in Eq. (2.16) yields
tail,h
Yo _ 1 2 tailh LO,
J* 2M?v O '
)(nonloc.f :Xtail.h +){f_h _’_XS.SPN’ (46) )(tsail,h _ 1 gwtail,hNLOj
P 2M*voj '
iLh
Yo _ 1 gwtail,hNNLOj_ (4.8)
where the first (h-route) contribution is given by Jj° 2MPv 0]

084047-18



SIXTH POST-NEWTONIAN NONLOCAL-IN-TIME DYNAMICS OF ...

PHYS. REV. D 102, 084047 (2020)

As already announced, this yields results for y" that can
be written as

1 . P [ a AP (posv
Extall‘h(pomf;y) = Uj—4 <Az)al$h(poo;y> + : p( J )
0
Atail.h :
+¢g~@2v>+...>, (4.9)
(Pood)

1

where the % coefficients AR (posv), AN (pso),

ABL(p sv) are themselves given by a 2PN-accurate
expansion in powers of p, say

. 37 [po) 63
A:)all.h,N =7 __ ?ln <7> _ _:| ,

.\ _ stilhN tailh, IPN tail,h, 2PN
Ap(pesv) = Ay +A +A 4+
. tail,h,N tail,h, IPN tail,h,2PN
A (peoiv) = Ay +Aj + A o
. tail,h.N tailh, 1PN tail,h, 2PN

Ay(pooiv) = AZEIN 1 AL + Af 4o

(4.10)

Note that, in absence of the 5.5PN contribution, we
do not have here fractional 1.5PN contributions, as in
Eq. (2.13).

The LO; expressions given above yield

» (1357 111 P\ 2753 1071
Atailh 1PN _ _ In[£2) 2= 4 | p2
0 I\"280 "107) "\ 2 ) T1120 T a0 ¥)P=
. ([ 27953 2517 111 P\ 155473 109559 186317
Ailh2PN _ _ _ 2 ) In(£2) - - 2| p. 4.11
0 "I\"3360 T30 Y "8 ) M\ 2 8960 40320 © 5040 U |P= (4.11)

Our final results for the coefficients of the NLO; and NNLO; contributions to the tail part of the scattering angle

then read

Atlail'h’N _ _ 6656 _ 6272 ln <4 pT‘)o)’

ABLRIPN {<_%+%y> n (4%&,) N 11411328 225125504y] 2
(- B ) ) SRS, B
and
AZTN = 7 {—122 In (%"") — % + 2600 2 ln(Z)} ,
Atzail,h,lPN — K% + %1“(2) + g ey + gln <p7°°> - 5000) v
—%Jr%cm —%ln(%’") + 5 coo —%ln(z)] Paos
ABLR2PN _ K; ¢y —7851n <p7°°> — % + 12—5c00 —5¢y — %m(z)) 2
<_% + §C41 + @m <p—m> + §021 + mﬂln@) =3¢y — gCoo)”
48384 2 168 2 448 4
o o+ agag )+ en+ e+ Toen(B) | o
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respectively. Introducing the new set of parameters

doo = %Coo - % - %1“2)’

dy = gczo % + %ln@),

dy = §c21 - % + %m(z),

dy :§c42 +%—%ln(2), (4.14)

with numerical values listed in Table VI, the latter ex-
pressions can be rewritten as

Atzail,h,N — 7l=1221n <p7°°> + doo] ,

) [ 811
Atzall'h’lPN =T <d21 - 2d00 + —1In (p_oo> > 14

2 2
13831, (p
— T In(== 2
+ dyo + 3dy 36 n(2 )]pw

p <d42 4 3dyy — 2dy; —7851n (%“’) ) W2

taiLh, 2PN __
A5 =

11
+ <d41 + day = 2dy - Edoo

75595 [ pes
$ 2 ln<7>>v
3 64579 ()]
+ d4() + Edoo + dzo + Wln<7>}poo

(4.15)

Among the numerical coefficients entering the NNLO;
quantity A(p;v) = At2ail,h.N T Atzai],h.lPN n At2ail,h.2PN two
can be written down in analytical form (thanks to our
frequency-domain computation), namely, using Eqs. (3.45)
and (3.46),

TABLE VI. Numerical values of the coefficients (4.14).
Coefficient Numerical value
doo —337.13453770
dyg +668.10143447
dy +560.45441238
dyo +743.05631726
dy; —694.94788994
dp —439.10050487

99 2079
- = 4.1
dpo 2 A ¢(3) (4.16)
and
1541
dy = . +306¢(3), (4.17)

while the other ones are (only) known numerically (see
Table V). (See Ref. [84] for the analytical computation of
dyo, dyo, dyy, and dy,.)

V. SECOND-ORDER TAIL CONTRIBUTION TO
THE INTEGRATED ACTION AND TO THE
SCATTERING ANGLE: W55PN AND 55PN

Before finishing our discussion of the h-route tail
contribution, y@"(p . jiv), to the scattering angle, and
of its v dependence, let us recall that, at the 6PN accuracy
where we are working, the total scattering angle is made of
the following four contributions:

KO Paos i 1) = 100 4 yilh 4SSN b (5 )
Among these contributions two of them are directly linked
with nonlocal effects computed in harmonic coordinates:
indeed, @' comes from the first-order tail (linear in
GM), while 3PN comes from the second-order tail
(quadratic in GM). Before being able to discuss the
constraint that must be satisfied by the flexibility factor
f(¢) entering the last contribution, ¥*~", we must control the
structure (and, notably, the v dependence) of the quadratic-

tail contribution >N,

: _ _ 107
From Eq. (2.6), denoting B = — {5 and

i G
HP(12) = < 1 (14 2) =10 (017 (1 - )],

5 S5y
(5.2)
the 5.5PN Hamiltonian reads
B /G 2 feod .
g =5 (S30) [T e, s3)
c e T

Note that the function H**(¢,7) is odd in 7, so that
7V HP(¢,7) is even in 7 (and regular at v = 0).

As usual the computation can be done either in the time
domain or in the Fourier domain. Working in the Fourier
domain we find

G 2 G 0 ~
s ==p (53 s o 69
0

c 563

At our present level of accuracy, it is enough to use the
Newtonian approximation to the Fourier transform /;;(w)
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of the quadrupole moment. Using the relations given in
Appendix B we have then

(2
ey

where the function Zy(u) was defined in Eq. (3.70).

As explained above, though the function Zy(u) is here
evaluated at the Newtonian level, it is quadratic in Bessel
functions K, (u) whose order is u dependent: either v = p
orv = p+ 1, with p = iu/e,. This makes it impossible to
compute W2 in closed form. However, it is enough for
our purpose to compute the first two terms in the large-
eccentricity expansion of the integral (5.5). Thanks to the
relations (3.72), this computation only involves integrals
containing Ky(#) and K (u). We find

107 ()} (GM
WSS = 105( > ( & ) ?”2320’

XA duuf(u)<1+§r+0(el%>>, (5.6)

where LO and NLO refer to the large-eccentricity expan-
sion, and where

nonloc __
WS 5PN —

duuZy(u), (5.5)

2
Flu) = <? + u4> K3(u) + 3uPKo(u)K, (1)

+ (u? + u*)K3 (u) (5.7)

denotes (as in Ref. [52], and in Appendix B) the
gravitational-wave energy spectrum in the Newtonian-level
“splash” approximation [85,86], i.e., at Newtonian order,
and at leading order in the large-eccentricity limit.

The NLO-accurate result WIS“(S)};LI\II\ILO involves the
two nontrivial integrals = [& duuF(u), and f =
J& duu?F(u). These integrals are computed in
Appendix B. This leads to the following explicit NLO

result for W% (using G = 1 = o):

WLO+NLO

32107 pl 49 1 297
5.5PN M2 ( z

5105 ¢+ 9 e, 256"

wo(3))

Replacing the eccentricity in terms of j finally leads to the
following explicit NLO; result for W2ue

(5.8)

WLO+NLO

"y 2(23968 é+ 10593 , p3,

53PN 675 4 | 1400 " 3
1
co(L)) 59)
J
Using the formula (2.16) we finally get
95872 pS, 10593 , p3 1
LO+NLO __ S 2 P
Hosm = _”< 615 5 280 " g T Oo\7
_ 95872 pG (| 13365 x7
N 675 j° 50176 po.j
1
+ 0(_—2>>. (5.10)
J

VI. ANALYSIS OF THE v DEPENDENCE OF THE
HARMONIC-COORDINATE NONLOCAL
SCATTERING ANGLE yronloch

Let us recall that a crucial tool of our method is to exploit
the special v dependence [7] satisfied by the total scattering
angle »"(p,js;v). This structure is embodied in a
restricted v-polynomial dependence of the energy-rescaled
PM-expansion coefficients of y*'(p., j;v).

The total scattering angle y**'(p,, j;v) is obtained as a
sum of partial contributions, namely
tot(

¥ poo’j; I/) :Zloc.f +}(tail.h +)(5'5PN +)(f_h- (61)

Some of these contributions can fail to satisfy the special v
dependence satisfied by y*'(pe,j;v). One ingredient of
our method is to assume that y'°>f does satisfy the latter
special v dependence. We must, then, constrain the flex-
ibility factor f in such a way that the complementary,
nonlocal-related, contribution

Z@h y  SSPN  f-h (6.2)
does satisfy the special v dependence satisfied by
7 (P, J;v)- This will be the task of the present section.
We will start by recalling what is the special v structure we
are talking about. Then we will measure the extent to which
the sum of the two h-route nonlocal contributions, say
gromloeh = jtailh 4 o SSPN £ai]5 to satisfy the latter special v
dependence. This will finally allow us to constrain f(7).

A. Reminder of the v rule to be satisfied

Let us define precisely the v rule to be satisfied. We
expand in powers of % = O(G) any partial contribution
25 (Peo» j3 ) to the total scattering angle, y'° = >y X, say

1 Xn poo,
7 (P i) Z : (6.3)
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and then define the energy-rescaled coefficients

T (Poiv) = 1y vl (Pooi V). (6.4)
where we recall that
h(y,v) =/ 1+2u(y - 1), =/1+p2n*, (6.5
that is
1 1 4 4 6
h=1+ 2vpoof1 —§V(1 +v)pen’ +0°).  (6.6)
The special v structure says that
7K (pwiv) = PX1 (1), (6.7)

where P)d((yn)(y) denotes a polynomial in v, of degree

d(n>5{n;1}

with y-dependent coefficients. (Here, [--:| denotes the
integer part.) Let us analyze the v structure Eq. (6.7) for
the case where the label X is equal to nonloc,h,in the sense
of the following definition of the sum of the two harmonic-
coordinate nonlocal contributions

(6.8)

nonloc,h, tot — , tail,h 5.5PN
X =X +x .

(6.9)
|

63 37 (p 2753 1357
~nonloc,h 0 4
= (-2 -2 S
4 < 475 <2>>””p°°+( 1120~ 280
27331 , 199037 155473 27953
10080”40320 © 8960 3360

~nonloc,h oo 3
— -  In(2) ———1n v

Our results above have led to the determination of
Xzonloc,htot, )(nonloc LJhitot and )(gonloc,h tot' More precisely, we
must, according to the definition, Eq. (6.9), add the 5.5PN
contribution Eq. (5.10) to the corresponding results for the %

expansion of y@'" given in Sec. IV.

Let us first remark that, in fact, the 5.5PN contribution
1>°PN separately satisfies the rule (6.7). Indeed, as we are at
the 5.5PN level, we can use h ~ 1 so that 7;°"N(py;v) ~
20" (peosv). Then, for the relevant exponents n = 5, 6 of %,
the rule (6.7) says that 7,°"N(p;v) should be at most
quadratic in v. However, our explicit results Eq. (5.10) for the
7>PN°s show that they are actually linear in v.

In view of this structure of PN, we can henceforth
focus only on the remaining h-route contribution to y,
namely y@'", In the following, we shall use the notation

nonloc,h

jromoeh = yuih (6.10)

to emphasize that this is the crucial additional h-route
contribution to the local piece y°°f, to be eventually
modified by a suitable f-dependent piece '™

We transform the results given in Sec. IV for y

yomeeh into  corresponding results for their energy-
~nonloc,h h3 tallh’ )?nonloch h4 tallh

tailh _

rescaled versions Jy,
= n3y@ We find

’

an d ~n0nloc h

P 63 3
) TY)" PSP
n p7°°> )ﬂvpﬁon“,

J[(o1asse o) 14368 T (pu\Y (2816, ) 198592 1408 (p
525 1125 525 2 45 1575 ' 45 2 ) Jp|ppsr’
EL poo | 283168) 2448608
225 225 4725 33075
48497312 881392 (p.\ 1762784 o
< 231525 11025 " ( 2 ) 11025 ln(z)ﬂ””‘”” ’

~nonloc.h

Ves = < 1221n <2 ) +d00>7tvpoo

13831 201
+ {<_—56 In (2 ) —|—d20+3d00> <Tl

1
( > ) +2d00+d21> ]m/pﬁonz

30655 1 1 1
+ K_Wl ( > ) dy) + 3 doo+ d20+d41>u+ (EdZI +d42—§d00>1/2

2

1008 2 2

64579 3
+ < In (poo) + = doo + d20 + d40>:|7'[1/pg°7’]4.

(6.11)
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We recall that the powers of n in Egs. (6.11) denote

fractional (rather than absolute) PN corrections. Actually,

the leading-order contributions to 73", iomoeh and

jromoch are all at the 4PN level, so that the 2 (and *) terms
denote 5PN (and 6PN) corrections, respectively.

B. On the v structure of the logarithmic
contributions, and of the gravitational-wave
energy loss

The rule Eq (6.7) says that 75 should be at most linear in
v, while 7¥ and 7% should be at most quadratic in v.

Let us first note that this rule is satisfied by all the
logarithmic contributions. This is a nontrivial check of the
validity of this rule because all the logarithmic contribu-
tions have a genuinely nonlocal origin, and could not be
compensated by additional (logarithmic-free) local terms.

Let us also note that the simple v-polynomial structure of

the logarithmic (tail) contributions to 7h"°“" is rather

hidden in the structure of the multipole moments and,
thereby, in the structure of the total gravitational-radiation
energy loss. It is worth pausing a moment to comment more
on this structure.

From Eq. (2.9), one sees that the logarithmic contribu-
tions to® H™moch are proportional to

jc'spllt(t t) tot fGW([)

GH
A (6.12)
C

where FSW (1) is the instantaneous flux of gravitational-
wave energy. Therefore, the logarithmic contributions to
wrenleeh — [ ggpgmenioch are proportional to

GH GH
—= / diFV (1) = —AESY,  (6.13)

C C

where AESY denotes the total energy radiated’ during an
hyperbolic encounter. Let us consider the functional
dependence of AESY on y (or, equivalently, p.), j and
v, and the expansion of AESY(y, j,v) in powers of %

AEZY (y;v)
AE™M(y. jiv) = ) — .
Z; 7

(6.14)

The logarithmic contributions to W"™°eh have a %

AEG(

expansion proportional to &), .3 Y so that the

As explained in the previous subsection, we henceforth label
as “nonloc, h” the crucial 4 + 5 + 6PN nonlocal contribution,
because the second-order tail contribution separately satisfies the
constraint we are studying.

Actually, as we are considering a time-symmetric interaction,
a la Fokker-Wheeler-Feynman, this energy is first absorbed by
the system in the form of advanced waves, before being radiated
in the form of retarded waves.

logarithmic contributions to y"M°eh = —L_gwrenlech /g
are proportional to
AEY (r;v
- z n+1 (6 15)
n>3

In order for the rule Eq. (6.7) to be separately satisfied by
the logarithmic contributions to the scattering angle, and
taking into account both the factor % in the previous

equation, and the fact that AESY « 12, we conclude that

the coefficient of Ji in the gravitational-radiation loss

should satisfy the nontrivial rule

AESY (y:
w1 ) M)y
1%

for n > 3.
[

(6.16)

We have confirmed the validity of this rule in two differ-
ent ways.

First, we note that the rule (6.16) states that the leading-
order contribution to AESY(y, j;v) in its expansion in

powers of % i.e., its leading-order PM contribution ]% =

O(G?) must depend on v as « v?/h*(y,v). In view of the
relation [10]

GM p
— ===, 6.17
between j and the impact parameter b, this is equivalent to
saying that

B AE b ) = s () (1)

+ O(G*), (6.18)
where the dimensionless factor £(y) depends only on y and
not on the mass ratio. The validity of this statement to all
orders in the PN expansion is a nontrivial fact which
follows from the structure of the LO post-Minkowskian
gravitational Bremsstrahlung results of Refs. [87,88].
Indeed, the latter references have proven that the LO
PM gravitational wave form has three properties: (i) it
depends on the masses only through an overall factor
G?mymy; (ii) it depends on time through two separate
timescales of the form bf,(y), bfp(y); and, (iii) it enjoys a
forward-backward symmetry in the center-of-velocity
frame S. These properties imply that the four-momentum
P{, radiated as gravitational waves'? is of the form

%As we are discussing the time-symmetric dynamics, the
system “emits” both advanced and retarded waves and therefore
absorbs —Pfy, before emitting +Plhy.
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TABLE VII.  Functions £, (Pes»€) (for n =3, 4, 6), Eq. (6.24), in terms of € and B = B(€), Egs. (6.23).

s - _ 6457922 | 11947909 26 | 19319 24 | 5839651 78 | 27953
E3(pe.€) (=550 + 5 € + 1 € + & + %) B

1008 5040

5839651 =7 | 79675961
5008 € 1 25360

&+ %

4309531 -3 _ 8807569 7 | 1060 & 111
+ T36050 €~ ssso0 € 7 ) Poo
0219 =3

(1+&*)?

13831 22 | 13447 26 | 2259 =4 | 1357 31509 - _ 64__¢ 13447 =5 | 1 9
+(Ha & + 50 &+ + )B4 € s T € T &lpe

(B + 74 2084 B + 3%e + 1108 pl,

£ - 62813 =3 __ 1628347 =5 _ 258051 =7 | 6131 = 16546 __ 427097 74 _ 5912419 22 | 280502 __ 258051 =6 647,11
E4(pos €) (%65 & =560 € —“40 € T8 ©)B ~ o513~ 150 € ~ 3700 € o515 — 40 € ~5qiseyPe
1127 25 _ 910 73 _ 201 - 128 | 32 _ 11274 _ 1603 7219
HESe -FE -FOB-F+5pa-5 ¢ — 9l
A . 5929 23 | 485 - | 5481 =5 2966 | 5481 74 _ _ST8 | 637172 161,11
E6(pocw€) [( 6 € +T€ + 3 € )B =+ 45 =+ 3 € — 15(1+2%) + 2 € _5(1+52)2}poo
G\3 u + i 1 1
“oo_ 2 1 2 4 == _
Py = (mym;) b E(r) T 0(G*), (6.19) C=ni ;

where i, u4 denote the incoming 4-velocities. Computing
from Eq. (6.19) the center-of-mass energy loss AECY =
_PléW(plﬂ + pZﬂ)/‘pl + p2| [where Pay = MglUgy and
|p1 + pa| = Mh(y,v)] leads to Eq. (6.18).

Second, we have computed AESY to the 2PN accuracy
(thereby generalizing the 1PN-accurate result of Blanchet
and Schifer [89]). We give in Appendix D, Egs. (D2) and
(D3), the 2PN-level contribution to AESY when (following
Ref. [89]) it is expressed in terms of e, = e” and j.
However, expressing AEgyw in terms of e, and j does
not help to reveal its hidden simple v dependence
because e is itself a rather involved function of

E= (Eg—Mc*)/p= (h(y.v) = 1)/v, j and v given by

el = \/14+2Ej*(1 + exn® + eun*),  (6.20)
where
e = L [(BEj? +2)v — 15E% — 12]
P 2QRE+1) ’
=———— _[EYYTE? + 4)12
€4 8(2Ej2+1>2j2[ J ( Jo T )V
+ (=210E3j® 4 224 4+ 792E % + 592E j*)v
+ 415E3j° 4 200E? j* — 280E > — 128]. (6.21)

It is better to reexpress AEgw in terms of y (or
equivalently p) and of the (gauge-invariant) eccentricity-
like variable'

el =1+ (2= )i =1+ pLh’f?,  (6.22)

and of the related quantities

"The quantity ej,; is a PN-acceptable measure of the eccen-
tricity in the range 0 < e;; < co, and the value ¢;; =1 does
describe parabolic motions (with zero binding energy). However,
el ; does not vanish along circular orbits.

1
B(€) = = + arctan € = arccos (— —> (6.23)

ehj

SRR

Note that j enters these quantities only in the combination
h(y,v)j. This leads to a 2PN-accurate result of the form

AESY(p,., &)

MIJZ = E3E‘3(pc>o’é) +yé4E4(poo’é)

h(y,v)

+V2EE (P €) + O(pi),
(6.24)

where the functions E,,( Deos €), With n = 3, 4, 6, are given
in Table VII.

These functions have a smooth limit as € — 0 (equivalent
to e, — o0, or j — 0), i.e.,

En(poo’é> = EnO(poo) + éEnl(poo)

+ ézEzﬂ(poo) T (625)

The error term O(pL3) in (6.24) indicates a fractional 3PN
error level. Indeed, the leading PN contribution to £5(p,. €)
is O(pl) (corresponding to the large-eccentricity
Newtonian-level energy loss ~&’pl, ~ e;,j~7). It is then
easily checked that the properties embodied in the expansion
of the expression (6.24) in powers of € = 1/(phj) implies
that the expansion coefficients of hAESW(y, j;v)/v? in
powers of % satisfy the rule Eq. (6.16).

Let us also note that there is a simple link between the
total gravitational-wave energy loss along a hyperbolic
motion, and the gravitational-wave energy loss during one
radial period of an elliptic motion, namely

AE&(:}I&];&C (}/’ ]) _ AEl(l}}g\)/erbolic (}’, ]) _ AE}é}&erbolic (}’, _]) )
(6.26)
This result is obtained by analytically continuing the quasi-

Keplerian representation of the hyperbolic motion used
above [79] back to the elliptic-motion case (expressing all
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quantities in terms of y and j and analytically continuing y
from yhyperbolic 1 to yellivtic < 1) The result (6.26) is
consistent with the analytic-continuation link between
the scattering angle and the periastron precession [37],
as is easily seen in view of the link [52] used above between
the tail contribution to the scattering angle and the time
integral of the gravitational-wave energy loss. The func-

tional structure of AEgl&,’ﬁC (7, j) is much simpler than that
hyperboli
Of AEG};pVCI' ol1c (},

factors present in AE,

J)- In particular the arccos, or arctan,

eyperbolic 7 are simply replaced by 7

in AESW(y, j). Finally, AESA"(y, j) has a polynomial
structure in p,, and €.

Note also that our rule (6.16) about the special v
dependence of the hyperbolic gravitational-wave energy
loss implies, via the link (6.26), that the same property
should be satisfied by the elliptic gravitational-wave energy

loss. In view of the odd dependence of AEG"(y, j) on j
(and therefore €) displayed in Eq. (6.26), thlS transforms the
result (6.24) into

h(y. V) AEG" (P &:0)

M2 _epoo[ ( 2)+poop3( )
+ paoPy(E?)]
+ V& po[P2(€%) + paP3(€%)]

+ 7 po Py (&) + O(pd).
(6.27)

where each P, (&%) denotes a different polynomial of order
n in €.
We have checked (using the elliptic 3PN results of

Refs. [77,90]) that the remarkable constraint on the v

dependence of AEG" (7, j; v) displayed in Egs. (6.16) and

(6.27) 1is satlsﬁed at the 3PN level [with the evident
generalization of the structure (6.27)]. In particular, the
O(1?) contribution is of the form & pl3 P, (e?).

C. Contributions to 7h°"°“" violating the

special v structure

Let us now highlight the relatively small number of
contributions to ;?Eonmh h'ly nonloch that do not satisfy
the rule (6.7) by separating them from those that satisfy the

rule:

~nonloc, nonloc, 63
P loc,h b( 1 h] _'_%yZ”pgonZ
199037 , 27331 .\ 4 .
<40320 ¥ 710080 )”” ol
non nonlochnyp,: | 2448608
50 loc,h — 50 loc,h] +12 _ 23075 U3P<7>Jl4a
~gonloch b{nonloc h]y-‘,—p +DIJ ﬂ'p ’7 (628)

In other words, there are only five terms violating the rule
(6.7) in 7hoMoeh (n =4, 5, 6): (i) one term of fractional
order #?, i.e., at SPN [O(/? ) term in )?ZO“IOC " and (i) four
terms of fractional order %, i.e., at 6PN [O(v ) term and

O(?) term in 7{"°°" and O(¢) terms in 72" and

ghonloch The coefficients of all those terms have been

analytically derived, apart from the last one which has been
only partially analytically derived. However, we have
evaluated it numerically:

dyy + dgy — —doo ~ —116.73148147.  (6.29)

| =

Note that the contributions d,; and dy to the coefficient D
are known analytically and contain {(3) [see Eqs. (4.16)
and (4.17)]. The only integral we could not analytically
compute is dy ~ —439.10050487 (see Table VI). For
completeness, we give the explicit integral form of ¢y,
[equivalent to d4,, see Eq. (4.14)] in the Supplemental
Material [91] of this paper.

VII. DETERMINATION OF THE
FLEXIBILITY FACTOR f(t)

Let us recall again the logic behind the introduction
of the flexibility factor f(). The total (local-plus-nonlocal)
scattering angle »"'(ps.,Jj;v) has been shown [7] to
have a special v dependence at each PM order, i.e., at

each order in % However, if we were to decompose

1 (Pe»j;v) in its harmonic-coordinate nonlocal contri-
bution y"Meeh(p  jiv) and the complementary
harmonic-coordinate local contribution ¥'°“"(p., j;v),
each contribution would not separately satisfy the
special v dependence of their sum ¥"'(po,j;v) =
yromoeh (p i) 4+ %N (pe, jsv).  This  situation  is
improved by slightly modifying the (conventional) defi-
nition of the nonlocal Hamiltonian, and thereby the
separation of y'*'(p., j;v) into a flexed nonlocal piece,
yronoet(p jiv), and a complementary flexed local
piece, y'°f(p.j;v), such that each contribution to
1 (Peos i) = "M (Do i) + 1N (Peos jiv)  sepa-
rately satisfies the simple v dependence satisfied by
1 (Poos J3v). We have already determined in Ref. [3]
the structure of the flexed 6PN-accurate local
Hamiltonian by using the condition that its corresponding
local scattering angle y'°f(p., j; ) satisfies the special v
dependence of Ref. [7]. In the present section, we shall use
the results derived in the previous section for the harmonic-
coordinate nonlocal contribution """ (p . j: ) as a tool
for determining the value of the flexibility factor f.
Specifically, by writing that the sum

nonloc,f (

7 Poor i) =7 (poo jit) + 7 M (Pooriv)  (7.1)
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satisfies the special v dependence satisfied by y**'(p,, j; V)
we are going to get some constraints on the value of f.

The determination of f(¢) is done by going through
three successive steps: (i) explicit computation of the
few coefficients measuring to what extent the harmonic-
coordinate angle y""Moch(p . j:v) fails to satisfy the
special v dependence; (ii) computation of the f — & addi-
tional contribution, y™"(p,, j;v), to the nonlocal scatter-
ing angle; and (iii) determination of f() by the condition
that y™(pe. j:v) compensates the rule-violating contri-
butions, Eq. (6.28), present in "Mt (p i v). The step
(i) was already accomplished in the previous section. We
now go through steps (ii) and (iii).

A. Determination of Wi-" and 7'-"(p, jiv)

The f-induced additional contribution Wi to Wnenloe —
[ dtH™"°¢ s defined as

wi- +2G / AFB (1 ) In(f(1). (7.2)

A simplification is that, as it is enough to look for a
flexibility factor of the type

f@) =1+ f1() + ' fo(t) + O(°),  (7.3)

we have

() =y +1t (=5 7) + 000 (14)

so that it is enough to work at the 1PN fractional accuracy.
[Indeed, the factor 2 % F ;‘gg(t t) in Eq. (7.2) starts at the
4PN order, while In(f(z)) = O(%;), so that W™ starts at
the SPN order, as appropriate to cancel the SPN + 6PN
rule-violating terms delineated in Eqgs. (6.28).] Namely, we
can use in Eq. (7.2) the 1PN-accurate gravitational-wave
flux FS¥ (1) = FPR (2, 1), and we can compute the integral
by using the 1PN-accurate quasi-Keplerian dynamics.

There are several possible ways to parametrize a general
1PN expression for the flexibility function f(z). One could
use a direct parametrization in terms of harmonic-
coordinate positions and velocities. Here, we shall follow
our previous (Newtonian-accurate) determination of the
1PN term 72 f, [2] by parametrizing f(¢) in terms of (1PN-
accurate) harmonic-coordinate relative positions x and
momenta p. (As in [2], we work with rescaled, dimension-
less positions and momenta.) We write

1
fi —1/<01P%+02P2+C3;>,

1 2 2
/2 —’/<d1P‘r‘ +dyp* —I—d3ﬁ—|-d4p2p§ +d5p7+d6p7)-
(7.5)

The coefficients ¢; used here differ from the corresponding
quantities in Ref. [2] by an overall factor v: vclee = cthere,
As a consequence, the ¢f*™’s can be chosen to be pure
numbers (independent of the value of v). On the other hand,
in spite of a similar v overall rescaling, the coefficients d;
will be found to be linear functions of v:

di=d)+vd. (7.6)

Equation (7.2) becomes

1
Wit =2GH, | dtF5N(1 )[f1+712 (fz—zf%>]~ (7.7)

One should insert in Eq. (7.7) the expression of F$v (1)
[89] in terms of the 1PN-accurate momenta. It is derived in
Appendix A using classic results on the 1PN Lagrangian
for the (harmonic-coordinate) relative motion (see, e.g.,
Ref. [81]). See Egs. (A1) and (AS5).

It is straightforward to compute the integral (7.7), and
then to differentiate it with respect to j to obtain the
corresponding contribution to the scattering angle:

L = I OW™(peo. jsv)
2M*vy dj '

(7.8)

N[ =

The result of this computation is a contribution that starts at
the 5PN level, and that is fractionally 1PN accurate, say

1 1
= b g2yt

S+ (7.9)

N[ —

The large-j expansion of the SPN-level contribution, § (",
reads

f—h 1 2P
}(0 :—EI/ ]— (74C2+13C1)

128 me

" 225"
1, poo

1
— e (63cl+488c2+122c3)+0< )
27 j° i’

1
2

(343¢, +49¢3 + 51¢y)

(7.10)

while that of the 6PN-level one, 1 yi™, reads
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1, 0 P% | gD 0 DS 1
SO = AT TS e e+ O ) (7.11)
with

1
)(f@h =540 V2 r(—10856¢, + 41440vc, + 2383¢, + 3572¢,v — 2912d, + 2912v¢,¢,

—16576d, + 574vc? + 8288uc2 — 1148d,),

=+ 12(107024vc, — 51669¢, + 7864¢ v + 439¢, + 10357vcy — 4019¢;4

11025
+ 6426vc,c) —2226d, 4 T14vc c3 + 216091/0% —4802dg + 4802vcyc5

—714ds + 1113vc? — 6426d, — 43218d,),

1
)(gfzh = +——122(=12139¢; — 5460d; + 17640vc,c, + 3528vc c3 — 136640d, + 2730vc? + 21580c,v

336
+ 58740vc; — 246374¢, + 1708uc2 + 68320uc3 + 335600uc, — 30454¢; — 3416d; — 17640d,
— 352845 — 27328d,, + 27328vc,c3). (7.12)

The quantities of most interest are the corresponding energy-rescaled coefficients of % in the scattering angle

j’l
L= = S A e,
)?g—h _ hn—l)(ﬁl—h :)?1:1,_011 + ,72)?2—2}1 4o (7.13)

They read (at the fractional 1PN accuracy, and setting n = 1)

2383 1357 41 37 13
{mcl_%‘?_@dl_?dz_ﬁd4
199 37 13 Al 37 N\ T,
+ <—%c1 +?cz +Eczc1 +@cl +Ecz>y]v Doos
e [ 2176 43904 6272\, .
s :<_ 75 17 225 27 205 C3>” Pe
28096 367424 257216 6784 . 6272 6528 2176 . 6272
* {1102501 TT1235 2T 1005 @ T3 T s s BT BT s
136448 2546944 16064 6528 2176 3136
(‘ 11025 ©' T T1025 2T 3675 T 15 21 T s 13T g5 @
6272 3392 ,\ 1, 5
+ 25 (23T 555 cl)y}y Déos

63
alyih = <—701 —244c, —61c3>1/2p§0

{ 12139 123187 15227 65d 1220 61 105 21 244
- — c

dy——dy———dy— —ds— " d

336 T168 2T 168 T 4T3 6 2 2 3
305 8165 625 21 244 105 65 61 610
+ <—ic1 76’2 +2—8C3 +7€1C3 +TC2C3 +7C2C1 +§C% EC% ?C%)IJ:| Vngo. (714)
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B. Reparametrization of the flexibility factor f(¢),
and constraints on its parameters

Combining the results (6.28) and (7.14), we can now

write the condition that the sums 7hoMoc! = phonloch | zf~h

satisfy the v dependence of 7', i.e.,

Remembering the v independence of the c¢;’s, and the v
linearity of the d;’s, Eq. (7.6), these conditions yield five
equations. One equation (already discussed in Ref. [2])
comes from the SPN level and reads

13 37 63

—C1+—C2:— (716)

~Zonloc.f] ~y, b—zgonloc,f] ~U412, b?gonloc.f] ~y+ 12, 10 5 20°
(7.15) " The 6PN level yields four additional constraints, namely
|
(b) 0=37c, —gdj +gc2c1 —37dj} %c% +3?7c% —%cl —% 1 —%,
) oo O G OVT6 NS 672 G2 206, 392
]?224 3 — 65728 dy+ 65728 cycq —6272d) - %,

(d) 0= 6;5% —i—?c% —|—62i85c3 —1—%6201 —%dé %C163 —%di —I—?czq —lz:sﬂdé —%dé —l—%?scz

—?déJr%c%—gdi—%cﬁrD, (7.17)

where the constant D :%dﬂ +dy —édoo ~—116.73148147,
was already discussed above, see Eq. (6.29).

There are many ways to satisfy these constraints. Indeed,
at the SPN level, we have one constraint, Eq. (7.16), for
three coefficients, ¢y, ¢, 3, while at the 6PN level we have
4 constraints, Egs. (7.17), for the 12 coefficients d¥, d}, d9,
d, &, di, &Y, di, d2, di, &2, di. We can, however,
streamline the discussion of these constraints by defining
a convenient reparametrization of the gauge-invariant con-
tent of the Hamiltonian contribution associated with the
flexibility factor f(r), namely

Af_hH5+(,pN = 2HtotF1Gl}¥V ln(f)

1
= 2H o F SN (ps Py 1) |:f1 + <f2 - Ef%ﬂ -

(7.18)

The latter flexibility-related Hamiltonian contains the three
5PN parameters c;, and the four 6PN parameters d; entering
the flexibility factor f(¢), Egs. (7.5). [Here, we count for
simplicity each d;, i =1, ...,4, as one parameter, though
one must remember that each d;(v) = d” + vd! actually
contains two numerical parameters.] Let us, however, show
that the flexibility described by f(#) can be parametrized by
three other SPN parameters, Cy, C,, C3, and only four 6PN
parameters Dy, D,, D3, D,. [Each new 6PN parameter D;
will be again a linear function of v, D;(v) = DY + vD!, and
actually contain two numerical parameters.]

Indeed, it is shown in Appendix E that the 6PN
flexibility contribution to the Hamiltonian, Eq. (7.18), is
canonically equivalent to the following (p,-gauge-type)
Hamiltonian:

Af—hH/

M3 p? 1
5+6PN — T3 [Clp‘rl + C27r + C3ﬁ

4 2
p p 1

(7.19)

The seven new parameters Cy, C,, C5 and Dy, D», D3, D,
entering Eq. (7.19) are defined by the following explicit
functions of the original nine parameters c;, d;:

16
C1 = B<13C1 + 746’2),

16
C2 = E(49C3 + 121C2 + 126‘1),

64

C3 —?(C’Q +C3), (720)

and
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328¢2 1664 38128 4736¢3 18944
D, = (_ 1 €102 n 1 ) + C2

75 75 525 75 75

15356¢;  3424c¢, 656d, 9472d, 1664d,
v— + + + +

525 175 75 75 75

Dy — (_ 32¢2 : 784c ¢, : 272c¢ ¢35 L 1576¢, a 3496¢3 : 5488c5c3 3 5584c¢, L 7080803>y
. 5 15 15 45 15 45 105 315
11212¢; 28496¢, 12944c; 64d, 6992d, 784d, 272ds 5488dg
63 45 315 5 15 15 15 45
D, - (_ 64cic;  64cies 112¢; 1928¢3 _464cyc3 8440c, 488¢3 B 3048c3>l/
5 5 5 15 3 21 15 35
_11708¢,  18884c, 1724c; | 3856d,  976d;  64d,  64ds  464ds
105 21 3 15 15 5 5 3 7
o <_ 323 6dcyey  112¢, 32c} 11203) 6332c, 11708c;  64d, 64d;  G4d; (721)
+ 5 5 5 5 5 105 105 5 5 5 '

The three C;’s are in one-to-one correspondence with the
three ¢,’s, with the inverse relations ¢; = f;(C;) given in
Egs. (E6). On the other hand, the four D,’s capture the full
gauge-invariant content of the six d;’s. [Two of the d;’s
being pure gauge parameters; see Eqs. (E7).]

The five constraints discussed in the previous subsection
can be entirely reexpressed in terms of the parameters C;
(i=1...3), and D; = D? +vD} (i =1...4). Indeed, the
|

scattering angle only depends on the time-integral (along a
hyperbolic motion) of Af="H ¢py, which is equal to the time
integral of AT H tpn- This ensures that the scattering angle
only depends on the C;’s and D;’s. Alternatively, using
Egs. (E6) and (E7), we could reexpress the energy-rescaled
scattering-angle coefficients (7.14) in terms the C;’s and
D;’s. The results read

, 3 3[/1 5
ﬂ_—l)?z—h — __Cll/ngo _— |:<——31/> C1 +_D1:| Ungm

32 32 \2

~f=h

5 3 5

15 /3
e = (zcl +C+ C3> VPs

15(/41 9 19 25 1 5 1 1
= (==2 = —— “D,+=D,+-D;|2pS..
16|:<4 21/>C1+(6 121/)C2+<2 I/)C3+4 1+2 2+6 3:|ypoo

Comparing these (simplified) expressions with the five
contributions to 7a"°“" that do not satisfy the rule (6.7)
{ which were written down in Egs. (6.28)], we now get the
following simplified versions of the five constraints (7.16)
and (7.17).

At 5PN we have only one constraint, Eq. (7.16), which
now reads

(7.23)

At 6PN, the four constraints, Eq. (7.17), now imply

8 1\, s 8[(43 4 12 5 1.1,
=2 - 2 (=== _-Z °D,+=D
X5 <C1+ Cz)” P [(14 14U>C1+<6 3V>C2+7 1+7 2]1/ Poos

(7.22)
[
o 398074 4 271066
V7 a725 5 T 4705
. 218648+24 21736
745 T 5 T 189
87428 7 14 39712 14
1 _ _ — _
27 045 O T36 180 T3
65584 3 3 32
Dl="."¢Cc -Z °*D
70876 3 32
= T (C,+6C;+=D. 7.24
105 22 Totg (7.24)

At the 5PN level, we have three flexibility parameters, C;,
C,, Cs, and only one of them is determined, namely Cj,
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Eq. (7.23). It was pointed out in Ref. [2] that the presence of
two unconstrained 5PN flexibility parameters (namely C,
and Cj3) is in one-to-one correspondence with the existence
of two 5PN-level undetermined coefficients in the local
Hamiltonian (namely c_igz and agz). More precisely, chang-
ing the values of C, and C5 was shown to be equivalent to
shifting the values of @4 and a [see Egs. (8.21)~(8.22) of
Ref. [2] ]. Alternatively, one could uniquely fix C, and Cj;,
i.e., uniquely fix the flexibility factor f, so as to reduce
AP H to be minimal, in a p,-type gauge, i.e., to contain the
minimum number of terms needed to satisfy the scattering
constraints. This was formulated there in terms of the EOB
parametrization of the Hamiltonian. The result was that by
choosing [see Eqs. (8.24) of Ref. [2], here rescaled by v as
we recall]

min 189
Cy = T s
min 63
CZ - - § N
) 63
ey =2, (7.25)

the f —h piece of the EOB effective Hamiltonian was
reduced to be fully contained in the following specific
(minimal) Q term:

336 b
220 2 Pr

Afomin — .
0 5

(7.26)

Let us now show how these results can be generalized to the
6PN level.'? Let us first note that, when transcribing the
5PN-level minimal constraints (7.25) in terms of the new
parameters C;, they are easily seen to simply correspond to
completing the constraint (7.23) by the additional simple
constraints

cpin =0,

Cmin — . (7.27)

If we then insert the latter results in the four 6PN-level
constraints (7.24), we find that, among the eight 6PN
coefficients DY, D}, i =1, ..., 4, four of them, namely DY,
D!, D}, and D} are completely fixed by combining the 5PN
minimal choice (7.27) with the general 6PN constraints.
This lead us to define the following minimal solution of the
5 + 6PN constraints:

It can be shown that a similar result holds at higher PN
orders.

Crlnin — ti’
Cyin = 0,
Ccyin = 0,
win 271066 21736
T a5 T v
- 39712
2T T g U
ppe— (176, 32),
3 105 5 ’
DRin = 0, (7.28)

Starting from this minimal solution of the flexibility
constraints, we can decompose AMHL ., into two
parts, say

f=h g/ _ Af—hgzy/min f=h ryj/CD
A H5+6PN =A HS 6PN +A H5+6PN'

i (7.29)

Here, A™MH"P% - denotes the part that is built with the
minimal solution (7.28), namely

ATMHNG 168 pt (271066 21736 1\ p¢
M s AT aas T Tige )
_a12p; 70876 32 ) P:

189 » 105 5 o

(7.30)

On the other hand, A™"H( R, denotes the part that
involves the six flexibility parameters that are left uncon-
strained by the general constraints (7.23) and (7.24), namely:
C,, C3, DY, DY, and D, = D§ + vD}. Explicitly, we have

AF-MHIED A2 3 14 3.4
+6PN _ Py 4 0 v’ py
= et e (o) L
3 1/3[72
DY --C,+6C :

3
12
+ (DY + uD}Q7 (7.31)

By using a suitable canonical transformation to transform

into standard EOB gauge the harmonic-type gauge to which

— 1 .
AThHIED L belongs,” we can then transcribe the uncon-

strained f-dependent Hamiltonian contribution A™" 2

in EOB format, i.e., in terms of the potentials A, D, and Q
parametrizing a general effective Hamiltonian in p, gauge,
as in Eqgs. (4.1) and (4.2) of Ref. [3]). One then finds that

“Indeed, ATMHC2,\ is a contribution to the total nonlocal
Hamiltonian H™"°%f which is expressed in terms of harmonic
p
coordinates.
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adding the Hamiltonian contribution A™"HED,
Eq. (7.31), is equivalent to adding to the EOB potentials
entering the f-route local Hamiltonian H""'°*f the following

supplementary (5PN and 6PN) contributions:

AP = afPub + alPu’,

HCD _ JCD,5 | 7CD, 6
D™ = ds”w + dg”u®,

0P = ¢SPplud, (7.32)

with SPN-level terms,

a6CD = 21/2C3,

d$P = 202G, (7.33)
and 6PN-level ones:
a$P = 202(DY + vD}) + 14 (9 — v)Cs3,
agD = IJ2<2D%) + 17C2 - 8C3) - 1/3 (2C2 + 30C3),

7 28

qst = 1/2 <2D(2) + § C2> - ?1/3(72. (734)

By comparing the expressions (7.33) and (7.34) to the
explicit form of the EOB potentials of the 6PN f-route local
Hamiltonian H'°', as displayed in Table X of [3], it is easily
checked that the addition of the contributions (7.33) and
(7.34) [including their explicit O(¢?) terms] to H'T is
equivalent to replacing the undetermined EOB coefficients
gzloc,f’ azszzloc,t" . appearing in H]oc.f(agzloc,f’ C‘Zgzloc.f7 By ) by
the following shifted values:

2shifted __  v*loc.f
dg =as  +2GC;,
v shifted — Eluzloc,f 120,
5 - Y5 )
auzshifted _ abzloc.f + 2D0 + 9C3
7 - %7 4 )
Vshifted _vlloc,f 1
a; = ay +2D, - Cj5,
e _ 5
dg shifted __ dg loc,f + 2D(3) + 17C2 _ 8C3,

2 7
qz-Sshlfted _ qzzslocsf + 2D(2) +-C,.

. (7.35)

The first two (SPN-level) equations are equivalent to
Egs. (8.20)—(8.21) of Ref. [2] (taking into account the fact
that we separated here the term 23 %’r’—}).

In Egs. (7.35) the undetermined parameters a’gzloc’f,
appearing on the right-hand sides of the definitions of the
various shifted parameters depend on the choice of f (i.e.,

on the choice of the unconstrained C;’s and D,’s), while the
shifted parameters a’ézghiﬁed, ..., on the left-hand sides do
not depend on the choice of f (because they parametrize the
Hamiltonian H'' — H'°¢h — AThE'DIR ). Therefore, the

choice of the values of the unconstrained flexibility

parameters C,, C3, DY, ... is a kind of gauge freedom that
has no effect on the physical consequences of the total
Hamiltonian [which only depends on the gauge-invariant
shifted parameters defined in Eqgs. (7.35)]. In other words,
imposing the simple additional constraints

C, =0,
C; =0,
DY =0,
DY =0,
DY =0,
D} =0, (7.36)

which leads to the minimal values (7.28) of the flexibility
parameters, is a “gauge choice” such that the corresponding
minimal values of the undetermined EOB parameters, say
agz min . simply coincide with the general gauge-invariant
shifted values defined in Eqs. (7.35):

(116/2 min _ agzshifted,

A min _ ushifted
dgmm—dZS'SIC,

/> min __ ,?shifted
ay ™ = a4 ,
a; min _ al7/3shifted’

6_116/2 min __ Elzézshifted’

(7.37)

qZZSmin _ quzsshifted'

In the following, we shall often use by default the
minimal fixing of the flexibility factor, and of the asso-
ciated Hamiltonians, defined by using Eqgs. (7.28) [i.e.,
satisfying Eqs. (7.36)]. This leads, in particular, to the
specific value of A"™M"H's (o given by Eq. (7.30). The
corresponding specific values of the original flexibility
parameters c¢;, d; defining the flexibility factor f(z) are
discussed in Appendix E.

VIIL NONLOCAL DELAUNAY HAMILTONIAN,
H35en v 1), RADIAL ACTION, I3 pn (EJ),
AND PERIASTRON PRECESSION

As said in the Introduction, besides the scattering
angle, a second gauge-invariant characterization of the
f-route nonlocal dynamics can be given. It consists in
presenting the explicit form of the f-route nonlocal con-
tribution to the averaged (Delaunay) Hamiltonian,

Hromoet (I, 1,), or equivalently the corresponding contri-

It on(E. J), to the radial action. The (gauge-

invariant) information contained in A™"°f(I, 1,) or

I o (E. J) s also nearly fully encoded in the corre-

sponding contribution to the periastron advance. Indeed,
we have the general identity

bution,
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= Qpdly + KQpdl,, (8.1)
where
S
denotes the radial frequency 27/T, while
_O(EJT) &y
T2t Oy
_ _OIR(EJ) 1 OHUR1y) (8.3)

denotes the periastron advance K = 1 + k (where the value
1 would correspond to the absence of periastron advance).

We have given in Table XI of Ref. [2] the explicit, SPN-
accurate, expression of the f-route local Delaunay
Hamiltonian, A'f(Ig, 1,). We gave also the explicit value
of the function 15! (E, J) at the 5PN accuracy in Ref. [2].
Concerning the 6PN-accurate f-route local dynamics, we
gave in Ref. [3] the explicit expression of the radial action
as a function of the EOB effective energy /5" (E.g, J). We
proved there that it had a remarkably simple structure.
Namely, it reads

loc,f . S 7
Tl gy + B0 D
Is(y;v) | I(r;v)
(hj?  (hj)
19(721/) 111(7§V)
T )T (84)

where h = h(y,v) = E''/M as above; where the first two
coefficients, I3(y), I5(y), only depend on y and have the
following very simple exact expressions:

SN 272 —1
I5(r) *7\/@,
R =3 (572 - 1), (85

and where all the other coefficients 7,,,(y;v) are poly-
nomials in v of order n:

Ly (riv) = I§n+1(7) + ZIZ;H(V)V]{- (8.6)
k=1

The explicit values of the coefficients I,, (y;v) were
given (at the 6PN accuracy) in Table XIV of Ref. [3], while

the exact (“Schwarzschild”) values, 13, . (7), of their test-
mass limit, v — 0, were given in Eq. (9.5) there.

In view of the existence of efficient algebraic-
manipulation programs, there is no need to write down
here the 6PN-accurate f-route local effective Delaunay
Hamiltonian, I:Ile‘g’f(l r-1,) corresponding to the inversion
of the explicit expression for 15T (E., J) given in Ref. [3].
It might, however, be useful to emphasize again the relation
between the effective energy E.; = uc® + - - - and the total

energy E.o = Mc? + - -- [see Eq. (1.34)]:

£
Ey = Mc2\/1 +2y< SU 1)
Uc

=M1+ 2y — 1) =M h(y.v),  (8.7)
where
. Eur
Eetr E%E}’- (8.8)
uc

Let us now complete the results of Ref. [3] by explaining in
detail how the results derived above allow one to explicitly
write down the complementary nonlocal contribution

H75 (I, 1) to the total Delaunay Hamiltonian

7 rloc,f rynonloc,f
HE%N(IR’Itﬁ) = H6(§N(IR’I¢> +H2T5T6PN(1R’I¢)' (8-9)

It is the sum of three contributions

H 5o U 1y) = HY5 T (I 1) + HS50 " (. 1)

+ AT s opn (IR 1) (8.10)

The first contribution was computed in Ref. [3] [see
Eq. (3.31) there] in terms of the harmonic coordinate
semimajor axis a/ and eccentricity14 e’ [as a power series
expansion up to the order O((e})'?) included] and reads

rynonloc,h 2
Hysiepn U
T (4h

M (ay)

< [APN(el) + B (el In

2
n (57)6 [APN(eh) + BPN(eh) In a!]

2
+:T)7[A6PN(6?)+B6PN(6¢)IHG¢]- (8.11)

The explicit expressions of the 4PN and 5PN coefficients
AN BIPN - ASPN - B5PN are written down in Table I of
Ref. [2], while the explicit expressions of the 6PN
coefficients AN, BOPN have been written down in
Table V or Ref. [3].

"“Here, we are talking about ellipticlike orbital elements.
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The second contribution was computed in Ref. [2] and
reads’

,0848 &

loc,h
Hnonoc 525( )12/2§0( )

— 8.12
5.5PN +M ( )

where the expansion of the function ¢(e) in powers of e (up
to the 16th order) is given in Eq. (12.7) there.

Let us clarify that the intermediate (ellipticlike) orbital
elements a’ and e used as arguments in these expressions
acquire a gauge-invariant meaning when they are reex-

E[m—Mc
7 and j = =an Mﬂ The

corresponding expressions are given in Eqgs. (A7) (see also
Table III in Ref. [3]).

Note that the replacement of the latter functions'®
a,(E,J), e/(E,J) in the expressions (8.11) and (8.12)
would be appropriate for computing the corresponding
values of the radial action, namely

pressed as functions of E =

1
loc.h loc,h
TS to (B J) = = o S G ko 1y).

IR (ED) =~ B 1), (813)
where Qp = 27/Tj denotes the radial frequency. The 2PN-
accurate expression of n = GMQy in terms of E and j is
given in Eq. (A12).

Indeed, E and J are the natural arguments for the radial
action. On the other hand, the natural variables for the
Delaunay Hamiltonian are, by definition, Iz and 1, =J.
Therefore we must use the (2PN-accurate) transformation
between E, J and I, 1. This transformation (first derived
in [8]) is given (in both directions), at the 2PN accuracy, in
Appendix A in terms of the rescaled action variables

. IR
1. = s
" GMyu
I
= (/) =
Y=oMu =

=i, +ip=1i,+]. (8.14)
Note the important point that the function e?(i,, i), given
in Eq. (All) contains i, as an overall factor. In other
words, e? vanishes like i, when i, — 0, keeping fixed iy
This expresses the fact that the ellipticlike eccentricity e p
is a good quasi-Keplerian eccentricity that vanishes along
circular motions (the latter being intrinsically defined by

After correcting a sign error on the right-hand side of
Eq. (12.6) in Ref. [2].
For brevity, we henceforth omit the superscript 4 on a,,
and er
"Beware that it does not coincide with the analytic continu-
ation of its hyperboliclike counterpart.

the property i, = 0). This property also ensures that the
expression we computed for the nonlocal Delaunay
Hamiltonian as a truncated expansion in powers of e,
(up to e} included) becomes transformed, when expressed
as a function of i, and i, = j, as a truncated expansion in
powers of i, (up to i> included). In turn, this ensures that,
for example, the corresponding contribution to the perias-
tron advance is obtained as an expansion in powers of i, (up
to i) included).

So far we have discussed the explicit expressions of the
first two contributions to the nonlocal Delaunay
Hamiltonian, Eq. (8.10). It remains to discuss the third
contribution, namely A™"H (I, 1;).

In view of Eq. (7.2), it is given by

2

AN (IR, 1) = . —wih (8.15)

where

n(f (1))
= zGCHtOt%dtﬂPN( ){fl +n? <f2 —;ﬁ)]

_ f-h
= fth HS oo

GH, lit
Wi = +2 3 Otfdlf;%fv(’ 1)1

(8.16)

where A™PHL . is given by Eq. (7.19). Using the
2PN-accurate quasi-Keplerian representation of elliptic
motions in harmonic coordinates (see, e.g., Sec. Il of
[3]), it is a straightforward matter to compute the elliptic
integral Well Its exact expression in terms of a, and e,

reads
WG (ar.e) = Wi + m Wi, (8.17)
where
Wb = 22M%) [(IYW
With = 22M%7 W (8.18)
with
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1 3 1
wo = Cs + (3C3 +—C2>e,2+—(C3 +Cy + Cy)ef +—Ceb,

2 8 16

W5022C3+D2+<%Dg+8lc3+24—1cz+5D2>€z2+(ECZ—F%DQ—Fng—F?—zCI+%C3+§D2>e?
+<%C3+% ) %+%C1+1—1602+13—6Dg)e?+(%Cﬁ%)e?

wgl——%C3+D}‘+<—%C2+%+5Di+15—6D+%C1—25C3>€%
+<—%C3—§C2—§Cl+§D}1+25—4D+27633%)e;*
+<—1;.25C1—4112C3+2:5773£—;12C2+§D)e,6+(—??1;(1)—392 1>e?- (8.19)

When using the minimal values, Eqs. (7.28), of the
flexibility parameters, this result takes the following
explicit form:

Womin = 65_36? + %6?7

Lo 2079 2890019 (2104157

Zmin =10 7560 1 60480

y 35438 16 1\ , (249457 24 1\

Womin = (W*?D% " <W+?D>€f
(12T 2p) 0 e

Similarly to the treatment above of I:IZTSI‘fg]‘DN

HIWO" we can then reexpress Wiih as a function of E
and J, and A™"H as a function of I, and I, by using the
2PN-accurate transformations explicitly given above.

As already mentioned, in view of the existence of
efficient algebraic-manipulation programmes there is no
need to write down here the long expressions obtained after
these transformations. Let us, instead, cite the explicit
forms of two of the simplest gauge-invariant quantities one
can derive from our results: the value of the nonlocal
contribution to the total energy along circular orbits, and
the value of the nonlocal contribution to the periastron
advance, also computed along circular orbits. They are
both obtained by taking the limit 7, — 0, namely

and

Enonloc.X,circ (J) — [I:]nonloc,X(IR I/)]
PP TR=0"

- 1 aHnonloc,X (IR , I¢)
Qr ol

Knonloc,X,circ (J) (821)

Iz=0

Here, X, is a label distinguishing the various contributions
to the nonlocal action. Following the decomposition (8.10)
we have

Enonloc,f,circ ( J) _ EZTS}(fﬁ’}];ISIHC( J) + ng)sn}l%c,h,circ ( J)

+ B ). (822)

These three nonlocal contributions must be added to the
f-route local contribution, E°%<(J)  to obtain the total
circular energy

Etot.circ (J) — Eloc,f,circ(J) + Enonloc,f,circ(.]). (823)

Similarly, the total periastron advance along circular orbits
can be decomposed as

K tot.cire (]) — Kloc.f.circ (]) 4 Knonloc.f,circ(J) (824)
where
Knonloc.f.circ (]) — KZTSI:)LC()}];,I%HC(J) + Kg%rgcli;:.h,circ (J)
+ Kiheire (), (8.25)

Using rescaled variables, we find the following results for
these quantities:
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Elggiff\?irc(j)_l 5772 (1/2 91/)774 <u3+7v2 &)n_ﬁ
3

Y- G B R G TR TR T A
n 5_u4+5_u3 8833 4172 ’ 38611/77_8
i 128 64 384 64 128 j8
n _7_u5+3_u4 417r2_8875 Iy 989911_65817:2 U2_53703v 11_10
| 256 128 128 768 3840 1024 256 j‘o
[(a¥ 2933572 1679647\ , 21° 5° (412> 3769\ ,
+ 15+ - v - + - v
2 2048 3840 1024 1024 512 3072

1612800 1536 1024 | j2

e 39a% a_72 16817z4+10605841ﬂ2 10727952929
4 2 512 24576 1075200

4<al6’2 as’ 2138372 1007737> 337 WS <417r2 2537> 5
+ vt —= U

(3747183493 315477r2> ) 16482691/] n'?

4 T2 778192 T 7680 ) T 2048 2048 T \1024 3072
576215112401+1322752463ﬂ2 280087374\ , 270787050] n'* (8.26)
29030400 3538944 524288 2048 | 14 '

[honloc hcirc 64 10 Y 1 3793 4 155 1215
Eylsion"U) _ 64 hn” {m (4‘3__) + [— +2 200 <4e—) — =2 In(2) + o~ In(3)

M 5 10 2 336 ' 12 896
17 e’ 155 1215 7
———In{4—) +=>In(2) - =——In(3 =

+<2 4“( j)+28 n(2) =554 In( )>”]j2

9072 J 9072 n(2)+ 448 672

79727 [ e\ 211849 5977 83835
<_ 2016 " (4_> 01 "+ 575 " T ln(3)>”

7631 1 "N 1336 4
+< 6319 ) =2+t <4e—,> —ﬂln(3)>vz} "—4}
J J

22 v 1
[98 07ln <4€_> 3 067831 ) 60751n(3) 59717

1512 8§ 2 448
EEIRG) 6848, gt
M 525 jB°
Ef—h.circ . 12 2
560N (/) _ 1/3% Cs + (24C; + D4)’7_—2 . (8.27)
M J J

Note that the minimal version of Af‘hH’5 Lepn> EQ. (7.30), leads to a vanishing value of E;}gﬁ}{f( )

ERhere(jy = 0. (8.28)

min

On the other hand, if one does not use the minimal version of A™HY ¢, the total energy is easily checked to depend only

on the shifted versions of the undetermined parameters agz, a’;z, and a$3 defined in Egs. (7.33)-(7.35).
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Similarly for the periastron advance

| =

: 2 (45 4 [405 123 6
Ko™ (j) =1+ 37—2+ <7 - 61/) ;’,—4+ {7 + (—202 + 3—27t2>u + 31/2] _

15795 (185767 , 105991 A1, 2479\ ,
+{ 8 +<3o72 G )H(_T” +T>”}
161109 18144676 488373 1. 15 , 9225 , 21399\ ,
+{ 8 +<_ 525 2048 ”) (_5 B )”

ds ——-ag
1627 205 ,\ ;] 7"
+< T*E”)”],To

2
+{3383289 < 2299413173213 10107671003 , 7335303 4>

(=)

8

&o'ols ~

16 6350400 1179648 " ' 65536 ©

(300 20 e g Do, 85731, 8043499 , 1859633 ,
0t o 2 _
2 Yo T T To% T T 1024 ” s )"
(B Lge (2L, 1290233 , 2190437\ . 75 12
Dl _ DA
2% TS T T 302 T T 144 27
- 64 157 e\ 277 729
KnO[llOC,h,Cer . —__ 51 _11 _1 4_ __1 2 _1 3
) =~ {11+ g (45) - T m) + TG
59723 9421 e\ 11237 112995
- 4 T (4= ) -——In(2 1
{ 336 28 “( > 25 M2)+ ()
2227 617 e\ 1957 54675 n?
(4= ) - —"InQ2)+—=-In(3) |v|
+< 26 n( j> y @)+ 5 Ind ))”]f
4446899 11076725 ([ e\ 5347151 o+ 10528047 ® | 48828125 )
2016 3024 j 1008 1792 145152
358987 363851, ( e\ 10931765 o )+4626963 hG3) 48828125 n(s)
252 168 j 1512 896 24192
136369 775 e’ 1315051 4333905 48828125 n*
—~ ——In(4=)-—""—In(2 = 21 28,
( 1512 6 n( > T T R S TS T ”)”L‘*}
A 99938  p'!
nonloc,h,circ / -
K5%PONC CC( )=- 315 ij—l,
10
—h,circ / . n 903 53
K£+}16PN<1):_1/2F{15C3+C2+ |:TC3 +7C2+21D2+Dg
51 70876 32 n?
— G+ =G+ 21D+ =D | S5 ¢ 8.29
+< 2 3+ 105 2+ 4+5 )U]jz} (8.29)
The minimal version of A™"HY .\, (7.30), leads to the following simple value for K;hé'gifc (J):
e 32 .n'2 (17719
Kt heireo oy 22 30 D). 8.30
min (]) 5 v j12< ]68 + > ( )

Again, if one does not use the minimal version of A™"HY .\, the total periastron advance is easily checked to depend only
on the shifted versions of the undetermined parameters d?, ... defined in Egs. (7.33)—(7.35).

It is useful to express both the binding energy and the periastron advance along circular orbits in terms of the
dimensionless frequency variable x = (GMQ,/ ¢*)?/3 by replacing j as a function of x. For simplicity, we henceforth use
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the minimal version, Egs. (7.28), of the flexibility factor [corresponding to the explicit minimal Hamiltonian contribution
(7.30)]. (Accordingly, we replace the undetermined parameters by their minimal values.)
We then find the following explicit relation between j and x:

.1 1 3 r, 19 27\ ,
j:% 1+<8V+§>X+<ﬂy —§IJ+§>X
135 7 5 31, 41 , 6339 3
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256 7687 " 768"

_|_

1287 T 256

1312, 194 21337 6976 2624 341671
( ——In(3) + 7% —2a2 ™ 2 1n(2) + >ﬁ

+

1536 105 15 77 71440

59112343 9976 486 47344 19952 126779 s 89024 12
T VX —ﬁm/x

_|_

2O m3) + 22 e -
24300 1 105 M) =7 InB) 4 @) + s - e
[168399 1729, 3283 (18298567 173635 2) \
12
7
2

* 1024 6718464° _248832 373248 124416

4216 T iy 421091 5 T
135 /3¢ 110592
20608 49890383 240112
35 "WH S0 T 1(2))”
(99652 7 L. 76581497731 11767

2

al’ ™ 4 11341n(3)

n(2) — = g¥ min _

g1 ) =34 14515200 2304 "

54738593 , 166324 5751 7 L. 83162 )

0502 © i35 /7 2 )3 135 h“x))”

2ATISSER03T 17884, SIS 47656
x —

43545600 ' 1215 1215 7 243

19606111 5802762665
Ot 6481n(3) — 2o 220 2 e L
786432~ T O8ING) - —53oeie 7 )”}x }
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(8.31)

Using the latter relation, the binding energy as a function of x reads
ESHER(x) = M + ES () + B, gy (), (532)

where E95% (x) is given by Eq. (5.5) of Ref. [4], and where
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14515200 +3a7 51 M)+ gys

64768 32384 11 6634243
D 2 (%) ——-a¥ ™" — 17821n
( 135 /T35 82In(3) + 10502 7

2641232 15582935 11 ) X (272855712 28754891) .. 5159 . 2717 6] 6}
— X

2

s67 M@~ Tozes T3 ™) 2aate 373248 )Y T2ass32” To718464”
(8.33)

Similarly, when using the minimal version of the flexibility factor, the periastron advance expressed in terms of x reads

27 135 649 123
Kz)élgi\rlc( ) =1+3x+ <7—71/)X2 + |:T+7l/2 + (—T+3—2ﬂ2>y:|x3
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The 4PN-level periastron advance (along circular orbits)
was first obtained in Refs. [55,67], and later rederived by a
different approach in Ref. [92]. Reference [67] also derived
the 5.5PN periastron advance. The terms O(x>) and O(x%)
corresponding to the 5PN and 6PN orders, respectively, are

computed here for the first time, modulo the undetermined
parameters c_l’g2 min_ agz min - that enter the minimal version
defined in Eqs. (7.28). We recall that, when using nonzero
values of the unconstrained flexibility parameters, any
physical quantity will be given by the same expression
as the minimal one, with the qualification that the param-
2shifted

5
eters af ™", ..., would be replaced by ag etc., as

defined in Eqgs. (7.35). By contrast, the linear-in-v part of
these coefficients is fully determined, reproducing the
corresponding known terms [93] in the EOB function
p(x) such that K=2(x) = 1-6x + vp(x) + O(?).

IX. DISCUSSION

The recent renewed interest in the gravitational scattering
of a two-body system has led to further improvements in
the associated analytical modeling within PN-PM theory. In
this work we have raised the present knowledge of the
nonlocal-in-time part of the scattering angle at the 6PN
level, and at the next-to-next-to-leading order in the large
eccentricity of the orbital dynamics. The intricacy of the
NNLO level in the scattering angle shows up in the
appearance of {(3) in some of the integrals making up
the final result, see Egs. (3.45) and (3.46). It also shows up
in the fact that we could not compute analytically a third
integral [namely c4, or equivalently d,, Eq. (4.14),
Table VI] entering the final result, though we did evaluate
it numerically. Going beyond the NNLO in the large
eccentricity expansion remains a challenge for future
calculations. By considering the mass-ratio dependence
of the scattering angle, we discovered in passing a
hidden simplicity in the mass-ratio dependence of the
gravitational-wave energy loss of a two-body system
(see Sec. VIIB). The mass-ratio dependence of the non-
local scattering angle allowed us to determine (in Sec. VII)
the contribution to the Hamiltonian linked to the flexibility
factor f(¢). In particular, we discussed a minimal way to fix
the residual gauge freedom present in the choice of f(¢),
see Egs. (7.28) and (7.30).

Besides our results on the scattering angle at the 6PN
level, we gave several other gauge-invariant character-
izations of the nonlocal-in-time dynamics. We computed
the nonlocal part of the averaged (Delaunay) Hamiltonian
for ellipticlike motions up to the tenth order in eccentricity,
see Sec. IX and Appendix F. We then extracted from the
latter results two (partial but useful) physical observables:
the energy and the periastron precession along circular
orbits. We expressed the latter quantities both in terms of
the angular momentum and in terms of the orbital fre-
quency. Additional results and details are presented in

several appendixes. In particular, (i) the details of our
frequency-domain  computations are presented in
Appendixes B and C, (ii) Appendix G completes the
information about the h-route nonlocal dynamics by giving
the explicit value of the O(p?) part of the corresponding
EOB Q potential, while (iii) Appendix H gives the elliptic-
motion average of the In(r?,/s) part of the Hamiltonian.

Though our results for the nonlocal dynamics are
complete, our method has allowed us to compute the
complementary local dynamics only modulo a small
number of undetermined numerical parameters. Namely,
two parameters at the SPN level, and four at the 6PN level.
Recent progress in the computer-aided evaluation of the
5PN-level dynamics of binary systems [59-62] gives hope
that it might become soon possible to extract the two
missing SPN coefficients (denoted c_l‘s’z and agz) by compar-
ing the observables deducible from a S5PN-accurate
Hamiltonian computed in (say) harmonic coordinates with
the gauge-invariant functions we presented above, thereby
completing the knowledge of the SPN dynamics. However
several of the subtleties we had to cope with at SPN might
stand in the way.

We have particularly in mind the fact that our method
uniquely determines all the terms quadratic in one mass in
the action by a matching between the near zone (potential
modes) and the wave zone (soft radiation modes) based on
the use of a global Green’s function (computed by means
of black-hole perturbation theory). This well-defined
nearzone-wavezone matching is similar to the one that
was used, at the 4PN level, in Ref. [4] by combining the
globally matched 4PN-level self-force result of Ref. [94],
with the 4PN near-zone computation of Ref. [53]. By
contrast, the EFT-based derivations of the full (local-plus-
nonlocal) 4PN dynamics in Refs. [58,59] have combined
the results of two different EFT-like computations (namely
a wave-zone EFT computation [95,96], and a near-zone
EFT one [57,59]) without showing in detail how this
combination comes out automatically by applying the
“strategy of regions” [97] to the original point-particle
action (i.e., by decomposing the original, PM-expanded,
but not PN-expanded, point-particle action into comple-
mentary contributions coming from two different regions
of momentum space). This absence of a detailed, ab initio
application of the strategy of regions at the 4PN level
makes us expect that it will be difficult for a direct EFT
computation of the action to unambiguously apply, in a
technically complete way, the strategy of regions at the
more intricate SPN level.

Having this potential difficulty in mind, we therefore
suggest to use, within the EFT approach, an analog of the
strategy used in [4] at the 4PN level. Indeed, the basic fact
underlying the success (and completeness) of this strategy
is that the sole possible ambiguity in combining the near-
zone Hamiltonian with the wave-zone one comes from
combining the logarithmic infrared divergence entering the
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former computation, with the logarithmic ultraviolet diver-
gence enter the latter one. In other words, if we introduce
(like in the old-style computations of the Lamb shift) an
intermediate scale s (with r, <5 < ¢/Q,), the former
computation contains a term 24 FGW(z) ln(%) while
the latter one contains a term 2 %% FSV (1) In (Qyswz/c).
Here, syz denotes the intermediate scale s when it is used as
an infrared cutoff in a near-zone computation (involving
potential modes), while sy denotes the intermediate scale
s when it is used as an ultraviolet cutoff in a wave-zone
computation (involving radiation modes). In summing the
results of these two regions, the intermediate scale s should
disappear, but any ambiguity in the identification between
snz and swz will introduce an ambiguity in the total
Hamiltonian equal to

HE =209 pow(y, 9.1)
C

C=1In (sﬂ>
SNz

is some pure number. We emphasize here that the same
result [presence of the single-parameter ambiguity (9.2)]
holds also at the 5PN and 6PN levels because the only
delicate divergences18 entering the near-zone and wave-
zone computations are logarithmic, and have both the same,
known coefficient 2 <2 FW (1),

At the 4PN level, Ref. [4] had introduced such a single
logarithmic ambiguity constant and had shown how the
sum of the near-zone (locallg) Hamiltonian and the wave-
zone (tail-related) one, together with the use of the globally
matched self-force 4PN Hamiltonian [94], led to a unique
answer for the full (local-plus-nonlocal) Hamiltonian. The
advantage of this strategy is that it is enough to know three
partial results to apply it, namely, (i) a knowledge of the
near-zone (potential-modes) Hamiltonian restricted to
the scales r < snz, (i1) a knowledge of the wave-zone
Hamiltonian, restricted to the scales r > swy, and (iii) a
knowledge of the globally matched self-force result [which
unambiguously determines the O(r?) part of the total
Hamiltonian]. Our method provides explicit (and complete)
results for the items (ii) and (iii), while it needs to be
completed by a near-zone computation for determining

where

9.2)

the undetermined parameters a’gz, etc., entering our local
Hamiltonian.

3We assume here that the (unphysical [98]) ultraviolet
divergences due to the use of a point-mass description
have been separately regularized; e.g., by using dimensional
regularization.

“Note that in Ref. [4] and in the present discussion the
meaning of “local” is different from the one used in our method.

From the practical point of view, we are therefore
suggesting to compare (say at the 6PN level) the gauge-
invariant content of

HEFT,tot — HEFT,loc,s + HC

6PN 6PN
GH dT li
——5 Py Hf;ﬁ’,;;(t, t+17),  (9.3)
to that of our full Hamiltonian
tot __ pyloc.f loc.f
HER = HI + Hogo
= Hgsa + HyS%0 + A Hs gon. (9.4)
As
GH dT spli
HIE(0) = =3P [ PR+
GH (1
+ 235 TN In <—‘2S( )>, (9.5)

we see that the identification between the two Hamiltonians
boils down to identifying what one can call their near-zone
parts, namely, on the one hand,

EFT.NZ _ 77EFT.loc.s c
Hepy ™ = Hepy +H",

(9.6)
where s denotes any scale used to regularize the infrared
divergence of HFFT°¢ | and, on the other hand,

our,NZ __ pylocf f—h
H6PN - H6PN +A H5+6PN

+ 2i—ff§3§,(r) In (@) .97

There are various ways to identify (in a gauge-invariant
manner) these two near-zone Hamiltonians. One can look
for a canonical transformation mapping on into the other
one, or one can identify gauge-invariant observables. We
have provided above (and in our previous papers [2,3])
several gauge-invariant functions that can be used in this
respect. However, as the last term on the right-hand side of
Eq. (9.7) has been incorporated in our recent developments
into the nonlocal part of the Hamiltonian, and was not
separately studied (in a gauge-invariant way), we decided
to complete our gauge-invariant characterization of the
near-zone dynamics by giving the value of its Delaunay
average, namely

! GHiot spii i, (1)
) — g § 2R R (2

N

9.8)
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The explicit value of the latter 6PN-accurate Delaunay
average will be found in Appendix H as a function of af
and e (up to the tenth order in el!).

Summarizing, the identification between Egs. (9.6) and
(9.7) yields, in our opinion, an efficient way (avoiding a full
use of the strategy of regions) to determine at once the
values of our undetermined parameters agz, ..., and the
value of the single near-zone—wave-zone separation ambi-
guity constant C [which we have incorporated here in
Eq. (9.6)]. Our determination of most of the v dependence
of the Hamiltonian will also provide many checks of the

computation of H EEEINZ
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APPENDIX A: COMPENDIUM OF USEFUL
PN RESULTS

We collect in this appendix some known results in PN
theory. When working at the 6PN level we often need only
fractionally 2PN-accurate results on the dynamics. In some
parts, we only need 1PN-level results such as the Einstein-
Infeld-Hoffmann-Fichtenholz 1PN Lagrangian for the rel-
ative motion (see, e.g., Ref. [81])

Ly 1, GM (1
ZIPN - —(1- 4
p SVt ——+n {8( 3v)v
GM GM
+—[(3—|—1/)v2+1/(n-v)2——}}, (A1)
2r r
|
8 12p? — 11p?
FRp.ppor) = o2 W22 1P

15 r

A5
o 35 7 "
9568 5 9472 1024 5 1 /32 128

W)Pr*(‘ﬁ‘ﬁ”)ﬁ]*ﬁ(ﬁ‘ﬁ%

L[
Sl\21"

where 12 = 7% + r2*. This determines the corresponding
momenta
oL" . oL .
Pr= 81:N =C,r, Py = aZN = C¢r2¢, (A2)
with

1-3 GM
Cr—1+,72<(T”)1;2 +T(3+2v)>,

1-3 GM
C¢—1+772(TUU2+(3 +I/)—>’

- (43)

2 .
so that p? = p? + 2% = C2i? + C3 ¢,
The corresponding 1PN-accurate Hamiltonian (expressed
in terms of p = pP™s/u; and using ¢ = 1) reads

HlPN("?prvj) -M

U
1, GM M GM
=(=pr-— —(Bu=1)p* =2 (v +3)p?
(217 . >+n {8( v—1)p 5 (v+3)p
GM , (GM)>
77 . A4
5, VPt (A4)

We often rescale r according to P = GMr.

We will also need the expression of the 1PN-accurate
gravitational-wave energy flux [89] in terms of r =
s /GM and p:

(3332 248 N b o (898 104 A L
105 "7 Y)PPrT 10535 )P

(AS)

The parameters entering the quasi-Keplerian parametrization, Eq. (3.4), of the hyperbolic motion (in harmonic
coordinates) are listed in Table VIII, as functions of the variables

E

pc?

Ei — MCZ,

cJ
GMu’

J (A6)

Let us also recall (from Table II in Ref. [3]) the expressions of the (harmonic-coordinates) rescaled semimajor axis and
time eccentricity entering the 2PN-accurate quasi-Keplerian representation of elliptic motion in terms of E and j:
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7 _F)2
a, = (—;E) {1 + ( 3E> (=7 +v)* + ( fg) 1+ 22 +(_217Z?)j2(7u—4)]n4},
e} =1+2Ej —l—@ [=8(1 —v) — (=2E)j*(=17 + Tv)|n?

(_ZE)Z 2\ _ (AL 2 _ 2
+ 3 4(3 + 18v + 5v%) — (=2E)j*(112 — 47v + 1617)
16 (=4 +7v) = 24V =2Ej(-5 + 2v) + 2 ( 5+2)]4 (A7)
——=—5 V) — - J{= 12 — - v)\n
(-2E)j? V-2Ej
|
Beware that the latter elliptic definition of e? is not equal ~ with
to the analytic continuation in E of its hyperbolic counter-
part, listed in Table VIII (while @, is the analytic continu- P i 1 " 3 1 (v = 15)V2E | ip
ation of —a,). Using the rescaled action variables " J vV_FE |j 8 g
o cly n [_5(2:; 7)+3(2y —45?(—2E)
" GMy’ J J
P = cl, = ——— (3% +30v + 35)(—21_5)3/2] n* (A9)
¢~ GMu " 128
lrp =1y + 1y =i+, (A8)  the 2PN-accurate Delaunay Hamiltonian reads [8]
|
- 1 124i, + (9 +v)i
E(iy iy) = =75 1+*¥7I2
20y, 4 Ipivg
12083 (2v — 7) + 12i2i4(10v — 53) + 72i,i% (v — 6) + i5,(—* + Tv — 81
1208 ) ¢ 21005 T2 =6 i N
plrp

Using this transformation, we get the following explicit (2P
as functions of the action variables i, and ij:

TABLE VIIL

v=mim,/(m; +my)?, E, Eq. (1.36), and j, Eq. (1.37).

N-accurate) expressions for the ellipticlike parameters a, and e,

Quasi-Keplerian representation of the hyperbolic 2PN motion (in harmonic coordinates). We use the variables

i (E)2[1+E(
a S {1+ E(T - v)p
e? 1+ 2Ej* + E[-Ej*(=17 + Tv) + 4(1 —v)|n?

e? 1 +2Ej> + E[-5E/2(3 —v) +2(=6 + 1)y
e 1 +2E2 + E[-Ej2(15-v) = 12]2 + £

fi

9

o !
9¢

K L+5n + 55

—4164+91v+151> +2

32
i [—2Ej%(=5 + 2v) + 5(7 = 2v)]np*

15—1/)17 + (555+30y+11y) 4

+£ [1+y — 7 (Tv = 4)n}

+E?2 (3+ 180 +50%) + Ej*(112 = 4Tv + 161°) + £ (=4 + )|y
?+ E*[30 + T4y + 17 + Ej(80 — 450 + 47) + 25 (=4 + )l
(=20 + 17v + 9?) + 2Ej%(160 — 31v + 3u2)|n*
(5 -2uv)n*

2E?
(E)
J

3
2

ﬂ\/1-4—2EJ v(=15+v)n?

*257 (1 + 190 — 302"

]1+2EJ
ER (1 - 30t
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30, +2i,
-2 /)172

lsﬁ(zy =7) + ijig(4dv = 95) + 2i,i5(26v - 35) + 18ij(v— 1) ,

is 2

i(v—1) +i¢(2y—5)'72

i
e’ = i+ 2iy+ 2 >
r¢ Lo

14i}(Tv = 4) + i7iy (660 4 25) — i,i5 (60> — 28v — 207)

.2 .3 7] ’
Lrply

2

.2 .4
Lplrp

—2i3 (602 —18v—19
o )n“} (Al1)

Another useful 2PN-accurate quantity is the (adimensionalized) radial frequency. It reads

GMQy,

n = 3

c

= (-2E)* [1+(_§E)( 154+ v)? +

i3

1 13 +0)iy + 186,
- {1—1——( + )iy + 1’72
Ly 2

3 )
l¢lr¢

3=(9 + 5v+12)ig + 41,5 (=37 + 5v) + 6i7iy (=59 4 100) + 10i} (20 - 7)

(—2E
128

192(-5+2y)) ]
555+ 300+ 112 + —— "2 |»*
< V=2Ej 1

8

APPENDIX B: LARGE-ECCENTRICITY
EXPANSIONS OF THE FREQUENCY-DOMALIN,
NEWTONIAN-LEVEL ENERGY FLUX AND
INTEGRATED TAIL ACTION

This Appendix discusses the frequency-domain compu-
tation of the Newtonian-level energy flux, Eq. (3.62), and the
related integrated action, Eqgs. (3.59) and (3.64). The fre-
quency-domain integrand (3.70) is of lowest (Newtonian)
order with respect to the PN expansion but is exact in its
eccentricity dependence. Let us consider its expansion in
inverse powers of the eccentricity at successive levels: LO,
NLO, NNLO, etc. For simplicity, weuse | = GM =G = ¢
in the following.

1. Newtonian flux at the LO in the
large-eccentricity expansion
The expression (3.70) can be easily evaluated at the LO
in the large eccentricity expansion where p = i - — 0 [see
Eq. (3.51)]. This limit entails a big s1mp11ﬁcat10n (already
studied in the literature, see e.g., [52,85,86]) which leads to
the following expression:

IRO(u) = 32et?alu|(u® + 1)K3 (u) + 3uKo(u)K | (u)

+§(3u2 + 1)K3(u)]. (B1)

Using the notation introduced in Ref. [52]

.3 4
Iyl

;74} . (Al12)

(% ) u) + 3u3Ko(u) K, (1)
+ (u?

we find
IO (u) = 320%¢tal F(u),

so that

32n o
AEL), == R'a; 1/2/) duF (u).

B4
57 e} (B4)

When using the Newtonian-level relations

i = (@) = plont, = P,

as well as

=\/14pLj? = e° = pool.,

one recovers the known result for the LO gravitational-
wave energy, or “splash radiation,”

(B6)

32 pt ©
AERQ =2 1/2/ duF(u
GWN St ]3 0 ( )

37 poo 2
= B7
=575 (B7)
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The tail potential W&t;ﬂ)l‘o instead turns out to be

(tail)LO

64 ph, [
Wi :pf;l/z/ duF (u) In(au)

Sz j 0
2 )
—_— B8
46,612/2 (B8)

2 av

e.ay

Let us then pass to the extension of these results at the
higher N"LO levels of approximation in the large-eccen-
tricity expansion.

2. Working at the NNLO accuracy in el

Expanding the quantity (3.70) for large e, up to the
NNLO Ileads to

ILO
T ( ) ILO +INLO +INNLO+0( >’ (B9)

V

where
ILO INLO
Nale? = Fw), Nalein = uF(u),
INNLO 00 200, K (1)
16ale2® CP ) + ) o |,
0K, (u
+ C*(u) a§> : (B10)
v v=1
where
C®(u) = —2u?[(3u* + 1)K3(u) + TuKo(u)K | (u)
2
(1 + 22) K3 )] + g F ().

4
@%m:-%poﬁ+mmwg+%mw»

4
C?1(u) = =5 Buko(u) + 207 + DK ()], (BL1)

and where the Bessel functions K ,(«) and K, (u) have
been Taylor-expanded around p = O to second order in p,

0K, (u)
p@v

+0(p?). (B12)

In Eqgs. (B12) above we have used the known results [see
Egs. (9.1.66)—(9.1.68) of Ref. [83]]

0K, (u)
ov

:%K&@.

IR A0

. - (B13)

v=1

Moreover, in what follows the derivatives of K, with
respect to the order will only enter integrals of the type

K, (1)
o>

Hmm=AmWWMW) (B14)

v=0,1

These integrals can be evaluated by considering the master
integral

Gla,p,v) = /oo duuK,(u)K, (u)
0
2a—2
== ilelsly,

CES) (BI5)

where

IN=z(a—pu—-v+1)

( )
(ums ).
( )

r
F4:F(

the resulting expression being valid when the four con-
ditions Re[a &+ pu + 1] > —1 are all satisfied. Taking two
derivatives of (B15) with respect to v and evaluating the
result at v = 0, 1 allows one to compute the integral (B14).

»—[\)|>—

— o

Iy
I
I3

—(a—-p+v+1)

l\)

(a+ﬂ+D+U>, (B16)

N[ =
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One can rewrite Eq. (B9) in various ways. For example,

s+ 24 5 (2)]
Glu) + M) (B17)

where F(u) is defined in Eq. (B2), and where we defined

Gu)= [(3u +1)KG (u) +TuKo(u) Ky (u)

+(1+2u)Ki(u)],

2 u
EHO(M)a (9:2( )

., (BI8)

v=0 81/2

= - : (B19)

The functions G(u), Ho(u), H(u) are such that

G(u) =3F(u)

—u?2uKy(u) + 2+ u?)K

1(@)]Ky () - (B20)

and

Ho(u)Ko(u) + Hy(u)K (1) = u>F(u). (B21)
We list in Table IX the integrals needed in order to compute
both the gravitational-wave energy AEgw and the tail
potential W@ at the NNLO level in e;! (but still at the
Newtonian level, 7°).

The integral of H(u) can be written as the sum of the two

pieces

_Phy() 9h, (v)
h= / H 80 v=0 8]/2 I./=1’ (BZZ)
where
hol) = / ™ duto(u)K, (u).
hy(v) = / ™ dutt, (K, () (B23)

TABLE IX. Integrals needed for the Newtonian-level
gravitational-wave energy AEgw, and the tail potential Wtf“l,
at the NNLO level in ¢!

Expression Value
f Jo° duF (u) 1y
[ duF (u)Inu & 72[100 — 37y — 1111n(2)]
f Jo&° duuF (u) »
fen - J5° duuF (u) Inu 4139 — 294y +2941n(2)]
f [ du® F (u) 297 72

(
frin [ duu F(u) Inu 53 7%[350 — 99y — 297 In(2)]
g J5° dug(u) L

9" [RduGu)lnu 5724591 — 1612y — 48361n(2)]
We find
O’hy(v)| 2007z B 17972
o? |,_, 8192 80
9h 27457% 75277
‘§”) =2 e R (B24)
o2 |,_, 8192 2560
so that
2977* 26517
= - B2
512 512 (B25)

The integral of H () In u can be computed in the same way

/ H(u)Inudu

=2 1 i [49896(( ) -+ 53437 + 132y(2722 — 241)

—9543610g(2) + 362%(297 log(2)

—350)]. (B26)

Finally, from

o0 1 2
/ In(u)du = 32aZe‘,‘1/2{ [f I T <£> f“z}
0 e, 2 \e,
1 1 1
——g-—ht+o(=).
a9 a }+ <>

we have that the first- and second-order eccentricity
corrections to the (Newtonian-level) splash radiation
energy (B7) read

2 (37x 1568 281x 1
AELO+NLO+NNLO __ ¥ ol =),
GWN Aal>\ 15 +456 0e %+ el

r

(B27)

(B28)

Similarly,
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2
(@il LOANLO+NNLO _ 2V
Win —EW{E[IOO—Fﬁln(
2479 6237

This result allows one to fix the previously defined
parameter cq, [see Eq. (3.45)] which could not be com-
puted in the time domain.

3. Going at N°LO in the energy flux

The next term in the e;! expansion of Eq. (B17) is the

following:
IN(M) 1 82KD(M)
32a7e4y2u6 R P o(t) o |-
7 O*K ,(u) P z
-0 g8 b= 6
1 b2 Vs z

(B30)

Multiplying both sides by u® one has then

T
(i)

that is the O(k)-accurate truncation of the compact

In(u)
32alet?

expression
In(u) G(u) +H(u)
= e™/er | F(u) — B32
32ajeiv? [ (x) e? o) (B32)
Equation (B28) is then extended as
2
LO+++NLO( ~ _ v 37_77 1568
AEGWN (ah e}”) - e;az/z < 15 + 45€r
281z 7808
10e2  45¢}
1
+O( )) (B33)
er

Expressing e, and a, in terms of p, and j the above
(Newtonian-level) expression becomes

s
de af/z -

1
e

2224 1568 ( 4s
o "3 "oan

r

V()] @) =2

[

BB 10 pa ) = 2 4 SR
+1§27I1;?+42;21;20
o e

No special, additional difficulties arise for the Newtonian
energy flux when going up to higher orders in the large
eccentricity expansion in the frequency domain.

APPENDIX C: ECCENTRICITY EXPANSION OF
THE 1PN-ACCURATE FREQUENCY-DOMAIN
ENERGY FLUX AND TAIL ACTION

Let us now consider the 1PN corrections (cx#?) to the
(frequency-domain) energy flux and tail action. The cor-
responding integrands are linear in v (after factoring out an
overall factor). In this case Eq. (3.75) should be used, and
complications arise already at the NLO as we are going to
show. We have been able to compute the NNLO Ievel too,
but the associated expressions are very long and will not be
displayed below.

Let us write (1 = GM = G = ¢) the 1PN contribution to
the energy flux as follows:

1
AE™ — 3/2/ duF &N (u), (C1)
ze ay' " Jo
with a subsequent large-eccentricity expansion:
1PN,LO 1PN NLO
FN = — {]—" + f
1

We recall that, at 1PN, each term F 5y LPRLNTLO depends on v
linearly, i.e.,

n n
]_—IPN N"LO flPN N LO

IPN.N"LO
GW. vF .

W (C3)

We then find the explicit expressions
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8
IPN,LO 2 4 2 ?
o’ = =705 1106 + 820 + 156)Ko ()
— 4u(~43 + 61u*)Ko(u)K, (u)
+ (—10u* — 454> — 300) K2 (u)),
8
FINE =~ 8216 + 400 K3 )
+ (—4813 — 64u) Ko (1)K (1)
.H4ﬁ+mfﬁﬂ
64 u4 141
IPN.NLO 3 u? +
_ 64 ut K3(
FGWV 21 . < 4

128 ,(61 , 653
o (S ) oK1 (1)

64,/ ut 333, 39\
_i”<_1+40 +mQKW”

- 25_4 iu*[(A(u) + uB(u))Ko(u)
+ (B(u) + 2uA (1)K, (u)],

64 21 3
Fél;lv\]i\u‘o = 7[|: 5 —u’ (u4 -yt - —)K%(u)

where

A= —%(Gz(u) + G5 (u)) +
= —i[Gg(u) - ng(“)]
= =2iG}(u),

B =—2(Gs(u) -

(Gi(u) -

1 1 5
= — S GA (W) =5 G () +5 G ) +3 G, (w)

= =G}, (1) + 5G}, (). (C5)

Gi(u)) +

-bIUI-P —_

Here we introduced the notation

G,(u) = /oo dv arctan <tanh ;) glusinh v=nv_ (C6)

[Se]

as well as GS(u) =1(G, (1) + Gy (u)). G () = 1 (G, (u)-

G*( )) and the symmetry-related  expressions
o (W) =3(G(u)+G2, (), G}, (u)=3(Gy(u) = G2, (u)),
0 () = (G () + G, (u )>, and Ghy(u) =3 (G (u)—
n(u)) Due to parity reasons

G (u)=0= G‘['}l](u). (C7)

This, however, has no effect on A and B which only contain
G[Sn]( u) and G, (u).

Going to the NNLO the energy flux also contains terms
involving the derivatives of the Bessel K functions with
respect to the order. Furthermore, integrals over v enter the

term F'ENNNEO C Al integrations can be done analytically,

GW..°0
leading to
1 /944 1136
e, \1575 45 ©
1/ 22333 609
(=222 ) 4. c8
+é< 560 m04 (C8)

V2 1143 37 N
227 [\ 280 “30°)"

By contrast, W; can be analytically computed (in the
frequency domain) only at the LO. Indeed, consider for
instance the NLO term W}PN’NLO, which we have suc-
ceeded to compute in the time domain [see Eq. (3.39)], with
the result

AE =

WIPNNLO _ 2 28072 38872
15, 4 WZ 225 63
944 1136 4s
- 1 C9
+(105 3‘>“Qawﬂ (€9)

By contrast, the computation of W}P N.NLO

domain yields the expression

in the frequency

2 2 1768 38872
IPNNLO _ _
Wi T 1544 1592 o [ 9 63
6144 6144 15
—_— = In(2 —X
+ 57 5 n(2) + >

(C10)

n 944 1136 | 4s
——-——v|In
105~ 3 )N\, a”
where the quantity X denotes the following double integral:

48 [o [
- —/ du/ dvu*X (u, v) arctan <tanh§> In(u),
7T Jo -

(C11)

with

X(u,v) = a(u) (— écosh(?w) + cosh(v)> S(u, )

B %ﬂ(u) sinh(20)C(u, v). (C12)
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Here, to shorten the expression, we denoted a(u)=
uKo(u) + Ky (u), p(u) =1Ko(u) + uK,(u), as well as
[S(u, v), C(u, v)] = [sin(u sinh(v)), cos(u sinh(v))].

When attempting to compute X, one can first integrate
over u by replacing In(u) — u, taking then a derivative with
respect to a, before finally setting @ — 0. Unfortunately, this
method of integration generates derivatives of hypergeomet-
ric functions with respect to the parameters, which did not
allow us to compute the integral over v in closed form.
However, direct comparison with the time-domain result
(C9) yields the following simple result for X:

4 4 4
X:358 _ 4096 0961

375 75 Y+ 75 n(2). (C13)

Going to the NNLO, one can similarly extract a Fourier
space representation for the missing coefficients c,, and
Cy1. A straightforward calculation shows that

and
A, v) = —a(u)uv(—%cosh@v) + cosh(v))
+ 28(u) G sinh(3v) + sinh(v)),
B(u,v) = ~2alu) (1 +%cosh(2v)>
~ S plwyuvsinn(20)

(C17)

These Fourier-domain expressions did not allow us to
compute c,y. By contrast, we could analytically compute
their analogs for the 1PN coefficient ¢,; [see Eq. (3.46)].

APPENDIX D: GRAVITATIONAL WAVE

599223 1637641 99837 ENERGY EMITTED DURING A SCATTERING
=——"
€20 w60 N2+ 0 °G) PROCESS AT THE 2PN ACCURACY
1584 1 The total gravitational-wave energy emitted during a
T T2 ¥y + 1), (C14) scattering process
where AEgw = AENy + AERN + AEXN + .-+ (DI1)
Y, =48 /oo du /oo dvu® F uX(u,v) + Y(u,v) was computed long ago at the 1PN accuracy by Blanchet
0 -0 2 and Schifer [see Eq. (5.7) of Ref. [89] ]. Let us extend their
v result by giving here the 2PN term, AEZY, when AEgy is
X arctan tanhE In(u), expressed in terms of e, = e and j, as in Ref. [89]:
Yo=24 | du [ doutX(uv)tanholn(u).  (C15 2 12 1 I
2 /0 M/_oo vu (M U) v (ll) ( ) AEé[;;I}I(er’]) — —% |:gl arccos (_ _> + 52 e% — 1:| ,
15 e,
with (D2)
V(u,v) = A(u,v)C(u, v) + B(u, v)S(u,v),  (C16)  ith
|
s _ 1636769 2380852 24 596996 o 494977 o+ 1615745 o
LT189 189 " 63 1 48 T 612
74435 23953 , 527659 , 1775713 . 120745 |
- - e; — ey — ey — e
T 3 T8 T2 T 56
1463 31215 10155
+ 1248 + ez + et €0 +518¢8
2 8 2
e _ 307844062 1280690597 2 1596923303 A 76924511 o6
2719845 158760 " 158760 " 7840 7
281551 25157339 , 104242423 , 3209299 .
v(— - ey — ey — e
45 2520 7 5040 " 280 7
453 10777 10765
+ 12 (T +—g e2 5 et + 3434e§) ) (D3)
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In the parabolic orbit limit e, — 1 we find (see Ref. [89])

AE2PN term e,—1

GW

2742 [29198255 774153 82215

_ 2z _ . (D4
15,7 672 6 “tg (D4)

In the main text we study the 2PN-accurate expression of
AEGgw when it is expressed in terms of the energy and the
angular momentum (and more precisely in terms of p, and
hj, where h = E,,,/M).

APPENDIX E: REPARAMETRIZATION

with the 1PN (harmonic-coordinate) Hamiltonian [recalled
in Eq. (A4)]. Using the 1PN-accurate gravitational-wave
energy flux given in Eq. (A5), one can solve for all the
unknowns, i.e., the C;’s and the D;’s as functions of the ¢;’s
and d;’s [see Egs. (7.20) and (7.21)], as well as the
coefficients g;, n; entering g(r, p,, j):

vp, [ 7

—_—

|-+ n5+90;
r r

~

2 1 J* 4
+7’] n]ﬁ+nzﬁ+n3pr

2 2 2.2
AND MINIMAL VALUE OF THE et P g 1;)] (E3)
FLEXIBILITY FACTOR r r r
The proof of the canonical equivalence of the two
flexibility-related ~ Hamiltonians — A™"Hepn (. py. /), We found the explicit results
Eq. (7.18), and A™MHL, (¥, p..j), Eq. (7.19), [with
p/¢ =Jj= p¢)]’ Le.,
64
g = ?(02 + ¢3),
AT oy = AT Hs ooy — {g. Hipn ), (ED) 64
92 ?02,
is obtained by a direct construction of the generating 16
function g(r, p’., j) of the canonical transformation g3 = 5 (12¢y + 73¢,), (E4)
Ag(r, Pl J) 9g(r. p}. J)
= GRS —p ol (B2
r r + (9[7’, pr pr + ar ( ) and
|
322 64cye; 112¢, 32¢2 2096c;\  4988¢c, 3476c,  64dy 64d;  64dg
n=|\- - - - - - - ,
: 5 5 5 5 105 105 35 5 5 5
323 48¢,\  2468¢c, 64d,
n,=1\- - v ,
5 7 105 5
32c% 176¢, ¢, +8216c1 4696c% 67888¢, 1268c; 33832¢, 64d, 9392d, n 176d,
ny= |- - - - 7
3 25 25 525 225 1575 225 1575 25 225 25
322 64cyc; 4112¢, 48¢3\  3252¢, | 2468c; | 64d; | 64d
ng= |- - - - v— ,
! 5 5 105 7 35 105 5 5
64cic, 64cicz  2096¢, 1448c% 272c5c3  2968c, + 1592¢4
Nng = | — - - - — — v
> 15 15 315 45 9 45 45
3476¢, 15752, | 1144c; | 2896d, | 64d; | 6dds | 272dg
105 105 63 45 15 15 9 °
Gdcic, 16¢, 872¢2  1472¢,\  2468¢c, 2680c, 1744d, 6Ad,
=(- - - : E5
"o ( 5 7 45 315 )'T 35 e T4 15 (ES)

Let us note that, while the three C;’s are in one-to-one correspondence with the three c;’s, with the inverse

relations
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456 +90656C 1856
T30 P53 P 128
_ 31856 . 656 . 156
2773072 2T 256 2T e L
656 34256 156
= i ¢, E6
256 3012 e (E)

Cq

C3 =

one cannot express the six d;’s in terms of the four D;’s. However, Egs. (7.21) can be inverted to express the first four d;’s,
namely d, ..., d,, in terms of ds, dg, and of the new parameters C; and D;:

616448 1232896 14794752 8428 29589504 608698368 28896
789897575C,C;  161067325C, 1235525C, 3774345C, 37456235C;
© 177537024 4854528 ) 134848 539392 1078784
181445 11175D, 1815D, 10275D; 208925D, 8ds 944d,
TTa816 4816 1204 4816 19264 301 129 °
_[10275C7  34925C,C,  1251725C5C, 476265C, ~ 329225C3  22825775C% . 715625C,
2 (2465792_ 4931584 59179008 539392 ' 118358016 ' 2434793472 ' 924672
9696425C, C;s 174415025C3> 716985C, 1500925C, 303139985C;

<356325C% 1409225C,C,  67026425C3C, 146435C; 16657175C3 5345155025C5 390545C,
-l: —

710148096 77672448 2157568 8630272 ' 310689792
225D, 615D, 3805D; 232105D, 32ds 137d
2408 9632 ' 38528 _ 462336 301 _ 129 °
o (_102750% 34925C,C,  1251725C;C; | 476265C,  329225C3  15395375C3  715625C,
37 72465792 T 4931584 59179008 539392 118358016 2434793472 924672
9696425C,C;  185034305C; 1305735C, 7264195C, 1196779135C;,
710148096 77672448 > 2157568 8630272 | 310689792
_ 225D, 615D, 3805D; | 268225D, 32ds  8d;
2408 ' 9632 38528 ' 462336 301 ' 129’
g <_675c% 225C,C,  ST075C5C, | 5362055C, 2925C%  1229725C3  7298675C,

19264 4816 616448 539392 308224 4227072 924672
_80125C,C5 n 1425084095C3> _7428725C, n 13974505C,  3276924925C;
2465792 77672448 2157568 8630272 310689792
_3375D, n 9225D, 54065D; n 3297965D, n 179ds  384dg .
2408 9632 38528 462336 301 43

(E7)

We introduced in the text a minimal way, namely Eqgs. (7.28), of fixing the values of the gauge-invariant parameters C;
and D; associated with some flexibility factor f (). However, this unique choice of the C; and D; still leaves some gauge
freedom in the choice of the flexibility factor f(¢) itself. If ever one wants to have also a specific value for the flexibility
factor f () itself, [i.e., specific values of the original flexibility parameters c;, d; entering Eq. (7.5)] one needs, in addition to
the explicit values (7.25), to insert the minimal values Eqs. (7.28) in the relations (E7) expressing the d;’s in terms of the
C;’s, the D;’s and of ds and dg. This yields
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Jmin _ 4110D+ 1269775907 33448631 In these expressions, ds and dg can be given arbitrary
301 606816 75852 values.
8ds  944ds
301 129 APPENDIX F: 6PN-ACCURATE F-ROUTE
i — (7611) N 159864493>V | 13371067 LOCAL DELAUNAY HAMILTONIAN
1204 2427264 809088 The 6PN-accurate f-route local effective Delaunay
32ds  137dg

it , Hamiltonian [expressed in terms of [, =j and I3 =
301 129 i, +j=1i,, see Egs. (A8)] is given by

i 761D 159864493 12115205
=|- - v
: 1204 2427264 809088 HOPNIOSE () 1) o
32ds  8d, o BRD 2> B (L Iyiv) + O(n').
301 1290 He =0
min _ (_10813D 34223993 52885025 (F1)
A 1204 33712 269696
179ds  384d, The coefficients up to the SPN order [i.e., O(n'?)] are listed
301 + 43 (E8) in Table XI of Ref. [3]. We complete this result by adding

the 6PN coefficient E'% (see Table X below).

TABLE X. 6PN coefficient E'Z entering the PN expansion of the Delaunay effective Hamiltonian (F1).

=12 2 2 -2 -2 2
E [y2(1911“E +63“? +273d§ 21dg +9qis _ 5295158 | 179354853;:2_2062272503)
2 16 32 32 n 65536 65536 22400
+3(- 315a;" _ 63, + 63as’ _ 2498000572 | 978061) 48197 4 (387457[2 _ 428085)U4
32 32 16 65536 64 256 2048 512
| (3236467169 | 1880853036297 _ 350055909;:4)1/ — 14196819] _1
30240 50331648 3388608 256 177
+[V2(315”22 63, _ 453877% | 56489807 _ 2795413) —umt (48355 _ 16113ﬂ2)y3
16 16 32768 4096 43 2 3 128
(2s13ss1 554143877:2)1/ — 16298667 _1
1920 32768 256 110
2 2 -2 -2 2
A (- 1225ag"  35ay _ 245dg  35dg  2lqis 4 1763052 _ 3468037852 | 13914839443)
16 3 16 32 32 32768 93304 115200
2 -2 3
3(525ag | 133ds 3547 | 1057777z% _ 16220123\ _ 3465.° | (3398185 _ 5022572\, 4
+° (53 32 g T 1536 576 ) — 56+ (a3 1031 )V
- (— 34107960371 5909406240777 +387365405n4)u 4 9066235] _1_
345600 113246208 3388608 256 1%
2 22547 7507 | spiset 124550652 | 3386395 4 | (227552 _ 75595\, 3
(== =5+ 8Gsr — ave T i o) 30000 + (L - By
1707053357% _ 822324589 3332614571 1
+( s Sess IV T 55 }Iglg
2 2 -2 -2 2
2(1095ag” | 1547 | 365de | 15dg | 1544 252157% | 1475981572 _ 50590683
A (= + 16 +—= T 05536 T 8192 20 )
2 - 3
3¢_225ag  85ds | 1547 49631575z | 23365741\ 28355 | (215257 _ 532105\, 4
7 (=53 n 16 o504 T =1 ) oy T (530 556 )V
(- 22549379339 +161199909365n2_81987555174)1/ - 4167025) L
423360 75497472 3388608 512 170
2 -2
2(03ag | 63dy  11767x% | 880226972 _ 21668549\ _ 4 67123 _ 146372\, 3
(e + =% 32768 T 409 w0 ) — 4620° + (55 a4
(8093748209 _ 5903585037:2)1/ — 11382315] 1
28800 98304 128 IR

2 o o 2 5
A= B B d i a6480553 4 130268403
g § TR ® 32768 44800

2 -2
3(15ag | 1545 14323357% _ 438383\ _ 2205.° 219555 _ 1291572\, 4
+° (5 » T s o) e+ (55 T34 )V
St _ 135 r _ 113 1
(2154048127363 4 12817445435 2 135909 4)1/ 11393277) _1
25401600 12582912 3388608 o4 1B
4 (3321 _ 12231, 3 188409 _ 147140142\, 2 | (57005721z> _ 3445375221 36864451 1
2700 + (g >+ (5 2006 )Y+ (Taves na00 )V + 7256 ) A
1157505 143572 _ 268555\, 4 | (449845 _ 91584572\, 3 51899359 | 798853972\, 2
+55 + (s sV + (e sie W+ Comaoe + “essie WV
+(- 8318335583_277530648197:2)1/ 4 16277895) _1
176400 50331648 256 1 BT
_ 994 | 84153 2 | 4058505y _ 342188551 _1
=T T — 1039507 + g 8 2
_ 18945 | 99754 _ 158251° | 104762712 _ 6699213y | 4743557171 1  _ 24188177 1
+[ + o T s +

256 T 502 512 52 1T 2048 1
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In the case of circular motions, the f-route, local contribution to the 6PN-accurate effective energy Eoy = (Eofe — pt) /1 is

found to be

e 19 81 \n#* [ 386l 2 15T\ T
Eeff _————J_—+<——+U>j—6+ —ﬁ‘f' - +— _8

272 8 16
L [33703 (_ 6581 , 8357) ( 275 ﬂ 2) U2] 7
256 1024 30 64
| [ 1648269 <15592753 31547 2>y (_@ L 2337 ﬂ2>y2 . 24 7'
1024 6300 1536 g8 27° T128 2
| [_27078705 ( 2800873 , | 298273237 1322752463 ”2>
2048 524288 14175 3538944

TS A% TR0 T T T 8s 2

615 1369 1 12
+(-— 4 1369 —Hj— (F2)

6’ T4 T2

< 1681 , 39 . 1389451 , 3321439 | ) )
- as |V

The relation between E. and the specific binding energy E, Eq. (1.36), is given by

1+ 2E 4 -1
o + 2VE¢ ’ (F3)

v

so that in the circular case we get

Ecirc __L_|_ v 2 77__|_ _y_2+7_y_g ’7__|_ _E_FS_UZ_'_ 8833 417[ 3861 ’7_
lef =702 T\ "8 8) 16 16 16/ j° 128 * 64 384 64 128 |

+[ w3 <417z 8875) (989911 658171'2) 53703} n®
v— £

~256 T 128 128 768 3840 1024 256

@ 293357 1679647\ , 21 S (4lxd 3769\ |
2 772048 3840 )Y T 1024 1024 " \512 ~ 3072 )%

<3747 183493 3 1547712) 1648269} n'¢
- 12
J

1612800 1536 1024
3902 af  1681z* 1060584172 10727952929 @/ a¥ 2138372 1007737
+ |22 6 7 3( %6 7
1%

1 T T s T s 1075200 4 T2 T 8192 T 7680
330 TS 41722 2537 576215112401+1322752463ﬂ2 28008737 270787057 '
_ _ _ L n-
2048 2048 ' \1024 3072 29030400 3538944 524288 2048 | 1

(F4)
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Jocs = ) v jz 4 ) j4 n
150 1S\ E> (452 (1237 315\ E
Wt — )+ [ — -218 — =
() B (5 () )
(1052 | (61sx? 625\ 1155\ 1]
8 128 2 )74 ) )"
15 B, 4045 615
+[(” ~ 3 > (451/+( i
4 s
( 525,3
+ —_

2, (355697 20323
g 128 )"
(35065 61572
g -
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The f-route, local 6PN-accurate periastron advance (along arbitrary eccentric orbits), expressed in terms of £ and j, reads

J

4725\ E?
2048 24 >”+ 16>j4
L [257195z> 293413\ 45045\ E
16 16 >” +< 2048 48 >”+ 16 >j6
31503 (132475 71752\ , (29757357 1736399\ 225225\ 17
+<_ 16 +< 9% 256 >” +< 24576 288 >”+ 64 )F}”
[( 2( 154 158 12030657 310189) 157504 (35055;:2 240585
+ {7 = - =+ =+ +
4 4 2048 12 8
489956522 33023719\ 315315\ E
+< 4096 840 )”

_ 3
256 32 )”
2 )
+<2< 105a8  35d%
I/ f— f—

J
129646657 +549451 2054 (1219752 _271705) |
1 4 8102 3 16 512 2 )Y
| (161733952 30690127\ 765765 o 157 152
_ ) A1
8102 240 16 j8
110722 7113
n (75y4+< "

E4
. 16) 7
s (9689 355697
128 _T>” * <— -
N (yz (_ 31544

2 1582972 12160657 vt 3465 E
6 1024 256 8400 16
3 6321;2 B 15796431x? n 5156991 346504 n 904057° 127995\
16 16 16384 128 128 1024 2 )f
10962637 61358067 2909907\ 1|
+ - v+ ~ol1
1024 640 64 J
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N { ( 305 4 1504 15y3> E° < 22507 N <2737 8617z2> 4 <4623977r2 247189)1/3
- - _ _ y _ :

4 16 ) 2 2 64 8192 96
25148189  47487x%\ , | (1049502597 25669261 3465\ E*
11200 512 1048576 29400 64 ) j*
(- 25q5 25d5 5d5  15¢%; 864812577 58338860
2 2 4 4 2048 480
. 6795375z% 2255935\ 36755 (601625 891757
31508 + 15a% - -~ -~ 4
v ( 4 T4 006 32 8 32 256 )"
39123984017 31287952257  679545z%\ | 525525\ E?
635040 1572864 1048576 ) " 32 ) 8
L[ 735a% 105a5 24545 105d% 10545 176505z* 28607145z% 890209513
+ - - - - - + - +
2 4 2 8 8 16384 1024 960
D 735ag2+70ay2 105a5"  392482055z> 48508187\ 22055 (9492035 108342577\
"\ T4 : 4 49152 144 4 192 1024
36266340619 _ 7490285661957° 5739128857 16081065\ E2
60480 18874368 2097152 64 ) j®
L[ 17325a%  315a5 3465d% 31545 189q%s 1588545z%  446396685z> 12054492193
+ (2 - - - - - - +
16 4 16 16 16 16384 8192 6400
) 4725ag2+1197ag2 31505 1133724972% 7270879\ 31185,5 (10090605 4520257\ ,
y f— f— — f—
16 16 4 1024 16 128 256 512
_ 31568079821 _ 551913398477 34862886457 101846745\ E
19200 6291456 4194304 128 )10
L[ 21021a  693ay  3003d% 231dY 99445 5824665z* 1972903383z> 22684997533
+ (2 - - - - - - - +
32 16 32 32 32 65536 65536 22400
5 3465ag2+69321g2 693a;3+274780275ﬂ2 10758671\  9009.° (4708935 42619577\
1% - - - - 1%
32 32 16 65536 64 256 512 2048
35601138859 _ 2068938339919x° _38506149997* 156165009\ 17 ,
30240 50331648 8388608 256 ) 2|

In the circular case this reduces to Eq. (8.29).

APPENDIX G: COMPLETING THE INFORMATION ON THE H-ROUTE,
NONLOCAL ¢gg EOB POTENTIAL

One of the intermediate steps of our analysis is to transform the h-route (i.e., r%,-scaled) nonlocal Hamiltonian,
HI 5 16PN(1), defined in Eq. (2.9), into its gauge-equivalent EOB potentials, AN (i), Dronloeh (y) and QMo (r, p,).
We have listed the PN-expansion coefficients of these potentials in Table IV of [2] (for the 4 + SPN-level contributions), and
in Table VI of [3] (for the 6PN-level contributions). However, we did not include in Table IV of [2] the values of the
4 + 5PN-level coefficients entering the g3 EOB potential, i.e., the coefficients denoted qg‘l’nloc and qggnloc in the last line of

Eq. (2.22) in [2]. The aim of this appendix is to remedy this gap by giving the 6PN-accurate values of the PN expansion

nonloc,h

coefficients of the O(p?) part of Q4 Tsoepn (7 Priv), namely

(035 5on (. Priv)] s = Plas(usv) = pi(ggy™ ™" (W)u + g™ W) + gig" " (w)ur). (G1)
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As indicated here, the coefficients qg(l’"loc’h (4PN level), qgg“mc’h (5PN level), and qggnlo“h (6PN level) depend only on v, i.e.,
they do not involve any In u contribution. [The logarithmic contributions come from the 2%".7—" Zflllli\;(t, 1) ln(%(t)) term in

Eq. (2.9) and start contributing to gg at the 7PN level.]

Although we have already given gi3"°"(v) in Table VI of [3], let us, for clarity, list here all the PN coefficients of g

21668992 6591861 27734375 35772
nonloc,h
: =(——In(2 1 e -
W) < 45 M@y InG) =g ) = )”
703189497728 869626 332067403089 468490234375 13841287201
nonloc,h o _ — - 2
g (W) = < 3075 MOt 55 3000 ) n36 o) 4320 lnm)”
5788281 161756938881n(2) 393786545409 n(3) + 875090984375 In(5)+ 13841287201 In(7)
2450 1575 156800 169344 17280 g
154862  57604236136064 10467583300341 73366198046875
nonloc,h
: =|- In(2 1 - |
B () < o T ooms M F T30 n0G) 31024 nO)
7709596970957
bty | 3
38880 n(7))”
(- 1746293  177055674739808 n(2) - 43719724468071 n(3) + 366449151015625 In(5)
70 297675 156800 1524096
26506549233199 5
155520 (7))”
709195549+5196312336176 n(2) 17515638027261 3) 63886617280625 In(5)
132300 35721 313600 1016064
29247366220639
- 933120 ln(7))1/. (G2)
For completeness, let us also mention that our self-force computation of the full (local-plus-nonlocal) gg potential has given
the result
q?ggg%nloc = l/(Blu + le/lz + B3M3) + 0(1/2), (G3)
where
27734375 6591861 21668992 35772
=—-—— | ——In(2) - ——
! 126 MO+ a5y @) g ) =T
13841287201 n(7) 393786545409 n(3) 161756938881n(2) n 875090984375 n( )+5790381
2 17280 156800 1575 169344 2450
_29247366220639 n(7) - 63886617280625 n(s) + 5196312336176 In(2)
T 933120 1016064 35721
1751 27261 2843819611
51563802726 8438196 ' (G4)

313600 "3) " 529200

The difference,

__loc+nonloc nonloc,h
Ads <6pPN = dg<opn  — 98,<6PN - (G5)

was one of our sources of information for deriving the local part of the Hamiltonian, and is equal to

6 7447
A (8.2 3 2y
q8,<6PN V<7’4 560 “ > +0(v*) (Go6)
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APPENDIX H: COMPUTING THE DELAUNAY
NEAR-ZONE NONLOCAL HAMILTONIAN
ASSOCIATED WITH THE In(r?,/s) TERM

ALONG ELLIPTICLIKE MOTION

Let us consider the 4 4+ 5+ 6PN nonlocal, h-route
(unflexed) Hamiltonian (2.9). We compute here the
Delaunay-average (along an ellipticlike motion) of the
In(r,/s) contribution to H™"och je

f{l’] nloc,In,h spli 2

(H1)
where
H = Mc*(1 +vEn?) (H2)
and
|
2681 90017

176
5

A4PN ( )

(el = e (el =g (eh) -

i} 1 1/ 7 1 "
EFE=——0u« —— (0] H3
24" 2( 4+4>( e O (H3)
It can be written as

< 4+5+6PN> _
nonloc,In,h

o {A‘“’N( D+ BN ()]

‘s A e + B et
(

o A + B e

Here the nonlogarithmic coefficients, A{f N were obtained

as expansions in powers of e} up to the order O((e!)'?)
included,

18964 2539 55521
5PN h)2 —
AR (ef) = (105 v 35>(61)+(35 g

140341413
- )(41)8 ; (

| (2526889
144 ° 77 8960

9448 907927
Age = (=257 -

2480\, ,
630 “ 5 )(6’) +<

3()26;833 (el — 18;461(1)(3)27 ()10,
524087\, ,., (456341 11468869\  ,
840 >(’) ( 72 Y77 2520 >( )
251185649 1320019027\, , 1
6400 33600 >( /)
44830903 , 3709639 460759) (eh)4
7560 1680 4536

1067440939 , 56364713 1114216909 .
( 30240 2016 68040 >( 2
699238489 , 28209572539 ~ 76207852937\ .
( 5376 161280 725760 )( /)
( 586193581933 , 325106833717 _76717484827) (e, (H5)
1612800 537600 201600

whereas the logarithmic coefficients, BN, are given by the following closed-form expressions:

In >

1 [64 584 74
4PN _ 2, ", ,h\4
B] (el‘) ( —612)7/2|: + 15( ) +15(e ):|
1 11708 112 5308 1378 1857 8941 74 12539
SPN( 7\ _ _ _ h\2 _ ma [T n\6
Bin (e’)_(l—eg)9/2[ 105 5" < 5777 >(e’) +< 5 10 >(e’) +< 3V 40 )(ef)]’
I [32, 179234 1445692 (13547 , 821056 10378222
6PN ( ,h\ __ =2 2 — hy2
B (et)_(l—e?)”/z{Sy 315 2835 ( 15 315 2835 )( /)
20447 , 3723539 1062751\ (9393, 15416687 TT6AST \
14 - 1% e - v e
60 1890 105 ! 1260 840 !

4979519 204661
5040 420

The latter coefficients are related via BIPN(ef!) =
h-route nonlocal Hamiltonian (2.9) [see Eq. (8.11)].

y+74y2> (e§1)8+(—96+1060(eﬁ’)2+1863(6?)44—148(4’)6)(1—%1/)(1 e )1/2} (H6)

—2B"N(el) + O((ef)') to those entering the full Delaunay-averaged
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