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A present challenge in testing general relativity (GR) with binary black hole gravitational wave
detections is the inability to perform model-dependent tests due to the lack of merger waveforms in beyond-
GR theories. In this study, we produce the first numerical relativity binary black hole gravitational
waveform in Einstein-dilaton-Gauss-Bonnet (EDGB) gravity, a higher-curvature theory of gravity with
motivations in string theory. We evolve a binary black hole system in order-reduced EDGB gravity, with
parameters consistent with GW150914. We focus on the merger portion of the waveform, due to the
presence of secular growth in the inspiral phase. We compute mismatches with the corresponding general
relativity merger waveform, finding that from a post-inspiral-only analysis, we can constrain the EDGB
lengthscale to be

ffiffiffiffiffiffiffiffi
αGB

p ≲ 11 km.

DOI: 10.1103/PhysRevD.102.084046

I. INTRODUCTION

Though Einstein’s theory of general relativity (GR) has
passed all precision tests to date, at some lengthscale, it
must break down and be reconciled with quantum mechan-
ics in a beyond-GR theory of gravity. Binary black hole
(BBH) mergers probe the strong-field, nonlinear regime of
gravity, and thus gravitational wave signals from these
systems could contain signatures of a beyond-GR theory.
While LIGO presently performs model-independent and
parametrized tests of general relativity [1,2], one important
additional avenue of looking for deviations from general
relativity is to perform model-dependent tests. Such model-
dependent tests require access to numerical waveforms in
beyond-GR theories of gravity through merger, the lack of
which is currently a severe limitation on constraining
beyond-GR physics [3].
We produce the first numerical relativity gravitational

waveforms in Einstein-dilaton-Gauss-Bonnet (EDGB)
gravity, an effective field theory that modifies the
Einstein-Hilbert action of GR through the inclusion of a
scalar field coupled to terms quadratic in curvature. These
terms are meant to encompass underlying quantum gravity
effects, in particular motivated by string theory [4–7], and
the coupling to the scalar field is governed by an EDGB
lengthscale parameter

ffiffiffiffiffiffiffiffi
αGB

p
. The well-posedness of the

initial value problem in full EDGB gravity is unknown
[8–11]. We thus work in an order-reduction scheme, in
which we perturb the EDGB scalar field and spacetime
metric about a GR background.

Previously, Witek et al. [12] evolved the leading-order
EDGB scalar field on a BBH background, predicting a
bound of

ffiffiffiffiffiffiffiffi
αGB

p ≲ 2.7 km on the EDGB lengthscale, a
constraint seven orders of magnitude tighter than observa-
tional results from solar-system tests. In this study, we
evolve the leading-order EDGB correction to the spacetime
metric on a BBH background, thus obtaining the leading-
order EDGB modification to the merger gravitational
waveform. We compute mismatches between the GR and
EDGB-corrected waveforms, aiming to similarly bound the
EDGB lengthscale.
We focus on an astrophysically relevant BBH system

with spin and mass ratio consistent with GW150914, the
loudest LIGO detection to date [13–15], for which signifi-
cant model-independent and parametrized tests of GR have
been performed [1–3,16,17]. This extends our results in
[18], where we simulated the same system in dynamical
Chern-Simons gravity (dCS), another quadratic beyond-
GR theory with motivations in string theory and loop
quantum gravity [19–22].

II. SETUP

We set G ¼ c ¼ 1 throughout. Quantities are given in
terms of units of M, the sum of the Christodolou masses of
the background black holes at a given reference time [23].
Latin letters in the beginning of the alphabet fa; b; c; d…g
denote 4-dimensional spacetime indices, and gab refers to
the spacetime metric with covariant derivative ∇c.

A. Equations of motion

The overall form of the EDGB action that we will use in
this paper, chosen to be consistent with Witek et al. [12], is*mokounkova@flatironinstitute.org
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ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϑÞ2 þ 2αGBfðϑÞRGB

�
; ð1Þ

where the first term is the Einstein-Hilbert action of GR
(where R is the 4-dimensional Ricci scalar), ϑ is the EDGB
scalar field, and αGB is the EDGB coupling parameter with
dimensions of length squared. We will work with

ffiffiffiffiffiffiffiffi
αGB

p
,

which has dimensions of length, throughout this paper. The
quantity RGB is the EDGB scalar, of the form

RGB ¼ RabcdRabcd − 4RabRab þ R2: ð2Þ

Finally, fðϑÞ is a function of the scalar field, for which the
canonical choice for EdGB is fðϑÞ ¼ 1

8
eϑ (cf. [12]), which

we shall use in this study.
It is unknown whether EDGB has a well-posed initial

value problem [8–11]. However, as we have done in
[18,24–26], we perturb the spacetime metric and EDGB
scalar field about an arbitrary GR background as

gab ¼ gð0Þab þ
X∞
n¼1

εngðnÞab ; ð3Þ

ϑ ¼
X∞
n¼0

εnϑðnÞ; ð4Þ

where ε is an order-counting parameter that counts powers
of αGB, and superscript ð0Þ corresponds to the GR solution,
which we refer to as the background.
At each order, the equations of motion are well-posed.

Moreover, the EDGB coupling parameter αGB scales out at
each order, and thus we only need to perform one BBH
simulation for each set of GR background parameters.
Zeroth order corresponds to pure general relativity. The

equation of motion for the zeroth order scalar field, ϑð0Þ,
corresponds to a scalar field minimally coupled to vacuum
GR, and thus ϑð0Þ should decay to zero in BH spacetimes by
the no-hair theorem.
The leading-order EDGB scalar field appears at first-

order as ϑð1Þ, sourced by the curvature of the GR back-
ground, with equation of motion (cf. [12] for a full
derivation),

□
ð0Þϑð1Þ ¼ −Rð0Þ

GB; ð5Þ

Rð0Þ
GB ≡ Rð0ÞabcdRð0Þ

abcd − 4Rð0ÞabRð0Þ
ab þ Rð0Þ2; ð6Þ

where the superscript ð0Þ refers to quantities computed from
the GR background.
Meanwhile, the leading EDGB deformation to the

spacetime metric comes in at second order, with the
equation of motion (cf. [12]),

Gð0Þ
ab ½gð2Þab � ¼ −8Gð0Þ

ab ½ϑð1Þ� þ Tab½ϑð1Þ�: ð7Þ

In the above equations, Tab½ϑð1Þ� is the standard Klein-
Gordon stress energy tensor associated with ϑð1Þ, of the
form1

Tab½ϑð1Þ� ¼ ∇ð0Þ
a ϑð1Þ∇ð0Þ

b ϑð1Þ −
1

2
gð0Þab∇ð0Þ

c ϑð1Þ∇ð0Þcϑð1Þ; ð8Þ

and

Gð0Þ
ab ½ϑð1Þ� ¼ 2ϵedfggð0Þcðag

ð0Þ
bÞd∇ð0Þ

h

�
1

8
�Rð0Þch

fg∇ð0Þ
e ϑð1Þ

�
; ð9Þ

where �Rab
cd ¼ ϵabefRð0Þ

efcd and ϵabcd is the Levi-Citiva

pseudotensor, with ϵabcd¼−½abcd�=
ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

p
, where ½abcd�

is the alternating symbol.
Note that we work on a vacuum GR background, and

thus terms vanish to give the simplified equations of motion

□
ð0Þϑð1Þ ¼ −M2Rð0ÞabcdRð0Þ

abcd ð10Þ

Gð0Þ
ab ½gð2Þab � ¼ −2M2ϵedfggð0Þcðag

ð0Þ
bÞd

�Rð0Þch
fg∇ð0Þ

h ∇ð0Þ
e ϑð1Þ

þ Tab½ϑð1Þ�: ð11Þ

To summarize: the order-reduction procedure is illus-
trated in Fig. 1 of [18]. We will have a GR binary black hole
background. The curvature of this background will then
source the leading-order EDGB scalar field (Eq. (10). This
leading-order scalar field and the GR background will then
source the leading-order EDGB correction to the spacetime
[Eq. (11)], which in turn will give us the leading-order
EDGB correction to the gravitational waveform.

B. Secular growth during inspiral

As we initially noted in [18], the perturbative order-
reduction scheme outlined in Sec. II A gives rise to secular
growth during the inspiral. In the order-reduction scheme,
the rate of inspiral is governed by the GR background.
However, in the full, nonlinear EDGB theory, we expect the
black holes to have a faster rate of inspiral due to energy
loss to the scalar field [27]. Since we do not backreact on
the GR background in the order-reduction scheme, we do
not capture this correction to the rate of inspiral, and hence
our solution contains secular growth. This is a feature
generically found in perturbative treatments [28], including
in extreme mass-ratio inspirals [29].

1Note that our definition of Tab½ϑð1Þ� in Eq. (8) differs from
Eq. 15 in [12] by a factor of 2, and hence the Tab½ϑð1Þ� term in
Eq. (7) differs by a factor of 2. We have chosen this convention to
be in line with the canonical form of the Klein-Gordon stress-
energy tensor.
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When we simulated an inspiraling binary black hole
system in order-reduced dCS [18], we indeed observed
secular growth during the inspiral. One way to mitigate the
secular growth during the inspiral to focus on the merger is
to ramp on the beyond-GR effects. That is, multiply the
source terms on the right-hand sides of Eqs. (10) and (11)
by a function of time FðtÞ that smoothly ramps from 0 to 1,

and is parametrized by a start time of the ramping from 0
and an interval over which to ramp from 0 to 1.
In [18], we performed a set of simulations where we

ramped on the dCS source terms at various start times
during the inspiral, for the same set of background
parameters. We found secular growth in the amplitude of
the resulting dCS correction to the waveform, with simu-
lations with earlier start times having larger amplitudes.
However, this secular growth was minimal for a start time
before the portion of the inspiral-merger present in the
LIGO band for a GW150914-like system. Thus, we were
able to focus on this portion of the waveform in [18]
without having contamination from secular effects.
In this study, we apply the same procedure, where we

ramp on the EDGB source terms at a variety of start times
for the same (long) GR binary black hole background
simulation. We search for the start time at which the
waveform is no longer contaminated by secular effects,
and present the resulting merger waveform.
The inspiral in EDGB is more strongly modified from

GR, with the modifications to the inspiral occurring at -1
PN order relative to GR due to the presence of dipolar
radiation in the scalar field [27]. This is 3 PN orders higher
than the leading modification in the dCS case, where
dipolar radiation is absent during inspiral. Thus we expect
the minimum of the secular growth to occur later in the
inspiral in EDGB than in dCS for the same physical system.

C. Computational details

Equations (10) and (11) are precisely the equations that
we co-evolve with the GR background. We use the Spectral
Einstein Code [30], which uses pseudospectral methods
and thus guarantees exponential convergence in the fields.
All of the technical details are given in [18,24–26]. The
domain decomposition is precisely that of the analogous
dCS study [18].

III. EDGB MERGER WAVEFORMS

A. Simulation parameters

While there is a distribution of mass and spin parameters
consistent with GW150914 [14,31], we choose to use the
parameters of SXS:BBH:0305, as given in the simulating
extreme spacetimes (SXS) catalog [32]. This simulation
was used in Fig. 1 of the GW150914 detection paper [13],
as well a host of follow-up studies [33–35]. We additionally
used precisely these parameters for our dCS BBH simu-
lation [18]. The configuration has initial dimensionless
spins χA ¼ 0.330ẑ and χB ¼ −0.440ẑ, aligned and anti-
aligned with the orbital angular momentum. The dominant
GR spherical harmonic modes of the gravitational radiation
for this system are ðl; mÞ ¼ ð2;�2Þ. The system has initial
masses of 0.5497M and 0.4502M, leading to a mass ratio of
1.221. The initial eccentricity is ∼8 × 10−4. The remnant
has final Christodolou mass 0.9525M and dimensionless

FIG. 1. Dominant modes of the leading-order EDGB scalar
field ϑð1Þ, decomposed into spherical harmonics ðl; mÞ, as a
function of time relative to the peak time of the GR gravitational
waveform. The top panel corresponds to the dominant (2,2) mode
of the GR gravitational radiation for comparison. The bottom
three panels correspond to the dominant modes of ϑð1Þ, which are
ðl; m ¼ lÞ. We see the presence of l ¼ 1 dipolar radiation during
the inspiral. While the l ¼ 0 monopole is nonradiative during the
inspiral, we see a burst of monopolar radiation at merger.
Compare with Fig. 4 of [12] and the dCS case in Fig. 1 of
[24]. Note that the ϑð1Þ waveforms have the EDGB couplingffiffiffiffiffiffiffiffi
αGB

p
=GM scaled out, and thus an appropriate value (cf. Sec. III

B) of this coupling parameter must be re-introduced for the
results to be physically meaningful.
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spin 0.692 purely in the ẑ direction. The GR background
simulation completes 23 orbits before merger.

B. Regime of validity

The results that we present for the leading-order EDGB
scalar and gravitational waveforms have the EDGB cou-
pling parameter αGB scaled out. For the perturbative order

reduction scheme to be valid, we require that gð2Þab ≲ Cgð0Þab ,
for some constant C < 1. This in turn becomes a constraint
on αGB, of the form (cf. [24] for an analogous derivation)

ffiffiffiffiffiffiffiffi
αGB

p
GM

≲
�
C
kgð0Þab k
kgð2Þab k

�1=4

: ð12Þ

We choose C ¼ 0.1, and evaluate Eq. (12) on each slice of
the numerical relativity simulation. We find the strongest
constraint on the allowed value of

ffiffiffiffiffiffiffiffi
αGB

p
=GM comes at

merger, when the spacetime is most highly perturbed, with
a value of

ffiffiffiffiffiffiffiffi
αGB

p
=GM ∼ 0.17 for the simulation presented

in this paper.

C. EDGB scalar field waveforms

In Fig. 1, we show the results for the leading-order
EDGB scalar field, ϑð1Þ. We decompose the scalar field into
spherical harmonics, and find that the dominant modes are
ðl; m ¼ lÞ, in accordance with [12,27]. We see the presence
of l ¼ 1 dipolar radiation in the field during inspiral, in
accordance with [12,27]. We see that the monopolar l ¼ 0
mode is nonradiative during the inspiral, but that there is a
burst of monopolar radiation at merger. This is in agree-
ment with [12], and moreover is similar to the results in
dCS [24], where we found that the leading nonradiative
mode (the dipole in the dCS case) exhibits a burst of
radiation at merger.

D. EDGB gravitational waveforms

As explained in Sec. II B, because of secular growth
during the inspiral, we focus on simulations with EDGB
effects ramped on close to merger, in order to mitigate the
amount of secular growth from the inspiral (we give more
details in Sec. III E). We thus present these merger wave-
forms in this section.
From the leading-order EDGB metric deformation gð2Þab ,

we can compute Ψð2Þ
4 , the leading-order modification to the

gravitational waveform, given by the Newman-Penrose

scalarΨ4. Note that g
ð2Þ
ab and henceΨð2Þ

4 from the simulation
are independent of the EDGB coupling parameter. In order
to produce a full, second-order-accurate EDGB gravita-

tional waveform, we must add Ψð2Þ
4 to the background GR

waveform Ψð0Þ
4 as

Ψ4 ¼Ψð0Þ
4 þð ffiffiffiffiffiffiffiffi

αGB
p

=GMÞ4Ψð2Þ
4 þOðð ffiffiffiffiffiffiffiffi

αGB
p

=GMÞ6Þ; ð13Þ

for a given choice for the EDGB coupling parameterffiffiffiffiffiffiffiffi
αGB

p
=GM. We require that

ffiffiffiffiffiffiffiffi
αGB

p
=GM lies within the

regime of validity for the perturbative scheme as given in
Sec. III B
In Fig. 2, we show this total waveform for a variety of

values of
ffiffiffiffiffiffiffiffi
αGB

p
=GM. We see that the EDGB-corrected

waveform has an amplitude shift relative to GR, as well as a
phase shift, consistent with the notion that EDGB should
have a faster inspiral due to energy loss to the scalar
field [27].

E. Secular growth

As discussed in Sec. II B, the perturbative scheme leads
to secular growth in the inspiral waveform. In Fig. 3, we
show the leading-order EDGB correction to the gravita-
tional waveform for a variety of simulation lengths (with
the same background GR simulation). We ramp on the
EDGB source terms at different start times in order to
produce different inspiral lengths, as discussed in Sec. II B.
We see that the longest simulations have the largest
amplitude at merger, consistent with secular growth. In
Fig. 4, we take a more quantitative look, plotting the peak
amplitude of the waveform as a function of inspiral length.
In the dCS case (cf. Fig. 7 of [18]), we saw that for the
closest start time to merger, the secular growth attained a
quadratic minimum. In other words, the merger waveform
we presented was not contaminated by secular effects.
In Fig. 4, we see a similar quadratic minimum for the

EDGB correction to the waveform, although this occurs
at a shorter inspiral length (later start time) than in dCS.

FIG. 2. EDGB-corrected merger gravitational waveforms, as
computed from Eq. (13), for a variety of values of the EDGB
coupling parameter

ffiffiffiffiffiffiffiffi
αGB

p
=GM. The dashed black line, withffiffiffiffiffiffiffiffi

αGB
p

=GM ¼ 0, corresponds to the GR waveform. The valueffiffiffiffiffiffiffiffi
αGB

p
=GM ¼ 0.17 corresponds to the maximal allowed value in

order for the perturbative scheme to be valid (cf. Sec. III B). We
see that the EDGB-corrected waveform has both an amplitude
and phase shift relative to GR.
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This higher level of secular growth in EDGB than in dCS is
consistent with the theoretical predictions of Sec. II B, as
the EDGB inspiral is more heavily modified than in dCS
due to the presence of dipolar radiation [27].

IV. CONSTRAINTS ON
ffiffiffiffiffiffiffiffiffi
αGB

p
FROM EDGB

MERGER WAVEFORMS

As shown in Sec. III D, we have access to the leading-
order EDGB merger waveform for a GW150914-like
system. What sort of physical constraints on EDGB can
we extract from the merger phase?

A. Merger mismatches

The first step that we can take is to perform a merger-
only analysis by computing mismatches between the GR
waveform and the EDGB waveform using the formulae
in Sec. A. This involves restricting to a given time (or
frequency) range over which to compute the mismatch.
When performing tests of general relativity, LIGO performs
such merger-only calculations. In [1], the authors per-
formed an inspiral-merger-ringdown consistency test for
GW150914 by inferring final mass and spin parameters
using GR waveforms from the post-inspiral portion of the
waveform only, from the inspiral portion of the waveform
only, and comparing the resulting posterior distribution to
that from the full waveform analysis. For GW150914, the
merger-ringdown region was chosen to be [132, 1024] Hz.
In this region, the signal had a signal to noise ratio (SNR) of
16, which is larger than the full-waveform SNR of the other
nine BBH detections in GWTC-1 [15].
We thus compute mismatches between the GR and

EDGB merger waveforms, shown in Fig. 5. We show
the mismatch (cf. Sec. A) for various values of

ffiffiffiffiffiffiffiffi
αGB

p
=GM

(cf. Fig. 2). In particular, for a 1% mismatch, we find

FIG. 3. Secular growth in leading-order EDGB gravitational
waveforms as function of inspiral length of the waveform. Each
colored curve corresponds to a simulation with a different start
time for the EDGB fields (as discussed in Sec. II B), with the
same GR background simulation for each. We label each curve by
the time difference between the peak of the waveform and the
start time of ramping on the EDGB field (minus the ramp time).
We see that simulations with earlier EDGB start times have
higher amplitudes at merger, having had more time to accumulate
secular growth.

FIG. 4. Peak amplitude of the EDGB correction to the gravi-
tational waveform as a function of inspiral length. We show the
length relative to the peak of the waveform (as in Fig. 3). The
dashed black vertical line corresponds to the length of the EDGB
merger simulation we present in this paper. The peak amplitude
serves as a measure of the amount of secular growth in the
waveform (cf. Fig. 3). We see that the secular growth attains a
quadratic minimum, and thus for a short enough inspiral length,
we can obtain an EDGB gravitational waveform with minimal
secular contamination.

FIG. 5. Mismatch between general relativity GW150914 wave-
form (cf. Sec. III A) and the corresponding EDGB-corrected
gravitational waveform, as defined in Eq. (A1). We show the
mismatch for our merger waveform as a function of the EDGB
coupling parameter,

ffiffiffiffiffiffiffiffi
αGB

p
=GM. We show the maximum allowed

value of
ffiffiffiffiffiffiffiffi
αGB

p
=GM from the regime of validity (cf. Sec. III B) in

dot-dashed gray. The dashed horizontal line corresponds to the
LIGO mismatch of 4% from testing GR with GW150914 [1]. The
top vertical axis corresponds to

ffiffiffiffiffiffiffiffi
αGB

p
computed from

ffiffiffiffiffiffiffiffi
αGB

p
=GM

on the bottom axis assuming that M ¼ 68 M⊙ for GW150914.
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ffiffiffiffiffiffiffiffi
αGB

p
=GM ≲ 0.11. For GW150914, we choose M ∼

68 M⊙ [14], and thus compute
ffiffiffiffiffiffiffiffi
αGB

p ≲ 11 km. Note that
though we shift the waveforms in time and phase to
compute a minimum mismatch, we do not vary the GR
waveform parameters (mass and spin). Thus our mismatch
estimate is optimistic, and performing a full parameter-
estimation analysis on our EDGB waveform is the subject
of future research.
For heavier BBH systems, such as GW170729 with

M ¼ 84 M⊙, which had 3 cycles in the LIGO band [15],
we can in theory use only the merger-ringdown EDGB
waveforms from numerical relativity simulations for data
analysis, without requiring EDGB inspiral waveforms.
Note, however, that with all other parameters held equal,
this lead to a weaker constraint on

ffiffiffiffiffiffiffiffi
αGB

p
from the larger

total mass. Moreover, GW170729 has an SNR of ∼10,
which is less than the merger SNR of 16 for GW150914.
Note that the LIGO intermediate mass black hole search
[36] which looked for BBHs with M ∈ ½120; 800� M⊙ did
not detect any signals.

B. Including inspiral

Howmuchmore couldwegain ifwe additionally included
the inspiral phase? Gaining access to the inspiral phase for
EDGB waveforms is ongoing work, through either imple-
menting a renormalization scheme to remove secular effects
as outlined in [18], or by stitching on post-Newtonian or
parametrized post-Einstenian (ppE) EDGB waveforms for
the inspiral [27,37], to obtain a full waveform.
In [3], the authors use the ppE formalism to bound

ffiffiffiffiffiffiffiffi
αGB

p
with GW150914. Figure 15 of [3] shows the upper bounds
on

ffiffiffiffiffiffiffiffi
αGB

p
, including values of Oð20; 40Þ km, but this is

very sensitive to the dimensionless spins of the black holes,
which are poorly constrained (cf. [14,15]). Thus, the
authors do not place an upper bound on

ffiffiffiffiffiffiffiffi
αGB

p
. In [38],

the authors place an upper bound of
ffiffiffiffiffiffiffiffi
αGB

p ≲ 51.5 km for
GW150914 using a ppE analysis, which is higher than our
merger-only analysis bound. Including a merger phase to
these inspiral-only analyses can thus improve their bounds
on

ffiffiffiffiffiffiffiffi
αGB

p
.

C. Comparison to observational
and projected constraints

Let us now compare the merger-analysis result offfiffiffiffiffiffiffiffi
αGB

p ≲ 11 km with observational and predicted observa-
tional constraints in the literature. We summarize these
present constraints in Table I. Most notably, Witek et al.
[12] estimate from their scalar field calculations that for a
GW151226-like system [39], the constraint would beffiffiffiffiffiffiffiffi
αGB

p ≲ 2.7 km. Note that this signal has ∼15 cycles in
the LIGO band (compared to ∼5 in the LIGO band for
GW150914) [15], and thus the inspiral phase, which is not
included in our estimate, plays a greater role for this
system. Moreover, this estimate was performed with a

mass ratio of q ∼ 2 and total mass ∼20 M⊙, which leads to
stronger beyond-GR effects due to the higher curvature of
the smaller object.

V. CONCLUSION

We have produced the first astrophysically-relevant
numerical relativity binary black hole gravitational wave-
form in Einstein-dilaton-Gauss-Bonnet gravity, a beyond-
GR theory of gravity. We have focused on a system with
parameters consistent with GW150914, the loudest LIGO
detection thus far. This extends our previous work for
producing such a waveform for GW150914 in dynamical
Chern-Simons gravity [18].
In Sec. II, we laid out our order-reduction scheme, which

we use to obtain a well-posed initial value formulation and
produce the leading-order EDGB correction to the gravi-
tational waveform. In Sec. III D, we showed the EDGB-
corrected waveforms for a system consistent with
GW150914 (cf. Sec. III A). We find that there is secular
growth in the inspiral phase (Sec. III E), and thus present a
merger-ringdown waveform that is free of secular growth.
We thus focus on a post-inspiral-only analysis, and

compute the mismatch between the (background) GRwave-
form and the EDGB-corrected waveforms, finding a bound
on the EDGB coupling parameter of

ffiffiffiffiffiffiffiffi
αGB

p
=GM ≲ 11 km.

This is a stronger result than inspiral-only analyses for
GW150914, which bound

ffiffiffiffiffiffiffiffi
αGB

p ≲ 51.5 km. Note that
GW150914 has an SNR of 16 in the post-inspiral phase
(cf. [1]), which is larger than the total SNR of each other
event in GWTC-1 [15]. Stitching on a parametrized post-
Einstenian EDGB inspiral or removing the inspiral secular
growth from our simulations (cf. [18]) to take full advantage
of an inspiral-merger-ringdown analysis is the subject of
future work.
Our ultimate goal is to make these beyond-GR wave-

forms useful for LIGO and Virgo tests of general relativity
[1,2]. We can improve the mismatch analysis by allowing
the GR waveform parameters to vary, thus checking
for degeneracies in the GR-EDGB parameter space.

TABLE I. Observed and projected bounds on the EDGB
lengthscale from various studies. The first two rows (in bold),
correspond to observed bounds, from the Cassini probe con-
straints on Shapiro time delay and observations of x-ray binaries.
Note that all bounds are given in terms of the conventions in our
action [cf. Eq. (1)], chosen to be consistent with [12].

Reference
ffiffiffiffiffiffiffiffi
αGB

p
bound

Cassini Shapiro time delay [40] ≲Oð107Þ km
X-ray binary orbital decay [41] ≲10 km
Compact star stability [42] ≲5.4 km
LIGO SNR 30 detections [43] ≲Oð1–10Þ km
EDGB scalar simulations for GW151226 [12] ≲2.7 km
GW150914 ppE [38] ≲51.5 km
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Moreover, we can perform a more quantitative analysis
by injecting our beyond-GR waveforms into LIGO noise
and computing posteriors recovered using present LIGO
parameter estimation and testing-GR methods [2,14,44,45].
Ultimately, we would like to generate enough beyond-GR
EDGB waveforms to fill the BBH parameter space. We can
then produce a beyond-GR surrogate model [46] and
perform model-dependent tests of GR.
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APPENDIX: MISMATCHES

Given the GR and EDGB-corrected waveforms (as
shown in Fig. 2), let us consider the mismatch between
these waveforms. A more involved calculation would
involve computing a mismatch in the presence of gravita-
tional wave detector noise and considering a range of
parameters for the GR waveform to test for degeneracies
[47]. Here, we perform a simpler mismatch calculation
between the background GR waveform Ψð0Þ

4 and the
corresponding EDGB-modified waveform considered in

this study (cf. Sec. III A). Once we have the EDGB

correction Ψð2Þ
4 from the numerical relativity simulation,

we introduce a coupling parameter
ffiffiffiffiffiffiffiffi
αGB

p
=GM before

adding it to the GR waveform using Eq. (13) to
obtain Ψ4ð ffiffiffiffiffiffiffiffi

αGB
p Þ.

We then compute the mismatch as (cf. [48])

Mismatchð ffiffiffiffiffiffiffiffi
αGB

p Þ

≡ 1 − Re

 
hΨð0Þ

4 ;Ψ4ð ffiffiffiffiffiffiffiffi
αGB

p Þiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΨð0Þ

4 ;Ψð0Þ
4 i × hΨ4ð ffiffiffiffiffiffiffiffi

αGB
p Þ;Ψ4ð ffiffiffiffiffiffiffiffi

αGB
p Þi

q
!
;

ðA1Þ

where we have explicitly shown the dependence on
ffiffiffiffiffiffiffiffi
αGB

p
.

We define the inner product h; i between two waveforms as

hΨ4
½1�;Ψ4

½2�i≡
Z

tend

tstart

Ψ4ðtÞ½2�Ψ̃�
4ðtÞ½1�dt; ðA2Þ

where � denotes complex conjugation. This is precisely the
inner product used in [48]. We choose tstart to be the section
of the waveform where EDGB effects are fully ramped-on,
and choose tend to be the end of the numerical waveform.
This is equivalent, by Parseval’s theorem, to a noise-
weighted inner product in the frequency domain with noise
power spectral density SnðjfjÞ ¼ 1. We shift the waveforms
in time and phase when computing this overlap.
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