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We address the problem of deriving the post-Minkowskian approximation, widely used in current
gravitational wave literature by investigating a possible deduction out of the recursive Nöther coupling
approach, from the Pauli-Fierz spin-2 theory in flat spacetime. We find that this approach yields the
post-Minkowskian approximation correctly to the first three orders, without invoking any weak-field limit
of general relativity. This connection thus establishes that the post-Minkowskian approximation has a
connotation independent of a weak-field expansion of general relativity, which is the manner usually
presented in the literature. As a consequence, a link manifests between the recursive Nöther coupling
approach to deriving general relativity from a linear spin-2 theory in flat spacetime and theoretical analyses
of recent detection of gravitational wave events.
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I. INTRODUCTION

For the computation of asymptotic waveforms for specific
types of gravitating sources, various approximation methods
are employed for the solution of Einstein’s equation. The
post-Minkowskian approximation combined with the post-
Newtonian approximation is such a method applicable where
the gravitational field can be assumed to be weak. The post-
Minkowskian approximation is generally used for asymp-
totically flat spacetimes, far from the gravitating source. The
Einstein-Hilbert action is approximated in terms of the
perturbation series around the flat Minkowski metric by
taking the contravariant metric density and expanding the
Einstein-Hilbert action (or, equivalently, the Einstein equa-
tion) in powers of its departure from the Minkowski metric
(in powers of the gravitational constantG). Each order of the
perturbation of the post-Minkowskian series satisfies the
inhomogeneous wave equation whose solution is given by
some sort of multipole expansion, if the source is slowly
moving. To ascertain the form of the gravitational field
distribution in spacetime for a specific kind of source,
the post-Minkowskian approximation is combined with
the post-Newtonian approximation, in a common zone
where both approximations are valid [1–3]. The post-
Minkowskian approximation is valid for all velocities under

the weak-field approximation of general relativity. However,
post-Newtonian series takes gravity to be Newtonian in the
zeroth order of the series, and it is essentially a v=c
expansion for every power of G. Because of its nonrelativ-
istic structure, such an approximation scheme works fine
until the velocity of source becomes comparable to light [1].
This methodology has evolved tremendously since the early
days [4] and recently has been shown to be very useful by
yielding many observational results [5–13].
Despite the proximity of the post-Minkowskian approxi-

mation to the weak-field expansion of general relativity,
there is as of now no systematic “bottoms-up” approach of
deriving the leading nonlinear interactions, starting from
only a special relativistic theory, albeit a free field theory.
The fate of the foundational local invariance principles of
general relativity, namely, general coordinate invariance
and local Lorentz invariance, is somewhat uncertain in the
post-Minkowskian expansion; neither invariance principle
is rigidly retained or crucially used in that expansion. In this
sense, the post-Minkowskian expansion is somewhat ad hoc
foundationally, notwithstanding its methodological utility
in gravitational wave signal processing and source model-
ing. The issue we address in this paper is the following: can
we formulate the post-Minkowskian approximation, start-
ing not with the full nonlinear general relativity theory, but
with a special relativistic theory, and systematically deriv-
ing nonlinear interactions which agree, order by order, with
the post-Minkowskian approximation expansion of general
relativity, without having to invoke any physical restriction
to weak fields?
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There is an additional physical motivation behind this
work: there is a large body of work on perturbative graviton
scattering where it been shown [14–21] how the classical
limit of the graviton scattering amplitude reduces to the
post-Minkowskian result. The question is the following: is
(perturbative) quantization of linearized gravity germane to
this derivation, or is there a purely classical approach which
yields the same results?
The derivation of full nonlinear general relativity theory,

starting from a special relativistic field theory, is a century-
old question in the field of theoretical physics. Einstein’s
own construction of general relativity is based on the
minimal coupling prescription coming from the equiva-
lence principle, where a partial coordinate derivative is
supplanted by a new derivative covariant under general
coordinate transformations. This inspired Yang andMills to
formulate a locally gauge-invariant field theory under a
non-Abelian group, from the action with global gauge
invariance [22] under the same group. The formal deriva-
tion of the principle of gauge or general covariance from
the Lorentz-invariant Fierz-Pauli action [23] has been
attempted by several authors [24–26], but with varying
degrees of success. One of the more successful derivations
of the minimal coupling prescription, both in the case of
Yang-Mills theory and, to some extent, for general rela-
tivity, has been done by Deser [27]. The approach consists
in identifying the interaction between the field and the
Nöther current (as a result of global translational symmetry
in deriving general relativity and global non-Abelian
symmetry for Yang-Mills theory) as the source of the
next-order field equation.
The recursive Nöther coupling as the source term in the

free field action successfully generates the Yang-Mills
theory (both with and without matter) in finite steps
[28–32]. This essentially implies that non-Abelian local
gauge invariance is basically a derived concept, and all
field interactions of the standard strong-electroweak theory
can be derived from an Abelian gauge theory with a global
non-Abelian invariance, by recursive Nöther coupling [33].
However, general relativity needs an infinite number of
such nonlinear interactions (in terms of the field variable) to
give the full generally covariant theory. It has been argued
[34] there is an issue of convergence: does the infinite series
converge to general relativity? It has been shown [27] that a
first-order formulation partially mitigates the situation,
while performing the recursion. This can generate the bulk
Einstein-Hilbert term [34] in the action, modulo spacetime
derivatives which contribute at the boundary; however, for
the Einstein equation, this is deemed sufficient [35].
In this paper, we establish the connection between

the recursive Nöther coupling and the post-Minkowskian
expansion up to the third-order perturbation. We explicitly
show how consistency of the recursive Nöther coupling
demands the nonlinear interaction terms to generate order-
by-order post-Minkowskian results up to a specific order,

starting from the Fierz-Pauli action. Our paper makes this
connection without having to resort to quantizing the
theory, contrary to Refs. [14–21]. To reiterate, our approach
does not rely on the strong field aspects of general
relativity. This is novel because it generates the far-field
expansion of the Einstein field equation starting from the
action of the gravitational wave which is globally Poincaré
invariant instead of having general coordinate invariance.
This correspondence also enables us to indirectly establish
the practical utility of the recursive Nöther coupling in
analyses of binary merger events leading to observable
gravitational wave signals. However, we hasten to add that
our approach does not depend on any fewer fundamental
assumptions than either the standard post-Minkowskian
paradigm or any possible derivation from eikonal graviton
scattering in the appropriate limit. Our work is therefore an
alternative, but equivalent approach to those assays.
Section II briefly discusses the conventional way of

doing post-Minkowskian approximation from general rel-
ativity. In Sec. III, we extract the physical part of the field
variable in the Fierz-Pauli action with the help of a
projection operator, derived in Ref. [36]. This is an
alternative to the conventional approach of gauge-
fixing and has been shown to be useful in classical
electrodynamics [37,38]. In Sec. IV, we derive the post-
Minkowskian series of general relativity (GR) by recur-
sively adding the self-interaction term (function of the
physical part of the field) from the linearized theory of
gravity based on a purely classical viewpoint. In Sec. V, we
conclude by discussing this correspondence in modified
gravity theories and the future prospect of this work in
numerical relativity.

II. REVIEW OF POST-MINKOWSKIAN
APPROXIMATION

Einstein’s equation for a spacetime with energy-
momentum tensor Tab and metric gab is given by

Gab ¼ 8πGTab: ð1Þ

Here, velocity of light c ¼ 1. Gab ¼ Rab − 1
2
gabR is the

Einstein tensor which is function of metric gab and its first
and second derivative. Now, let us define a new field
variable hab as

hab ¼ ffiffiffiffiffiffi
−g

p
gab − ηab;

where g ¼ detðgabÞ and ηab is the Minkowskian metric.
The definition of hab is not contrary to general relativity
as we have not put any constraint on hab. The field hab is
solely defined by the geometry itself [3]. The general
coordinate invariance of the spacetime allows us to choose
a coordinate system. Here, the de Donder frame defined by
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∂ahab ¼ 0 ð2Þ

is chosen. The advantage of this coordinate system lies in
the match with transverse gauge condition of the linear field
in flat spacetime. In this gauge, Einstein equation (1) for
hab becomes

□hab ¼ τabðTab; hab; ∂chab; ∂c∂dhabÞ; ð3Þ

where □ ¼ ∂a∂a defined on the Minkowskian metric ηab

and τabðTab; hab; ∂chab; ∂c∂dhabÞ is given by

τabðTab; hab; ∂chab; ∂c∂dhabÞ

¼ jgjTab þ 1

16πG
Λabðhab; ∂chab; ∂c∂dhabÞ: ð4Þ

The form of pseudotensor Λabðhab; ∂chab; ∂c∂dhabÞ is as
follows:

Λabðhab; ∂chab; ∂c∂dhabÞ

¼ −hcd∂c∂dhab þ ∂chad∂dhbc þ
1

2
gabgcd∂ehcf∂fhde

− gacgde∂fhbe∂chdf − gbcgde∂fhae∂chdf

þ gcdgef∂ehac∂fhbd þ
1

8
ð2gacgbd − gabgcdÞ

× ð2gefgpq − gepgfqÞ∂cheq∂dhfp: ð5Þ

Note that Λab is not only the function of hab and its
derivatives but also a function of the metric. According to
the definition of hab, Λab contains all powers of hab,
starting with bilinear terms. Hence, in the weak-field limit,
the expression of Λab is written as

Λab ¼ Nabðh; hÞ þMabðh; h; hÞ þOðh4Þ:

The expressions of Nabðh; hÞ and Mabðh; h; hÞ can be
found in Refs. [1,3]. In this paper, we will later derive their
expressions from the recursive Nöther current. Now, in a
more formal language, the field variable hab is a series sum
of perturbations in the weak-field limit,

hab ¼ Ghabð1Þ þ G2habð2Þ þ G3habð3Þ þOðh4Þ;

where habðnÞ is found by recursively solving the field

equations,

□habð1Þ ¼ 0 ð6Þ

□habð2Þ ¼ Nabðhð1Þ; hð1ÞÞ ð7Þ

□habð3Þ ¼ Nabðhð2Þ; hð1ÞÞ þ Nabðhð1Þ; hð2ÞÞ
þMabðhð1Þ; hð1Þ; hð1ÞÞ: ð8Þ

The above field equations of habðnÞ are known as the post-

Minkowskian field equations, and the series of hab in terms
of habðnÞ is the post-Minkowskian series. Physically, habðnÞ is
the nth-order perturbation propagating through the flat
spacetime. The derivation presented here comes from
approximating general relativity in the weak-field limit,
and hence it relies on the general coordinate invariance.
However, in the view of flat spacetime Pauli-Fierz spin-2
theory, post-Minkowskian perturbations should be under-
stood in terms of Lorentz invariance without invoking
general coordinate invariance. This is the main goal of the
next two sections.

III. PHYSICAL PART OF THE FIELD IN THE
FIERZ-PAULI ACTION

The Fierz-Pauli action for the field variable habðxÞ,
characterizing a massless, spin-2 field, is given in the
coordinates x (boldface letter denotes the 4-vector in the
compact form, and the letter with latin indices denotes
the components),

S ¼ 1

64πG

Z
υ
d4xð−∂ahbc∂ahbc þ ∂ahbb∂ahcc

− 2∂ahac∂chbb þ 2∂ahac∂bhbcÞ; ð9Þ

where υ is the 4-volume under consideration,G is Newton’s
gravitational constant and the velocity of light is taken to be
1. S uniquely describes the action of a symmetric second-
rank tensor field within the domain of Lorentz invariance,
and the action can be constructed without any prior
knowledge of the principle of general covariance [23].
The corresponding equation of motion of habðxÞ in the
presence of the self-interacting source Tabðhpq; ∂rhpqÞ is

□hab − ηab□hþ ∂a∂bhþ ηab∂c∂dhcd − 2∂ða∂chbÞc

¼ Tabðhpq; ∂rhpqÞ; ð10Þ

where h ¼ ηabhab and the symmetric part of second-rank
Lorentz tensor is given by AðabÞ ¼ 1

2
ðAab þ AbaÞ.

The transformation h̄ab ¼ hab − 1
2
ηabh changes

Eq. (10) to

□h̄ab − ∂a∂ch̄bc − ∂b∂ch̄ac þ ηab∂c∂dh̄cd

¼ T̄abðh̄pq; ∂rh̄pqÞ: ð11Þ

A Fourier transform of Eq. (11) gives

k2h
≃ab

− kakch
≃bc

− kbkch
≃ca þ ηabkckdh

≃cd ¼ T
≃ab

;
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where h
≃ab

and T
≃ab

are the four-Fourier transform of h̄ab and

T̄ab. In the presence of matter (T
≃ab

≠ 0), k2 is not 0, and
this simplifies the equation of motion to

k2Pab
cdh

≃cd ¼ T
≃cd ð12Þ

with

Pab
cd ¼ δaðcδ

b
dÞ −

kakðd
k2

δbcÞ −
kbkðc
k2

δadÞ þ ηab
kckd
k2

: ð13Þ

Now, Pab
cd satisfies the property of the projection operator,

Pab
cdP

cd
ef ¼ Pab

ef ;

which shows one of the eigenvalues of Pab
cd is zero and

henceforth the projection operator is noninvertible. Here,
the conventional approach is choosing a gauge and solving
for the field h̄cd. This imposes a choice on h̄cd, and the
solution completely depends on that choice. In this paper,
we take rather an unconventional way of dealing this
noninvertibility: we identify Pab

cdh̄
cd as the physical part

of h̄cd, which governs the equation of motion (12). The rest
of h̄cd is redundant for the dynamics. This method is
described in detail in Ref. [36]. Note that, in case of
electrodynamics, the problem is similar, and the same
technique is also applicable there [37,38]. Hence, the
physical degrees of freedom of the field h̄cd are obtained
by the projected field,

h̄abðPÞ ¼ Pab
cdh̄

cd: ð14Þ

The gauge invariance of h̄cdðPÞ is automatically guaranteed

w.r.t. a new gauge variable. The transversality of the
projected field h̄cdðPÞ is also satisfied,

kbh
≃ab
ðPÞ ¼ kbPab

cdh
≃cd ¼ 0 as kbPab

cd ¼ 0;

i.e.,

∂bh̄abðPÞ ¼ 0: ð15Þ

The Fierz-Pauli action is written in terms of the projected
field habðPÞ as

S ¼ 1

64πG

Z
υ
d4x

�
−∂ah̄bcðPÞ∂ahbcðPÞ þ

1

2
∂ch̄ðPÞ∂ch̄ðPÞ

�
:

ð16Þ

In the context of the gravitational wave [which is the
physical interpretation of habðxÞ], the transverse-traceless

projection is frequently used [3,39]. But the purpose of
using the projection operator in that literature is just the
mathematical convenience; the physicality of the projected
field is not given any stress. The novelty of our approach is
that we generate the entire post-Minkowskian series only
from the projected field and hence there is no question of
the gauge ambiguity in our formalism.

IV. POST-MINKOWSKIAN EXPANSION IN TERMS
OF THE RECURSIVE NÖTHER COUPLING

The Fierz-Pauli action (16) is equivalent to a new action
S0 on addition of a boundary term S0, where S0 and S0 are
given by

S0 ¼ 1

32πG

Z
υ
d4x½∂að∂eh̄abðPÞh̄

e
bðPÞÞ − ∂eð∂ah̄abðPÞh̄

e
bðPÞÞ�

ð17Þ

and

S0 ¼
1

32πG

Z
υ
d4xMef

abcdðηmnÞ∂eh̄abðPÞ∂fh̄cdðPÞ; ð18Þ

where

Mef
abcdðηmnÞ ¼ −

1

2

�
ηacηbd −

1

2
ηabηcd

�
ηef þ ηbcδ

e
dδ

f
a:

ð19Þ

The boundary action (17) has zero contribution under the
no field exchange condition at the boundary of υ. Now,
let us find the Belinfante energy-momentum tensor of the

action S0. The energy-momentum tensor Bð1Þ
pq of the

action (16) is obtained by writing it in a spacetime with
auxiliary metric γab and then taking the γab → ηab limit,

Bð1Þ
pq ¼ 2ffiffiffiffiffiffi−γp δS0½γab; ∂cγab�

δγpq

����
γpq¼ηpq

Bð1Þ
pq ¼ 2ffiffiffiffiffiffi−γp

� ∂L
∂γpq − ∂r

� ∂L
∂ð∂rγ

pqÞ
������

ðγpq¼ηpqÞ
:

The determinant of the covariant form of the metric is
denoted by γ, and L is the Lagrangian density of S0. The

second part of Bð1Þ
pq can be dropped by the ambiguity of the

energy-momentum tensor on the addition of a first-order
derivative of a third rank tensor which is antisymmetric in

two indices. For the given action, Bð1Þ
pq is explicitly

computed as
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Bð1Þ
pq ¼ 1

32πG

�
−
1

2

�
ηpðcηqaÞηbd −

1

2
ηpðcηqdÞηab

�
ηef −

1

2

�
ηcaηbd −

1

2
ηabηcd

�
δðep δ

fÞ
q þ ηpðbηqcÞδedδ

f
a − ηpðcηqaÞδebδ

f
d

�

× ∂eh̄abðPÞ∂fh̄cdðPÞ:

The self-interaction requires Bð1Þ
pq to be the source term in the next-order field equation. Correspondingly, the action S0

gets modified to S1;tot by the coupling of Bð1Þ
pq with h̄pqðPÞ,

S1;tot ¼ S0 þ S1; ð20Þ

where

S1 ¼
Z
υ
d4xBð1Þ

pq h̄
pq
ðPÞ;

i.e.,

S1 ¼
1

32πG

Z
υ
d4x

�
−
1

2

�
h̄caðPÞηbd −

1

2
h̄cdðPÞηab

�
ηef −

1

2

�
ηcaηbd −

1

2
ηabηcd

�
h̄efðPÞ þ h̄bcðPÞδedδ

f
a − h̄caðPÞδebδ

f
d

�
∂eh̄abðPÞ∂fh̄cdðPÞ:

ð21Þ

On extremization, S1;tot gives the field equation with quadratic self-interaction,

□hab ¼ Nabðh̄pqðPÞ; h̄rsðPÞÞ; ð22Þ

where the self-interaction is as follows:

Nabðh̄pqðPÞ; h̄rsðPÞÞ ¼ −h̄cdðPÞ∂c∂dh̄abðPÞ þ
1

2
∂ah̄cdðPÞ∂bh̄cdðPÞ −

1

4
∂ah̄ðPÞ∂bh̄ðPÞ − 2∂ðah̄cdðPÞ∂ch̄bdÞðPÞ þ ∂dh̄caðPÞð∂dh̄bcðPÞ þ ∂ch̄bdðPÞÞ

þ ηab
�
1

4
∂ch̄deðPÞ∂ch̄deðPÞ þ

1

8
∂ch̄ðPÞ∂ch̄ðPÞ þ

1

2
∂ch̄deðPÞ∂dh̄ceðPÞ

�
: ð23Þ

Next-order field equation contains the cubic self-interaction term. The energy-momentum tensor of S1 couples with the field
variable h̄abðPÞ. The corresponding total action S2;tot is given in terms of the correction of S1;tot by the action S2, where S2 is

given as follows:

S2 ¼
1

32πG

Z
υ
d4x

�
−
�
h̄arðPÞh̄rcðPÞηbd þ h̄drðPÞh̄rbðPÞηca þ h̄caðPÞh̄bdðPÞ −

1

2
ðh̄brðPÞh̄raðPÞηcd þ h̄drðPÞh̄rcðPÞηab

þ h̄abðPÞh̄cdðPÞÞ
�
∂eh̄abðPÞ∂fh̄cdðPÞη

ef −
�
h̄caðPÞηbd þ ηcah̄bdðPÞ −

1

2
ðh̄abðPÞηcd þ ηabh̄cdðPÞÞ

�
∂eh̄abðPÞ∂fh̄cdðPÞh̄

ef
ðPÞ

þ 2h̄rcðPÞh̄pbðPÞ∂dh̄abðPÞ∂ah̄cdðPÞ − 2h̄paðPÞh̄pcðPÞ∂bh̄abðPÞ∂dh̄cdðPÞ

�
: ð24Þ

Now, the total action

S2;tot ¼ S0 þ S1 þ S2 ð25Þ

on extremization gives the field equation with the quadratic and cubic self-interactions as the source terms,

□h̄abðPÞ ¼ Nabðh̄pqðPÞ; h̄rsðPÞÞ þMabðh̄pqðPÞ; h̄rsðPÞ; h̄uvðPÞÞ: ð26Þ

We found Nabðh̄pqðPÞ; h̄rsðPÞÞ in (23), and Mab is given by
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Mabðh̄pqðPÞ; h̄rsðPÞ; h̄uvðPÞÞ ¼ −h̄cdðPÞð∂ah̄ceðPÞ∂bh̄edðPÞ þ ∂eh̄acðPÞ∂eh̄bdðPÞ − ∂ch̄aeðPÞ∂dh̄beðPÞÞ

þ h̄abðPÞ

�
−
1

4
∂ch̄deðPÞ∂ch̄deðPÞ þ

1

8
∂ch̄ðPÞ∂ch̄ðPÞ þ

1

2
∂ch̄deðPÞ∂dh̄ceðPÞ

�
þ 1

2
h̄cdðPÞ∂ðah̄cdðPÞ∂bÞh̄ðPÞ

þ 2h̄cdðPÞ∂eh̄
ða
cðPÞ∂bÞh̄edðPÞ þ h̄cðaðPÞð∂bÞh̄deðPÞ∂ch̄deðPÞ − 2∂dh̄

bÞ
eðPÞ∂ch̄deðPÞ −

1

2
∂bÞh̄ðPÞ∂ch̄ðPÞÞ

þ ηab
�
1

8
h̄cdðPÞ∂ch̄ðPÞ∂dh̄ðPÞ −

1

4
h̄cdðPÞ∂eh̄cdðPÞ∂eh̄ðPÞ −

1

2
h̄cdðPÞ∂eh̄cfðPÞ∂fh̄edðPÞ þ

1

2
h̄cdðPÞ∂eh̄

f
cðPÞ∂eh̄dfðPÞ

�
:

ð27Þ

Both Nab and Mab satisfy the transversality condition by
the equations of motions (22) and (26),

∂aNab ¼ 0∂aMab ¼ 0:

The same process continues to include any order self-
interaction in the field equation. To maintain a specific
order, the field variable h̄abðPÞ is written in terms of the sums
of the powers of Newton’s gravitational constant G,

h̄abðPÞ ¼ Σ∞
n¼1G

nh̄abðPÞðnÞ; ð28Þ

where h̄abðPÞðnÞ is the solution of a particular order self-

interaction field equation. The equations of h̄abðPÞðnÞ for

n ¼ 1, 2, 3 are given up to the cubic interaction as the
source as, respectively,

□h̄abðPÞð1Þ ¼ 0; ð29Þ

□h̄abðPÞð2Þ ¼ Nabðh̄pqðPÞð1Þ; h̄rsðPÞð1ÞÞ; ð30Þ

and,

□h̄abðPÞð3Þ ¼ Nabðh̄pqðPÞð2Þ; h̄rsðPÞð1ÞÞ þ Nabðh̄pqðPÞð1Þ; h̄rsðPÞð2ÞÞ
þMabðh̄pqðPÞð1Þ; h̄rsðPÞð1Þ; h̄uvðPÞð1ÞÞ: ð31Þ

The interaction terms Nabðh̄pqðPÞ; h̄rsðPÞÞ, and Mabðh̄pqðPÞ; h̄rsðPÞ;
h̄uvðPÞÞ are given in Eqs. (23) and (27).
The de Donder gauge has been chosen in deriving the

post-Minkowskian approximation in Refs. [1–3]. But the
definition of the gauge fixed field in that literature matches
with our definition of the projected field due to its trans-
verse nature. Now, Eqs. (29)–(31) are derived from the
action of linearized gravity by recursively adding the self-
interactions. These equations (29)–(31) are exactly same as
found in the post-Minkowskian technique, which is the
approximation of the Einstein-Hilbert action in the first and
second post-Minkowskian order of h̄abðPÞ [1–3]. The same

job is done in Ref. [40] by adding self-interacting gravitons
in corresponding Feynman diagrams, and the classical
limit of the eikonal amplitude gives the required post-
Minkowskian equation. The novelty of the recursive Nöther

coupling is that we do not require assuming any quantum
theory and quantum amplitude which does not have any
closed form except in the eikonal limit. The post-
Minkowskian field equations come just from identifying
the self-interaction (self-interaction only means the cou-
pling of the Nöther current with the field variable for a
specific classical Lagrangian) as a source of next-order
field equation at the classical level.

V. CONCLUSION

We have derived the post-Minkowskian series of GR up
to the third-order term by recursively adding the self-
interactions starting from the projected action of linearized
gravity. The whole thing is done without any reference to
the quantum theory, which needs eikonal approximation to
derive the post-Minkowskian series.
The recursive Nöther coupling for the Pauli-Fierz action

of spin-2 field in flat spacetime does not stop after any finite
terms. The end result is an infinite series which gives GR
with some limitations. The diffeomorphism invariance of
GR (in other words, gauge invariance of GR) makes some
components of the metric redundant. In our way of doing
recursive Nöther coupling, the projected Fierz-Pauli action
has the potential to generate a redundancy-free theory of
GR. This may be interesting in solving Einstein equations
in a very complicated system, such as in numerical
relativity. However, unlike usual GR, the diffeomorphism
invariance is not obvious in such a theory. Clearly, more
research is necessary in this direction.
In the first-order formulation, general relativity in the

linearized approximation is done in only one recursion
step [27]. Hence, the corresponding self-interaction con-
sists of the complete series of the post-Minkowskian
expansion. Another interesting thing to see is whether
the correspondence just shown between the post-
Minkowskian series and the recursive addition of the
self-interaction works for higher curvature theories of
gravity. In the view of Ref. [41], the answer is no, at least
for quadratic gravity. This is because the linearized version
of the quadratic gravity does not contain any second
derivative of the linearized metric field, whereas its post-
Minkowskian expansion counterpart certainly has the
second derivative of the expanded metric.
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As already mentioned, this approach of recursive Nöther
coupling of the energy-momentum tensor to the projected
massless spin-2 field in a flat spacetime background,
despite reservations from some quarters, clearly acquires
the status of applicability to gravitational wave signal
processing in an autonomous manner, without having to
consider weak-field approximations to general relativity.
As more and more observations are made by extant and
planned laser-interferometer observatories, one can indeed
avoid complications associated with general relativity and
directly proceed to use this approach for analyses of
observational data. Clearly, the method has obvious short-
comings when analyses of the spacetime in close proximity
of coalescence of compact binary is required, but that is
indeed another story.
With regard to the central question not addressed in this

work, namely, how best to do the recursive Nöther coupling
to derive full general relativity, one must mention a
particular complication of formulations of general relativity

as a gauge theory. Clearly, the gauge group of general
relativity is not the local Poincaré group, which is not large
enough to include the group of spacetime diffeomorphisms.
Rather, this is perhaps best described as the semidirect
product of the group of diffeomorphisms and the local
Lorentz group. In the standard metric formalism of general
relativity, local Lorentz invariance is not manifest because
only diffeomorphism invariance is used to construct the
theory. Yet, for coupling spinors to spacetime, local Lorentz
invariance is crucial. The challenge is to bring in manifest
local Lorentz invariance through the method of recursive
Nöther coupling.
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