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We discuss construction and observational properties of wormholes obtained by connecting two
Reissner-Nordström spacetimes with distinct mass and charge parameters. These objects are spherically
symmetric, but not reflection symmetric, as the connected spacetimes differ. The reflection-asymmetric
wormholes may reflect a significant fraction of the infalling radiation back to the spacetime of its origin. We
interpret this effect in a simple framework of the effective photon potential. Depending on the model
parameters, image of such a wormhole seen by a distant observer (its “shadow”) may contain a photon ring
formed on the observer’s side, photon ring formed on the other side of the wormhole, or both photon rings.
These unique topological features would allow us to firmly distinguish this class of objects from Kerr black
holes using radioastronomical observations.
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I. INTRODUCTION

Traversable wormholes are spacetime tunnels connecting
universes or distant parts of the same universe, through
which transit of mass and energy is possible. They were
proposed and discussed by Ellis [1] and later byMorris et al.
[2]. A particularly simple construction, a symmetric worm-
hole obtained by surgically grafting two Schwarzschild
spacetimes (cut-and-paste procedure), was given by Visser
[3]. A thin spherical layer of exotic matter (violating the
weak energy condition of non-negative energy density),
concentrated at the junction between the two connected
spacetimes, is required to fulfill the Einstein field equations
and to stabilize the wormhole. Similar requirements are
common to a broader class of wormholes consistent with the
general relativity [4]. Alternative theories of gravity [5–7],
or general relativity in higher number of dimensions [8],
may admit wormhole solutions without invoking the exotic
stress-energy tensor.

In recent years, a lot of research has been dedicated to
calculating the appearance of wormholes illuminated by the
electromagnetic radiation [9–17]. This interest has been
sparkled, at least in part, by the developments in the radio-
interferometry and assemblement of the Event Horizon
Telescope (EHT). The EHT is able to resolve the event
horizon scale structure for at least two nearby objects, our
Galactic Center [18], and the center of the M87 galaxy
[19–21], with a potential to resolvemanymore sources in the
future [22,23]. At this point, it becomes possible to obser-
vationally distinguish between black holes and certain
classes of black hole mimickers [24,25]. Wormholes con-
stitute an important type of the latter, as an example of
horizonless spacetimes thatmaybe identical to the black hole
spacetime everywhere apart from its most internal part.
Spacetimes of compact objects may admit unstable spheri-

cal null geodesics [26,27], forming a photon sphere. The null
geodesics approaching these unstable spherical orbits arbi-
trarily close create a critical curve on a distant observer’s
screen [28,29]. The size and shape of that curve are dictated*maciek.wielgus@gmail.com
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entirely by the geometry of spacetime and not by the geometry
of the source of the radiation. In case of Kerr black holes,
critical curves surrounding a dark “shadow” region were first
rigorously studied by Bardeen [30] and Luminet [31]. While
this asymptotic feature itself is not observable, in a realistic
astrophysical scenario, we expect an image of a compact
object to contain sharp features approximating the critical
curves—“photon rings,” corresponding to photon trajectories
approaching the spherical geodesics [25,28,29,32]. The
amount of flux transported along these geodesics is enhanced,
as a consequence of an increased path through the radiation-
emitting region surrounding the compact object. Photon rings
could be, at least in principle, identifiedwith very high angular
resolution radiointerferometric observations [29,32]. In this
paper, we study the critical curves, butwe occasionally refer to
the results as photon rings or shadows, which are somewhat
imprecise, but follow a common convention in the literature.
Weavoidusing the “Einstein ring” term, commonlyassociated
with a scenario requiring a very specific geometric arrange-
ment of the system and involving much smaller deflection
angles [33].
We discuss critical curves for a class of wormholes

distinguished by the asymmetry between the spacetimes they
connect, a “reflection” asymmetry with respect to the worm-
hole throat [34–36]. As a representative model example, we
discuss in more detail wormholes connecting two Reissner-
Nordström spacetimes, following the reflection-symmetric
constructions considered by [3,37,38]. However, in our case,
Reissner-Nordström spacetimes on both sides of the worm-
hole are characterized by generally different massesM1;2 and
chargeparametersQ1;2. Because of the spherical symmetryof
the spacetimes that we consider, the shadows remain circu-
larly symmetric. Nevertheless, the reflection asymmetry of
thewormhole spacetime has significant consequences for the
associated shadow, which may indicate the presence of a
secondary component, corresponding to the unstable photon
sphere from the other side of the wormhole, or even consist
exclusivelyof the component fromtheother side, thatmaynot
match the gravitational signature of the spacetime on the side
of the observer. Hence, we define a class of black hole
mimickers that may indicate observational features topologi-
cally distinct from that of Kerr black holes and could
potentially be distinguished with the future observations.

II. EFFECTIVE PHOTON POTENTIAL
OF A WORMHOLE

Let us consider a spherically symmetric spacetime with
metric gμν in spherical coordinates ft; r; θ;ϕg,

ds2¼gμνdxμdxν¼−fdt2þf−1dr2þr2ðdθ2þsin2θdϕ2Þ;
ð1Þ

where the function f ≡ fðrÞ will be specified later and we
employ the ð−þþþÞ signature. For an equatorial null
geodesic, it follows from the condition pμpμ ¼ 0 that

p2
t

f
−
p2
ϕ

r2
¼ ðprÞ2

f
; ð2Þ

where pμ ¼ dxμ=ds is a photon four-momentum and s is a
properly chosen affine parameter. The components pt and
pϕ are conserved along the geodesic due to the Killing
symmetries of the considered spacetime. Their ratio b ¼
−pϕ=pt is the impact parameter of the photon (also referred
to as a specific angular momentum). Equation (2) can be
rearranged in the form

1

b2
−

f
r2

¼ 1

r4

�
dr
dϕ

�
2

≥ 0: ð3Þ

The second term on the left-hand side

VðrÞ ¼ fðrÞ
r2

ð4Þ

plays a role of an effective potential—a photon with an
impact parameter b can propagate only in the regions where
1=b2 ≥ VðrÞ. The turning points correspond to 1=b2 ¼ V;
hence, the radial location of the maximum of the effective
photon potential corresponds to the unstable photon orbit
and the value of b at the potential maximum is the radius of
the observed photon ring. The effective photon potential is
thus a useful tool to diagnose the black hole shadow. The
shape of the effective photon potential is also relevant in the
context of gravitational wave ringdowns, as discussed, for
example, by Cardoso et al. [39], who explored a symmetric
Schwarzschild wormhole case, and more recently by Horák
et al. (in prep) [40], who discussed ultracompact stars.
Figure 1 shows the effective potential of a wormhole

connecting two manifolds R1 and R2 at a throat located at
r ¼ r0. Here R1 is a Schwarzschild spacetime. We denote
ξ ¼ M2=M1. For ξ ¼ 1, we find a thin-shell symmetric
wormhole of Visser [3]. The critical curve is formed by
photons approaching the effective potential maximum. As
long as the potential barrier is the same on both sides of the
throat, the shape of the critical curve will be consistent with
that corresponding to a black hole of massM1. However, if
we construct a wormhole with an asymmetric effective
potential, such as the blue curve ξ ¼ 1.5 in Fig. 1, the
situation will change dramatically. The observers in R2

should see a shadow associated with the effective potential
maximum in R2, consistent with the expectations for the
M2 black hole, and formed by photons of impact para-
meter ≈b2. However, they will also see a shadow feature
associated with the photon effective potential maximum in
R1, formed by photons with an impact parameter ≈b1, of
an unexpected diameter inconsistent with the expectations
for the M2 mass black hole. In Sec. IV, we show that such
asymmetric effective potentials can be constructed by
considering wormholes connecting Reissner-Nordström
spacetimes.
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III. REISSNER-NORDSTRÖM SPACETIME

In the case of the Reissner-Nordström spacetime, the
function fðrÞ in Eq. (1) is given by

fðrÞ ¼ 1 −
2M
r

þQ2

r2
; ð5Þ

where M and Q are the mass and the electric charge
parameters, respectively. ForQ2 ≤ M2, the condition f ¼ 0
implies the presence of two horizons, located at

rh� ¼ M � ðM2 −Q2Þ1=2; ð6Þ

and the metric describes a charged nonrotating black hole.
We refer to the larger one, rhþ, as an event horizon, while
rh− is a Cauchy horizon. We will denote the event horizon
radius with rh, that is, rh ≡ rhþ. For Q2 > M2, Reissner-
Nordström metric describes a spherically symmetric
charged naked singularity. The photon sphere (location
of the spherical null geodesics) radius rγ follows from
the condition dV=dr ¼ 0, which leads to the quadratic
equation

r2γ − 3Mrγ þ 2Q2 ¼ 0 ð7Þ

with two roots

rγ� ¼ 3M � ð9M2 − 8Q2Þ1=2
2

: ð8Þ

The larger solution rγþ corresponds to a local maximum of
VðrÞ, related to the unstable photon orbit. Note also that the
solutions rγ� exist only for Q2 ≤ 9

8
M2. We will denote the

larger root with rγ, that is, rγ ≡ rγþ.
The radius of the critical curve (shadow seen by a distant

observer) is given by the critical impact parameter bc,
corresponding to the maximum of the effective potential,

bc ¼ V−1=2
max ¼ rγ½fðrγÞ�−1=2: ð9Þ

The location of the horizons rh�, photon spheres rγ�, and the
value of the critical impact parameter bc as functions of
Q2=M2 are shown in Fig. 2. All the relevant radii rh, rγ , bc
decrease monotonically with Q2 [41]. Impact parameter
decreases by ∼30% between Q2=M2 ¼ 0 and Q2=M2 ¼
9=8. In certain alternative theories of gravity [42], negative
Q2, reinterpreted as a gravitational “tidal charge,” is admitted
and yields larger bc. However, we limit our discussion
to 0 ≤ Q2 ≤ 9=8M2.
In a realistic astrophysical context, it is unlikely that a black

hole could maintain an electric charge yielding Q2 compa-
rable to M2 [43]. However, it remains very unclear, what
would constitute a realistic astrophysical context for an exotic
object such as a traversable wormhole. Regardless of these
concerns, Reissner-Nordström spacetime and Reissner-
Nordström wormholes constitute a very useful simple model

FIG. 1. Effective photon potential VðrÞ for the asymmetric
wormhole, obtained by connecting two manifoldsR1 andR2.R1

is a fixed Schwarzschild spacetime, while R2 is a Reissner-
Nordström spacetime matched for several values of an asymme-
try parameter ξ ¼ M2=M1. As an example, for ξ ¼ 1.5, two
photons with impact parameters b1 and b2 are shown. The photon
with impact parameter b2 is reflected at the effective-potential
barrier as in ordinary Reissner-Nordström spacetime before it
reaches the throat at r0. On the other hand, the photon corre-
sponding to b1 crosses the potential barrier in R2, falls into the
wormhole, but then it is reflected back to R2 by the R1 potential
barrier.

FIG. 2. Relevant radii in the Reissner-Nordström spacetime:
event horizons rh�, photon spheres rγ�, and the critical impact
parameter bc. For Q2 ≤ M2, the spacetime corresponds to a
charged black hole. The shaded region for 1 < Q2 ≤ 9=8M2

corresponds to a naked singularity solution.
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to explore the deviations from the Schwarzschild case when
∼r−2 term in fðrÞ is introduced.

IV. MATCHING REISSNER-NORDSTRÖM
SPACETIMES

It has been first noticed by Visser [3] that a traversable
wormhole can be formed using a simple cut-and-paste
technique applied to two Schwarzschild spacetimes. The
necessary condition of matching the induced metrics at the
junction is trivially fulfilled when Schwarzschild space-
times corresponding to identical masses are matched at the
same Boyer-Lidquist coordinate radius. The resulting
wormhole is therefore reflection symmetric around the
throat and so is the effective photon potential, as discussed
in Sec. II. Reflection-asymmetric wormhole solutions
formed by stitching two Schwarzschild and Reissner-
Nordström spacetimes were presented by Garcia et al.
[34]. Here we consider a simple cut-and-paste construction
of an asymmetric Reissner-Nordström wormhole, where
spacetime is static, location of the throat is constant in time,
and we can explicitly match the full metric on both sides in
Boyer-Lindquist coordinates. Because of the gtt continuity,
not demanded by a more general construction of reflection-
asymmetric wormholes, we conserve the energy E ¼ −pt
of a photon crossing the wormhole throat.
To outline such a solution, let us consider two manifolds

R1 and R2 arising from two different Reissner-Nordström
spacetimes by cutting-off their interior parts at radii r1
and r2 (respectively),R1 ¼ fr > r1jr1 > rh;1g,R2 ¼ fr >
r2jr2 > rh;2g, The two manifolds are then glued together by
identifying their boundaries, ∂R1 ≡ ∂R2 ≡ Σ, Fig. 3. We
require themetric coefficients gμν to remain continuous across
the junction, that is, gμν;1jΣ ¼ gμν;2jΣ. Derivatives of the
metric may be discontinuous, reflecting the presence of a
massive and charged thin shell that is the source of gravita-
tional and electromagnetic field (e.g., [37]).
The conditions we impose at the junction are

r21 ¼ r22 ≡ r20; ð10Þ

f1ðr0;M1;Q1Þ ¼ f2ðr0;M2;Q2Þ; ð11Þ

where

f1;2ðr;M1;2;Q1;2Þ ¼ 1 −
2M1;2

r
þQ2

1;2

r2
: ð12Þ

Condition (10) assures continuity of gϕϕ and gθθ compo-
nents, while the later one (11) is required by the continuity
of gtt and grr. Note that under these assumptions matching
Schwarzschild spacetimes withM1 ≠ M2 is not possible, as
f1ðr0;M1; 0Þ ¼ f2ðr0;M2; 0Þ implies M1 ¼ M2. Intro-
ducing the asymmetry parameter

ξ ¼ M2=M1; ð13Þ

we can now consider r0, M1, ξ, and Q1 to be fixed model
parameters and use Eq. (11) to solve for the charge
parameter Q2

2,

Q2
2 ¼ 2r0M1ðξ − 1Þ þQ2

1: ð14Þ

Hence, we can fulfill conditions (10) and (11) forM1 ≠ M2

if we consider Reissner-Nordström wormholes. Our con-
struction constitutes a subset of the solutions considered by
Garcia et al. [34] and Forghani et al. [35], who also studied
their stability and related properties of the exotic matter
concentrated at the throat. Instead, in the current paper, we
are interested in the appearance of the reflection-asym-
metric wormholes to a distant observer.

V. WORMHOLE APPEARANCE

We investigate in detail the parameter space in case of
Q2

1 ≡ 0, so when R1 is a subset of a Schwarzschild
spacetime. In Fig. 4, we see that this slice of the full
parameter space is already very rich in terms of the
wormhole shadow topologies. Depending on a combina-
tion of ξ ¼ M2=M1 and r0=M1, manifold R2 can be a
subset of a charged black hole (shaded gray) or a naked
singularity (shaded red) spacetime. We first classify the
wormhole solutions in terms of the presence of the photon
orbit inR1;2, so whether r0 < rγ. As a result, possible cases
indicated in Fig. 4 are as follows:
(1) Regions I and IV: r0 > rγ;1 and r0 > rγ;2, no photon

sphere neither in R1 nor in R2

(2) Regions II and V: r0 < rγ;1 and r0 > rγ;2, photon
sphere only in R1

(3) Regions III and VII: r0 < rγ;1 and r0 < rγ;2, photon
spheres in both R1 and R2

(4) Region VI: r0 > rγ;1 and r0 < rγ;2, photon sphere
only in R2

The presence of an unstable photon orbit on the opposite
side of the wormhole is not a sufficient condition for a
distant observer to see the corresponding critical curve—
the photons still need to cross the effective photon potential

FIG. 3. Embedding diagram for a reflection-asymmetric thin-
shell traversable wormhole with parameters M2 ¼ 1.6M1,
r0 ¼ 2.1M1, Q2

1 ¼ 0, Q2
2 ¼ 0.98M2

2.
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barrier on the observer’s side. As an example, in Fig. 1, a
distant observer in R2 sees critical curves associated with
effective potential maxima in both R1 and R2, but the
observer in R1 only sees critical curve associated with the
effective potential maximum inR1. A simple condition for
the observer in Ri to observe the critical curve from the
other side of the wormhole is therefore given by

max
Ri

VðrÞ < Vðrγ;jÞ and r0 < rγ;j ð15Þ

for i ≠ j. Because we assume Q2 ≥ 0, it follows from
Eq. (14) that ifQ1 ¼ 0 then ξ ≥ 1. In other words, we cannot
matchSchwarzshild spacetimewithmassM1with aReissner-
Nordströmspacetimeof lowermassM2within the framework
described in Sec. IV. Evaluating numerically condition (15)
for the parameter space shown inFig. 4,we find that under our
assumptions the observer inR1 is never able to see the critical
curve related to the photon sphere in R2. Hence, such an
observer may only see the Schwarzschild spacetime critical
curve, just as if the observed compact object was a nonrotat-
ing black hole. On the other hand, an observer in R2 can
see the critical curve from R1 in all cases, as long as
r0 < rγ;1 ¼ 3M1.
The maximum of the effective potential occurs also for

spacetime parameters from region I, at the throat of the
wormhole. One may argue, that the throat at r ¼ r0 may
also correspond to an unstable photon orbit, as it is in the
case considered by Shaikh et al. [16]. However, in the
vicinity of the throat, the radial derivative of the effective
potential remains finite, having discontinuity across the

throat. As a result, the null geodesics do not wind up around
r ¼ r0 as in the case of an ordinary unstable photon orbit,
where the radial derivatives approach zero. Rather, they are
suddenly “reflected” to the other spacetime, creating a
discontinuity in the observed image.
In Fig. 5, we evaluate the ratio between the size of the

shadow originating in R1 observed from R2 and the
expected shadow in R2, that is, bc;1=bc;2. What this means
is that even if r0 > rγ;2, we use bc;2 computed with Eq. (9),
since a distant observer would not know about the throat
location r0 and would reasonably expect to see the shadow
of a Reissner-Nordström object. The shadow seen through
the wormhole may be as much as 3 times smaller than the
expected one. In regions III and VII, these two shadows
would appear simultaneously. Two such examples are
shown in Fig. 6. In regions II and V, the R2 observer
would only see the R1 shadow as r0 > rγ;2; nevertheless,
for the considered wormhole model, its size would be quite
close to the Reissner-NordströmR2 expectations. In region
VI, only the ordinary shadow of R2 would be seen.
We find trajectories of photons in wormhole spacetimes

constructed in Sec. IV by numerically integrating the null
geodesic equations of motion. At the junction r0, we use the
fact that the metric is continuous and pt and pϕ are
conserved, while pθ remains 0, as we consider an equatorial
motion in a spherically symmetric spacetime. Then pr only
requires the sign reversal from ingoing to outgoing.
Examples of photon trajectories are shown in Fig. 6.
In the first row of Fig. 6, a spacetime from region III

of the parameter space, shown in Fig. 4, is considered.
The embedding diagram for this particular wormhole
was shown in Fig. 3. We are particularly interested in

FIG. 4. Parameter space for Q1 ¼ 0 with varying r0=M1 and ξ.
R2 can be a subset of a Reissner-Nordström charged black hole
spacetime (gray-shaded regions I–III) or a subset of a Reissner-
Nordström naked singularity spacetime (red-shaded regions
IV–VII). Roman numerals denote the presence of the photon
sphere in R1;2 or lack thereof; see the text.

FIG. 5. The shaded region corresponds to the part of the
parameter space, for which a distant observer in R2 sees a
shadow associated with the photon sphere in R1 through the
wormhole. The color codes ratio of the R1 shadow radius bc;1
with respect to bc;2, the expected radius of a Reissner-Nordström
shadow of R2. Two black dots indicate parameters of the
examples considered in Fig. 6.
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trajectories approaching the unstable photon sphere on each
side of the wormhole. Trajectory b1 corresponds to a
photon emitted in R2 with an impact parameter slightly
larger (so 1=b21 slightly smaller) than the critical value in
R1 of bc;1 ¼ 3

ffiffiffi
3

p
M1. The photon falls into a wormhole

from R2 and crosses the throat. It then loops around the
unstable photon sphere inR1 (top left panel) but ultimately
is reflected back into the R2 by the R1 effective potential
barrier (top middle panel). Photon b2 corresponds to the
impact parameter slightly smaller than the critical value in
R2 (or 1=b22 slightly larger). Therefore, it loops around the
photon sphere in R2 (top left panel), but ultimately falls
into the wormhole, only to be quickly reflected back to R2

by theR1 potential barrier (top middle panel). The top right
panel of Fig. 6 outlines the appearance of the wormhole
shadow seen by a distant observer. The dashed gray line
shows the Schwarzschild critical curve for the mass M2.
The continuous blue line bc;2 is the critical curve for theR2

Reissner-Nordström spacetime with mass M2 and charge

parameter Q2
2 ¼ 0.98M2

2 [from Eq. (14)]. The dashed red
line is the critical curve from R1, seen through the worm-
hole, corresponding to that of a Schwarzschild black hole of
massM1, with radius bc;1. Inside this circle there is a region
where a view of the R1 spacetime is seen through the
wormhole (shaded red). Between the two shadow features, a
reflection of the R2 (shaded blue), formed by the photons
that visited R1 but were reflected back into R2 by the
potential barrier, is seen. A similar scenario, but with a
wormhole spacetime from region V of the parameter space,
is investigated in Fig. 6, bottom row. In this case, the two
photon rings are of a very different size, bc;1=bc;2 ¼ 0.37.

VI. DISCUSSION

We have presented results characterizing the impact of
reflection asymmetry of the effective photon potential on
the appearance of a wormhole to a distant observer. As an
instructive example we considered a family of thin-shell,

FIG. 6. Top row: properties of a wormhole connecting a Schwarzschild spacetime R1 with mass M1 and a Reissner-Nordström
spacetime R2 with mass 1.6M1 and charge Q2

2 ¼ 0.98M2
2. Left: trajectories of photons with the impact parameters close to critical

values for R1 and R2. The hatched region corresponds to r < r0 and is not a part of the investigated spacetime. Dashed lines indicate
trajectories on the other side of the wormhole, that is inR1. Middle: the corresponding reflection-asymmetric effective photon potential.
Locations of the unstable photon spheres (maxima of the effective potentials) are indicated. Right: an appearance of the wormhole for a
distant observer. Two rings, corresponding to critical curves inR1 (bc;1) and inR2 (bc;2), are visible. A region in which photons visitR1

and are reflected back to R2 is shaded in blue. Celestial coordinates ðα; βÞ are measured in GM2=c2. Bottom row: same, but for theR2

spacetime parameters M2 ¼ 3.5M1 and Q2
2 ¼ 1.02M2

2.
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traversable, reflection-asymmetric wormholes, obtained by
surgically grafting two Reissner-Nordström spacetimes
with a cut-and-paste procedure [3,34].
We notice interesting features in the shadow (critical

curve related to photon geodesics approaching the unstable
photon sphere, as systematically defined and discussed by,
e.g., [28,29]) of a reflection-asymmetric wormhole. Apart
from variation of the shadow diameter with respect to the
expectations, for certain model parameters, observers on
one side of the wormhole may be able to see both the
shadow corresponding to the photon sphere on their side,
and the shadow corresponding to the photon sphere from
the other side of the wormhole. While several authors
considered wormhole shadows before (e.g., Refs. [12–15]),
a critical curve consisting of a double circle is a rather
uncommon feature in the literature. Nevertheless, similar
shadows were recently reported by Shaikh et al. [16], who
considered reflection-symmetric traversable wormholes
with a secondary maximum of the photon effective poten-
tial located at the throat. Wang et al. [36] discussed
shadows of asymmetric Schwarzschild wormholes, for
which photon energy E ¼ −pt is not conserved when a
photon crosses the throat.
Vincent et al. [32] presented ray-traced images of several

types of black hole mimickers surrounded by an accretion
disk, including a Lamy spinning wormhole [44]. In Fig. 10
and Fig. B.1 of [32], images similar to the ones described in
this paper (i.e., the shadow appearing as multiple circular
features) can be seen. The Lamy metric is identical to that
of Kerr, with the only difference that the mass of the object
M is replaced by a function of the radial coordinate MðrÞ.
For large jrj, Lamy metric approaches Kerr. In either case,
two effective photon potentials for the equatorial plane can
be defined as

V� ≡ V�ðrÞ ¼
−gtφ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2tφ − gttgφφ

q
gφφ

: ð16Þ

In Fig. 7, we show the V�ðrÞ functions for the parameter
values considered in [32]. The motion of photons in the
equatorial plane is restricted to the region above Vþ or
below V−. The asymmetry of the Lamy potentials V�ðrÞ
with respect to r ¼ 0 leads to multiple critical curves on
sky. We however note that this analysis is only valid in the
equatorial plane and that equatorial geodesics only matter
for an exactly edge-on view. A more detailed treatment is
necessary in order to fully understand the non-edge-on
images, such as those presented in [32]. Nevertheless, we
can conclude that the Lamy wormhole is another example
of a reflection-asymmetric wormhole spacetime, indicating
multiple critical curves.
Several authors discussed observational constraints on

existence of wormholes derived from variety of phenomena
[45–50]. Observing geometry of the shadows of compact

objects is a particularly promising avenue. Features such as
the presence of multiple critical curves, topologically
different from the “classic” Kerr black hole shadow
[30,31], could potentially constitute a much more powerful
discriminant of black hole mimickers than a moderate
difference in the critical curve size and circularity. This is
particularly important in view of significant uncertainties
related to distance and mass of sources that could be
potentially resolved by future extremely long baseline radio
interferometry observations [22], perhaps with a single
exception of our Galactic Center. However, while detection
of multiple bright rings on sky would indicate that the
observed compact object is not a Kerr black hole, it would
not necessarily imply the nonexistence of an event horizon.
A counterexample is given by the black holes with scalar
hair, as studied by [51–53].
Another property of a traversable wormhole image is the

presence of a central region directly illuminated by the low
angular momentum photons from the other side of the
wormhole. Detecting such a feature would also potentially
constitute a robust discriminant of some black hole mim-
ickers [25].
Apart from these properties, images of reflection-

asymmetric wormholes would contain a region in which
photons emitted on one side of the wormhole visit the
other side and are reflected back to the side of their origin
(blue-shaded region in the right column of Fig. 6). If such

FIG. 7. Asymmetric equatorial effective photon potential of a
Lamy wormhole for the parameters considered by [32]: dimen-
sionless spin a� ¼ 0.8, charge b ¼ M. There are two extrema of
the effective potential V− associated with unstable spherical
photon orbits and affecting retrograde photons, one at about 3.5M
and other at about −0.8M. Potential Vþ has a single maximum at
0M. For comparison, the hatched region represents the forbidden
region between V− and Vþ for a Kerr spacetime. The shaded
region indicates the interior of the Kerr event horizon,
jrj < 1.6M.
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a region would ever be observed, its presence could
potentially allow for probing the geometry on the other
side of a wormhole through investigating delays between
the directly observed and reflected events. Such a special
region is exclusively present in the images of the reflec-
tion-asymmetric wormholes. Fundamentally, it is not even
necessary to resolve the source in order to investigate this
property—it could manifest as a delayed correlated
component in the compact object’s light curve. Search
for such a feature could already be performed with the
existing light curve databases.
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