
 

General parametrization of higher-dimensional black holes
and its application to Einstein-Lovelock theory

Roman A. Konoplya ,1,2,* Thomas D. Pappas ,1,† and Zdeněk Stuchlík1,‡
1Research Centre for Theoretical Physics and Astrophysics, Institute of Physics,

Silesian University in Opava, Bezruovo nm. 13, CZ-746 01 Opava, Czech Republic
2Peoples Friendship University of Russia (RUDN University),

6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation

(Received 17 August 2020; accepted 21 September 2020; published 19 October 2020)

Here we have developed the general parametrization for spherically symmetric and asymptotically flat
black-hole spacetimes in an arbitrary metric theory of gravity. The parametrization is similar in spirit to the
parametrized post-Newtonian approximation, but valid in the whole space outside the event horizon,
including the near horizon region. This generalizes the continued-fraction expansion method in terms of a
compact radial coordinate suggested by Rezzolla and Zhidenko [Phys. Rev. D 90, 084009 (2014)] for the
four-dimensional case. As the first application of our higher-dimensional parametrization we have
approximated black-hole solutions of the Einstein-Lovelock theory in various dimensions. This allows one
to write down the black-hole solution which depends on many parameters (coupling constants in front of
higher curvature terms) in a very compact analytic form, which depends only upon a few parameters of the
parametrization. The approximate metric deviates from the exact (but extremely cumbersome) expressions
by fractions of one percent even at the first order of the continued-fraction expansion, which is confirmed
here by computation of observable quantities, such as quasinormal modes of the black hole.
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I. INTRODUCTION

Black holes in theories with higher-curvature corrections
play an important role in high-energy physics, from the
tentative form of quantum corrections to gravity in the low-
energy limit of string theory [1–3] to the description of
strongly coupled quantum systems within the AdS=CFT
correspondence [4,5]. One of the most promising
approaches is given by the Einstein-Lovelock theory, a
generalization of the Einsteinian theory, which is the most
general metric theory of gravity yielding conserved second-
order equations of motion in an arbitrary number of
spacetime dimensions D [6,7]. When one is limited by
the quadratic correction in curvature, the corresponding
limit of the Lovelock theory reproduces the Gauss-Bonnet
combination, the first black-hole solution for which was
obtained by Boulware and Deser [1]. In four dimensional
spacetimes, the Gauss-Bonnet term is a pure divergence,
and thus the corresponding field equations remain
unaltered. In five- and six- dimensional spacetimes, the
Einstein-Gauss-Bonnet action is the most general, while
for higher dimensions, higher-order corrections in curva-
ture must be used for consistency and generality. Each

correction term of themth power in curvature in the infinite
Lovelock series contains a dimensional coupling constant
α̃m which is divided by some power of the radius r0 of the
event horizon,

mth Lovelock term ∼ α̃mr
−2mþ2
0 ð1:1Þ

so that the smaller black hole is, the more terms of the
Lovelock theory are important. While for sufficiently large
black holes the first, quadratic, Gauss-Bonnet correction is
sufficient, for smaller black holes one need to take more
and more Lovelock terms into consideration. At the same
time, even the cubic correction makes the black-hole metric
function very cumbersome, because it cannot be expressed
in a general closed form for the whole set of parameters, but
includes finding of roots of some algebraic equations for
determination of the metric at a given set of parameters.
Then, the description of the properties and observable
quantities for such small black holes in the Einstein-
Lovelock theory of high order would be an almost
never-ending task: analysis of black-hole behavior depend-
ing on even several parameters requires very large resour-
ces and provides big room for interpretations, while adding
more parameters simply makes the problem unfeasible and
the role of each Lovelock term uncertain.
Here we suggest the way to solve the above problem, that

is, we develop a formalism which, being much wider and
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not linked to any particular form of the metric theory,
allows one to describe a cumbersome analytical or numeri-
cal black-hole solution, depending on a large number of
parameters of a theory, in a compact analytical form which
depends only upon a few new parameters of the para-
metrization. This is done via the introduction of the general
parametrization of any spherically symmetric and asymp-
totically flat black-hole spacetime by using the continued-
fraction expansion in terms of a compact radial coordinate.
The general ansatz for the parametrization is designed in
such a way that the prefactors determine the asymptotic
behavior, while the terms in the continued fraction series
are fixed by the behavior near the event horizon. This way,
the parametrization is valid not only near the black hole or
only in the far region, but in the whole space outside
the black hole. This idea was first applied to the four-
dimensional case by Rezolla and Zhidenko [8], and extended
to axially symmetric 4D black holes by Konoplya, Rezzolla
and Zhidenko [9] and was effectively applied in a number
of recent works to analysis of four-dimensional black holes
in various theories of gravity [10–16].
In this work we generalize the aforementioned approach

to an arbitrary number of dimensions. Therefore, the
general parametrization developed here can be applied to
any spherically symmetric and asymptotically flat black-
hole metric independently on the character of a theory of
gravity under consideration. After developing of the gen-
eral parametrization we apply it to the Einstein-Lovelock
black holes and show that, for example, the fifth-order
Einstein-Lovelock black hole which depends upon five
coupling constants can be represented in a very compact
form which depends only on two parameters. Further we
illustrate the effectiveness of this approach by calculating
the quasinormal modes for this system.
The further extension of the method to incorporate the

parametrization of rotating higher-dimensional (HD) black
holes in full generality is a highly nontrivial task that will be
the subject of a future work. Nevertheless, as a first step
toward this direction, we have investigated here the case of
slowly rotating HD solutions with a single rotation param-
eter. Under these assumptions the deviation of the metric
from spherical symmetry is encoded in a single off-
diagonal metric component. We have developed a para-
metrization for the off-diagonal metric function and applied
it to the case of slowly rotating Lovelock black holes where
we find excellent agreement already in the first order in the
approximation.
The paper is organized as follows. In Sec. II Awe briefly

review the Rezzolla-Zhidenko parametrization for four-
dimensional static black holes, while in Sec. II B the HD
generalization of the parametrization has been developed.
In Sec. II C we introduce the HD parametrization in the
case of slow rotation around a single axis. The remainder of
the article is dedicated to the application of the generalized
parametrization. We start in Sec. III A by giving basic

information about higher-dimensional black holes in the
Einstein-Lovelock theory. Section III B is devoted to the
application of the parametrization for the approximation of
the Einstein-Lovelock black-hole metric for various dimen-
sions and Lovelock curvature orders and Sec. III C deals
with the approximation of slowly rotating Lovelock black
holes. Section IV is dedicated to the study of the quasi-
normal modes of Einstein-Lovelock black holes in the
presence of a large number of higher-curvature terms and
finally, in Sec. V we summarize the obtained results and
mention some open problems.

II. THE CONTINUED-FRACTION
PARAMETRIZATION

A. Parametrization of four dimensional
black-hole metrics

In this section we shall briefly review of the method
introduced in [8] for the parametrization of black-hole
metrics in terms of a continued-fraction expansion. This
will help to set the stage for its generalization in the
following section. Consider a spherically symmetric and
asymptotically flat black-hole solution of the Einstein
equations described by the line-element ansatz

ds2 ¼ −fðrÞdt2 þ dr2

hðrÞ þ r2ðdθ2 þ sin2 θdϕ2Þ: ð2:1Þ

The real positive roots of the equation fðrÞ ¼ 0 corre-
spond to the radii of the horizons present in the spacetime.
We symbolize the radius of the outer event horizon of the
black hole by r0 and restrict our analysis for the remainder
of this article on events satisfying the condition r ≥ r0. We
may perform a coordinate transformation and introduce a
dimensionless compact coordinate via

xðrÞ≡ 1 −
r0
r
; ð2:2Þ

that ranges from x ¼ 0 for r ¼ r0 up to x ¼ 1 in the limit of
r → ∞. Then, in terms of the compact coordinate and a
set of constant parameters, we may reexpress the metric
functions through a set of parametrization equations as

fðrÞ ¼ xAðxÞ;
fðrÞ
hðrÞ ¼ BðxÞ2; ð2:3Þ

where the two new functions on the right-hand side (r.h.s.)
of the above equations are defined as

AðxÞ≡ 1 − ϵð1 − xÞ þ ða0 − ϵÞð1 − xÞ2 þ ÃðxÞð1 − xÞ3;
BðxÞ≡ 1þ b0ð1 − xÞ þ B̃ðxÞð1 − xÞ2; ð2:4Þ
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and the functions ÃðxÞ and B̃ðxÞ are constructed by means
of continued-fraction expansions as follows:

ÃðxÞ ¼ a1
1þ a2x

1þ a3x
1þ…

; B̃ðxÞ ¼ b1
1þ b2x

1þ b3x
1þ…

: ð2:5Þ

Note that the parameters of Eqs. (2.4) can be divided into
two sets depending on the way they are determined. The
first set consists of the triad of the “asymptotic” parameters
ðϵ; a0; b0Þ that are specified upon comparing terms of the
same order in the expansions of Eqs. (2.3) at spatial infinity.
In the second set we have the continued-fraction parameters
ða1; a2;…; b1; b2; � � �Þ that are determined by the corre-
sponding expansions of Eqs. (2.3) in the vicinity of the
event horizon.
In the limit of an infinite number of expansion terms, the

parametrization (2.3) reproduces a given metric function
exactly for all r ≥ r0. At the same time, the functional
dependence of the parametrization on x via continued
fractions provides impressive convergence properties and
thus, in practice, only a small number of terms is required in
order to yield a highly accurate continued-fraction approxi-
mation (CFA) of a given metric. The truncation of the series
at a finite expansion order m is easily achieved by fixing
am ¼ bm ¼ 0 and thus higher-order parameters play no
role in the analysis. It is usually the case that the accuracy
of the approximation is increased by one order of magni-
tude with each order in the continued-fraction expansion
and typically the first few terms suffice for the description
of observable quantities with an absolute relative error in
the range of fractions of one percent. We would also like to
emphasize that one of the most attractive features of the
CFA scheme is that it provides a very accurate description
for the metric function not only close to the black hole
horizon or in the far field but for all values of the radial
coordinate r ∈ ½r0;∞Þ.
In principle, when working in four dimensions, there

are observational constraints associated with the post-
Newtonian expansion in the far region that force the values
of the asymptotic parameters a0 and b0 to be Oð10−4Þ
[8,17]. It is then common practice in 4D analyses to fix
a priori a0 ¼ b0 ¼ 0 in Eqs. (2.4) but for now we shall
retain them as free parameters since we follow a more
general approach of the CFA method for illustrative reasons.
In the far-field region, the metric functions for an

arbitrary asymptotically flat black hole may be expanded
as a power series of falloff terms (∼1=rn; n ≥ 1) in the
following way:

fðrÞ ¼ 1þ
X∞
n¼1

fn
rn

; hðrÞ ¼ 1þ
X∞
n¼1

hn
rn

; ð2:6Þ

where the set of the expansion coefficients (fn, hn) can in
principle be determined as functions of the free parameters

of the system upon direct substitution of the expansion
(2.6) into the field equations of the theory at hand. The
coefficient of the r−1 term of the expansion of fðrÞ is then
associated with the asymptotic black-hole mass h1 ¼ −2M
and the coefficient of r−2 with the charge Q2 of the
solution.
Upon expanding both sides of Eqs. (2.3) in the far region

(r → ∞, x → 1) and comparing terms of the same order,
one finds that in full generality, the asymptotic parameters
are given in terms of the coefficients of the asymptotic
expansions as

ϵ¼−
�
1þf1

r0

�
; a0¼

f2
r20
; b0¼

f1−h1
2r0

; ð2:7Þ

or equivalently in terms of M and Q2

ϵ ¼ 2M
r0

− 1; a0 ¼
Q2

r20
; b0 ¼ −

2M þ h1
2r0

: ð2:8Þ

By the form of these equations it is clear that the
parameter ϵ measures the deviation of the black hole
event-horizon radius r0 from the Schwarzschild radius
rSch ¼ 2M. Also, the fact that the parameter a0 is propor-
tional to the charge of the black hole complies with the
observational constraints that limit its values toOð10−4Þ [8]
for astrophysically relevant configurations as we have
already mentioned. We point out that a0 has also been
found to be proportional to the charge in the case of
scalarized Einstein-Maxwell black holes [16].
For the pure Schwarzschild black hole one has the

identifications r0¼2M;Q2¼0;f1¼h1¼−2M and fi¼0;
hi¼0; ∀ i≥2 and so, we see that all of the asymptotic
parameters vanish in this limit. As for the continued-
fraction parameters, in the Schwarzschild limit we have
a1 → 0; b1 → 0, which essentially truncates the CFA at the
zeroth order. It is in this sense then that the Schwarzschild
metric plays the role of the “reference” metric around
which this approximation method has been built and the
CFA parameters encapsulate the deviations of a given
metric from it.
When applying the CFAmethod, either in order to obtain

an analytic representation for a numerical solution or in the
case of a cumbersome analytic solution in order to have a
more compact expression to perform calculations with, we
need to determine the parameters (M;Q2; h1) in order to
have the CFA parameters. The former parameters of the
metric functions can be easily computed in both cases by
isolating the coefficients of r−1 (for fðrÞ and hðrÞ) and r−2

(for fðrÞ) in their far-field expansions.
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B. The extension of the method
for higher-dimensional metrics

Gravitational theories with more than three spatial
dimensions in the framework of general relativity1 (GR)
can be traced back to the first attempts toward a unified
theory of gravity and electromagnetism by Kaluza and
Klein [19,20]. The first black-hole solution of the Einstein
equations in D dimensions has been derived by F.R.
Tangherlini in the early 1960s and constitutes the natural
HD generalization of the Schwarzschild metric along with
the possible inclusion of charge and cosmological constant
terms [21]. A couple of decades later, a significant
resurgence of interest in HD gravity and its black-hole
solutions emerged as a byproduct of the advent of string
theory and since then the subject has been exhaustively
investigated in a plethora of contexts (see for example
[22–24] and references therein).
Here, we are interested in black-hole solutions to the

D—dimensional Einstein equations that are spherically
symmetric, asymptotically flat and stem from an arbitrary
metric theory of gravity. In general, we may write the
metric ansatz for such a black hole as

ds2 ¼ −fðrÞdt2 þ 1

hðrÞ dr
2 þ r2dΩ2

D−2; ð2:9Þ

where dΩ2
D−2 is the line element on the unit ðD − 2Þ—

sphere. The extra dimensions enter the line element in the
form of n ¼ D − 4 extra angular coordinates labeled as θn
with n ≥ 1 in terms of which we have

dΩ2
D−2 ¼ dθ2n þ sin2 θn½dθ2n−1 þ sin2 θn−1½� � �

þ sin2 θ1½dθ2 þ sin2 θdϕ2� � � ���: ð2:10Þ

The metric functions fðrÞ and hðrÞ depend on the radial
coordinate as well as on the dimensionality of spacetime.
The invariance of the metric under time translations implies
that the radii of the horizons correspond to the real positive
roots of the equation fðrÞ ¼ 0 and the outer black-hole
event horizon will be once again denoted by r0.
In order to extend the formalism of the previous section

to the case of HD metrics, we introduce a new generalized
radial compact coordinate as follows:

x̃ðrÞ≡ 1 −
�
r0
r

�
q
¼ 1 −

�
r0
r

�
D−3

: ð2:11Þ

For reasons of text compactness, we have already assigned
the appropriate value to the parameter q in the above
equation but in order to justify this choice, let us for the
moment consider that it is a yet undetermined parameter.

By construction, x̃ðrÞ shares the same asymptotic
values with xðrÞ (2.2) for any q ∈ N , both close to the
horizon (limr→r0 x̃ðrÞ ¼ xð0Þ ¼ 0) and at spatial infinity
(limr→∞ x̃ðrÞ ¼ limr→∞ xðrÞ ¼ 1). To specify the value
of q we will turn to the asymptotic expansion of the
parametrization equations which have once again the
following form:

fðrÞ ¼ x̃

�
1 − ϵð1 − x̃Þ þ ða0 − ϵÞð1 − x̃Þ2

þ a1
1þ a2x̃

1þ…

ð1 − x̃Þ3
�
; ð2:12Þ

fðrÞ
hðrÞ ¼

�
1þ b0ð1 − x̃Þ þ b1

1þ b2x̃
1þ…

ð1 − x̃Þ2
�
2

: ð2:13Þ

Evidently, when D ¼ 4 → q ¼ 1 we have x̃ðrÞ ¼ xðrÞ
and thus the four-dimensional method [8] is included as a
special case in our more general framework. In the far
region, the expansions for the metric functions of an
arbitrary asymptotically flat metric in D dimensions have
the following form:

fðrÞ ¼ 1þ
X∞
n¼1

fn
rnðD−3Þ ; hðrÞ ¼ 1þ

X∞
n¼1

hn
rnðD−3Þ :

ð2:14Þ

The effective mass of the solution is associated with the
coefficient of the lowest-order term of the expansion of
fðrÞ namely r−ðD−3Þ while the effective charge is related to
the second term of the series r−2ðD−3Þ. Upon substituting
Eq. (2.14) in the left-hand side (l.h.s.) of Eq. (2.12) and
reexpressing the r.h.s. in terms of the original radial
coordinate r via Eq. (2.11), we find that at spatial infinity
the corresponding lowest-order term on the r.h.s. is propor-
tional to r−q and so we are led to identify q ¼ D − 3.
Alternatively, based on the following observation, one

could have intuitively postulated that q ¼ D − 3 from the
beginning. As we have seen, the four-dimensional para-
metrization is build around the Schwarzschild metric and
the compact coordinate xðrÞ corresponds to the gttðrÞ
metric function of the Schwarzschild solution when
r0 ¼ rSch. Then, the analogue “reference metric” upon
which one can construct the HD parametrization is the
asymptotically flat and uncharged Tangherlini solution [21]
whose gttðrÞ metric component is given exactly by (2.11)
for q ¼ D − 3.
Via the expansions of Eqs. (2.12) and (2.13) in the

asymptotic region we determine once again the form of the
asymptotic parameters (with f1 ≡−μ and f2 ≡Q2) as

ϵ¼ μ

rðD−3Þ
0

−1; a0¼
Q2

r2ðD−3Þ
0

; b0¼−
μþh1

2rðD−3Þ
0

; ð2:15Þ1Historically, the idea to consider extra spatial dimesnions for
the first time is credited to G. Nordström in 1912 [18].
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that reduce to Eqs. (2.8) for D ¼ 4. In Eq. (2.15), the mass
parameter μ is related to the black-hole mass M [25]

μ ¼ 16πGDM
ðD − 2ÞΩD−2

; ΩD−2 ¼
2π

D−1
2

ΓðD−1
2
Þ ; ð2:16Þ

where GD is the gravitational constant in D dimensions,
ΩD−2 is the area of the unit ðD − 2Þ—sphere, and the
asymptotic charge Q2 is related to the charge of the black
hole Q2 via [26]

Q2 ¼ 8πGDQ2

ðD − 2ÞðD − 3Þ : ð2:17Þ

Note that in HD theories there are no observational
constraints similarly to the ones imposed on the asymptotic
parameters of the 4D-CFA via the parametrized post-
Newtonian formalism. This means that there is no reason
to assume a priori that a0 and b0 will be negligibly small
parameters. Instead, one has to obtain their values by
isolating the coefficients of the appropriate asymptotic
terms of the metric function fðrÞ at spatial infinity as
we have already discussed in the previous section.

C. Parametrization of slowly rotating
higher-dimensional black holes

In four dimensions, the extention of the parametrization
to incorporate rotating black hole metrics turned out to
be a far-from-trivial task [8] but nonetheless it has been
achieved in [9]. In the presence of extra dimensions, the
problem becomes even more complicated since there are in
principle2 bðD − 1Þ=2c independent angular-momentum
parameters associated with all the possible directions for
rotation in the bulk [27]. To this end, we postpone the
comprehensive study and analysis of this extension for a
future work and we focus here in the special case of metrics
with a single rotation parameter a associated with the
angular momentum of a black hole that rotates on a single
two-plane that lies on the brane.
The “reference metric” for our parametrization here will

be the Myers-Perry black hole [27] with a spherical event-
horizon topology and a single axis of rotation which is
described by the line element

ds2 ¼ −
�
1 −

μ

ΣrD−5

�
dt2 −

2aμ sin2 θ
ΣrD−5 dtdϕþ Σ

Δ
dr2

þ Σdθ2 þ
�
r2 þ a2 þ a2μ sin2 θ

ΣrD−5

�
sin2 θdϕ2

þ r2 cos2 θdΩ2
D−4; ð2:18Þ

where

Δ ¼ r2 þ a2 −
μ

rD−5 ; Σ ¼ r2 þ a2cos2θ: ð2:19Þ

The mass parameter μ is related to the mass M of the
black hole via Eq. (2.16) while the rotation parameter a is
associated to both the angular momentum J and massM of
the black hole via

a ¼ D − 2

2

J
M

; ð2:20Þ

and thus it can be interpreted as the angular momentum per
unit mass. Once we impose the slow-rotation condition
(J ≪ M → a ≪ 1) on Eq. (2.18) by retaining only terms of
OðaÞ and generalizing the metric functions to arbitrary
functions of the radial coordinate we are led to consider the
following ansatz for a general slowly rotating HD black
hole (see also [28–30]):

ds2 ¼ −fðrÞdt2 þ 1

hðrÞ dr
2 − 2ωðrÞr2 sin2 θdtdϕ

þ r2ðdΩ2
2 þ cos2 θdΩ2

D−4Þ þOðω2Þ: ð2:21Þ

The metric function ωðrÞ is in principle arbitrary, but it
should vanish in the static-limit of the solution (a ¼ 0) and
should also exhibit the appropriate asymptotic profile at
spatial infinity. More precisely, in D dimensions, from the
expansion of the off-diagonal metric function for the
Meyers-Perry solution one has for ωðrÞ [27]:

ωðrÞ ≈ 8πGDJ
ΩðD−2ÞrD−1 ; ð2:22Þ

and so for a general solution ωðrÞ the lowest-order falloff
term should be ∼r−ðD−1Þ.
Regarding the radius of the event horizon of the general

slowly rotating black hole (2.21), we point out that the
metric (2.18), and consequently (2.21), does not depend on
the coordinates t and ϕ, and so it is endowed with the
Killing vectors ð∂=∂tÞμ and ð∂=∂ϕÞμ respectively. A linear
combination of the two defines the following Killing vector
field [31,32]:

Kμ ≡
� ∂
∂t
�

μ

þ ΩH

� ∂
∂ϕ

�
μ

; ð2:23Þ

whereΩH is the “angular velocity” of the event horizon and
is of order OðaÞ. In stationary and asymptotically flat
spacetimes any event horizon is a Killing horizon i.e., a
hypersurface whereKμ becomes null [33]. The vanishing of
KμKμ on the event horizon, yields the following equation
for the determination of the radii of the horizons:

2The floor function of a number bac gives the largest integer b
that satisfies b ≤ a.
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gtt þ 2ΩHgtϕ þ Ω2
Hgϕϕ ¼ 0 ⇒ gtt ¼ 0þOða2Þ: ð2:24Þ

In the last step we used the fact that ωðrÞ should be of
OðaÞ to lowest order in the slow-rotation approximation.
Thus we conclude that the radius of the outer event horizon
will be the same as in the non-rotating case and equal to r0
as specified by the equation gttðr0Þ ¼ fðr0Þ ¼ 0. In the
same spirit with the previous sections, we may rewrite the
function ωðrÞ in terms of a continued-fraction expansion
and the generalized compact coordinate of Eq. (2.11) as

ωðrÞr2 ¼ ω0ð1 − x̃Þ þ ω1

1þ ω2x̃
1þ…

ð1 − x̃Þ2: ð2:25Þ

Note that the presence of r2 on the l.h.s. of the above
parametrization equation is of pivotal importance in order
for Eq. (2.25) to yield the appropriate asymptotic terms for
ωðrÞ. More precisely, upon rearranging the last equation at
spatial infinity (x̃ ≈ 1) we have

ωðrÞ ¼ ω0

r2

�
r0
r

�
D−3

þO½ð1 − x̃Þ2�; ð2:26Þ

where in the first term we have used the definition of x̃
(2.11). Then, comparison with Eq. (2.22) reveals that the
asymptotic parameter in Eq. (2.25) in the case of the
Meyers-Perry “reference metric” will be given by

ω0 ¼
8πGDJ

ΩðD−2ÞrD−3
0

; ð2:27Þ

which is exactly the value of the rotation parameter a and so
ω0 is expected to be ofOðaÞ for metrics that do not deviate
drastically from the Meyers-Perry solution. The remaining
continued-fraction parameters ωm with m ≥ 1, will be
determined by comparison of the series expansion of
Eq. (2.25) in the vicinity of the event horizon r0.

III. APPLYING THE GENERAL
PARAMETRIZATION FOR LOVELOCK

BLACK HOLES

A. Black-hole solutions in Lovelock gravity

In the context of the classical theory of GR the gravity
sector of the action consists solely of the Einstein-Hilbert
term and the cosmological constant. With such a minimal
setup, the corresponding field equations yield solutions that
are sufficient to comply with nearly all observations to date
including the recent detection of gravitational waves
[34,35] and the shadow of the supermassive black hole
M87� [36].
Deviations from the predictions of GR do emerge in

observations at galactic and cosmological scales but this
alone is not a sufficient argument in favor of the necessity
for the modification of the gravity sector. The reason being

that the aforementioned issues might be remedied or at least
ameliorated by modifying the energy-momentum tensor in
the Einstein equations for example by considering new
fundamental fields beyond the Standard Model. On this
basis, some might argue that GR is still not facing any
serious conflict with current observations.
The by now undeniable predictive power of GR has

been repeatedly put to the test for more than a century and
passed with flying colors, albeit in energy scales much
lower than the Planck scale where quantum gravity effects
are expected to become important. It is generally believed
that GR is the low-energy limit of a more fundamental
theory and modifications of the gravity sector in the action
should be taken into account when analyzing strong-gravity
phenomena.
The most general pure-gravity extension of GR in any

number of dimensions by means of the inclusion of higher-
curvature terms in the action that become important at
high energy yielding second-order field equations and thus
avoiding the emergence of ghosts [37] has been derived by
D. Lovelock in 1971 [6]. Explicitly, in D ¼ 4þ n dimen-
sions the action for Lovelock gravity is [38,39]

S ¼
Z

dDx
ffiffiffiffiffiffi
−g

p Xk
m¼0

cmLm; ð3:1Þ

where k ¼ bD−1
2
c is the maximum Lovelock order and cm

are arbitrary coupling constants of the theory with dimen-
sions ½length�2m−D. Themth order term is constructed out of
contractions of m powers of the Riemann tensor and is
written explicitly as

Lm ¼ 1

2m
δμ1ν1���μmνmρ1λ1���ρmλmR

ρ1λ1
μ1ν1 � � �Rρmλm

μmνm; ð3:2Þ

where the generalized totally antisymmetric Kronecker
delta is defined via

δμ1μ2���μmν1ν2���νm≡

�����������

δμ1ν1 δμ1ν2 � � � δμ1νm
δμ2ν1 δμ2ν2 � � � δμ2νm

..

. ..
. . .

. ..
.

δμmν1 δμmν2 � � � δμmνm

�����������
: ð3:3Þ

The zeroth- and first-order terms of the Lovelock series
(3.1) correspond to the cosmological constant and Einstein-
Hilbert term respectively i.e.,

c0L0 ¼ −2Λ; c1L1 ¼
R

16πGD
: ð3:4Þ

Note that since for D ¼ 4 the maximum Lovelock order
is k ¼ 1 we are left with GR as the only theory of the
Lovelock family in four dimensions. In this work we are
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interested in asymptotically flat solutions and so we shall
set c0 ¼ 0 and also fix c1 ¼ ð16πGDÞ−1 ¼ 1. The second-
order Lovelock term contributes nontrivially in HD theories
D > 4 and corresponds to the Gauss-Bonnet invariant

c2L2 ¼ c2ðR2 − 4RμνRμν þ RμνρσRμνρσÞ; ð3:5Þ

while the next higher-order correction to the action, c3L3

comes into play for D > 6. In practice, in order to work in
the framework of a HD theory we will usually need to make
a postulation about the dimensionality D of spacetime and
this in turn will naturally truncate the Lovelock series at a
finite order. In any case, the resulting metric function will
depend in principle on a large number of Lovelock
coupling parameters making the analytic description of
the solutions quite cumbersome and impractical for analytic
computational purposes.
The metric function of spherically symmetric black-hole

solutions in Lovelock gravity [1,25,26,38,40,41] for an
arbitrary number of dimensions can be obtained as

fðrÞ ¼ 1 − r2ψðrÞ: ð3:6Þ

The function ψðrÞ is a solution of the following algebraic
equation that emerges upon substituting Eq. (3.6) into
the field equations and involves a polynomial of degree
k≡ bD−1

2
c

W½ψðrÞ� ¼ ψðrÞ þ
Xk
m¼2

α̃mψðrÞm ¼ μ

rD−1 −
Q2

r2ðD−2Þ ; ð3:7Þ

where, the constant of integration μ is the mass parameter
(2.16), Q2 is the asymptotic effective charge (2.17) that
appears in the Lovelock equation (3.7) when the action
(3.1) is supplemented with the inclusion of the Maxwell
term, and for brevity we have defined

α̃m ≡ cm
Y2m−2

p¼1

ðD − p − 2Þ ¼ cm
ðD − 3Þ!

ðD − 2m − 1Þ! : ð3:8Þ

In the simple case of the first nontrivial Lovelock
correction to GR, the algebraic equation (3.7) is quadratic
and of the two solutions that emerge for ψðrÞ only one
yields a metric function that has a smooth Einstein gravity
limit, i.e., the Tangherlini solution can be recovered as
α̃2 → 0. We denote this solution by ψGBðrÞ and the
corresponding metric function describes the Gauss-
Bonnet black hole in D dimensions:

fGBðrÞ ¼ 1 − r2ψGBðrÞ

¼ 1þ 1

2α̃2
r2
"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α̃2

�
μ

rD−1 −
Q2

r2ðD−2Þ

�s #
:

ð3:9Þ

From Eq. (3.6) we can readily find that the value for the
function ψðrÞ at the location of the event horizon is
ψðr0Þ ¼ r−20 . Also, we can solve the Lovelock equa-
tion (3.7) at r ¼ r0 in order to express the mass parameter
μ in terms of the radius of the event horizon and the rest of
the free parameters of the system as

μ ¼ rD−3
0 þ Q2

rD−3
0

þ
Xk
m¼2

α̃mrD−2m−1
0 : ð3:10Þ

In the above expression, we see that the corrections
induced on μ by the presence of the higher-curvature terms
of the Lovelock series involve the Lovelock coupling
parameters normalized by some power of the event-horizon
radius. Consequently, they can be safely ignored for
sufficiently large black holes but on the other hand they
become important for small black holes. If we denote the
characteristic length-scale of extra dimensions by L then
any black hole with r0 ≫ L is effectively four-dimensional
and can be described as a HD object only if r0 ≪ L.
Thus, when considering HD black holes, the Lovelock
corrections are indeed important and should be taken
into account.
As stability analyses of the Lovelock black holes have

revealed [42] the values of α̃m cannot be arbitrary if we are
interested in stable solutions. In the next section, restricting
our analysis to values of α̃m that yield stable black holes,
we will employ the HDCFA in order to test the accuracy
of the method and obtain compact approximations for
the cumbersome expressions of the Lovelock black-hole
metric functions.

B. Compact expressions for the metric
of Lovelock black holes

In [42], the stability of the black-hole solutions emerging
in Lovelock theory in arbitrary curvature order and dimen-
sionality have been investigated. Furthermore, a numerical
code has been made publicly available therein that tests
whether a given set of Lovelock parameters corresponds to
a stable black hole and if not, which types of instabilities
plague the solution.
In this section, for a wide range of number of dimensions

i.e., D ∈ ½5; 11� spanning maximal Lovelock orders up to
k ¼ 5 we employed the HDCFA to obtain approximations
at various orders in the continued-fraction expansion. The
sets of the Lovelock parameters that we used have been
tested with the aforementioned code and yield stable and
asymptotically flat black-hole configurations.
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In Fig. 1 we plot the absolute relative error (ARE) for the
metric function at different orders in the HDCFA with
respect to the exact expression. The radial profile of the
AREs is typical of the CFA scheme where the maximum
value (MARE) is located close to the event horizon
(∼1.1r0 − 1.3r0) and asymptotes monotonically to negli-
gible values both as r → r0 and r → ∞.
As the elements of Table I verify, the HDCFA con-

verges since the MAREs become smaller by approxima-
telly one order of magnitude (at least for the first few
orders) as we increase the order of the approximation by
one. It is also clear that HDCFA provides an excellent
approximation of the exact solutions for Lovelock black
holes at different dimensions only with a few parameters.

In fact, even at the first order of the approximation we
have a MARE for the metric function that is only a small
fraction of 1%. This means, that the highly complicated
exact expressions involving a plethora of Lovelock
parameters belong in the family of the so-called “mod-
erate metrics” [43] that can be accurately approximated at
the first order in HDCFA and thus be described in terms of
a simple analytic expression. Recently it has been shown
that it may be possible to formulate this concept of a
moderate metric using a mathematically strict invariant
measure [44]. Possible constraints on the black-hole
parametrization coming from experiments related to
observations of gravitational waves have been discussed
in [45].

TABLE I. The maximal absolute relative error in percentages (%) between the exact metric function and its
approximation for various dimensions (D) and orders in the HDCFA. The values of the parameters here are fixed to
(r0 ¼ 3, Q ¼ 2

3
, α̃0 ¼ 0, α̃1 ¼ 1, α̃2 ¼ 1

4
, α̃3 ¼ 1

5
, α̃4 ¼ 1

7
, α̃5 ¼ 1

10
).

HDCFA order D ¼ 5 D ¼ 6 D ¼ 7 D ¼ 8 D ¼ 9 D ¼ 10 D ¼ 11

1 0.0123 0.0894 0.1532 0.1998 0.2353 0.2611 0.2816
2 0.0022 0.0122 0.0133 0.0149 0.0125 0.0128 0.0121
3 0.0003 0.0029 0.0024 0.0035 0.0042 0.0044 0.0046
4 Oð10−6Þ 0.0006 0.0018 0.0020 0.0022 0.0022 0.0019

3.0 3.5 4.0 4.5 5.0 5.5 6.0
0.000

0.002

0.004

0.006

0.008

0.010

0.012

3.0 3.5 4.0 4.5 5.0 5.5 6.0
0.00

0.05

0.10

0.15

3.0 3.5 4.0 4.5 5.0 5.5 6.0
0.00

0.05

0.10

0.15

0.20

3.0 3.5 4.0 4.5 5.0 5.5 6.0
0.00

0.05

0.10

0.15

0.20

0.25

FIG. 1. The absolute relative error between the exact solutions fðrÞ and the HDCFA fapprðrÞ at the first four orders of the
approximation expressed in percentages (%), for D ¼ 5 (top left), D ¼ 7 (top right), D ¼ 9 (bottom left) and D ¼ 11 (bottom right).
The values of the parameters are (r0 ¼ 3, Q ¼ 2

3
, α̃0 ¼ 0, α̃1 ¼ 1, α̃2 ¼ 1

4
, α̃3 ¼ 1

5
, α̃4 ¼ 1

7
, α̃5 ¼ 1

10
).
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By truncating the continued-fraction expansion in
Eq. (2.12) to the first order we end up with the following
analytic form that can describe moderate metrics for any
charged and asymptotically flat HD black hole in an
arbitrary theory of gravity:

fmodðrÞ ¼ 1 − ðϵþ 1Þ
�
r0
r

�
D−3

þ a0

�
r0
r

�
2ðD−3Þ

þ ða1 − a0 þ ϵÞ
�
r0
r

�
3ðD−3Þ

− a1

�
r0
r

�
4ðD−3Þ

;

ð3:11Þ

where ϵ and a0 are defined in Eq. (2.15).
In the case of Lovelock black holes, μ is given by

Eq. (3.10) and a1 turns out to have the simple and very
compact form

a1 ¼
2μ

rD−3
0

−
Q2

r2ðD−3Þ
0

− 3þ 2þ r30ψ
0ðr0Þ

3 −D

¼ 2ϵ − 1 − a0 þ
2þ r30ψ

0ðr0Þ
3 −D

; ð3:12Þ

where we have used ψðr0Þ ¼ r−20 and ψ 0ðr0Þ is given by

ψ 0ðr0Þ ¼
ðD − 3ÞQ2 þ ð1 −DÞPk

m¼1 α̃mr
2ðkþl−mÞ
0P

k
m¼1mα̃mr

2ðkþl−mÞþ3
0

;

ð3:13Þ

with k≡ bD−1
2
c and l≡ bD−2

2
c for D ≥ 5.

Thus, for a given fixed set of values for the free
parameters ðr0;Q; α̃mÞ one obtains a compact and very
accurate (MARE at fractions of one percent) analytic
expression for the metric function of any asymptotically
flat Lovelock black hole. In case an even more accurate
approximation is required, we provide a Mathematica®
notebook as an ancillary file (See Supplemental Material
[46]) where one can obtain compact analytic expressions
for the metric function for any D ≥ 5 and at any desired
order in the HDCFA.

C. Slowly rotating Lovelock black holes

In order to test the accuracy of the proposed para-
metrization of Sec. II C, let us consider the metric for
a slowly rotating, charged and asymptotically flat
Lovelock black hole in D dimensions described by the
line element [29,30]

ds2 ¼ −½1 − r2ψðrÞ�dt2 þ dr2

½1 − r2ψðrÞ�
− 2aψðrÞr2 sin2 θdtdϕþ r2ðdΩ2

2 þ cos2 θdΩ2
D−4Þ;
ð3:14Þ

where a is the rotation parameter and ψðrÞ is a solution to
the Lovelock equation (3.7). An inspection of the off-
diagonal metric component reveals that the function we
need to approximate by means of the parametrization
equation (2.25) is

ωðrÞr2 ¼ aψðrÞr2: ð3:15Þ

A comparison of the expansions of the metric functions
at spatial infinity and close to the event horizon determines
the values of the parameters ωm;m ≥ 0. Focusing for
illustration in the five-dimensional case for which only
the Gauss-Bonnet correction term is relevant and thus only
the α̃2 Lovelock coupling comes into play (3.9), the first
two parameters of the CFA have the following expressions:

ω0 ¼ a

�
1þQ2 þ α̃2r20

r40

�
;

ω1 ¼ −a
�
Q2

r40
þ α̃2

r20
þ r20
2α̃2

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2α̃2 þ r20Þ2

p
2α̃2

�
; ð3:16Þ

and are indeed proportional to the rotation parameter a as
expected. This ensures that in the static limit we recover the
non-rotating Lovelock black hole. Once we have a para-
metrization for aψðrÞr2 to the desired order in the con-
tinued-fraction expansion, it is then straightforward to
obtain the approximation for the full off-diagonal compo-
nent of Eq. (3.14) by multiplying the result with −2 sin2 θ.
In Fig. 2 we fix θ ¼ π=2 and plot the ARE for the first

four orders in the approximation (2.25) for the function
−2aψðrÞr2. It is clear that the parametrization scheme of
Eq. (2.25) provides an accurate description of the metric
component already at the first order with a MARE smaller
than 0.25% and also converges since the MARE is reduced
significantly with every higher-order that is taken into
account.
The fact that the approximated metric functions are

impressively close to their exact expressions is a necessary
but not sufficient condition to guaranty the accuracy of
the HDCFA. To this end, in the next section we turn to the
computation of the quasi-normal modes (QNMs) for black-
hole solutions emerging in Einstein-Lovelock theory.

IV. QUASINORMAL MODES

The necessity of the parametrization we develop appears
when solving various spectral problems, be it quasinormal
modes, bound states, grey-body factors used for the
estimation of intensity of Hawking radiation or others.
Quasinormal modes and Hawking radiation are also
important for higher-dimensional black holes, when con-
sidering various braneworld scenarios allowing for addi-
tional spacial dimensions [22,47–49]. When applying it to
the Einstein-Lovelock theory with many coupling con-
stants, constraining of many parameters of the metric from
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experiments would be an unfeasible problem. The repre-
sentation of the black-hole metric in terms of only a few
parameters would allow one to constrain the black-hole
geometry in a simple way by imposing the limits on only
those few parameters. Therefore, first of all, we need to
understand how quickly the parametrization converges
when considering spectral problems.
Thus, in order to further test the convergence of the

parametrization, here we would like to calculate character-
istic frequencies of oscillations, called quasinormal modes
of the Einstein-Lovelock black hole and compare them with
those for the approximate metrics obtained by the para-
metrization at different orders. This will give us an under-
standing on how practical the parametrization can be when
used for spectral problems around higher-dimensional
black holes. The relatively simple illustration is to consider
a test scalar field, which, unlike, the gravitational field, is
governed by a much simpler effective potential. Although
the wave equations for gravitational perturbations are well
known, they have so lengthy and complex effective
potentials that analysis of the Einstein-Lovelock black-
hole’s spectrum with many coupling constants would
require considerable computer time.
The general covariant equation for a massless scalar field

has the form

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ ¼ 0; ð4:1Þ

and after separation of the variables Eq. (4.1) takes the
following general wavelike form:

d2Ψ
dr2�

þ ðω2 − VðrÞÞΨ ¼ 0: ð4:2Þ

The “tortoise coordinate” r� is defined by the relation
dr� ¼ dr=fðrÞ, and the effective potential is

VðrÞ ¼ fðrÞ
�
lðlþD − 3Þ

r2
þ ðD − 4ÞðD − 2ÞfðrÞ

4r2

þD − 2

2r
dfðrÞ
dr

�
: ð4:3Þ

For an asymptotically flat black hole, quasinormal
modes ωn correspond to solutions of the master wave
equation (4.2) with the requirement of the purely outgoing
waves at infinity and purely incoming waves at the event
horizon:

Ψs ∼�e�iωr� ; r� → �∞: ð4:4Þ

In order to find quasinormal modes we shall use two
independent methods:
(1) the integration of the wave equation (before the

introduction of the stationary ansatz, that is, with the
second derivative in time instead of the ω2-term) in
time domain at a given point in space [50]

(2) the Wentzel-Kramers-Brillouin (WKB) method sug-
gested by Will and Schutz [51], extended to higher
orders in [52–54] and combined with the usage of
the Pade approximants in [54]. We will use the 6th
order WKB approach and use further the Pade
approximants [54] with m̃ ¼ 5, where m̃ is defined
in [55].

Both methods are very well studied and applied
in a large number of papers (see, for example, reviews
[55,56]). Therefore, we will not describe them in detail
here, but will simply show that both methods are in
good agreement in the common parametric range of
applicability.
From Table II we see that indeed there is convergence to

the quasinormal modes for the exact black-hole solution in
the example for the Einstein-Lovelock theory with four
coupling constants. There is a small discrepancy between
the WKB and time-domain results related to worse

FIG. 2. The exact solution −2aψðrÞr2 (blue curve) and its 1st order approximation (red-dashed curve) obtained via (2.25) (left panel).
The absolute relative error in percentages (%) for the first four orders of the approximation (right panel). The indicative values of the
parameters used for these figures are D ¼ 5, r0 ¼ 5, Q ¼ 3

2
, α̃2 ¼ 1

4
, a ¼ 10−2.
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accuracy of the WKB method for smaller multipoles l and,
at the same time, lack of a sufficiently long period of
quasinormal oscillations for the l ¼ 0 case, so that the
fitting of the time-domain profile by a sum of exponents
with some excitation factors does not allow us to extract
the frequencies with sufficient accuracy. Nevertheless, in
both methods we see a clear convergence to the exact
solution whose quasinormal modes are given in the last line
of the Table II.

On the other hand, from Figs. 3, 4 we can see that for
sufficiently large values of the coupling constant the
deviation from the Tangherlini spectrum is larger and more
orders of the continued-fraction expansion must be used to
provide sufficient accuracy of the parametrization. In the
case of the Einstein-Gauss-Bonnet solution (3.9) (thus,
with a single coupling constant α̃2) (see Fig. 3) we
reproduce the quasinormal modes obtained in [57,58]. In
the limit when all higher curvature corrections vanish, we

FIG. 3. The fundamental (n ¼ 0) quasinormal mode of a test scalar field as a function of α̃2 in the background of the Einstein-Gauss-
Bonnet black hole for l ¼ 2,D ¼ 7,Q ¼ 0, r0 ¼ 1. The computations are done for the metric function approximated by the first (blue),
second (green) and third (red) orders of continued fraction expansion. QNMs for the exact black-hole solution are given by the pink line.

FIG. 4. The fundamental (n ¼ 0) quasinormal mode of a test scalar field as a function of α̃3 in the background of the Einstein-
Lovelock black hole for l ¼ 2,D ¼ 7,Q ¼ 0, α̃2 ¼ 0.5, r0 ¼ 1. The computations are done for the metric function approximated by the
first (blue), second (green) and third (red) orders of continued fraction expansion.

TABLE II. The fundamental quasinormal mode (n ¼ 0) of a test scalar field for various values of the multipole number l calculated
with the help of the 6th order WKB method and using the Padé approximants and time-domain (T-d) integration; α̃2 ¼ 1=4, α̃3 ¼ 1=2,
α̃4 ¼ 1=7, α̃5 ¼ 1=10, Q ¼ 0, r0 ¼ 1, k is the order of the continued fraction expansion in the parametrization.

k WKB (l ¼ 0) T-d (l ¼ 0) WKB (l ¼ 1) T-d (l ¼ 1) WKB (l ¼ 2) T-d (l ¼ 2)

1 1.1301 − 0.5351i 1.1355 − 0.5365i 1.7049 − 0.5291i 1.7077 − 0.5277i 2.2755 − 0.5274i 2.2760 − 0.5258i
2 1.1563 − 0.5382i 1.1548 − 0.5394i 1.7213 − 0.5283i 1.7227 − 0.5282i 2.2923 − 0.5239i 2.2922 − 0.5238i
3 1.1581 − 0.5376i 1.1539 − 0.5386i 1.7215 − 0.5262i 1.7215 − 0.5272i 2.2909 − 0.5225i 2.2900 − 0.5230i
e 1.1582 − 0.5376i 1.1541 − 0.5396i 1.7216 − 0.5261i 1.7218 − 0.5285i 2.2908 − 0.5224i 2.2910 − 0.5244i
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have also reproduced quasinormal modes of the Tangherlini
solution shown in Tables IV and V of [55].
In the above Figs. 3 and 4 we can see that when the

coupling constant is relatively small (about ∼0.2), even the
first order expansion provides sufficient accuracy of the
parametrization, because the relative error in this case is
evidently much smaller than the effect, that is, the deviation
of the quasinormal frequency from its Tangherlini value.
When the second-order parametrization is used it allows to
describe even moderate values of the coupling constant
(∼0.7). In general the concrete values of the relative error
induced by the parametrization at each order depends on a
number of factors which includes the number of coupling
constants, their values and the number of spacetime
dimensions D. Nevertheless, our general experience when
calculated quasinormal modes can be summarized by the
following statement: for relatively small deviations of
the quasinormal frequencies from their Tangherlini limit
the first-order approximation provides sufficient accuracy,
while the second-order parametrization allows to test even
moderate deviations from the Tangherlini geometry.

V. CONCLUSIONS

In this work, we have introduced a parametrization
scheme for the approximation of higher dimensional
(HD), spherically symmetric and asymptotically flat
black-hole metrics in an arbitrary metric theory of gravity.
The method developed herein constitutes an extension
of the Rezzolla-Zhidenko approach [8] that is mainly
characterized by two features that set it apart from other
Taylor-expansion based approximation methods. First, the
parametrization is expressed in terms of a compact coor-
dinate x≡ ðr − r0Þr−1 that increases monotonically from
the radius r0 of the outer event horizon of the black hole
where x ¼ 0 up to asymptotic infinity r → ∞ where x ¼ 1.
Second, to encapsulate the features of the metric function
close to the event horizon, a continued-fraction expansion
(CFE) is introduced in terms of a tower of parameters [see
Eqs. (2.4)–(2.5)].
As we have pointed out, the compact coordinate is

modeled around the Schwarzschild metric function and this
observation allowed us to extend the method to HDmetrics.
Inspired by the corresponding metric function of the
Tangherlini solution [21], we have introduced a new
generalized compact coordinate as x̃ ¼ 1 − ðr0=rÞD−3

where D is the total number of dimensions. Under this
straightforward modification, we obtained a highly accu-
rate parametrization technique for HD black-hole metrics
that is valid everywhere in the spacetime outside (includ-
ing) the event horizon up to asymptotic infinity.
A main difference between the four-dimensional and

HD continued-fraction approximations (CFAs) lies in the
allowed values of the asymptotic parameter a0 of the
parametrization. By considering the asymptotic expansions
of the metric functions at spatial infinity it is easy to

associate this parameter with the asymptotic charge Q2 of
the solution [see Eqs. (2.15)]. In the context of 4D-CFA the
resultant approximate metrics need to comply with strin-
gent bounds set on the parameters by observations. In fact,
a0 can also be expressed as a combination of the para-
metrized post-Newtonian parameters β and γ [17] the
values of which are observationally determined. Taking
into account these values, any metric obtained via the 4D-
CFA formalism should have a0 of Oð10−4Þ [8]. On the
other hand, no observational constraints exist for HD
metrics and so a0 in the HDCFA remains into play and
should not be fixed a priori to a0 ¼ 0.
The extension of the parametrization to incorporate the

description of rotating higher-dimensional black hole is a
highly nontrivial task given the complexity of the problem
since in D extra dimensions the black hole can in principle
rotate in bðD − 1Þ=2c independent directions. Nevertheless,
by restricting our investigation to the case of black holes
with a single rotation parameter a, that corresponds to
rotation on a two-plane on the brane, and imposing the
slow-rotation condition a ≪ 1 we were able to formulate a
parametrization scheme for HD black holes under these
conditions.
As a first application of our method and in order to test

its accuracy, we turned to the black-hole solutions that
emerge in the context of the Einstein-Lovelock theory. We
found that only the first few terms of the HDCFA provide a
very accurate approximation for the exact, albeit cumber-
some expressions for the metrics in various dimensions and
Lovelock curvature orders. Our investigation revealed that
in the first order of the CFA, the maximum absolute relative
error (MARE) between the exact and the approximate
metric functions is smaller than 0.3% while for every
consequent order of the approximation, the MARE is
reduced by approximately one order of magnitude. The
latter result serves as a test that emphatically verifies the
convergence of our parametrization. We also provide our
readers with a supplementary Mathematica® notebook
where one can obtain for a given set of fixed values of
the free parameters of the system the HDCFA expressions
to the desired order.
The very small values of the MAREs mean that the

Lovelock solutions for asymptotically flat black holes
belong to the family of the so-called moderate metrics that
require only first order in the CFA to yield expressions
that deviate at most by a small fraction of 1% from the
exact metrics. To this end, we derived analytic expressions
for the moderate metrics that are valid for arbitrary values
of the free parameters and number of dimensions. The true
merit of these expressions is their ultra-compact size
contrary to the exact solutions that are quite lengthy
and not very convenient to perform analytic computations
with. In fact, the larger the number of dimensions the
more dramatically the complexity of the exact solutions
increases while our analytic approximations, at the cost of
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introducing an error of fractions of 1%, maintain their
compact size.
Finally, in order to test the effectiveness of the para-

metrization for solutions of various spectral problems we
calculated quasinormal modes of Einstein-Gauss-Bonnet
and Einstein-Lovelock black holes. On various examples it
is shown that when the deviation of the quasinormal modes
from their Tangherlini values (corresponding to vanishing
higher curvature corrections) are small, the first-order CFA
usually provides sufficient accuracy, while when dealing
with moderate values of the coupling constant and larger
deviations from the Tangherlini geometry, the second order
CFA becomes necessary to keep the relative error at least

one order smaller than the observable effect. This also
shows that the parametrization can be effectively used to
constrain the allowed black-hole geometry by constraining
only a few parameters of the parametrization rather then
dealing with multiple coupling constants of the Einstein-
Lovelock black holes.
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