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Wave equations containing spatial derivatives which are higher than second order arise naturally in the
context of condensed matter systems. The solutions of such equations contain more than two modes and
consequently, the range of possible interactions between the different modes is significantly enhanced
compared to the two mode case. We develop a framework for analyzing the different mode interactions
based on the classical turning points of the dispersion relation. We then apply this framework to the
scattering of deep water gravity waves with a draining bathtub vortex, a system which constitutes the
analogue of a rotating black hole in the nondispersive limit. In particular, we show that the different
scattering outcomes are controlled by the light-ring frequencies, a concept routinely applied in black hole
physics, and two new frequencies which are related to the strength of dispersion. We find that the frequency
range in which the reflected wave is superradiantly amplified appears as a simple modification to the
nondispersive case. However, the condition to observe this amplification is complicated by the fact that a
superradiant mode can be reflected back into the system by scattering with one of the additional modes. We
provide estimates for the reflection coefficients in the full dispersive regime.
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I. MOTIVATION

Analogue models of gravity are an exciting area of
research that have attracted much attention on both the
theoretical and experiment fronts in the past two decades.
The analogue gravity program aims to shed light on physical
processes arising in gravitational physics and condensed
matter systems alike [1–3], and as such has become an active
area of inter-disciplinary research. A particularly promising
analogue gravity system consists of water waves propagat-
ing on open channel flows. Small perturbations with wave-
lengths larger than the water depths, which are commonly
referred to as shallow water waves, exhibit dynamics which
can be mapped onto wave propagation on a curved space-
time, e.g., in the vicinity of nonrotating [4–8] and rotating
black holes [9]. The effective spacetime geometry is fully
determined by fluid parameters [10], and thus by setting up
specific fluid flows, one can mimic a variety of analogue
spacetime geometries. The overarching goal within this field
of research is to study effects predicted within classical and
quantum field theory on curved spacetime geometries in
analogue gravity systems.
For example, among the first successful experimental

realisations of an analogue gravity system were those

concerning gravity waves on an effectively one-dimen-
sional open channel flow, with varying depth, exhibiting
effective black and white hole horizons. These experimen-
tal explorations lead to the detection of the classical
equivalent of Hawking radiation, see for example [4–8].
Consequently, there exists a large body of work in the
literature devoted to understanding the Hawking effect in
surface wave analogues, adapting the naive analogy to
experimental reality, e.g., taking dispersive effects into
account, [11–18].
The focus here is on analogue gravity systems exhibiting

two spatial dimensions, allowing the study of processes
associated with rotating black holes in a controlled labo-
ratory setting. In particular modeling efforts are concen-
trated on rotating, draining vortex flows. These models
possess both a horizon and an ergosphere and thus have the
potential to mimic a variety of rotating black hole processes,
[19–21]. There are two such processes that have recently
been demonstrated in a laboratory setup—ringdown and
superradiance—which we introduce next.
Perturbed black holes relax toward equilibrium via the

emission of quasinormal modes (QNMs), solutions of the
equation of motion with complex frequencies which obey
dissipative boundary conditions. QNM emission (or ring-
down) is also expected to occur around draining vortices
[22,23] and the real part of the QNM spectrum was recently
measured in an experiment [9]. It has since been argued that
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the QNM spectrum could be used to extract information
about the fluid’s velocity using a flow characterisation
method based on black hole spectroscopy [24]. This
demonstrates how techniques borrowed from black hole
physics can be used to develop new insights and methods to
study fluid systems, and thus testifies to the two-way utility
of analogue gravity studies.
Rotational superradiance, the subject of our study, is an

effect that is expected to occur in the vicinity of rotating
black holes and vortex flows alike [25–27]. Superradiance
is an energy enhancement effect, in which an incident wave
is amplified during a scattering event, thereby extracting
energy from the system (see [28,29] for a review). With
origins in quantum mechanics [30–34], superradiance
appears under different guises in many disciplines. For
example, it is related to over-reflection in fluid mechanics
[35–38]. The name superradiance, however, has perhaps
become most associated with superradiance around rotating
black holes, [39–42] where it played a key role in the early
development of black hole thermodynamics [43,44]. More
recently, proposals have been outlined to search for physics
beyond the standard model using black hole superradiance
[45–47]. The first direct detection of rotational super-
radiance was performed in [48] using a draining vortex
flow and, although the analogy to black hole physics using
surface waves is mathematically precise only in the shallow
water regime, the amplification was in fact measured closer
to the deep water regime where the system is strongly
dispersive. The strong dispersive regime requires one to
work with the full dispersion relation, instead of the weak
dispersive regime, where only next order correction to the
nondispersive regime are being taken into account.
However, little to no work has been carried out on the

theoretical modeling of superradiant scattering processes in
regimes readily accessible for hydrodynamic rotating black
hole experiments. With experiments on-going, there is a
need for improvement in the theoretical modeling. Below
we present an analytical study of scattering of surface
waves from a hydrodynamic rotating black hole in the full
dispersive regime.

II. METHODOLOGY

We apply a combination of multiple scale analysis and
matched asymptotics techniques, to obtain an (approxi-
mate) analytic and globally defined solution for scattering
processes arising within analogue rotating and nonrotating
black holes in two-spatial dimensions.
We first apply the Wentzel-Kramers-Brillouin (WKB)

method, which is a particular case of what is more generally
referred to as multiple scale analysis [49]. The basic idea
behind the WKB approximation is to assume that the
solutions can be split into a slowly varying amplitude and a
rapidly varying phase. As we demonstrate below, this
ansatz allows us to recast the complicated problem of
scattering processes of dispersive waves in terms of a much

simpler problem of scattering of pointlike particles. This
method is precisely analogous to semiclassical approxima-
tions in quantum mechanics [50], and is also known as ray-
tracing (e.g., in plasma physics [51]), where the light rays
are in direct correspondence with the trajectories of semi-
classical particles. The two separate notions of wavelike
and particlelike behavior become equivalent in the limit of
small wavelengths (or in our case, large azimuthal num-
bers) and thus, the methods laid out in this work are
expected to yield increasing accuracy for the modes in the
system with high angular momentum. Indeed, similar
methods based on a WKB approximation have already
been shown to accurately predict experimental observations
e.g., the black hole ringdown behavior from hydrodynamic
rotating black holes [9].
However, as commonly known, the approximate WKB

solutions become singular at turning points, which are the
locations where a classical particle changes direction. In
optics, these locations are known as caustics [49]. This
failure is to be expected in a sense, since the WKB solution
can only account for adiabatic changes in each mode. Thus
if one wants to study nonadiabatic process, in particular
wave scattering between modes, the WKB method is
expected break down or nothing interesting would happen.
The presence of turning points indicates the presence of
nontrivial mode interaction. When the system has no real
turning points, one usually has to look to more intricate
methods beyond WKB, e.g., in the presence of complex
turning points [18].
The focus in this work is to investigate the different

possible outcomes of wave scattering in dispersive systems
by studying mode propagation around turning points. To
this end, we first construct WKB solutions which are valid
sufficiently far away from the turning points then solve the
wave equation exactly around the turning points. In order to
construct globally defined solutions, we apply the method
of matched or intermediate asymptotics to patch together
the WKB solutions.
Within our approach, we are circumventing one of the

major difficulties in applying standard black hole tech-
niques to dispersive analogue systems. Analogue horizons
are well-defined in the nondispersive regime and occur at
locations when the perturbation speed equals the speed of
the fluid flow. However, in dispersive systems the horizon
is not a well-defined concept due to the frequency depend-
ence of the speed of wave-propagation. Within our frame-
work, it is nonetheless possible to ask questions about black
hole superradiance by studying the behavior of the sol-
utions around turning points, independent of the existence
of a universal horizon.

III. OVERVIEW

After establishing our general framework, we demon-
strate its usefulness by applying it to the problem of
dispersive gravity wave scattering around a draining vortex
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flow, finding that there are a total of six possible scattering
outcomes. We focus on the deep water regime, an approxi-
mation to the full dispersion relation for short wavelengths
with respect to the water depth. As well as being the most
relevant regime for existing analogue experiments [9,48],
this is also the most mathematically consistent treatment of
the problem, since the WKB approximation becomes exact
in the limit that the wavelength goes to zero. We find that
the transition between different scattering outcomes is
delineated in parameter space by four important frequen-
cies. The first pair are the co- and counterrotating light-ring
ring frequencies, familiar from the stationary orbits of light-
rays (or null geodesics) around black holes, whereas the
remaining two are related to the strength of dispersion. In
particular, one of the latter is related to a negative energy
mode entering the vortex and gives a necessary condition
for superradiance, which appears as a simple modification
to the nondispersive result. However, a careful analysis
reveals that this condition is not sufficient to observe
amplification at infinity, since the amplified mode can be
reflected back into the vortex core by scattering with one of
the extra modes in the system. The possibility of re-
scattering is related to the co-rotating light-ring frequency.
This finding constitutes the principle result of this work.
Finally, we provide approximate expressions for the

reflection coefficients in each of the scattering scenarios. In
contrast to the behavior of the reflection coefficient in the
nondispersive case, we find that there can be a frequency
range in which the reflection coefficient stays close to unity
directly following the range where amplification occurs.
The reason behind this is that dispersion can completely
prohibit the propagation of long-wavelength modes in the
vortex core, meaning that they are completely reflected.

IV. THE SYSTEM

The method we present can be applied to a broad class of
systems whose linear fluctuations obey the wave equation
below. The dispersive character of the waves will be
determined by the physical system under consideration,
and the scattering of these waves is dictated by the
geometry of the setup. We now address each of these
aspects individually.

A. The wave equation

Consider a general wave equation in (N þ 1) dimensions
of the form,

D2
tϕþ Fð−i∇Þϕ ¼ 0; ð1Þ

where ϕ represents the fluctuations and F is an arbitrary
function of the gradient operator. In the context of fluid
mechanics, v corresponds to the velocity field of the
background medium and Dt ¼ ∂t þ v · ∇ is the material
derivative. In general relativity, v represents the shift vector

appearing the in metric when splitting into space and time
components [52]. This wave equation neglects dissipation
but accounts for generic dispersion through the function F.
It can be derived as the Euler-Lagrange equation of the
following action [17],

S ¼ 1

2

Z
½ðDtϕÞ2 − ϕFð−i∇Þϕ�dNxdt: ð2Þ

Using the action, one can derive conserved currents by
applying Noether’s theorem for symmetries of the action
[53]. For example, for the internal symmetry ϕ → ϕeiα

where α is a phase shift, one obtains the conservation
equation for the norm current,

∂tρ½ϕ� þ ∇ · J½ϕ� ¼ 0; ð3Þ

where the norm is defined [18],

ðϕ;ϕÞ ¼
Z

ρ½ϕ�d2x ¼ −
Z

Im½ϕ�Dtϕ�dNx: ð4Þ

and J½ϕ� is the corresponding current.

B. The dispersion function

First, one must make a choice for the dispersion function
F. Our model example will consist of a body of water at
depth h moving with velocity v in the ðx; yÞ plane (i.e.,
N ¼ 2). Fluctuations to the water’s surface δh (known as
surface gravity waves) are described by the equation of
motion [54],

D2
tϕ − ig∇ · tanhð−ih∇Þϕ ¼ 0; ð5Þ

which is precisely of the form in (1). Here, ϕ is identified
with a perturbation of the velocity potential which is related
to the free surface fluctuations via,

δh ¼ −g−1Dtϕ: ð6Þ

When the wavelength of the fluctuations is much larger
than h, one may work with a truncation of the hyperbolic
tangent function in (5) to leading order in its argument. This
regime, known as shallow water, has the wave equation,

D2
tϕ − c2∇2ϕ ¼ 0; ð7Þ

where c ¼ ffiffiffiffiffi
gh

p
is the shallow water wave speed. Since all

frequencies propagate at this speed, the system is non-
dispersive. Note that (7) is obtained as the low frequency
behavior of a wide variety of systems [3] besides that of
gravity waves on open channel flows. All that is required is
that the leading term in the Taylor expansion of F is
quadratic in k.
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The wave equation (7) is formally equivalent to the
Klein-Gordon equation for a massless scalar field ϕ,

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕÞ ¼ 0; ð8Þ

which describes how ϕ moves through an effective space-
time whose metric is,

gμν ¼
�
−c2 þ v2 −v

−v I

�
; ð9Þ

where I is the N × N identity matrix. The equivalence
between (7) and (8) forms the basis of the analogy between
fluid mechanics and general relativity. As noted above, this
limiting behavior is not unique to gravity waves and as
such, fluctuations in a variety of systems can be described
in terms of an effective spacetime geometry [3]. In what
follows, we will be interested in how this description is
modified when dispersive effects are included.

C. Model setup

Finally, one must choose the function v which deter-
mines the coordinate dependence of the background. Our
model setup will be an effectively two dimensional irrota-
tional vortex flow, composed of an inviscid, incompressible
fluid. If the system is axisymmetric and stationary, the
general solution to the incompressible and irrotational
conditions (∇ · v ¼ 0 and ∇ × v ¼ 0 respectively) in polar
coordinates is,

v ¼ −
D
r
er þ

C
r
eθ: ð10Þ

Since we will be interested in modelling a draining vortex,
we take the drain parameterD to be a positive constant. The
circulation C can in principle take either sign. We choose C
to be a positive constant which means the vortex rotates in
the direction of increasing θ. This solution for v is
consistent with the full fluid equations far away from
the center where the water’s surface h is approximately
uniform. The flow profile in (10) is known as the draining
bathtub vortex (DBT).
In the shallow water regime, this flow profile constitutes

the analogue of rotating black hole spacetime, since it
exhibits both a horizon and an ergosphere. The horizon rh
is the boundary of the region inside of which no perturba-
tion can escape to infinity and is given by the condition
jer · vðrhÞj ¼ c. The ergosphere re is the boundary of the
region inside of which no perturbation can move against the
flow’s rotation with respect to infinity and is given by
jvðreÞj ¼ c. Solving these two conditions using (10) gives,

rh ¼
D
c

re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þD2

p

c
: ð11Þ

V. THE WKB APPROXIMATION

A. Homogeneous flow

When v is homogeneous, (1) admits exact plane wave
solutions ϕ ∼ expðik · x − iωtÞ, whose frequency ω and
wave vector k are related through the dispersion relation,

Ω2 ≡ ðω − v · kÞ2 ¼ FðkÞ; ð12Þ

where Ω is the intrinsic frequency of the wave in the fluid
frame. The specific k dependence in F will determine the
number of solutions kj to (12), where j ¼ 1; 2;…;M where
M is the total number of modes. For F polynomial in k, M
corresponds to the order of the highest spatial derivative in
(1). Throughout this work, superscript j will indicate that a
quantity is associated to a particular kj mode.
Since (1) is second order in time, solutions to the

dispersion relation can lie on one of two branches given by,

ω�
D ¼ v · k�

ffiffiffiffiffiffiffiffiffiffi
FðkÞ

p
: ð13Þ

The dispersion function FðkÞ determines the group velocity
of the waves via,

vg ¼ ∇kω ¼ v � ∇k

ffiffiffiffi
F

p
: ð14Þ

This is frequency independent only when F is quadratic in
k, which corresponds to (1) being second order in spatial
derivatives. For any other k dependence, vg becomes
frequency dependent and the system is dispersive.

B. Inhomogeneous flow

When v is nonuniform, plane waves will no longer be
solutions to (1). However, if the fluctuations vary over a
scale λ which is much shorter that the scale L over which v
changes, one can define a small parameter ϵ ¼ λ=L ≪ 1
and write the solution to (1) as,

ϕ ¼ Aðx; tÞ exp
�
iSðx; tÞ

ϵ

�
; ð15Þ

where A and S are the local amplitude and phase respec-
tively. Inserting (15) into the wave equation (1), the leading
contribution in ϵ gives the Hamilton-Jacobi equation,

ð∂tSþ v · ∇SÞ2 − Fð∇SÞ ¼ 0: ð16Þ

This derivation is explained in more detail in [54].
Identifying the frequency and wave vector through,

ω ¼ −∂tS; k ¼ ∇S; ð17Þ

the Hamilton-Jacobi equation is equivalent to the
dispersion relation (12) which now gives the local values
of ω and k when v is varying. Since (16) is a first order
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partial differential equation, its solution can be obtained by
first splitting into a system of first order ordinary differ-
ential equations and solving these for the integral (or
characteristic) curves. These characteristics (known as rays
in optics and geodesics in general relativity) can be found
from an effective Hamiltonian H. Using (13), this can be
expressed concisely as,

H ¼ −
1

2
ðω − ωþ

DÞðω − ω−
DÞ: ð18Þ

The characteristics are obtained as the solutions of
Hamilton’s equations,

_xμ ¼ ∂H
∂kμ ;

_kμ ¼ −
∂H
∂xμ ð19Þ

where xμ ¼ ðx; tÞ, kμ ¼ ðk;ωÞ and the overdot denotes the
derivative with respect to τ which parametrizes the curves.
Solving the system of equations (19) gives the coordinates
and the conjugate momenta in terms of the parameter τ, i.e.,
xμ ¼ xμðτÞ and kμ ¼ kμðτÞ. The phase part of ϕ in (15) can
then be reconstructed by integrating (17) along the different
trajectories. In addition to (19), the solutions are also
required to satisfy the Hamiltonian constraint,

H ¼ 0; ð20Þ

which guarantees that they lie on one of the two branches
of the dispersion relation (12). A solution which satisfies
this condition is called on-shell, a name borrowed from
quantum field theory to describe particles which satisfy the
relativistic energy momentum relation [53].
At next to leading order in ϵ, the wave equation gives a

transport equation for the amplitude,

∂tðΩA2Þ þ ∇ · ðvgΩA2Þ ¼ 0; ð21Þ

which can be solved for A using the solutions of
the Hamilton-Jacobi equation (16). This equation describes
how the amplitude evolves adiabatically along the character-
istics. As noted earlier, (21) fails to account for nonadiabatic
exchanges between different modes. This motivates the
development of matching procedures outlined shortly.

C. Stationary systems

The difficulty of the problem is reduced significantly
when v does not evolve in time, which means that each
frequency component evolves independently of the others.
The same is true when the system exhibits some degree
of spatial symmetry, for example, if v is independent
of the azimuthal angle θ as in (10). In this case, each of
the azimuthal components also evolves independently.
Perturbations can then be decomposed as,

ϕðr; θ; tÞ ¼
Xþ∞

m¼−∞

ψðrÞffiffiffi
r

p eimθ−iωt ð22Þ

where m is the azimuthal number and ψ is the radial
mode, i.e., the part of the field containing the r dependence.
The factor of

ffiffiffi
r

p
is introduced for convenience. Under

these conditions, the wave equation (1) becomes an
ordinary differential equation in r for ψ, which we can
solve for using the WKB framework established in the
previous section. In these coordinates, the wave vector has
components,

k ¼ ðp;m=rÞ; k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

r2

r
ð23Þ

where p is the radial wave vector and k ¼ jkj. The radial
WKB modes are given by,

ψ j ¼ AjðrÞei
R

pjðrÞdr: ð24Þ

An added benefit of this effectively one dimensional
treatment is that pjðrÞ can be obtained directly from the
dispersion relation (12) for fixed ω and m. This is
equivalent to (but far simpler than) solving Hamilton’s
equations (19), since the former is an algebraic problem
where as the latter involves differential equations. The
amplitudes Aj are obtained by solving the transport
equation (21) for each pj. Using (12), (14) and (18) to
write H0 ¼ er · vgΩ, where prime denotes derivative with
respect to p, one finds,

Aj ¼ αjjH0ðpjÞj−1
2 ð25Þ

where αj is an adiabatically conserved constant of motion.
Using (24), one can evaluate the norm in (4) for the jth
WKB mode,

ρ½ϕj� ¼ ΩðpjÞjAjj2: ð26Þ

In stationary systems, the norm is equivalent to the energy
up to a factor of ω and thus, the sign of the norm and the
energy coincide when considering positive frequency mode
ω > 0. Hence, a mode with ΩðpjÞ < 0 carries negative
energy. The corresponding current dictates the direction of
energy flow and is given by [18,55],X

j

H0ðpjÞjAjj2 ¼ const; ð27Þ

which is a conserved quantity along r. These last two
equations play an essential role in the study of superradiant
scattering.
As an example, consider the dispersion relation for

gravity waves in the flow field of (10),
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�
ω −

mC
r2

þ pD
r

�
2

¼ gk tanhðhkÞ: ð28Þ

The different solutions pj are given by the intersections of a
line of constantωwith one of the branches of the dispersion
relation,

ω�
D ¼ mC

r2
−
pD
r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk tanhðhkÞ

p
: ð29Þ

An example is shown in Fig. 1. This particular example has
M ¼ 4 solutions which are labeled j ∈ fd;−;þ; ug in
order of increasing p.

D. The transfer matrix

The transfer matrix M is an M ×M matrix which acts
on the WKB amplitudes defined in (25) at a point rb and
gives their value at another point ra < rb,

Aa ¼ MAb; ð30Þ

where Aa;b is an M component column vector containing
all the Aj

a;b ¼ Ajðra;bÞ and ra;b are usually defined to be the

edges of the system. As a matter of convention, we will
always order the amplitudes in A so that the mode with the
largest value of Re½pj� appears at the top and Re½pj�
decreases moving down the column vector.
The role of M is to estimate the amount of mixing

between the different modes in the system. If M is a
diagonal matrix then each mode evolves independently of
the others and no scattering occurs. When couplings
between the modes are included, M acquires off-diagonal
terms which lead to mode-mixing. As already argued, the
dominant contributions to the scattering come from the
classical turning points, where neighboring trajectories
coincide and the wave reverses its direction. In this work,
we focus only on the scattering due to classical turning
points, although when mode couplings are computed via
other methods (e.g., [18,56]) they contribute in form of
additional off-diagonal terms in M.
The construction of M proceeds in the following

manner.
(1) Between turning points, the WKB approximation is

valid and each mode will evolve according to (15).
This is encoded the M ×M transport matrix, to be
defined later, which transports the solutions adia-
batically from one point to another.

(2) At the turning points, the modes mix with each other
as a result of the nonadiabatic coupling taking place
there. This mixing is computed via an asymptotic
matching procedure outlined in the next section, and
the result can be expressed as a matrix which
transfers the WKB solution across the turning point.

(3) Hence, to compute the full transfer matrix, we can
successively combine a series of M ×M matrices
from point to point as we traverse the system from
one side to another.

E. Turning points

At fixedω andm, let the location of a turning point be rtp
with corresponding momentum ptp. These two values are
obtained by simultaneously solving,

Htp ¼ 0; H0
tp ¼ 0; ð31Þ

where subscript tp denotes that a quantity is evaluated on
the turning point. The second condition means that the
WKB amplitudes in (25) diverge as expected. The con-
ditions (31) on the Hamiltonian are equivalent to the
following conditions on the dispersion relation,

ω ¼ ω�
Dðrtp; ptpÞ; ∂pω

�
Djrtp;ptp

¼ 0; ð32Þ

which means that the turning points are given by the
intersections of ω ¼ const lines with the extrema of ω�

D
(see e.g., Fig. 1). When this happens, two of the pj have the
same value, i.e., they interact in the ðr; pÞ plane. This
interaction means that there will be conversion between the

FIG. 1. The different branches of the dispersion relation for (29)
at fixed m, C, D, h and r as shown in black. The skew of the
branches is due to the pD=r term in (29) and the gap between ω�

D
at p ¼ 0 results from them2=r2 term in k, see (23). Both branches
are either raised or lowered by the mvθ=r term depending on the
sign of m. The four pj correspond to the intersections of a line of
fixed ω with the branches; an example of this is given. Also
shown (blue) is the shallow water approximation to the dispersion
relation, which only has two solutions and is valid for small p.
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two modes and scattering will occur. Beyond the turning
point, the interacting pj become complex and ω ¼ const
does not intersect with ω�

D. Within semiclassical quantum
mechanics, this is a forbidden region for classical particles.
In terms of the waves, the solutions to the wave equation
will be evanescent and decay spatially. For the purposes of
this section, let the interacting modes be denoted pL;R when
they are real. pL < pR so that pL is to the left of pR when
plotted on the dispersion relation. In the forbidden region,
they are labeled p↑ (growing with increasing r) and p↓

(decaying with increasing r). These modes only become
real and propagating again if they see another turning point.
Before proceeding, we briefly outline the spirit of the

calculation. To find an exact solution around the turning
point, one needs to find the local form of the wave equation
to linear order in r − rtp. Since a turning point involves a two
mode interaction, the wave equation will be second order in
spatial derivatives and exhibits two independent solutions.
Once obtained, the asymptotic form of these is mapped
directly onto the WKBmodes close to the turning point and
in doing so, one can smoothly connect the different WKB
modes either side of rtp. In particular, the relation between
the mode amplitudes across the turning point can be
collected into a matrix which transfers the WKB solution
from one side of rtp to the other. The goal of this section will
be to find the form of this local transfer matrix.
Since the functional form of the exact and WKB

solutions are smoothly connected in the matching region,
the field and its first derivative are guaranteed to be
continuous, which is the usual requirement of matching
procedures for solutions to second order differential equa-
tions. This method implicitly assumes that the matching
region is sufficiently close to rtp that the linear expansion of
the wave equation is valid but is large enough that the exact
solution can reach its asymptotic value. Balancing these
two requirements yields a validity condition for the
procedure (see e.g., [14]). However, we shall soon see that
the exact solutions in our case are Airy functions [57],
which rapidly approach their asymptotic value moving
away from the turning point. Furthermore, the argument of
the Airy function becomes larger as jmj is increased,
therefore one can always find a scenario where the
approximation is valid simply by increasing the value of
jmj. One final requirement is that when there are multiple
turning points, these must be far enough apart that the
WKB solutions give a valid approximation in between.
When two turning points become close, one can instead
find an exact solution about a saddle point [56]. We do not
explore this here and instead restrict our attention to
scenarios where the turning points are far apart.
Now for the analysis. The local form of the wave

equation in the neighborhood of rtp can be obtained by
first expanding the Hamiltonian (18). At fixed ω andm, the
Hamiltonian is a function of r and p only, which at leading
order is given by,

Hðr; pÞ ¼ ∂rHtpðr − rtpÞ þ
1

2
H00

tpðp − ptpÞ2; ð33Þ

where we have used the conditions in (31). For solutions
to the dispersion relation, one has H¼0. Promoting
p→−i∂r, Eq. (33) may be rewritten as the leading
contribution to wave equation,

−∂2
rψ tp þ 2iptp∂rψ tp þ ½p2

tp þQðr − rtpÞ�ψ tp ¼ 0; ð34Þ

where Q ¼ 2∂rHtp=H00
tp which is a constant factor deter-

mined by the properties of the turning point. Note that Q
increases with jmj. The general solution to (34) is,

ψ tp ¼ eiptpr½C1AiðsÞ þ C2BiðsÞ�; ð35Þ

where AiðsÞ and BiðsÞ are the two linearly independent
solutions of Airy’s equation [57], C1;2 are constants and
we have defined s ¼ Q1=3ðr − rtpÞ. Sufficiently far from
the turning point, i.e., in the limits s → �∞, these
asymptote to,

AiðsÞ ∼
−∞

1

2jsj1=4 ffiffiffi
π

p ðe−i23ð−sÞ3=2þiπ
4 þ ei

2
3
ð−sÞ3=2−iπ

4Þ;

∼þ∞

e−
2
3
s3=2

2jsj1=4 ffiffiffi
π

p ;

BiðsÞ ∼
−∞

i

2jsj1=4 ffiffiffi
π

p ðei23ð−sÞ3=2−iπ4 − e−i
2
3
ð−sÞ3=2þiπ

4Þ;

∼þ∞

e
2
3
s3=2

jsj1=4 ffiffiffi
π

p : ð36Þ

Next, one must find the form of the WKB solutions close to
the turning point. First, solving (33) for H ¼ 0 yields the
radial wave vector in terms of s,

p ¼ ptp �Q
1
3ð−sÞ12: ð37Þ

Also using (33) to compute the leading contribution to the
amplitude (25), the WKB solution becomes,

ψWKB ∼
eiptpr

jsj1=4 e
�2

3
ið−sÞ32 : ð38Þ

Consider the scenario where the modes are oscillatory for
s < 0 and evanescent for s > 0. The solution either side of
the turning point is,

ψðs < 0Þ ¼ αRψRðsÞ þ αLψLðsÞ;
ψðs > 0Þ ¼ α↓ψ↓ðsÞ þ α↑ψ↑ðsÞ: ð39Þ

where we have defined,
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ψL ≃
e−i

2
3
ð−sÞ3=2

2jsj1=4 ffiffiffi
π

p ; ψR ≃
ei

2
3
ð−sÞ3=2

2jsj1=4 ffiffiffi
π

p ;

ψ↑ ≃
e
2
3
s3=2

2jsj1=4 ffiffiffi
π

p ; ψ↓ ≃
e−

2
3
s3=2

2jsj1=4 ffiffiffi
π

p : ð40Þ

By comparing these with ψ tp in (34), one finds that the
amplitudes are related by,

�
αR

αL

�
¼ T

�
α↓

α↑

�
; T ¼ e

iπ
4

�
1 − i

2

−i 1
2

�
; ð41Þ

where T is called the local transfer matrix. Similarly, when
the decaying modes are at s < 0 and the oscillatory modes
s > 0, the solutions above can be used with the trans-
formation s → −s to show that the coefficients there obey,

�
α↑

α↓

�
¼ T̃

�
α̃R

α̃L

�
; T̃ ¼ e

iπ
4

� 1
2

− i
2

−i 1

�
; ð42Þ

where T̃ is the complex inverse of T. Note that the ↑ is
defined as the one which grows in the direction of
increasing r, hence, the labels on the evanescent modes
in (40) need to be swapped when performing the trans-
formation s → −s. The result is that the location of the
evanescent mode amplitudes in the column vectors differs
from (41) to (42) and thus, the transport matrix for
evanescent modes should be antidiagonal (this will be
illustrated shortly). Note also that, as defined, T outputs
(T̃ acts on) a column vector containing the mode with the
larger of the two wave vectors at the top. This fits with the
convention outlined in Sec. V D.
Many of the scattering scenarios considered in this work

include multiple turning points. Let two such turning points
be denoted ra and rb, with evanescent modes p↑ and p↓ in
the region ra < r < rb. It will prove extreme useful to
define a matrix N ab which relates the amplitudes (Aj

b) of
oscillatory modes in the region r > rb to those (Aj

b) at
r < ra. First, we define the shift factor F j

ab which
adiabatically translates the WKB mode ψ j from rb to ra,

F j
ab ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����H0
bðpjÞ

H0
aðpjÞ

����
s

exp

�
−i

Z
rb

ra

pjdr

�
: ð43Þ

Note that these functions are scalars and not tensors; the
lower indices indicate that the function is applied at rb and
returns an object at ra. The mode amplitudes are then
related by applying the local transfer and transport matrices,
where the latter is anti-diagonal in the forbidden region,

�
AR
a

AL
a

�
¼ T

�
0 F↓

ab

F↑
ab 0

�
T̃

�
AR
b

AL
b

�
: ð44Þ

In the forbidden region, the radial wave vectors satisfy
Re½p↑� ¼ Re½p↓�, Im½p↑� ¼ −Im½p↓� < 0, and one also has
jH0ðp↑Þj ¼ jH0ðp↓Þj. Using these relations, (44) can be
rewritten,

�
AR
a

AL
a

�
¼ F↓

abN ab

�
AR
b

AL
b

�
; ð45Þ

where we have defined,

N ab ¼

0
B@ 1þ 1

4
f2ab i

�
1 − 1

4
f2ab

�
−i
�
1 − 1

4
f2ab

�
1þ 1

4
f2ab

1
CA;

fab ¼ exp

�
−
Z

rb

ra

Im½p↓�dr
�
: ð46Þ

The matrix N ab will serve as the main tool in computing
scattering coefficients in this work.
Note, the naive application of this formula to scenarios

where rb − ra is smaller then the local wavelength (or
decay length) will yield erroneous results. The reason is
that the linear expansion in (33) is not valid since the value
of ∂rHtp becomes very small. In this case, a quadratic
expansion of the Hamiltonian is more appropriate, see e.g.,
[56]. We do not explore this here, but note that the method
results again in a matrix like N ab, albeit with different
components, converting between oscillatory WKB solu-
tions. This can be easily incorporated into our framework
simply be changing the components of the matrix N ab.

VI. SHALLOW WATER

As a first example, we consider scattering in shallow
water where hk ≪ 1. The dispersion function in (28) in this
limit reduces to,

FðkÞ ¼ c2k2; ð47Þ

where the wave speed is defined c ¼ ffiffiffiffiffi
gh

p
. This choice

of dispersion function corresponds to the blue lines in
Fig. 1, which approximate the exact dispersion relation at
small p values.
The shallow water regime possesses a number of

attractive features that simplify the analysis significantly.
First, all waves (irrespective of frequency) propagate at
the same speed c; the system is nondispersive. Second,
the dispersion relation is quadratic in p and only has two
solutions: these are the p� modes. Third, the equation
governing the radial trajectories of the modes admits a
rewriting in terms of an effective potential,

V ¼ −ω̃2 þ ðc2 − v2rÞm2=r2; ð48Þ

where the frequency in the rotating frame is defined,
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ω̃ ¼ ω −mvθ=r: ð49Þ

These can be used to concisely express the exact solution
for both p modes,

p� ¼ −ω̃vr � c
ffiffiffiffiffiffiffi
−V

p

c2 − v2r
: ð50Þ

The solutions become evanescent when V is positive and
are denoted p↑ and p↓ as in the previous section. An
example of p�ðrÞ is plotted in Fig. 2. Finally, the solution
for p can be used to show that the spatial dependence in the
amplitude (25) for both modes is given by,

jH0j ¼ j
ffiffiffiffiffiffiffi
−V

p
j: ð51Þ

Since the turning points of H correspond to the zeros of V,
scattering can be understood simply in terms of the
effective potential (48). This has a maximum of two zeros.
When these zeros are far apart, the method outlined in
Sec. V E for relating the mode amplitudes is applicable.

A. Superradiance

Superradiance occurs when the system absorbs a neg-
ative energy mode. Equivalently, the energy current of a

mode propagating into the center of the vortex needs to be
positive. Such a mode extracts energy from the system, and
consequently, the reflected mode at infinity is amplified. To
see this, we can compare the conserved current in (27) on
the horizon and at infinity. The asymptotic form of the
modes in (24) is,

ψðr ¼ rhÞ ¼ A−
h e

−iω̃hr�

ψðr → ∞Þ ¼ A−
∞e−iωr=c þ Aþ

∞eiωr=c; ð52Þ
where subscript h denotes that a quantity is evaluated at rh,
and r� is a function of r that goes to −∞ on the horizon
[20]. On the horizon, the absorbing boundary condition has
been used to discard the mode whose radial group velocity
is directed toward large r. The mode which is transmitted
to smaller r corresponds to the − mode for ω̃h > 0 and the
þ mode for ω̃h < 0. Evaluating the energy current at these
locations gives,

−ω̃hjA�
h j2 ¼ −ωjA−

∞j2 þ ωjAþ
∞j2: ð53Þ

The reflection coefficient is defined as the ratio of the
energy current of þ and − modes at infinity. However,
since the prefactor H0 in the energy current is the same for
both þ and − modes, the scattering coefficients can be
defined as the ratio of the amplitudes,

R ¼ Aþ
∞

A−
∞
; T ¼ A�

h

A−
∞
; ð54Þ

where R is the reflection coefficient and T is the trans-
mission coefficient. Inserting these definitions into (53)
gives,

jRj2 þ ω̃h

ω
jT j2 ¼ 1: ð55Þ

From this expression, we clearly see that the reflected mode
is amplified (R > 1) when ω̃h < 0 is satisfied. Hence, the
condition for superradiance in the shallow water regime is,

ω <
mC
r2h

: ð56Þ

Note, although we have used WKB solutions here, this
condition can also be derived from the full conserved
current of (1) and hence is exact. It will be the challenge of
a moment to find the equivalent condition in the deep water
regime.

B. Reflection coefficient

When the effective potential has two real zeros r1 and r2
which are far apart, the scattering coefficients are related by
application of: (a) the diagonal transport matrices in the two
classically allowed regions, and (b), the matrixN 12 defined
in (46) across the forbidden region. For ω̃h > 0, we have

1 2 3 4 5 6
-6

-4

-2

0

2

4

6

FIG. 2. An example of p�ðrÞ in (50) with the parameters
C=D ¼ 1, ωD=c2 ¼ 0.26 and m ¼ 1. Only the real part of p is
displayed. The figure shows two modes propagating on the far
right which then meet at a turning point. The modes then remain
evanescent until a second turning point is reached at smaller r.
Since ω̃h < 0 for these parameters, the þ mode crosses the
horizon whereas the − mode diverges there. The location of the
two modes on the dispersion relation at different values of r are
displayed in panels A to D. The different panels correspond to
dashed black lines on the main figure with the same label. In the
panels, red crosses indicate p ∈ R whereas the red circle
indicates p ∈ C.
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�
0

T

�
¼
�
Fþ

h1 0

0 F−
h1

�
F↓

12N 12

�
Fþ

2∞ 0

0 F−
2∞

��
R

1

�
; ð57Þ

whereas for ω̃h < 0, T and 0 swap positions in the column
vector since the mode which diverges on the horizon
changes. Dropping the WKB phase factors, which do
not affect the magnitude of the scattering coefficients,
(57) becomes,

�
0

T

�
¼
���� ωω̃h

����N 12

�
R

1

�
ð58Þ

Using (46) and solving for R, one arrives at the following
expression,

R ¼ e−
iπ
2

�
1 − f212=4
1þ f212=4

�
sgnðω̃hÞ

; ð59Þ

which is greater than 1 for ω̃h < 0 as expected. In Fig. 3,
the predictions of (59) are shown to be in good agreement
with direct numerical simulation of the shallow water wave
equation (detailed in Appendix A of Supplemental Material
[58]). Agreement improves as m is increased, as one would
expect from the WKB approximation.
The expression in (59) also reveals clearly the asymptotic

behavior of the reflection coefficient. In particular, since the

integral in f12 decreases with ω, the maximum value of R
will always occur just below ω ¼ mΩh within this approxi-
mation. Furthermore, since the integral increases with m,
this maximum value will decrease exponentially with
increasing m. Since the WKB approximation improves
as m gets larger, this must also be the asymptotic behavior
exhibited by the exact solutions.

VII. DEEP WATER

In the deep water regime hk ≫ 1, the dispersion function
(28) is approximated by,

FðkÞ ¼ gjkj; ð60Þ

where the modulus is understood to only cancel the
overall sign. This choice of dispersion function is quali-
tatively indistinguishable from the solid black curves in
Fig. 1 except for very small p. As such, (60) gives a good
approximation to the exact dispersion function over a
much wider range in p than the shallow water approxi-
mation. In deep water, the motion of fluctuations occurs
predominantly close to the free surface and consequently,
the problem is independent of the water depth h. To lighten
the notation, we define the characteristic length and time
scales,

r0 ¼
�
D2

g

�1
3

; t0 ¼
�
D
g2

�1
3

: ð61Þ

In this section, we will work with a dimensionless rescaling
of (28) by these parameters (unless otherwise stated) which
amounts to setting D ¼ g ¼ 1.
The absence of the hyperbolic tangent function means

that the equations for p will be polynomial rather than
transcendental, which makes the analysis analytically
tractable. In the shallow water case, the exact solutions
for p took on the closed form expressions in (50). Since the
equation for p is quartic in the deep water regime, closed
form solutions also exist, but their form is not sufficiently
enlightening to be worth writing down. Thus, to find the
four values of pj, we solve the quartic equation numeri-
cally. Once these solutions are obtained, our analysis
proceeds analytically.
As an example, the four pjðrÞ are plotted for specific

flow parameters in Fig. 4. Comparing with the shallow
water modes in Fig. 2, the main difference is that there are
now four modes present at all radii as opposed to just two
and the horizon has been replaced by a turning point.
In general, the dispersion relation in deep water exhibits

either one, three or five real turning points, denoted ra with
a ∈ f1; 2; 3; 4; 5g in order of increasing size. From Fig. 1,
we can see that at large enough r, all four of thepjðrÞ are real
and propagating. Since the number of real turning points is
odd, therewill always be two realmodes and two evanescent
modes approaching the center of the vortex. Which two

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

FIG. 3. Reflection coefficients in shallow water for the flow
parameters C ¼ 1.4 × 10−2 m2=s, D ¼ −7 × 10−3 m2=s,
h ¼ 6.3 cm. The solid lines are the exact coefficients computed
from numerical simulation. The broken lines represent WKB
prediction in (59). Agreement with exact coefficients improves as
m is increased. The dashed lines terminate abruptly since there
are no real turning points at higher frequencies, which is a
requirement of the approximation used here.

SAM PATRICK and SILKE WEINFURTNER PHYS. REV. D 102, 084041 (2020)

084041-10



modes are real depends on the values of ω, m and C. The
turning point r1 is the analogue of the shallowwater horizon
when a long wavelengthþ or −mode becomes compressed
at small r, converts into a short wavelength u or d mode and
reverses its direction. This conversion between short and
long wavelength modes is the key feature of dispersive
systems that is absent in shallow water.

A. Scattering types

The possibility of interactions between long and short
wavelength modes greatly enriches the possible outcomes
of a scattering event. For the velocity profiles (10), the
different outcomes can be grouped into 6 different classes,
each determined by the number and location of real turning
points on the dispersion relation. The 6 possibilities are
illustrated in the form of Feynman diagrams in the ðr; pÞ
plane in Fig. 5. Pursuing this analogy with particle physics,
one can identify ingoing modes with particles and outgoing
modes with antiparticles. Evanescent modes are analogous
to virtual particles. Shortly, we assign rules to these
diagrams to facilitate the computation of the reflection
coefficient, which can be in general a lengthy procedure.
For m ¼ 0, there is single real turning point given in

dimensionless variables by,

rm¼0
1 ¼ 4ω; ð62Þ

4 6 8 10 12

-15

-10

-5

0

5

10

15

FIG. 4. An example of 4 solutions pjðrÞ to the dispersion
relation in (28) with the parameters C=D ¼ 16, h=r0 ¼ 15,
ωt0 ¼ 0.54, m ¼ 1. The deep water solutions only differ notably
for the two evanescent modes approaching r ¼ 0, whose real part
diverges at the origin tracking the behavior of the two real modes
there. This difference is not relevant for our discussion. At large r,
the values of pu;d become much larger than those of p� and
cannot be seen on the plot. In this case, the evolution of p�
proceeds similarly to that described in the shallow water case in
Fig. 2 except at small r, the horizon is replaced by a turning point
where the − mode is converted into the d mode.

FIG. 5. The different possible outcomes of a scattering process schematically illustrated as Feynman diagrams. These diagrams show
the different mode interactions that occur in the r, p plots, e.g., Fig. 4 corresponds to the type V diagram here. Moving in the direction of
decreasing r, “particles” are ingoing waves and “antiparticles” are outgoing modes. Wavy lines, or “virtual-particles” represent
evanescent modes. Vertices correspond to turning points.
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and only type I scattering occurs. For m ≠ 0, there can be
up to 5 turning points. These are solved for numerically in
specific examples later on. There are four important
frequencies which determine the number of real turning
points and therefore distinguish the different scattering
types; these are the light-ring frequencies and two new
frequencies which we call the upper and lower critical
frequencies for reasons which will shortly become appar-
ent. These four frequencies divide up the parameter space
into different scattering regions and are schematically
illustrated as functions of C in Fig. 6.
The light-rings rLR are the stationary orbits ofH and are

given by,

HLR ¼ 0; H0
LR ¼ 0; ∂rHLR ¼ 0: ð63Þ

These conditions can be solved at fixed m and C for the
triplet (r�LR; p

�
LR;ω

�
LR) where the � sign corresponds to

the sign of m. These were previously worked out for the
deep water case in [54]; in particular, the light-ring
frequencies are,

ω�
LRðmÞ ¼ 3

8

�
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2
� − 1

p �1
3jmj13;

B� ¼
h
2ðC2 þ 1Þ ∓ 2C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ 1

p i1
2: ð64Þ

As noted in [54], given certain conditions these frequencies
are related to the quasinormal modes of the system. For the
present purposes, they correspond to scenarios in which
two modes interact at a single point in the ðr; pÞ plane
before departing. Hence, the light-ring frequency forms a

boundary between two distinct regions of parameter space:
in one region, the two modes interact and in the other
region they are decoupled.
The second pair of important frequencies are derived

from the following consideration. As r is decreased, the
branches of the dispersion relation (e.g., in Fig. 1) become
increasingly skewed by the linear in p-term in Eq. (28).
Eventually, the skew becomes sufficiently significant
that the extrema of ω�

D disappear. Just before this happens,
the two pairs of turning points (one on each branch)
merge to become inflection points. Let these inflection
points be located at pc (upper branch) and p⋆ (lower
branch) respectively, and the values of ω there are ωc and
ω⋆. These critical frequencies play an important role in
determining which modes propagate in the vortex core. On
the upper branch, the u mode is real approaching the origin
for ω < ωc whereas above ωc, the − mode is real. On
the lower branch, the d mode is real for ω > ω⋆ whereas
below ωc, the þ mode is real. Due to the symmetry
of the dispersion relation, the following relations are
true: rc ¼ r⋆, pc ¼ −p⋆, ωcðm < 0Þ ¼ −ω⋆ðm > 0Þ and
ω⋆ðm < 0Þ ¼ −ωcðm > 0Þ. Note that since ω⋆ concerns
the inflection point on the lower branch, this frequency
plays no role for positive frequency modes withm < 0. The
reason for this is that as r is decreased, the mC=r2 term in
(28) pushes ω−

D to increasingly lower ω. However, ω⋆ is
still important for positive frequency modes with m > 0,
since in this case, the mC=r2 can raise the ω−

D branch to
positive frequencies. These observations are summarized in
the parameter space plots of Fig. 6.
The condition for the inflection points is equivalent to

following conditions on the Hamiltonian,

FIG. 6. The parameter space is split, by the four frequencies in (64) and (66), into regions where the different scattering processes in
Fig. 5 occur. The bottom-left corner in the plots is the point ω ¼ 0, C ¼ 0. A schematic illustration is provided since certain regions (in
particular, the one labeled III for m > 0) are difficult to resolve when plotting the numerical values of the curves. There are two distinct
structures to the space depending on the sign of m. For m ¼ 0, only type I scattering occurs. Amplification is guaranteed in the (grey)
region where (73) is satisfied. This is condition is sufficient for amplification but not always necessary. In particular, amplification may
also occur just beyond the ωþ

LR curve where exponential suppression of the reflected mode is only minor.
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Hc;⋆ ¼ 0; H0
c;⋆ ¼ 0; H00

c;⋆ ¼ 0; ð65Þ

which are solved at fixed m and C for the triplets (rc, pc,
ωc) and (r⋆; p⋆;ω⋆). In the deep water regime, the upper
and lower critical frequencies are given by,

ω⋆ ¼
1

2
2
33
ðC−2

3
2Þjmj13; ωc ¼

1

2
2
33
ðCþ2

3
2Þjmj13: ð66Þ

Note that for C < 2
3
2, ω⋆ becomes negative which means

that at low rotation, positive frequency, long wavelength
modes cannot propagate in the vortex core approaching
ω ¼ 0. This phenomenon is a direct consequence of the
deep water dispersion relation which has no analogue in the
nondispersive case. Another consequence is them

1
3 depend-

ence, as was also noted in [54].

B. Superradiance condition

Proceeding in the same fashion as in Sec. VI A, the
existence of superradiance is derived by analysing the
conserved current (27). Evaluating this at the innermost
turning point r1 and some radius far from the center (say
r ¼ R), this gives,

H0
1ðpd

1ÞjAd
1j2þH0

1ðpu
1ÞjAu

1j2þH0
1ðpþ

1 ÞjAþ
1 j2þH0

1ðp−
1 ÞjA−

1 j2
¼H0

Rðpd
RÞjAd

Rj2þH0
Rðpu

RÞjAu
Rj2þH0

Rðpþ
R ÞjAþ

R j2
þH0

Rðp−
RÞjA−

Rj2: ð67Þ

Application of the matrix T̃ in (42) at r1 reveals that
the two interacting modes there (say L and R) satisfy
AR
1 ¼ e−iπ=2AL

1 , as bothmodesmust decay toward the origin.
SinceH0ðpLÞ ¼ −H0ðpRÞ approaching r1, the contributions
of these modes cancel one-another. Physically, this means
that neither mode may carry energy beyond r1. The allowed
pairings (L,R) are (þ,u) for types I and III, (−;þ) for types II
and IVand (d,−) for types Vand VI. The remaining modes
(say Λ and P) propagate into the center.
The reflection coefficient R is defined as,

R ¼
����H0

Rðpþ
R Þ

H0
Rðp−

RÞ
����
1
2 Aþ

R

A−
R
: ð68Þ

In contrast to the shallow water definition, the factors ofH0
need to be included since these are not equal for the two
modes. One also needs to specify how much additional
energy is carried by the ingoing short wavelength modes.
This information is contained in the coefficients,

Iu;d ¼
����H0

Rðpu;d
R Þ

H0
Rðp−

RÞ
����
1
2 Au;d

R

A−
R
: ð69Þ

Lastly, the transmission coefficients are,

T Λ;P ¼
����H0

1ðpΛ;P
1 Þ

H0
Rðp−

RÞ
����
1
2 AΛ;P

1

A−
R
: ð70Þ

Inserting these definitions into (67) gives,

jRj2 ∓Λ jT Λj2 ∓P jT Pj2 ¼ 1þ jIuj2 − jIdj2; ð71Þ

where∓Λ;P¼ −sgnðH0
1ðpΛ;P

1 ÞÞ. In this rewriting of (67), all
of the input terms are on the right-hand side, whereas the
output terms are on the left. The first thing to notice is that
R ¼ 1 does not correspond to perfect reflection if Iu;d are
nonzero and instead, we are looking for jRj2 to be greater
than the sum of the terms on the right-hand side of (71). For
this to occur, one of the T terms must contribute negatively
to the left-hand side, which happens if H0

1ðpΛ;P
1 Þ > 0 for

one of the two modes. The scenarios in which this is
satisfied have either Λ ¼ d or Λ ¼ þ. However, the d mode
has a negative norm at infinity and is therefore nonphysical.
The only physical possibility is Λ ¼ þ, P ¼ u which gives
H0

1ðpþ
1 Þ > 0 and H0

1ðpu
1Þ < 0. This occurs in the type V

and VI processes. In type V, the u mode is noninteracting
and can be dropped from both sides of (71). Consequently,
superradiance always occurs in type V scattering. In type
VI, the u mode is interacting and thus for amplification to
occur at infinity, the total contribution of the T terms must
be negative. This is not always the case as we shall see in
the next section.
Since the onset of type V scattering occurs below the

lower critical frequency, the condition ω < ω⋆ is a neces-
sary condition for superradiance in deep water. The lower
critical frequency can be brought to a form reminiscent of
the shallow water condition (56) by noting that the location
of the inflection point is r⋆ ¼ ð61

2=2
1
6Þm1

3. The condition
becomes,

ω < ω⋆ ¼ mðC − 23=2Þ
r2⋆

: ð72Þ

While (72) is a necessary condition for amplification, it is
no longer sufficient to observe this amplification at infinity.
The reason for this is that in type VI, the total contribution
of the T terms must be negative as previously mentioned.
Considering the type VI diagram in Fig. 5, this has a simple
interpretation. Even though amplification occurs at r3 when
the − and þ modes scatter, the þ mode must scatter with
the u mode before it appears at r ¼ R. If the distance
between r4 and r5 is too large, then most of the amplified
wave will be reflected back into the centre of the vortex.
Hence, to guarantee amplification at infinity (within the
WKB approximation) one must require,

ω < minðω⋆;ωþ
LRÞ; ð73Þ

which prevents the þ and u modes from scattering. The
region of parameter space in which this is satisfied is
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shaded in Fig 6. Note that amplification at infinity can still
occur just above the light ring frequency if the distance
between r4 and r5 is sufficiently small. However, we shall
now see that the reflection coefficient in type VI decreases
exponentially with the width of the tunneling region.
Hence, (73) should provide a useful working bound on
when to expect superradiance in deep water systems.

C. Reflection coefficients

The reflection coefficient (68) is computed using the
transfer matrix M which relates the mode amplitudes at r1
to those at R,

0
BBBB@

Au
1

Aþ
1

A−
1

Ad
1

1
CCCCA ¼ M

0
BBBB@

Au
R

Aþ
R

A−
R

Ad
R

1
CCCCA: ð74Þ

The detailed form of M will depend on the type of
scattering taking place and is in general quite complicated.
An example calculation is given in Appendix B of
Supplemental Material [58], for type V scattering. The
resulting expressions for R can be obtained by a much
simpler method by inspecting the Feynman diagrams in
Fig. 5. The associated Feynman rules for the reflection
coefficient are,

(i) Draw all possible paths which connect the jth andþ
mode at R by following the arrows. Each such path
contributes a term to the reflection coefficient.

(ii) For each path, write down the ratio of the current of
the jth mode to that of the incident mode. This is 1
for the − mode and Iu;d for the u and d modes.

(iii) At each vertex, multiply by the local scattering
coefficient given in (76).

(iv) Multiply by the phase difference at the endpoints of
the path given in (77).

(v) For the u and the d modes, multiply by a factor (−1).
The resulting expressions for the different scattering
processes are,

I∶ R ¼ −eiðφu−π=2ÞIu; ð75aÞ

II∶ R ¼ eiðφ−−π=2Þ; ð75bÞ

III∶ R ¼ eiφ
−
R−

23 − eiðφu−π=2ÞT−
23I

u; ð75cÞ

IV∶ R ¼ eiðφ−−π=2ÞT−
23 − eiφ

u
R−

23I
u; ð75dÞ

V∶ R ¼ eiφ
−
Rþ

23 − eiðφd−π=2ÞTþ
23I

d; ð75eÞ

VI∶ R ¼ eiφ
−
Rþ

23T
−
45 − eiφ

u
R−

45I
u

− eiðφd−π=2ÞTþ
23T

−
45I

d: ð75fÞ

In these expressions, the local scattering coefficients are
defined,

R�
ab ¼ e−

iπ
2

�
1þ 1

4
f2ab

1 − 1
4
f2ab

��1

;

T�
ab ¼ e−

i
4
ðπ�πÞ fab

1 ∓ 1
4
f2ab

; ð76Þ

with fab given in (46). The local reflection coefficient at r1
is just e−iπ=2. The phase factor φj is the phase difference
between the endpoints of the paths and is given by,

φ ¼ Re

�Z
R

ra

½p�fpath 2gfpath 1gdr
	
; ð77Þ

where path 1 starts at R on the jth mode and runs out to ra,
and path 2 runs from ra to theþmode at R. As an example,
the contribution of the −mode to type VI scattering has the
following phase factor,Z

R

r3

½p�fþ↑þg
f−g ¼

Z
R

r5

pþdrþ
Z

r5

r4

p↑dr

þ
Z

r4

r3

pþdr −
Z

R

r3

p−dr ð78Þ

As mentioned in the previous section, the d mode carries
negative energy at large r and is nonphysical, thus, we can
set Id ¼ 0. The u mode has positive energy and therefore
does in principle contribute toR. However, in Appendix C
of Supplemental Material [58], we argue that modes with
large k are heavily damped. Since the growth of ku is
unbounded with increasing r, we can safely assume that
any u modes sent in from afar will have dissipated away by
the time they reach the vortex core. Hence, we may also set
Iu ¼ 0. In this case, the formulas in (75a) to (75f) are
telling us the following. In type I scattering, no reflection
occurs whereas in type II, one finds complete reflection.
Types III and V correspond to the same kind of scattering
between − and þ modes that occurs in shallow water, with
type V being the superradiant case. Types IVand VI include
an additional interaction with the u channel. In these cases,
the ingoing mode is reflected but must transmit back
through an evanescent region before appearing at r ¼ R.
As such, the reflection coefficient is exponentially sup-
pressed for these cases. In type VI, the þ mode gets
superradiantly amplified at small r but most of the extracted
energy is reflected back into the vortex core by scattering
with the u channel.
Finally, we note that the sharp transition between the use

of different expressions in (75a)–(75f) is only an artefact of
the approximation and, in reality, is smoothed over by
backscattering off the inhomogeneous flow which couples
the different modes even in the absence of turning points.
Such backscattering is of course exponentially suppressed
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when the difference between the pj is large [17], however,
it can become significant when two pj become close in the
ðr; pÞ plane. This occurs, in particular, in the vicinity of the
light-ring frequencies shown in Fig. 6. Near these curves, a
saddle point approximation [56] could be used to smooth
over the discontinuities in R. This will be explored in
future work.

D. Nonrotating flow

In the limit of vanishing rotation, the frequencies in (64)
and (66) reduce to,

ωc ¼ −ω⋆ ¼ 2
5
6

3
jmj13 ≈ 0.594jmj13;

ωLR ¼ ω�
LR ¼ 4

1
33

8
jmj13 ≈ 0.595jmj13: ð79Þ

Notice, the light ring frequencies are the same for co- and
counterrotating modes, since in the absence of rotation the
dispersion relation is invariant under m → −m. Since the
lower critical frequency is negative, it plays no role in
determining the scattering.

The location of the real turning points is displayed as a
function of frequency in Fig. 7. Using this plot along with
the (75a) to (75c), one can predict the form of spectrum for
the reflection coefficient. Below ωc, R will be close to
unity (type II) and then drop quickly toward zero between
ωc and ωLR (type III). Above ωLR, R will essentially be
zero (type I).

E. Rotating flow

For rotating flows, the dependence of the turning points
on frequency depends on the location in parameter space
(see Fig. 6) which is dictated by the value of C. Focusing on
m > 0, we give two examples for different values of C.
For the first case, we take C ≈ 15.6 in dimensionless

variables. This corresponds to the flow parameters used in
the experiments of [48]. As the frequency is increased from
zero, the system transitions through scattering types V, VI,
IV and I. Through this transition, the reflected mode is
amplified (V), amplified but suppressed by further reflec-
tion (VI), not amplified and suppressed (IV) and finally
negligible (I). The real turning points for this case are
shown in Fig. 8. The the reflection coefficient is displayed
for the lowest threem > 0modes in Fig. 9 and compared to
the shallow water results. These show that dispersion can
result in more amplification, but the cutoff frequency where
amplification ceases is lower than in shallow water. The
amount of amplification is below 20% in the range 0 to
5 Hz, which is in the same ballpark as results in [48].
The next case we consider corresponds toC ≈ 5.2. In this

case, the system transitions through scattering types V, II,

1.5 2 2.5 3 3.5 4 4.5 5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

FIG. 7. The location of the turning points for the m ¼ 1 mode
for a nonrotating flow with D ¼ 9 × 10−4 m=s. Axes are in
dimensional units. The small box close to 4.5 Hz is enlarged and
displayed on the inset to resolve the narrow frequency range in
which 3 turning points are present. The type of scattering that
occurs depends on the number of real turning points and is
indicated on the figure. Due to the symmetry in m in nonrotating
flows, the turning points for m ¼ −1 are identical. Furthermore,
the turning points for higher m follow the same trend as shown
here, with the values of r and f scaled by a factor of jmj13.
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FIG. 8. Location of the real turning points as a function
of frequency for the m ¼ 1 mode for the flow parameters
used in the experiments of [48], i.e., C ¼ 1.4 × 10−2 m2=s and
D ¼ 9 × 10−4 m2=s.
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IV and I as the frequency is increased. The initial and final
behavior of R is the same as the previous example,
however, the intermediate type II region means there is a
prolonged range in which R is approximately unity. This
contrasts the shallow water behavior where the reflection
coefficient always quickly drops below 1 as the limiting
frequency is surpassed. The turning points for this scenario
are plotted in Fig. 10 and the reflection coefficients for the
lowest lyingm > 0modes are shown in Fig. 11. For this set
of flow parameters, the superradiant cutoff is within the
frequency range probed by the experiment of [48]. Thus, by
decreasing the rotation parameter in their experiment by a
factor 3, it may be possible to test the predictions of Fig. 11.

VIII. CONCLUSION

In this work, we have developed a framework to analyse
wave scattering in inhomogeneous systems. The method
involves treating the waves as semiclassical particles then
tracing out the paths of these particles through the phase
space. Since particlelike and wavelike behavior coincide
for short wavelengths, these methods become increasingly
accurate for high momentum modes in the system (in
particular, high angular momentum). We have then applied
this framework to study the scattering of deep water gravity

5 10 15 20 25 30
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0.6

0.8

1

1.2

1.4

FIG. 9. Comparison between the reflection coefficient in
shallow water (SW) and deep water (DW) for flow parameters
of [48], i.e., C ¼ 1.4 × 10−2 m2=s and D ¼ 9 × 10−4 m2=s. The
solid lines are the exact coefficients in shallow water computed
from numerical simulation. The broken lines are the SW WKB
coefficients using (59) and the dashed lines are the DW WKB
coefficients using (75a) to (75f). Dispersion is shown to be able to
increase the size of the reflection coefficient for large enough
frequencies. The cutoff frequency however is much lower than in
shallow water, and agrees with the bound in (73).
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FIG. 10. Location of the real turning points as a function
of frequency for the m ¼ 1 mode using the flow parameters
C ¼ 4.7 × 10−3 m2=s and D ¼ 9 × 10−4 m2=s.
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FIG. 11. The deep water reflection coefficients for the flow
parameters C ¼ 4.7 × 10−3 m2=s and D ¼ 9 × 10−4 m2=s, cor-
responding to a reduction of the rotation parameter in [48] by a
factor of 3. Higher m-modes show qualitatively similar behavior,
albeit with less amplification. The discontinuities at ω⋆ ≈ 3.7 Hz
and ωLR ≈ 9.8 Hz are artefacts of the approximation used here
and in reality are smoothed over by backscattering. The transition
from amplification to pure reflection is a testable consequence of
dispersion and should be observable within the frequency range
probed by [48].
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waves with a rotating, draining vortex flow. This example
was chosen due to its relevance for the experiments in [48].
However, the method can be applied to a wide variety of
systems where the governing equation of motion is of the
form (1). For example, Hořava gravity [64–66] also
exhibits a modified dispersion relation of this form.
The key finding of this study is that, in the deep water

regime, the superradiance condition becomes that in (73).
We showed that the lower critical frequency ω⋆ plays the
role of the usual superradiance bound, determining when
incident ω > 0 modes are amplified. This, however, is not
the full story, since the presence of extra modes in the
system leads to other possible interactions. Namely, ampli-
fied modes can be rescattered by short-wavelength modes
back into the vortex core, preventing them from extracting
energy from the system. This is a novel feature of
dispersive systems that is completely absent in the shallow
water approximation. It so happens that the relevant
frequency controlling this re-scattering is the well-known
light-ring frequency [54]. We expect this behavior to not be
limited to just the deep water regime, but rather a generic
characteristic of subluminal dispersion relations.
Another novel feature of dispersive gravity waves

in the DBT is that the propagation of long wavelength
modes is prohibited in the vortex core in the frequency
range ω⋆ < ω < ωc. This has testable consequences which
should be observable within the frequency range probed by
the experiments in [48]. In particular, Fig. 11 demonstrates
that one should observe complete reflection above the
superradiant cutoff, if their circulation is slowed by a factor
of 3. Indeed, one of the motivations for this study was to
explain the spectrum for the reflection coefficient in the
experiments of [48]. Although we now have a framework to

study scattering when the system is dispersive, we are still a
few steps away from realising this goal. In particular,
dissipation, free surface gradients and vorticity have yet to
be incorporated fully into the theoretical description. In
Appendix C of Supplemental Material [58], we have shown
how dissipation can be described in 1D homogeneous fluid
flows, and the effects of free surface gradients and vorticity
have been studied in shallow water in [27,67] respectively.
The inclusion of these effects into our formalism is a
necessary step forward to make the connection to the
ongoing experimental efforts.
Finally, although in this work we have only included

mode mixing near real turning points, our formalism can
easily be extended to incorporate more sophisticated
methods. For example, mode mixing can be estimated in
the vicinity of complex turning points [18]. Furthermore, it
is well known that modes can mix around saddle points in
phase space [51], and this method has recently been applied
to estimate the reflection coefficients of the counterrotating
modes in the DBT [56].
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[8] L. P. Euvé, S. Robertson, N. James, A. Fabbri, and
G. Rousseaux, Phys. Rev. Lett. 124, 141101 (2020).

[9] T. Torres, S. Patrick, M. Richartz, and S. Weinfurtner,
Phys. Rev. Lett. 125, 011301 (2020).

[10] R. Schützhold and W. G. Unruh, Phys. Rev. D 66, 044019
(2002).

[11] S. Corley and T. Jacobson, Phys. Rev. D 54, 1568 (1996).
[12] J. Macher and R. Parentani, Phys. Rev. D 79, 124008

(2009).
[13] S. Finazzi and R. Parentani, Phys. Rev. D 85, 124027

(2012).
[14] A. Coutant, R. Parentani, and S. Finazzi, Phys. Rev. D 85,

024021 (2012).
[15] A. Coutant and R. Parentani, Phys. Rev. D 90, 121501

(2014).
[16] S. Robertson, F. Michel, and R. Parentani, Phys. Rev. D 93,

124060 (2016).
[17] A. Coutant and R. Parentani, Phys. Fluids 26, 044106

(2014).
[18] A. Coutant and S. Weinfurtner, Phys. Rev. D 94, 064026

(2016).

SUPERRADIANCE IN DISPERSIVE BLACK HOLE ANALOGUES PHYS. REV. D 102, 084041 (2020)

084041-17

https://doi.org/10.1103/PhysRevLett.46.1351
https://arXiv.org/abs/gr-qc/9311028
https://doi.org/10.12942/lrr-2011-3
https://doi.org/10.12942/lrr-2011-3
https://doi.org/10.1088/1367-2630/10/5/053015
https://doi.org/10.1103/PhysRevLett.106.021302
https://doi.org/10.1103/PhysRevLett.117.121301
https://doi.org/10.1103/PhysRevLett.124.141101
https://doi.org/10.1103/PhysRevLett.125.011301
https://doi.org/10.1103/PhysRevD.66.044019
https://doi.org/10.1103/PhysRevD.66.044019
https://doi.org/10.1103/PhysRevD.54.1568
https://doi.org/10.1103/PhysRevD.79.124008
https://doi.org/10.1103/PhysRevD.79.124008
https://doi.org/10.1103/PhysRevD.85.124027
https://doi.org/10.1103/PhysRevD.85.124027
https://doi.org/10.1103/PhysRevD.85.024021
https://doi.org/10.1103/PhysRevD.85.024021
https://doi.org/10.1103/PhysRevD.90.121501
https://doi.org/10.1103/PhysRevD.90.121501
https://doi.org/10.1103/PhysRevD.93.124060
https://doi.org/10.1103/PhysRevD.93.124060
https://doi.org/10.1063/1.4872025
https://doi.org/10.1063/1.4872025
https://doi.org/10.1103/PhysRevD.94.064026
https://doi.org/10.1103/PhysRevD.94.064026


[19] S. R. Dolan, E. S. Oliveira, and L. C. B. Crispino, Phys.
Lett. B 701, 485 (2011).

[20] S. R. Dolan, L. A. Oliveira, and L. C. B. Crispino, Phys.
Rev. D 85, 044031 (2012).

[21] S. R. Dolan and E. S. Oliveira, Phys. Rev. D 87, 124038
(2013).

[22] E. Berti, V. Cardoso, and J. P. S. Lemos, Phys. Rev. D 70,
124006 (2004).

[23] V. Cardoso, J. P. S. Lemos, and S. Yoshida, Phys. Rev. D 70,
124032 (2004).

[24] T. Torres, S. Patrick, M. Richartz, and S. Weinfurtner,
Classical Quantum Gravity 36, 194002 (2019).

[25] S. Basak and P. Majumdar, Classical Quantum Gravity 20,
3907 (2003).

[26] S. Basak and P. Majumdar, Classical Quantum Gravity 20,
2929 (2003).

[27] M. Richartz, A. Prain, S. Liberati, and S. Weinfurtner, Phys.
Rev. D 91, 124018 (2015).

[28] J. D. Bekenstein and M. Schiffer, Phys. Rev. D 58, 064014
(1998).

[29] R. Brito, V. Cardoso, and P. Pani, Lecture Notes in Physics
(Springer-Verlag, Berlin, 2015), Vol. 906, p. 18.

[30] V. L. Ginzburg and I. M. Frank, Dokl. Akad. Nauk SSSR
56, 583 (1947).

[31] V. L. Ginzburg, Prog. Opt. 32, 267 (1993).
[32] R. H. Dicke, Phys. Rev. 93, 99 (1954).
[33] Y. B. Zel’Dovich, Zh. Eksp. Teor. Fiz. Pis’ma Redaktsiiu

14, 270 (1971) [, Sov. J. Exp. Theor. Phys. 14, 180 (1971)].
[34] Y. B. Zel’Dovich, Sov. J. Exp. Theor. Phys. 35, 1085 (1972).
[35] J. F. McKenzie, J. Geophys. Res. 77, 2915 (1972).
[36] D. J. Acheson, J. Fluid Mech. 77, 433 (1976).
[37] D. H. Kelley, S. A. Triana, D. S. Zimmerman, A. Tilgner,

and D. P. Lathrop, Geophys. Astrophys. Fluid Dyn. 101,
469 (2007).

[38] A. M. Fridman, E. N. Snezhkin, G. P. Chernikov, A. Y.
Rylov, K. B. Titishov, and Y. M. Torgashin, Phys. Lett. A
372, 4822 (2008).

[39] R. Penrose and R. M. Floyd, Nat. Phys. Sci. 229, 177 (1971).
[40] C. Misner, Bull. Am. Phys. Soc. 17, 472 (1972).
[41] A. A. Starobinskiı̆, Sov. J. Exp. Theor. Phys. 37, 28 (1973).
[42] A. A. Starobinskiı̆ and S. M. Churilov, Sov. J. Exp. Theor.

Phys. 38, 1 (1974).
[43] S. W. Hawking, Nature (London) 248, 30 (1974).
[44] J. D. Bekenstein, Phys. Rev. D 49, 1912 (1994).
[45] R. Brito, S. Ghosh, E. Barausse, E. Berti, V. Cardoso,

I. Dvorkin, A. Klein, and P. Pani, Phys. Rev. D 96, 064050
(2017).

[46] D. Baumann, H. S. Chia, and R. A. Porto, Phys. Rev. D 99,
044001 (2019).

[47] N. Siemonsen and W. E. East, Phys. Rev. D 101, 024019
(2020).

[48] T. Torres, S. Patrick, A. Coutant, M. Richartz, E. W.
Tedford, and S. Weinfurtner, Nat. Phys. 13, 833 (2017).

[49] O. Bühler, Waves and Mean Flows (Cambridge University
Press, Cambridge, England, 2014).

[50] M. V. Berry and K. E. Mount, Rep. Prog. Phys. 35, 315
(1972).

[51] E. R. Tracy, A. J. Brizard, A. S. Richardson, and A. N.
Kaufman, Ray Tracing and Beyond: Phase Space Methods
in Plasma Wave Theory (Cambridge University Press,
Cambridge, England, 2014).

[52] R. L. Arnowitt, S. D. Deser, and C.W. Misner, The dynam-
ics of general relativity, Misner, Gen. Rel. Grav. 40, 1997
(2008).

[53] M. D. Schwartz, Quantum Field Theory and the Standard
Model (Cambridge University Press, Cambridge, England,
2014).

[54] T. Torres, A. Coutant, S. Dolan, and S. Weinfurtner, J. Fluid
Mech. 857, 291 (2018).

[55] M. Richartz, A. Prain, S. Weinfurtner, and S. Liberati,
Classical Quantum Gravity 30, 085009 (2013).

[56] T. Torres, Phil. Trans. R. Soc. A 378, 20190236 (2020).
[57] M. Abramowitz and I. A. Stegun, Handbook of Mathemati-

cal Functions: With Formulas, Graphs, and Mathematical
Tables (Courier Corporation, Chelmsford, 1965), Vol. 55.

[58] Please see Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevD.102.084041, for the
numerical solution of the shallow water system, an example
calculation for the computation of the reflection coefficient
in deep water, and an estimate of dissipative effects in a
stagnant fluid, which include Refs. [59–63].

[59] S. Churilov and Y. Stepanyants, Phys. Rev. Fluids 4, 034704
(2019).

[60] J. Lucassen, Trans. Faraday Soc. 64, 2221 (1968).
[61] P. H. LeBlond and F. Mainardi, Acta Mech. 68, 203

(1987).
[62] W. Alpers and H. Hühnerfuss, J. Geophys. Res. Oceans 94,

6251 (1989).
[63] A. Przadka, B. Cabane, V. Pagneux, A. Maurel, and

P. Petitjeans, Exp. Fluids 52, 519 (2012).
[64] T. P. Sotiriou, M. Visser, and S. Weinfurtner, Phys. Rev. D

83, 124021 (2011).
[65] E. Barausse, T. Jacobson, and T. P. Sotiriou, Phys. Rev. D

83, 124043 (2011).
[66] E. Barausse and T. P. Sotiriou, Classical Quantum Gravity

30, 244010 (2013).
[67] S. Patrick, A. Coutant, M. Richartz, and S. Weinfurtner,

Phys. Rev. Lett. 121, 061101 (2018).

SAM PATRICK and SILKE WEINFURTNER PHYS. REV. D 102, 084041 (2020)

084041-18

https://doi.org/10.1016/j.physletb.2011.06.013
https://doi.org/10.1016/j.physletb.2011.06.013
https://doi.org/10.1103/PhysRevD.85.044031
https://doi.org/10.1103/PhysRevD.85.044031
https://doi.org/10.1103/PhysRevD.87.124038
https://doi.org/10.1103/PhysRevD.87.124038
https://doi.org/10.1103/PhysRevD.70.124006
https://doi.org/10.1103/PhysRevD.70.124006
https://doi.org/10.1103/PhysRevD.70.124032
https://doi.org/10.1103/PhysRevD.70.124032
https://doi.org/10.1088/1361-6382/ab3d48
https://doi.org/10.1088/0264-9381/20/18/304
https://doi.org/10.1088/0264-9381/20/18/304
https://doi.org/10.1088/0264-9381/20/13/335
https://doi.org/10.1088/0264-9381/20/13/335
https://doi.org/10.1103/PhysRevD.91.124018
https://doi.org/10.1103/PhysRevD.91.124018
https://doi.org/10.1103/PhysRevD.58.064014
https://doi.org/10.1103/PhysRevD.58.064014
https://doi.org/10.1016/S0079-6638(08)70165-3
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1029/JA077i016p02915
https://doi.org/10.1017/S0022112076002206
https://doi.org/10.1080/03091920701561907
https://doi.org/10.1080/03091920701561907
https://doi.org/10.1016/j.physleta.2008.04.063
https://doi.org/10.1016/j.physleta.2008.04.063
https://doi.org/10.1038/physci229177a0
https://doi.org/10.1038/248030a0
https://doi.org/10.1103/PhysRevD.49.1912
https://doi.org/10.1103/PhysRevD.96.064050
https://doi.org/10.1103/PhysRevD.96.064050
https://doi.org/10.1103/PhysRevD.99.044001
https://doi.org/10.1103/PhysRevD.99.044001
https://doi.org/10.1103/PhysRevD.101.024019
https://doi.org/10.1103/PhysRevD.101.024019
https://doi.org/10.1038/nphys4151
https://doi.org/10.1088/0034-4885/35/1/306
https://doi.org/10.1088/0034-4885/35/1/306
https://doi.org/10.1017/jfm.2018.752
https://doi.org/10.1017/jfm.2018.752
https://doi.org/10.1088/0264-9381/30/8/085009
https://doi.org/10.1098/rsta.2019.0236
http://link.aps.org/supplemental/10.1103/PhysRevD.102.084041
http://link.aps.org/supplemental/10.1103/PhysRevD.102.084041
http://link.aps.org/supplemental/10.1103/PhysRevD.102.084041
http://link.aps.org/supplemental/10.1103/PhysRevD.102.084041
http://link.aps.org/supplemental/10.1103/PhysRevD.102.084041
http://link.aps.org/supplemental/10.1103/PhysRevD.102.084041
http://link.aps.org/supplemental/10.1103/PhysRevD.102.084041
https://doi.org/10.1103/PhysRevFluids.4.034704
https://doi.org/10.1103/PhysRevFluids.4.034704
https://doi.org/10.1039/TF9686402221
https://doi.org/10.1007/BF01190884
https://doi.org/10.1007/BF01190884
https://doi.org/10.1029/JC094iC05p06251
https://doi.org/10.1029/JC094iC05p06251
https://doi.org/10.1007/s00348-011-1240-x
https://doi.org/10.1103/PhysRevD.83.124021
https://doi.org/10.1103/PhysRevD.83.124021
https://doi.org/10.1103/PhysRevD.83.124043
https://doi.org/10.1103/PhysRevD.83.124043
https://doi.org/10.1088/0264-9381/30/24/244010
https://doi.org/10.1088/0264-9381/30/24/244010
https://doi.org/10.1103/PhysRevLett.121.061101

