
 

Weyl gauge theories of gravity do not predict a second clock effect
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We consider Weyl gauge theories of gravity (WGTs), which are invariant both under local Poincaré
transformations and local changes of scale. Such theories may be interpreted as gauge theories in
Minkowski spacetime, but their gravitational interactions are most often reinterpreted geometrically in
terms of a Weyl-Cartan spacetime, in which any matter fields then reside. Such a spacetime is a
straightforward generalization of Weyl spacetime to include torsion. As first suggested by Einstein, Weyl
spacetime is believed to exhibit a so-called second clock effect, which prevents the existence of
experimentally observed sharp spectral lines, since the rates of (atomic) clocks depend on their past
history. The prevailing view in the literature is that this rules out WGTs as unphysical. Contrary to this
viewpoint, we show that if one adopts the natural covariant derivative identified in the geometric
interpretation of WGTs, properly takes into account the scaling dimension of physical quantities, and
recognizes that Einstein’s original objection requires the presence of massive matter fields to represent
atoms, observers and clocks, then WGTs do not predict a second clock effect.
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I. INTRODUCTION

In 1918, Weyl proposed a unified theory of gravity and
electromagnetism [1], which was based on a generalization
of the Riemannian spacetime geometry assumed in
Einstein’s theory of general relativity. In particular, in
Weyl’s spacetime, the principle of relativity applies not
only to the choice of reference frames, but also to the choice
of local standards of length. This invariance under local
changes of the unit of length (gauge) was realized by the
introduction of an additional “compensating” vector field,
that we shall denote by Bμ, which Weyl attempted to
interpret as the electromagnetic four-potential.
In spite of the elegance and beauty of Weyl’s theory, it

did not achieve its original goal. It was soon recognized as
being unable to accommodate well-known properties of
electromagnetism, since the Weyl potential Bμ is not
coupled to the electric current, but to the dilation current
of matter. Indeed, one may easily show that Bμ interacts
in the same manner with both particles and antiparticles,
contrary to all experimental evidence about electromag-
netic interactions. It was only later realized [2] that
electromagnetism was related to localization of invariance
under change of quantum-mechanical phase and, much
later, that Bμ might instead be interpreted as mediating an
additional gravitational interaction, within a theory of
gravity that is locally scale invariant.

The first objection to Weyl’s theory was, however, made
by Einstein in a note published as an addendum to Weyl’s
original paper and applies irrespective of whether Bμ is
interpreted as mediating the electromagnetic or gravita-
tional interaction. Einstein claimed that Weyl’s theory
predicts a so-called “second clock effect,” which is not
experimentally observed. This phenomenon is in addition
to the usual “first clock effect,” which also occurs both in
special and general relativity and has been experimentally
verified to high precision.
As is well known, the latter refers to the fact that if two

identical clocks, initially synchronized, coincident, and at
relative rest, follow different (timelike) worldlines in space-
time before being brought back together, they will in general
measure different elapsed (proper) time intervals. None-
theless, provided the two clocks then remain coincident, they
will thereafter continue to “tick” at the same rate. By contrast,
in Weyl spacetime, if the field strength Hμν ≡ 2∂ ½μBν� of the
Weyl potential does not vanish throughout the spacetime
interior of the two-clock worldlines during their separation,
then the clocks in this scenario will tick at different rates even
after they are reunited, which is known as the second clock
effect (SCE). An immediate physical consequence is that the
existence of sharp spectral lines would not be possible in the
presence of a nonzero field strength Hμν, since the rate of
atomic clocks, as measured by some periodic physical
process, would depend on their past history.
The original discussions of the SCE, which subsequently

involved Weyl, Einstein, Eddington, and Pauli, among
others [3–7], were based on the fact that in a Weyl
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spacetime, the “norms” of parallel transported vectors
change in a manner that depends on the path taken
(although the angle between two vectors remains the same;
this changes only in general affine spaces for which the
metric and connection are fully independent quantities).
It was then argued that the norm of a timelike vector that is
parallel transported along a timelike worldline can re-
present the tick rate of a clock, which hence leads to an
SCE (equally, if the parallel transported vector is spacelike,
then one may physically interpret the effect as the length of
a rod being dependent on its past history, which is again
contrary to experimental evidence).
The association of the clock rate with the norm of a

parallel-transported vector is not trivial, particularly given
that length is not a well-defined concept in Weyl’s
spacetime, but one may come to the same conclusion by
defining a physically sensible notion of proper time along
(timelike) worldlines in Weyl spacetime, which generalizes
the concept of proper time used in Riemannian spacetimes
[8–10]. By reconsidering the two-clock thought experiment
outlined above, and computing the elapsed proper time
measured by each clock between their reunion and some
subsequent event, one again concludes that a Weyl space-
time does indeed exhibit an SCE, unless the Weyl potential
can be expressed as the gradient of some smooth scalar
field Bμ ¼ ∂μϕ; this corresponds to a so-called Weyl
integrable spacetime, in which the field strength Hμν

vanishes identically.
In this paper, we reconsider the issue of the SCE in the

context of Weyl gauge theories of gravity (WGTs) [11–14].
These theories are derived by gauging the Weyl group,
where one begins with some Minkowski spacetime matter
action that is invariant under global Weyl transformations,
which consist of Poincaré tranformations and dilations, and
then demands that the action be invariant under local Weyl
transformations, where the group parameters become
independent arbitrary functions of position. This requires
the introduction of gauge fields, which are interpreted
as mediating gravitational interactions. Although WGTs
are most naturally interpreted as gauge field theories in
Minkowski spacetime, it is usual for them to be reinter-
preted geometrically, whereby the gravitational interactions
are considered in terms of the geometry of a Weyl-Cartan
spacetime, in which any matter fields then reside [14,15].
Weyl-Cartan spacetime is a straightforward generalization
of Weyl spacetime to include nonzero torsion and reduces
to Weyl spacetime on imposing the properly covariant
condition that the torsion vanishes. Since, as we will
confirm, the presence of torsion is irrelevant to consid-
erations of the SCE, it has thus previously been argued that
Einstein’s objection to Weyl spacetime rules out WGTs
as unphysical, unless the Weyl potential is pure gauge
[16–19].
Contrary to this prevailing view, we demonstrate that

WGTs do not require this condition in order to avoid the

presence of the SCE. In particular, we show that the
geometric interpretation of WGTs leads to the identifica-
tion of the Weyl covariant derivative as the natural deri-
vative operator, which differs from the covariant derivative
usually assumed in Weyl-Cartan spacetimes when applied
to quantities having nonzero scaling dimension (or Weyl
weight) w. This is especially important when differentiating
the tangent vector uμðλÞ ¼ dxμ=dλ along an observer’s
worldline, which we show must haveWeyl weight w ¼ −1,
rather than being invariant (w ¼ 0) as is usually assumed.
Finally, we point out that, since Einstein’s objection to
Weyl’s theory is based on the observation of sharp spectral
lines, one requires the presence of matter fields to represent
the atoms, observers, and clocks; it is thus meaningless to
consider the SCE in an empty Weyl-Cartan geometry.
Moreover, such “ordinary” matter is most appropriately
represented by a massive Dirac field, but in order to obey
local Weyl invariance this field must acquire a mass
dynamically through the introduction of a scalar compen-
sator field, which we show is key to defining an interval of
proper time as measured by a clock along an observer’s
worldline. On taking these considerations into account,
WGTs do not predict an SCE, even when the Weyl
potential is not pure gauge.
The outline of our argument is as follows. The geometric

interpretation of WGTs identifies the (inverse) translational
gauge field as the vierbein components eaμ, which have
Weyl weight w ¼ 1 and relate the orthonormal tetrad frame
vectors êaðxÞ and the coordinate frame vectors eμðxÞ at any
point x in a Weyl-Cartan spacetime. The vectors êaðxÞ
constitute a local Lorentz frame at each point, which
defines a family of ideal observers whose worldlines are
the integral curves of the timelike unit vector field ê0.
Along a given worldline, the three spacelike unit vector
fields êi (i ¼ 1, 2, 3) specify the spatial triad carried by the
corresponding observer, which may be thought of as
defining the orthogonal spatial coordinate axes of a local
laboratory frame that is valid near the observer’s worldline.
In general, the worldlines need not be timelike geodesics,
and hence observers may be accelerating. For some test
particle (or other observer) moving along some timelike
worldline C given by xμ ¼ xμðλÞ, where λ is some arbitrary
parameter, the components of the tangent vector to this
worldline, as measured by one of the above observers, will
be uaðλÞ ¼ eaμuμðλÞ, which are physically observable
quantities in WGTs and so should be invariant (w ¼ 0)
under Weyl scale gauge transformations. Since the vierbein
eaμ has weight w ¼ 1, the weight of the components uμðλÞ
must thus be w ¼ −1.1 The length of the tangent vector is
then invariant under Weyl scale gauge transformations.

1As we will discuss in Sec. II, one may reach the same
conclusion by demanding that the physical distance, as opposed
to the coordinate distance, along the curve C is traced out at the
same rate before and after a Weyl scale gauge transformation.
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Moreover, by working in terms of the Weyl covariant
derivative, we show that one may always find a para-
metrization ξ ¼ ξðλÞ for which the length of the tangent
vector remains equal to unity under parallel transport along
its worldline (and so uμðξÞ ¼ dxμ=dξmay be interpreted as
the particle four-velocity). Consequently, the original argu-
ment for suggesting the existence of the SCE is removed.
Since d=dξ still has weight w ¼ −1, however, the

parameter ξ cannot be interpreted as the proper time of a
particle moving along the worldline. To resolve this issue,
we note that in order for WGTs to include ordinary matter,
which is usually modeled by a Dirac field, one must
introduce a scalar compensator field ϕ with Weyl weight
w ¼ −1 and make the replacement mψ̄ψ → μϕψ̄ψ in the
Dirac action, where μ is a dimensionless parameter but μϕ
has the dimensions of mass in natural units. In particular,
the functioning of any form of practical atomic clock is
based on the spacing of the energy levels in atoms, which is
then characterized in the clock’s local Lorentz frame by the
Rydberg energy ER ¼ 1

2
μϕα2 (in natural units), where α is

the (dimensionless) fine structure constant. As a result, an
interval of proper time measured by the clock along its
worldline is in fact given by dτ ¼ ϕdξ, which is invariant
(w ¼ 0) under Weyl scale gauge transformations, as
required for a physically observable quantity. Applying
this proper time definition to the two-clock thought experi-
ment discussed above, one finds immediately that the clock
rates are the same after their reunion, and so WGTs do not
predict an SCE.
The remainder of this paper is arranged as follows. In

Sec. II, we outline the basic properties a Weyl-Cartan
spacetime, review the existing arguments for the presence
of an SCE, and discuss an alternative approach to deter-
mining the scaling dimension of the tangent vector to an
observer’s worldline. In Sec. III, we then discuss Weyl
gauge theories of gravity and describe their geometric
interpretation in terms of Weyl-Cartan spacetime in Sec. IV,
highlighting in particular the identification of the Weyl
covariant derivative. We then reconsider the SCE in the
context of the geometric interpretation of WGTs in Sec. V,
both in terms of the norms of parallel transported vectors
and in terms of an appropriately defined proper time.
Finally, we present our conclusions in Sec. VI.

II. WEYL-CARTAN SPACETIME

A. Mathematical background

AWeyl-Cartan spacetime Y4 is a differentiable manifold
endowed with a metric and affine connection, whose
components in some arbitrary holonomic coordinate sys-
tem we denote by gμν and Γμ

ρσ, respectively. The latter
defines a covariant derivative operator ∇μ ¼ ∂μ þ Γσ

ρμXρ
σ,

where Xρ
σ are the GLð4; RÞ generator matrices appropriate

to the tensor character under general coordinate trans-
formations (GCT) of the quantity to which ∇μ is applied.

In particular, a Y4 spacetime is defined by the requirement
that this derivative operator satisfies the semimetricity
condition

∇σgμν ¼ −2Bσgμν; ð1Þ

where Bμ is the Weyl potential (and we have included a
factor of −2 for later convenience and to be consistent with
the notation typically used in WGT). As Weyl originally
showed, on performing the simultaneous (gauge) trans-
formations

ḡμν ¼ e2ρgμν; ð2aÞ

B̄μ ¼ Bμ − ∂μρ; ð2bÞ

where ρ ¼ ρðxÞ is an arbitrary scalar function, the con-
dition (1) is preserved, that is, one has ∇σ ḡμν ¼ −2B̄σ ḡμν.
Thus, these transformations define an equivalence class of
Weyl-Cartan manifolds, all of which share the same
connection. In this sense, the only geometrical quantities
of real physical significance in Weyl-Cartan spacetime are
those that transform covariantly under the transformations
(2), which may be interpreted as a change in the length
scale at every point of the manifold. It is worth noting that if
the Weyl potential is a pure gradient Bμ ¼ ∂μρ, then the
gauge transformations (2) reduce Weyl-Cartan spacetime
Y4 into a Riemann-Cartan U4 spacetime, since B̄μ ¼ 0.
More generally, if and only if the field strength Hμν ¼
2∂ ½μBν� vanishes, a Y4 spacetime can be reduced to U4 by a
suitable transformation of the form (2).
From (1), one finds that the connection is given by

Γλ
μν ¼ 0Γ�λ

μν þ K�λ
μν; ð3Þ

where the first term on the rhs in symmetric in ðμ; νÞ and
reads

0Γ�λ
μν ¼ 0Γλ

μν þ δλνBμ þ δλμBν − gμνBλ; ð4Þ

in which 0Γλ
μν ≡ 1

2
gλρð∂μgνρ þ ∂νgμρ − ∂ρgμνÞ is the stan-

dard metric (Christoffel) connection. The term K�λ
μν in (4)

is the Y4 contortion tensor, which is given in terms of
(minus) the Y4 torsion T�λ

μν ¼ 2Γλ½νμ� by

K�λ
μν ¼ −

1

2
ðT�λ

μν − T�
ν
λ
μ þ T�

μν
λÞ ð5Þ

and has the antisymmetry property K�
λμν ¼ −K�

μλν (we have
placed asterisks on several quantities above and included a
minus sign in the definition of the torsion to be consistent
with the usual notation adopted in WGT). It is clear from
(3)–(5) that setting the torsion to zero, which is a properly
invariant condition under the gauge transformations (2),
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then Weyl-Cartan spacetime Y4 reduces to Weyl space-
time W4.

B. Physical motivation

Aside fromWeyl’s original paper, much of the interest in
Weyl(-Cartan) spacetimes stems from the work of Ehlers,
Pirani, and Schild (EPS) [8], who proposed an axiomatic
approach to determining a suitable mathematical model of
spacetime using only basic assumptions about the behavior
of freely falling massive and massless particles. This led to
the conclusion that massless particles determine a con-
formal structure on spacetime, while the massive particles
determine a projective structure on spacetime. By imposing
a compatibility condition on these two structures, basically
postulating that massless particle trajectories can be
approximated arbitrarily well by massive particle ones,
EPS arrived at Weyl spacetime as the appropriate math-
ematical model. In their approach, EPS assumed the
connection to be symmetric (torsionless) from the outset,
but their conclusions rely only on the semimetricity
condition (1) and so it is reasonable to consider the more
general Weyl-Cartan spacetime, which allows for nonzero
torsion.

C. Parallel transported vectors and the SCE

Using the semimetricity condition (1), which holds
irrespective of the presence of torsion, the evolution of
the inner product of any two vectors vμ and wμ parallel
transported along some curve C is given by

d
dλ

½gμνvμðλÞwνðλÞ� ¼ D
Dλ

½gμνvμðλÞwνðλÞ�;
¼ ðuσðλÞ∇σgμνÞvμðλÞwνðλÞ
¼ −2BσuσðλÞgμνvμðλÞwνðλÞ; ð6Þ

where uμðλÞ ¼ dxμ=dλ is the tangent vector to C at the
parameter value λ and we have used the parallel transport
conditions Dvμ=Dλ ¼ 0 ¼ Dwμ=Dλ. Hence, on integrat-
ing, the inner product as a function of the parameter λ along
the curve is given by

gμνvμðλÞwνðλÞ ¼ gμνvμðλ0Þwνðλ0Þe−2
R

λ

λ0
Bσuσðλ0Þdλ0 : ð7Þ

By setting vμ ¼ wμ and considering parallel transport
around a closed curve C, the length l of a vector on
completing a loop is related to its original length l0 by

l ¼ l0e
−
H
C
Bμdxμ : ð8Þ

Thus, using Stokes’ theorem, the condition l ¼ l0 holds if
and only ifHμν vanishes throughout the region interior to C.
The above result forms the basis of the original discussions

of the SCE in Weyl’s theory by Einstein and others, as
described in the Introduction.

D. Proper time and the SCE

As also mentioned in the Introduction, however, the
intuitive argument above is not rigorous, and a more careful
approach is based on defining a consistent notion of proper
time along (timelike) worldlines in Weyl spacetimes
[8–10]. The simplest construction is based on the require-
ment that for a timelike curve xμðτÞ to be parametrized by
proper time τ, one requires the tangent vector uμðτÞ ¼
dxμ=dτ, which is thus the particle four-velocity, to be
orthogonal to its four-acceleration aμðτÞ ¼ Duμ=Dτ, such
that

gμνuμðτÞaνðτÞ ¼ 0: ð9Þ

This derivation of the proper time τ is unaffected by the
presence of nonzero torsion, since it also depends only on
the semimetricity condition (1) and is hence applicable in
Weyl-Cartan spacetimes. It is useful first to note that, for
two arbitrary parametrizations λ and ξ of a worldline, the
corresponding tangent vectors and their absolute deriva-
tives (which should no longer strictly be interpreted as the
particle four-velocity and acceleration) are related by [10]

uμðλÞ ¼ dξ
dλ

uμðξÞ; ð10aÞ

aμðλÞ ¼ d2ξ
dλ2

uμðξÞ þ
�
dξ
dλ

�
2

aμðξÞ: ð10bÞ

By considering the quantity gμνuμðλÞaνðλÞ and making
the identification ξ ¼ τ, for which we require (9) to hold,
one finds

d2τ
dλ2

−
gμνuμðλÞaνðλÞ
gμνuμðλÞuνðλÞ

dτ
dλ

¼ 0: ð11Þ

Since this a linear differential equation, if τ is a solution,
then so too is aτ þ b, where a and b are constants that
represent merely the scaling and zero point of the proper
time variable, respectively. To proceed further, it is con-
venient to consider the quantity

d
dλ

½gμνuμðλÞuνðλÞ� ¼
D
Dλ

½gμνuμðλÞuνðλÞ�;
¼ ðuσ∇σgμνÞuμuν þ 2gμνuμaν;

¼ −2Bσuσgμνuμuν þ 2gμνuμaν; ð12Þ

where we use the semimetricity condition (1), and in the
last two lines (and the remainder of this section), we drop
the explicit dependence of quantities on the arbitrary
parameter λ for brevity. Thus, (11) becomes
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d2τ
dλ2

−
�
1

2

d
dλ

ðgμνuμuνÞ þ gμνBμuν
�
dτ
dλ

¼ 0; ð13Þ

which is straightforwardly solved to obtain the proper time
interval Δτ between two events corresponding to the
parameter values λ0 and λ along the worldline,

ΔτðλÞ ¼ dτ=dλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνuμuν

p
����
λ0

Z
λ

λ0

e
R

λ0
λ0

Bμuμdλ00 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνuμuν

p
dλ0: ð14Þ

The application of this result to the two-clock thought
experiment discussed in the Introduction is straightforward.
Suppose the two clocks are separated at some event and
thereafter follow the worldlines C1 and C2, respectively,
before being reunited at some other event. The ratio of the
elapsed proper time measured by each clock between their
reunion and some subsequent event along their joint
worldline is given by

Δτ2
Δτ1

¼ exp

�Z
C2

Bμdxμ −
Z
C1

Bμdxμ
�
: ð15Þ

Thus, in general, the clock rates differ after their reunion
and so Weyl-Cartan spacetime exhibits an SCE.

E. Weyl weight of worldline tangent vector

The above derivation of the proper time τ is based on the
condition (9), which is assumed to be consistent across the
whole equivalence class defined by the Weyl gauge trans-
formations (2). This consistency holds, however, only if the
quantities uμðτÞ transform covariantly with Weyl weight
w ¼ 0 (i.e., they are invariant) under these transformations.
As discussed in the Introduction, however, we argue that
these quantities in fact have weight w ¼ −1, based on
consideration of their corresponding components in the
tetrad basis. One may, however, obtain further insight into
this conclusion without the use of tetrads, as outlined
below.
One may in fact work more generally in terms of an

arbitrary parameter λ, such that uμðλÞ ¼ dxμ=dλ is the
tangent vector at the parameter value λ to the worldline C
given by xμ ¼ xμðλÞ. Since the coordinates are unaffected
by the gauge transformations (2), they have weights w ¼ 0,
so it remains only to determine the weight of the operator
d=dλ. One may achieve this by first writing

d
dλ

¼ ds
dλ

d
ds

; ð16Þ

where ds2 ¼ gμνdxμdxν. Similarly, after the gauge trans-
formations (2), one has

d
dλ̄

¼ ds̄
dλ̄

d
ds̄
: ð17Þ

By requiring that ds̄=dλ̄ ¼ ds=dλ, so that the physical
distance, as opposed to the coordinate distance, along the
curve C is traced out at the same rate before and after
the gauge transformations (2), and using the fact that
ds̄ ¼ eρds, then

d

dλ̄
¼ e−ρ

ds
dλ

d
ds

¼ e−ρ
d
dλ

: ð18Þ

Thus, the tangent vector uμðλÞ ¼ dxμ=dλ has Weyl weight
w ¼ −1. It is worth noting that this conclusion does not
mean that the worldline C changes under the gauge trans-
formation, but only that the coordinates along it are traced
out at a different rate before and after the transformation.
For example, if two points O and A on the curve with
coordinates xμ0 and xμA correspond to parameter values
λ ¼ 0 and λ ¼ λA, respectively, before the gauge trans-
formation, then these points will have the same coordinates
but parameter values λ̄ ¼ 0 and λ̄ ≠ λA after the trans-
formation. The most important consequence of uμðλÞ
having weight w ¼ −1 is, however, that the length of
the tangent vector is invariant under the gauge trans-
formations (2), which follows immediately since

gμνuμuν → ḡμνūμūν ¼ gμνuμuν; ð19Þ

whereas the condition (9) (but with τ replaced by λ) is not
invariant, since one may show that

ḡμνūμāν ¼ e−ρgμνuμ½aν − uσð∂σρÞuν�: ð20Þ

This lack of invariance of the condition (9) under Weyl
gauge transformations undermines the physical signifi-
cance of the proper time variable derived above. As we
show below, however, by considering the geometric inter-
pretation of Weyl gauge theories of gravity, one may
identify an alternative form of covariant derivative which
both leaves the length of a vector unchanged after parallel
transport around a closed loop and allows one to define an
analogous condition to (9) which is invariant under Weyl
gauge transformations.

III. WEYL GAUGE THEORIES OF GRAVITY

It was the gauging of the Poincaré group P by Kibble
[20] that first revealed how to achieve a meaningful
gauging of groups that act on the points of spacetime as
well as on the components of physical fields. The essence
of Kibble’s approach was to note that when the parameters
of the Poincaré group become independent arbitrary func-
tions of position, this leads to a complete decoupling of the
translational parts from the rest of the group, and the former
is then interpreted as arising from a GCT (or spacetime
diffeomorphisms, if interpreted actively). Thus, the action
of the gauged Poincaré group is considered as a GCT
xμ → x0μ, together with the local action of its Lorentz
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subgroup on the orthonormal tetrad basis vectors êaðxÞ that
define local Lorentz reference frames, where we adopt the
common convention that Latin indices (from the start of the
alphabet) refer to anholonomic local tetrad frames, while
Greek indices refer to holonomic coordinate frames. This
approach leads to Poincaré gauge theories (PGT) of gravity,
but can be straightforwardly extended to more general
spacetime symmetry groups [14,21,22].
A natural extension of PGT is also to demand local scale

invariance, which is most directly achieved by gauging the
Weyl group W [11–13]. This may be formulated in a
number of ways, for example, by considering the Weyl
transformations as active or passive, infinitesimal or finite,
but they are all essentially equivalent. As in PGT, the
physical model is an underlying Minkowski spacetime in
which a set of matter fields φi is distributed continuously
(these fields may include a scalar compensator field, which
we occasionally also denote by ϕ). Since the spacetime is
Minkowski, one may adopt a global Cartesian inertial
coordinate system xμ, which greatly simplifies calculations,
but more general coordinate systems may be straightfor-
wardly accommodated, if required [15]. The field dynamics
are described by a matter action

SM ¼
Z

LMðφi; ∂μφiÞd4x; ð21Þ

which is invariant under the global action of the Weyl
group. One then gauges the Weyl group W by demanding
that the matter action be invariant with respect to (infini-
tesimal, passively interpreted) GCT and the local action of
the subgroup H (the homogeneous Weyl group), obtained
by setting the translation parameters of W to zero (which
leaves the origin xμ ¼ 0 invariant), and allowing the
remaining group parameters to become independent arbi-
trary functions of position.
In this way, one is led to the introduction of new field

variables haμ, Aab
μ, and Bμ, corresponding to the transla-

tional, rotational, and dilational parts of the Weyl group,
respectively. These fields are interpreted as gravitational
gauge fields and are used to assemble the covariant
derivative (adopting the common notation in WGT [14,15])

D�
aφi ¼ haμD�

μφi ¼ haμ
�
∂μ þ

1

2
Aab

μΣab þ wiBμ

�
φi;

ð22Þ
where the field φi is assumed to have Weyl weight wi and
Σab ¼ −Σba are the generators matrices of the SLð2; CÞ
representation to which φi belongs. Since D�

aφi is con-
structed to transform in the same way under the action of
the gauged groupW as ∂μφi does under the global action of
W, the matter action in the presence of gravity is then
typically obtained by the minimal coupling procedure of
replacing partial derivatives in the special-relativistic matter
Lagrangian by covariant ones to obtain

SM ¼
Z

h−1LMðφi;DaφiÞd4x; ð23Þ

where the factor containing h≡ detðhaμÞ is required to
make the integrand a scalar density rather than a scalar. It
should be noted that the requirement of local scale
invariance imposes tight constraints on the precise form
of LM. In particular, since h−1 has a Weyl (or conformal)
weight wðh−1Þ ¼ 4, the Lagrangian LM must have a
weight wðLMÞ ¼ −4.
In addition to the matter action, the total action must also

contain terms describing the dynamics of the free gravi-
tational gauge fields. The latter is constructed from the field
strength tensors Rabcd, T �

abc, Hab of the rotational, trans-
lational, and dilational gauge fields, respectively, which are
defined through the action of the commutator of two
covariant derivatives on some field φ of weight w by

½D�
c;D�

d�φ ¼ 1

2
Rab

cdΣabφþ wHcdφ − T �a
cdD�

aφ: ð24Þ

It is straightforward to show that the fields strengths have
the forms Rab

cd ¼ haμhbνRab
μν, Hcd ¼ hcμhdνHμν, and

T �a
bc ¼ hbμhcνT�a

μν, where

Rab
μν ¼ 2ð∂ ½μAab

ν� þ ηcdAac½μAdb
ν�Þ; ð25Þ

Hμν ¼ 2∂ ½μBν�; ð26Þ

T�a
μν ¼ 2D�

½μb
a
ν�; ð27Þ

and baμ is the inverse of haμ. It is worth noting that Rab
cd

has the same functional form as the rotational field strength
in PGT (which we thus denote by the same symbol), but
that T �a

bc ¼ T a
bc þ δacBb − δabBc, where T a

bc is the
translational field strength in PGT and Ba ¼ haμBμ. The
free gravitational action then has the general form

SG ¼
Z

h−1LGðRab
cd; T �a

bc;HabÞd4x; ð28Þ

where LG must also have a Weyl (conformal) weight
wðLGÞ ¼ −4, which places tight constraints on its form.
It is easily shown that wðRab

cdÞ ¼ wðHabÞ ¼ −2 and
wðT �a

bcÞ ¼ −1, which means that LG can be quadratic
in Rab

cd and Hab, while terms linear in R≡Rab
ab or

quadratic in T �a
bc are not allowed, despite them trans-

forming covariantly under local Weyl transformations.
One can, however, construct further Weyl-covariant

terms with the appropriate weight for inclusion in the total
Lagrangian by introducing an additional massless scalar
field (or fields) ϕ with Weyl weight wðϕÞ ¼ −1, often
termed the compensator(s) [14]. This opens up possibilities
for the inclusion of further action terms in which the scalar
field is nonminimally (conformally) coupled to the field
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strength tensors of the gravitational gauge fields, combined
(usually) with an additional free kinetic term for ϕ. For
example, terms proportional to ϕ2R or ϕ2LT �2, where LT �2

consists of terms quadratic in T �a
bc, are Weyl covariant

with weight w ¼ −4 and so may be added to the total
Lagrangian [23–26].
The inclusion of scalar fields also allows for more

flexibility in the allowed forms of the matter. An important
example is a free Dirac field ψ , which has Weyl weight
wðψÞ ¼ wðψ̄Þ ¼ − 3

2
, and for which the Lagrangian reads

LD ¼ 1

2
iψ̄γμ∂μ

↔
ψ −mψ̄ψ : ð29Þ

The corresponding action is not scale invariant owing to the
mass term mψ̄ψ . It thus appears that one requires the field
to be massless, which clearly cannot describe ordinary
matter. This difficulty can be circumvented, however, by
making the replacement mψ̄ψ → μϕψ̄ψ , where μ is a
dimensionless parameter but μϕ has the dimensions of
mass in natural units. The action is then invariant under the
global Weyl group, and one may also add kinetic and self-
interaction terms of weight w ¼ −4 for the scalar field ϕ.
After gauging the Weyl group as outlined above, the
resulting WGT matter Lagrangian for the Dirac and
compensator scalar field is given by

LM ¼ 1

2
iψ̄γaDa

↔
ψ − μϕψ̄ψ þ 1

2
νðD�

aϕÞðD�aϕÞ − λϕ4;

ð30Þ

where μ, ν, and λ are dimensionless constants (usually
positive). In this way, although the trace of the total energy
momentum tensor of the ψ and ϕ fields must vanish, the
energy-momentum tensor of the Dirac matter field ψ itself
need not be traceless, thereby allowing it to be massive.
Indeed, this approach to the construction of gauge theories
of gravity that are scale invariant but, at the same time, are
able to accommodate ordinary matter was first explored by
Dirac [23].
More generally, the introduction of scalar fields in WGT

is also important since they provide a natural means for
spontaneously breaking the scale symmetry. The approach
most commonly adopted is to use local scale invariance to
set the compensator scalar field ϕ to a constant value in the
resulting field equations, which is known as the Einstein
gauge. Setting ϕ ¼ ϕ0 in the equation of motion for the
Dirac field ψ , for example, leads to its interpretation as a
massive field with m ¼ μϕ0. It is usually considered that
setting ϕ ¼ ϕ0 represents the choice of some definite scale
in the theory, thereby breaking scale invariance. Indeed, it is
often given the physical interpretation of corresponding to
some spontaneous breaking of the scale symmetry (where
nature chooses the gauge). This interpretation is question-
able, however, since the equations of motion in the Einstein

gauge are identical in form to those obtained when working
in scale-invariant variables, where the latter involves no
breaking of the scale symmetry [15].
In any case, the total action is taken as the sum of the

matter and gravitational actions, and variation of the total
action with respect to the gauge fields haμ, Aab

μ, and Bμ

leads to three coupled gravitational field equations in which
the energy-momentum τkμ ≡ δLM=δhaμ, spin-angular-
momentum σab

μ ≡ δLM=δAab
μ, and dilation current ζμ ≡

δLM=δBμ of the matter field act as sources, where
LM ≡ h−1LM.

IV. GEOMETRIC INTERPRETATION OF WGT

Kibble’s gauge approach to gravitation is most naturally
interpreted as a field theory in Minkowski spacetime
[15,27,28], in the same way as the gauge field theories
describing the other fundamental interactions. It is more
common, however, to reinterpret the mathematical structure
of gravitational gauge theories geometrically [14].
At the heart of the geometric interpretation is the

identification of haμ as the components of a vierbein
system in a more general spacetime. Thus, at any point
x in the spacetime, one demands that the orthonormal tetrad
frame vectors êaðxÞ and the coordinate frame vectors eμðxÞ
are related by

êa ¼ haμeμ; eμ ¼ baμêa; ð31Þ

with similar relationships holding between the dual basis
vectors êaðxÞ and eμðxÞ in each set. For any other vector V,
written in the coordinate basis as (say) Vμeμ, one then
identifies the quantities Va ¼ haμVμ, for example, as the
components of the same vector, but in the tetrad basis. This
is a fundamental difference from the Minkowski spacetime
viewpoint presented earlier, in which Va ¼ haμVμ would
be regarded as the components in the tetrad basis of a new
vector field V.
The identification of haμ as the components of a vierbein

system has a number of far-reaching consequences.
First, the index-conversion properties of haμ and baμ are
extended. It is straightforward to show, for example, that
haμVa ¼ Vμ and baμVμ ¼ Va. Moreover, any contraction
over Latin (Greek) indices can be replaced by one over
Greek (Latin) indices. None of these operations is admis-
sible when the h, A, and B fields are viewed purely as gauge
fields in Minkowski spacetime.
Perhaps the most important consequence of identifying

haμ as the components of a vierbein system is that the inner
product of the coordinate basis vectors becomes

eμ · eν ¼ ηabbaμbbν ≡ gμν: ð32Þ

Thus, in this geometric interpretation, one must work in a
more general spacetime with metric gμν. Conversely, since
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the tetrad basis vectors still form an orthonormal set,
one has

êa · êb ¼ ηab ¼ gμνhaμhbν: ð33Þ
From (32), one also finds that h−1 ¼ ffiffiffiffiffiffi−gp

(where we are
working with a metric signature of −2). Under a (local,
physical) dilation, the spacetime metric and h-field have
Weyl weights wðgμνÞ ¼ 2 and wðhaμÞ ¼ −1, respectively,
and so (32) and (33) imply that wðηabÞ ¼ 0, as expected.
From (31) to (33), one immediately finds that the h-field
and its inverse are directly related by index raising/low-
ering, so there no need to distinguish between them by
using different kernel letters. Consequently, the standard
practice, which we will follow here, is to notate haμ and baμ
as eaμ and eaμ, respectively. One should also note that, if
the components Vμ and Vμ have Weyl weights w and
w̃ ¼ w − 2, respectively, then the components Va and Va

have weights w − 1 and w̃þ 1 ¼ w − 1.
One is also led naturally to the interpretation of Aab

μ as
the components of the “spin-connection” that encodes the
rotation of the local tetrad frame between points x and
xþ δx, which is accompanied by a local change in the
standard of length between the two points, which is
encoded by Bμ. Thus, the operation of parallel transport
for some vector Va of weight w is defined as

δVa ¼ −ðAa
bμ þ wBμδ

a
bÞVbδxμ; ð34Þ

which is required to compare vectors VaðxÞ and Vaðxþ δxÞ
at points x and xþ δx, determined with respect to the tetrad
frames êaðxÞ and êaðxþ δxÞ, respectively. Hence, in
general, a vector not only changes its direction on parallel
transport around a closed loop, but also its length. The
expression (34) establishes the correct form for the related
ðΛ; ρÞ-covariant derivative, for example,

D�
μVa ¼ ∂μVa þ wBμVa þ Aa

bμVb ¼ ∂�
μVa þ Aa

bμVb;

ð35Þ

where ∂�
μ ≡ ∂μ þ wBμ. Moreover, the existence of tetrad

frames at each point of the spacetime implies the existence
of the Lorentz metric ηab at each point. Then demanding
that ηab is invariant under parallel transport, and recalling
that wðηabÞ ¼ 0, requires the spin connection to be anti-
symmetric, that is, Aab

μ ¼ −Aba
μ, as previously.

Further differences between the Minkowski spacetime
gauge field viewpoint and the geometric interpretation
occur when generalizing the ðΛ; ρÞ-covariant derivative
to apply to fields with definite GCT tensor behavior. First,
in the geometric interpretation, one can in general no longer
construct a global inertial Cartesian coordinate system in
the more general spacetime. Thus, one must rely on
arbitrary coordinates and so define the “total” covariant
derivative

Δ�
μ ≡ ∂�

μ þ Γσ
ρμXρ

σ þ
1

2
Aab

μΣab ¼ ∇�
μ þD�

μ − ∂�
μ; ð36Þ

where ∇�
μ ¼ ∂�

μ þ Γσ
ρμXρ

σ ¼ ∇μ þ wBμ, in which Xρ
σ are

the GLð4; RÞ generator matrices appropriate to the GCT
tensor character of the field to which Δ�

μ is applied and w is
the Weyl weight of the field. If a field ψ carries only Latin
indices, then ∇�

μψ ¼ ∂�
μψ and so Δ�

μψ ¼ D�
μψ ; conversely,

if a field ψ carries only Greek indices, thenD�
μψ ¼ ∂�

μψ and
so Δ�

μψ ¼ ∇�
μψ . When acting on an object of weight w, for

all these derivative operators the resulting object also
transforms covariantly with the same weight w.
Most importantly, in a dynamical spacetime, the affine

connection coefficients Γσ
ρμ are themselves dynamical

variables, no longer fixed by our choice of coordinate
system. They are, however, necessarily related to the spin-
connection and dilation vector since the tetrad components
Va of a vector with coordinate components Vμ should,
when parallel transported from x to xþ δx, be equal to
Va þ δVa, that is,

Va þ δVa ¼ ðVμ þ δVμÞeaμðxþ δxÞ: ð37Þ
If the vector components Vμ have Weyl weight w, we
substitute for δVa using (34), but with w → w − 1, and
denote parallel transport of the coordinate basis compo-
nents in an analogous fashion by defining

δVμ ¼ −ðΓμ
ρσ þ wBσδ

μ
ρÞVρδxσ: ð38Þ

In other words, the quantities Γσ
ρμ contain the same

geometrical information as eaμ and Aab
μ, but in a different

frame. This information corresponds to 40 independent
gravitational field variables, and there are a further four
variables contained in Bμ.
From (37), we obtain the relation

Δ�
μeaν ≡ ∂�

μeaν − Γσ
νμeaσ þ Aa

bμeaν ¼ 0; ð39Þ
which relates A and Γ (and B); in particular, we note that
wðΓσ

νμÞ ¼ 0. The relation (39) is sometimes known as the
“tetrad postulate,” but note that it always holds. It is
straightforward to show that A or Γ may be written
explicitly in terms of the other as

Γλ
νμ ¼ eaλð∂�

μeaν þ Aa
bμebνÞ; ð40Þ

Aa
bμ ¼ eaλð∂�

μebλ þ Γλ
νμebνÞ: ð41Þ

Using (32) and (39), one finds that

∇�
σgμν ¼ 0; ð42Þ

and so this derivative operator commutes with raising and
lowering of coordinate indices. Equivalently, one may write
this semimetricity condition as
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∇σgμν ¼ −2Bσgμν; ð43Þ

which shows that the spacetime has, in general, a Weyl-
Cartan Y4 geometry. Hence, as discussed in Sec. II, the
connection Γλ

μν must satisfy the conditions (3)–(5).
Moreover, substituting (41) into the expressions (25)–

(27) for the gauge field strengths Rab
μν,Hμν, and T�a

μν, one
finds that

Rρ
σμν ¼ 2ð∂ ½μΓρjσjν� þ Γρ

λ½μΓλjσjν�Þ −Hμνδ
ρ
σ; ð44Þ

Hμν ¼ 2∂ ½μBν�; ð45Þ

T�λ
μν ¼ 2Γλ½νμ�; ð46Þ

where Rρ
σμν ¼ eaρebσRa

bμν and T�λ
μν ¼ eaλT�a

μν. Thus,
although we recognize T�λ

μν as (minus) the torsion tensor
of the Y4 spacetime, we see that Rρ

σμν is not simply its
Riemann tensor. Rather, the Riemann tensor of the Y4

spacetime is given by

R̃ρ
σμν ≡ Rρ

σμν þHμνδ
ρ
σ: ð47Þ

One should note that, although R̃ρσμν is antisymmetric in
ðμ; νÞ, it is no longer antisymmetric in ðρ; σÞ (indeed
R̃ðρσÞμν ¼ gρσHμν) and does not satisfy the familiar cyclic
and Bianchi identities of the Riemann tensor in a
Riemannian V4 spacetime. One may also show that, with
the given arrangements of indices, both R̃ρ

σμν (or Rρ
σμν) and

T�λ
μν transform covariantly with weight w ¼ 0 under a

local dilation. It is also worth noting that R̃μν ≡ R̃μλν
λ ¼

Rμν −Hμν and R̃≡ R̃μ
μ ¼ R. As one might expect, the

quantities (44)–(47) arise naturally in the expression for the
commutator of two derivative operators acting on a vector
Vρ (say) of Weyl weight w, which is given by

½∇�
μ;∇�

ν�Vρ ¼ R̃ρ
σμνVσ þ wHμνVρ − T�σ

μν∇�
σVρ: ð48Þ

A key point to note in the above geometric interpretation
is that it leads to the identification of a covariant derivative
∇�

μ ¼ ∂�
μ þ Γσ

ρμXρ
σ (often termed the scale covariant or

Weyl covariant derivative, although it was first introduced
by Dirac [23], who called it the co-covariant derivative) that
clearly differs from the conventional covariant derivative
∇μ ¼ ∂μ þ Γσ

ρμXρ
σ in Weyl-Cartan spacetimes, since

∇�
μ ¼ ∇μ þ wBμ. Indeed, this form immediately leads to

the important property ∇�
σgμν ¼ 0. A further important

feature of the Weyl covariant derivative is that, when acting
on an object of weight w, the resulting object also trans-
forms covariantly with weight w; this is not the case for the
conventional covariant derivative ∇μ, which does not, in
general, produce an object that transforms covariantly,
unless w ¼ 0.

It is also noteworthy that the Weyl covariant derivative
cannot, in general, be written in the form ∇�

μ ¼ ∂μ þ
�Γσ

ρμXρ
σ for some alternative connection �Γσ

ρμ, even if the
latter is permitted to depend on w. Indeed, this is a manifes-
tation of a larger issue. Whereas the geometric interpretation
of PGT captures all of its gravitational interactions (at least for
tensor fields) in terms of the metric and connection of an
underlying Riemann-Cartan U4 spacetime in which the
matter fields reside, the geometric interpretation of WGT
does not describe all of its gravitational interactions in an
analogous manner. In particular, when acting on fields with
nonzero Weyl weight w, the gravitational interactions medi-
ated by the dilational gauge field Bμ cannot be fully
“geometrized” in terms of the metric and connection of a
Weyl-Cartan Y4 spacetime, as is clear from (38) and (48), and
one must augment the Y4 spacetime interpretation by using
the Weyl covariant derivative in such cases.

V. SECOND CLOCK EFFECT IN WGT

We now reconsider the second clock effect in the context
of the above geometric interpretation of WGT, in particular
making use of the Weyl covariant derivative that it identifies.
Following our discussion in Sec. II, we will consider the
SCE both in terms of the norms of parallel transported
vectors and in terms of an appropriately defined proper time.
As discussed in the Introduction, in the geometric

interpretation of WGT, for a test particle moving along
some timelike worldline C given by xμ ¼ xμðλÞ, the
components of the tangent vector to this worldline as
measured in the local Lorentz frame of an observer will be
uaðλÞ ¼ eaμuμðλÞ, which should be invariant under Weyl
gauge transformations since they are physical observables
in WGT. Since the vierbein eaμ has weight w ¼ 1, the
weight of the components uμðλÞ in the coordinate basis is
thus w ¼ −1.
One may perform calculations in either the tetrad or

coordinate basis, denoted by Latin and Greek indices,
respectively. By virtue of the geometric interpretation of
WGT described in Sec. IV, these two approaches yield
consistent results, but we will work in terms of the
coordinate basis to facilitate a more straightforward com-
parison with the calculations performed in Sec. II.

A. Parallel transported vectors

Defining parallel transport in terms of the Weyl covariant
derivative, as in (38), and using the condition ∇�

σgμν ¼ 0,
one immediately finds that, in contrast to (6), the evolution
of the inner product of any two vectors vμ and wμ parallel
transported along some curve C is now given by

d
dλ

½gμνvμðλÞwνðλÞ� ¼ D�

Dλ
½gμνvμðλÞwνðλÞ�;

¼ ðuσðλÞ∇�
σgμνÞvμðλÞwνðλÞ ¼ 0: ð49Þ
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Hence, by setting vμ ¼ wμ and considering parallel trans-
port around a closed curve C, the length l of a vector is
unchanged on completing a loop, and so the original basis
for suggesting the existence of an SCE is removed.

B. Proper time

As discussed in Sec. II, however, the intuitive argument
above is not rigorous, and so we now reconsider how to
define a physically sensible notion of proper time along
(timelike) worldlines.
We begin by following an analogous procedure to that

adopted in Sec. II D. In particular, we first seek to identify a
parameter ξ (it will become clear shortly that this cannot be
interpreted as proper time and so we do not denote this
variable by τ here) that satisfies an analogous condition to
(9), namely,

gμνuμðξÞa�νðξÞ ¼ 0; ð50Þ
where we define a�μ ¼ D�uμ=Dξ. It is straightforward to
show that the condition (50) is consistent across the whole
equivalence class defined by the gauge transformations (2),
since

ḡμνūμðξÞā�νðξÞ ¼ e−ρgμνuμðξÞa�νðξÞ: ð51Þ
Following through the calculations in Sec. II D, but work-
ing instead in terms of the Weyl covariant derivative, one
finds that (12) is replaced by

d
dλ

½gμνuμðλÞuνðλÞ� ¼
D�

Dλ
½gμνuμðλÞuνðλÞ�;

¼ ðuσ∇�
σgμνÞuμuν þ 2gμνuμa�ν;

¼ 2gμνuμa�ν; ð52Þ
where we used the condition (42), and in the last two lines
(and the remainder of this section), we drop the explicit
dependence of quantities on the arbitrary parameter λ for
brevity. Thus, as might be expected, the condition (50)
corresponds simply to finding a parametrization ξ for which
the length of the tangent vector remains constant under
parallel transport along its worldline, as in Riemann-Cartan
U4 spacetime. Consequently, (14) is replaced by

ΔξðλÞ ¼ dξ=dλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνuμuν

p
����
λ0

Z
λ

λ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνuμuν

p
dλ0; ð53Þ

which now gives the parameter interval Δξ between two
events corresponding to the parameter values λ0 and λ along
the worldline. As was the case in Sec. II D, if ξ is a solution
then so too is aξþ b, where a and b are constants. Thus,
without loss of generality, one may choose ξ such that the
length of the tangent vector gμνuμðξÞuνðξÞ is unity along
the entire worldline, so that uμðξÞ may be interpreted as
the particle four-velocity, and hence identified with the

timelike unit basis ê0 of a local Lorentz frame for an
observer moving along the worldline.
Aswe discussed in Sec. II E, however, the differentiald=dξ

has Weyl weight w ¼ −1 (indeed this holds for any arbitrary
parametrization λ of the worldline). Thus, ξ is not invariant
under Weyl gauge transformations, and so cannot be inter-
preted as the proper time of a particle (or observer) moving
along theworldline, which is a physical observable and hence
should be independent of any gauge transformations.
To address this issue, one must recognize that Einstein’s

original objection to Weyl’s theory requires a massive Dirac
field to represent atoms and observers, and also take
seriously the physical mechanism by which such an
observer might measure their proper time as they move
along their worldline. One such method would be to carry
with them some form of atomic clock, which provides a
good physical approximation to an ideal clock, and is used
to define the standard for the unit of time. The functioning
of such a clock is based on the spacing of energy levels in
atoms (this is, of course, also directly relevant to the
consideration of spectral lines, the sharp nature of which
is considered as the key observational evidence against the
existence of the SCE). Although not particularly practical,
one could in principle make use of the energy levels in the
hydrogen atom, the spacings of which are characterized in
the clock’s local Lorentz frame by the Rydberg (ground
state to free) energy ER ¼ 1

2
mα2 (in natural units), wherem

is the rest mass of the electron and α is the (dimensionless)
fine structure constant.
As pointed out in Sec. III, however, to incorporate a Dirac

field describing ordinary matter in WGT, one must also
introduce a scalar compensator field ϕ and make the
replacement mψ̄ψ → μϕψ̄ψ in the Dirac action, where μ
is a dimensionless parameter but μϕ has the dimensions of
mass in natural units. Thus, the Rydberg energy then
becomes ER ¼ 1

2
μϕα2 and so in general varies with space-

time position according to the value of ϕ. A photon emitted
in a ground state to free electronic transition has energy ER,
defined as the projection of the photon 4-momentum onto
the timelike basis vector ê0 of the atom’s local Lorentz
frame, such that ER ¼ pμdxμ=dξ. Therefore, in a small
parameter interval dξ, the number of cycles traversed in the
photon wave train is dN ∝ ERdξ ∝ ϕdξ, which is invariant
under a Weyl gauge transformation, as it must be, since ϕ
and dξ have weights w ¼ −1 and w ¼ 1, respectively. A
proper time interval dτ in the atom’s rest frame is, however,
defined as the duration of a given number of cycles, and so
dτ ∝ ϕdξ, where one can take the constant of proportionality
to equal unity, without loss of generality. Hence, the proper
time interval measured by an atomic clock between two
events corresponding to the parameter values ξ0 and ξ along
the worldline is given simply by

ΔτðξÞ ¼
Z

ξ

ξ0

ϕdξ0; ð54Þ
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which is invariant under Weyl gauge transformations, as
required for a physically observable quantity. Indeed, the
Rydberg energy ER is then equal (in natural units) to
the angular frequency of the photon as measured in terms
of the proper time τ, and is itself also invariant under Weyl
gauge transformations, as it should be.
Finally, applying this proper time definition to the two-

clock thought experiment discussed in the Introduction,
one sees immediately from (53) and (54) that the ratio of
the elapsed proper time measured by each clock between
their reunion and some subsequent event along their joint
worldline is unity. Thus, the clock rates are the same after
their reunion, and so WGTs do not predict an SCE.

VI. CONCLUSIONS

We have critically reconsidered the prevailing view in the
literature that WGTs predict an SCE, which has previously
been argued to rule out such theories as unphysical.
Although WGTs are interpreted geometrically in terms of
a Weyl-Cartan Y4 spacetime, the gravitational interactions
mediated by the dilational gauge field (orWeyl potential)Bμ

cannot be fully geometrized in terms of the metric and
connection of such a spacetime when acting on quantities
with nonzero scaling dimensions (or Weyl weight) w.
Rather, the geometric interpretation of WGTs identifies a

covariant derivative ∇�
μ (often termed the Weyl covariant

derivative) that differs from the conventional covariant deriva-
tive∇μ inWeyl-Cartan spacetimewhen acting on quantities of
nonzero Weyl weight. The Weyl covariant derivative has the
important properties that ∇�

σgμν ¼ 0 and, when acting on
quantities that transform covariantly with arbitrary weight w
under Weyl gauge transformations, it produces objects that

also transform in this way; neither of these properties is shared
by ∇μ. If one defines parallel transport in terms of the Weyl
covariant derivative, then the condition ∇�

σgμν ¼ 0 immedi-
ately implies that the inner product of any two vectors is
preserved as they are parallel transported along some curve,
which removes the basis for Einstein’s original concerns
regarding the existence of an SCE.
Moreover, we show that more recent derivations of the

SCE, which are based on defining proper time in Weyl-
Cartan spacetime, rely on the assumption that the compo-
nents uμ of the tangent vector to an observer’s worldline are
invariant (w ¼ 0) under Weyl gauge transformations,
whereas we show that, in fact, they have weight w ¼ −1.
Furthermore, we point out that Einstein’s original

objection to Weyl’s theory requires the presence of a
massive Dirac matter field to represent atoms, observers,
and clocks, so it is meaningless in this context to consider
an empty Weyl-Cartan spacetime. The requirement of a
Dirac field to represent such ordinary matter in turn
necessitates the inclusion of a scalar compensator field
in order that the total action obeys local Weyl invariance
and the Dirac field may acquire a mass dynamically. We
show that this scalar field is key to a physically meaningful
definition of proper time.
When one makes use of the Weyl covariant derivative to

define variation along a worldline, assigns the components
uμ of the tangent vector to an observer’s worldline, the
correct Weyl weight of w ¼ −1, and includes the effect of
the required compensator field in defining a physically
sensible proper time variable that is invariant under Weyl
gauge transformations, one immediately concludes that
WGTs do not predict an SCE.
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